HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE
DAVID BLANC

ABsTRACT. We describe a collection of higher homotopy operations which determine
the rational homotopy type of a simply-connected space X. These are described in
terms of simplicial resolutions of successive approximations LU®) to the Quillen DGL
model for X. The operations lie in suitable cohomology groups H*(L(k’“); 7. Xq) of
these DGLs. To facilitate the recovery of an integral version of the operations from the
rational description, we also define a differential graded non-associative algebra model
for rational spaces.

1. INTRODUCTION

The homotopy type of a space X is determined by its homotopy groups 7.X, together
with the action of all primary homotopy operations on it, and of certain higher homotopy
operations (see [BI2, §7.17]).

If we are interested only in the rational homotopy type of a simply-connected space
X, Whitehead products are the only non-trivial primary homotopy operations on the
rational homotopy groups 7.Xg = 7. X @ Q, which, after re-indexing, constitute a
graded Lie algebra over Q. The relevant higher order operations are also simpler than
in the integral case. It is the purpose of this note to explain just how these determine
the rational homotopy type, and make sense of

Theorem A. For any simply-connected space X, there is a sequence of higher homotopy
operations taking value in 7. X, which, together with the rational homotopy Lie algebra
Teo1X @z Q itself, determine the rational homotopy type of X. (See Theorem 7.15
below).

These higher operations are certain subsets of 7,X which are indexed by elements
in the homology of a certain inductively defined collection of differential graded Lie
algebras (DGLs) defined below. Thus they take values in the corresponding cohomology
groups, with coefficients in 7,X.

Now it is clear intuitively that if L is any DGL, those cycles in the homology of
L which are not generators, or products of other cycles, represent “higher homotopy
operations” in L, in some sense. One of the objectives of this paper is to formalize
this intuition within a more general framework. Moreover, if I represents the rational
homotopy type of a topological space X, it is not always evident how to represent these
rational operations as integral higher order operations in 7. X (see §5.24 below). In
order to address this problem, we must consider a somewhat “flabbier” model of rational
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homotopy than that provided by differential graded Lie algebras, namely a certain class
of differential graded non-associative algebras.

Thus we also provide a (somewhat incomplete) answer to the following question: what
additional structure on the ordinary homotopy groups #.X of a simply-connected space
X, beyond the Whitehead products, is needed to determine its homotopy type up to
rational equivalence?

1.1. notation and conventions. The ground field for all vector spaces, algebras, and
tensor products will be Q (the rationals), unless otherwise stated.

7. denotes the category of pointed C'W complexes with base-point preserving maps,
and by a space we shall always mean an object in 7,, which will be denoted by a
boldface letter: X,S™,.... The subcategory of 1-connected spaces is denoted by 7,
and the rationalization of a space X € 7; 1s Xg. The category of rational 1-connected
topological spaces is denoted by 7g.

Let A denote the category of ordered sequences n = (0,1,...,n) (n € N), with
order-preserving maps. For any category C, we let sC denote the category of simplicial
objects over C — i.e., functors A” — C (cf. [Ma, §2]); objects therein will be written
Ae,.... If we omit the degeneracies, we have a A-simplicial object, which we denote
by A2, ....

The category of non-negatively graded objects over a category C will be denoted by
grC, with objects written Ti,...; we will write |z|=p if x € T,. An upward shift
by one in the indexing will be denoted by X : grC — ¢grC, so that (X¥X.)p41 = X,
and (X¥X.)o =0. The category of graded vector spaces is denoted by V.

The category of chain complexes (over Q) will be denoted by dV, and that of double
chain complexes by ddV. The differential of any differential graded object is written 0
(to distinguish it from the face maps d; of a simplicial object).

If C is a closed model category (cf. [Q1, I} or [Q3, II, §1]), we denote by hoC the
corresponding homotopy category. If X € C is cofibrant and Y € C is fibrant, we
denote by [X,Y]c the set of homotopy classes of maps between them.

Let Set denote the category of sets, Vec the category of vector spaces (over Q),
Lie the category of Lie algebras, and Alg the category of non-associative algebras.
We write § rather than s8et for the category of simplicial sets, and &, for the
category of pointed simplicial sets.

1.2. organization: In section 2 we review some background material on the Quillen
DGL model for rational homotopy theory, and describe a bigraded variant of it; and in
section 3 we give some more background on simplicial resolutions.

These are applied to the rational context in section 4, where we also define higher
order homotopy operations for DGLs. These appear as the obstructions to realizing
certain algebraic equivalences, and serve to determine the rational homotopy type of a
simply-connected space. We give a first approximation to Theorem A in §4.15.

In section 5 we explain how to translate the usual bigraded and filtered DGL models
into simplicial DGLs, which allows us to construct appropriate minimal simplicial reso-
lutions. In section 6 we define the homology and cohomology of a DGL (after Quillen),
and show that the obstructions we define above actually take value in the appropri-
ate cohomology groups. Finally, in section 7 we describe a non-associative differential
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graded algebra model for rational homotopy theory, which facilitates the translation of
the higher homotopy operations described above into integral homotopy operations. We
summarize our main results in Theorem 7.15.

1.3. Acknowledgements. 1 would like to thank Ron Livné for arousing my interest in
rational higher homotopy operations, Martin Arkowitz and Jean-Michel Lemaire for
providing me with copies of hard-to-get theses, and Steve Halperin for some useful
comments.

2. LIE MODELS

In this section we briefly recall some well-known definitions and facts of rational
homotopy theory, and describe variants thereof.

2.1. differential graded Lie algebras. Let £ denote the category of graded Lie
algebras, or G'L’'s. An object L, € L 1is thus a graded vector space: L. = &2 ,L,
over @, equipped with a bilinear graded product [, | : L, ® L, — L,., for each
pr,2 0, such that [z,y] = (D)W 2] and (—)F[z,y], 2]+ (~1)blfy, 2], o] +
(C1)FI(z, ], 4] = 0.

The free graded Lie algebra generated by a graded set X, is denoted by L{X.,).
The functor L : grSet — L is left adjoint to the forgetful “underlying graded set”
functor U : L — gr8et, and it factors through V: that is, L{(X,) = L(V(X,)), where
V(X.) €V is the graded vector space with basis X..

The category of differential graded Lie algebras, or DGLs, will be denoted by dL,
with  dLy the subcategory of 0-connected Lie algebras (i.e., those with Lo = 0).
An object L = (L.,0;) € dL is a graded Lie algebra L. € L, together with a
differential 9, = 97 : L, — L,_1, for each n >0, such that 9}7' o 97 = {0} and
dla,y) = [Ore,y] + (—=1)[z, dy).

The homology of the underlying chain complex of a DGL L = (L.,9) will be
denoted H.L, to distinguish it from the DGL homology defined in §6.5 below. Because
the differential 9 is a derivation, H.L inherits from L the structure of a graded Lie
algebra.

A morphism of DGLs which induces an isomorphism in homology will be called a
quasi-isomorphism, or weak equivalence.

In [Q3, I1,84-5], Quillen defined closed model category structures for the categories
dLy and sLie, as well as for topological spaces (and thus for 7g), and proved:

2.2. Proposition. There are pairs of adjoint functors Tg = slie and slie = dLy,
which induce equivalences belween the corresponding homotopy categories: holg =~

ho(sLie) ~ ho(dLy).

2.3. Notation. To every simply-connected space X € 7; one can thus associate a
DGL (L., 0d1) € dLy, unique up to quasi-isomorphism, which determines its rational
homotopy type. We denote any such DGL by Lx. Inparticular, H.(Lx) = 7.1 X®zQ,
the rational homotopy algebra of X, which we denote by 11X € L.

2.4. Definition. The graded Lie algebra H.(Lx) does not suffice to determine the
rational homotopy type of X € 7;: in fact, there may be infinitely many DGLs
{L™MY  with H!(LU™) = H'(Lx), no two of which are quasi-isomorphic as DGLs;
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see e.g. [LS]. We shall denote by dLo(X) the full subcategory of dLy whose objects
A satisfy HLA = H[(Lx), with the isomorphism in £ (see [SS], [LS], or [F1] for
treatments of the cohomology analogue of dLy(X) in terms of algebraic varieties).

The objects of hodLy(X) are thus all rational homotopy types which are indistin-
guishable from Xg on the primary homotopy operation level. Among these there is
a distinguished simplest one: recall that a space Xqg € Tg (or its corresponding DGL
model Ly € dL) is called coformal (cf. [MN]) if Lx is weakly equivalent to the trivial
DGL (L.,0) (where of course L. = H.(Lx)).

2.5. minimal models. Baues and Lemaire (in [BL, Cor. 2.4]; see also [N, Props. 5.6,
8.1 & 8.8]) showed that each connected DGL (L.,0) has a minimal model (ﬁ*,é),
such that L, is a free graded Lie algebra, d: L — L factors through [ﬁ, [A/], and there
is a quasi-isomorphism of DGLs ¢ : (f/*, é) — (L«,d) (unique up to chain homotopy).

A

In particular, we can choose such a minimal model Ly for any space X € 7; (cf.
§2.3).
As Neisendorfer observes in [N, §5], in general minimal models do not exist for non-

connected DGLs (but see [Me] or [GHT] for ways around this).

2.6. bigraded Lie algebras. A differential bigraded Lie algebra, or DBGL, is a bi-
graded vector space L.. = ©5Z, By Lys, equipped with a differential 0y = 97 :
Ly,s — L,—1s and a bilinear graded product [, | : L,s ® Lyt — Lptqs4¢ for each
p,q,s,t >0 satisfying:

2.71) [z, y] = (_1)(p+5)(q+t)+1[y,:1;]

2.71)  (=1)EPCEI[[z y), 2] + (=)D [y 2] 2]+ (=1)@FDCFI [z 2] 4] = 0
2.711)  JdpodrL =0

2.71v)  Oplx,y) = [Opx,y] + (=1)PT[x, Ory]

for xe€L,,, y€ Ly, and z € L,,. The category of such DBGLs will be denoted by
dbL, with dbLy the subcategory with L,o =0 for all p.

2.8. Definition. Each DBGL (L..,0r) has an associated DGL (L.,0r), defined

N

L, = @p-l—q:n L,, (same Jp); some authors re-index L., so that L,, = L, s, and
then L. is obtained from L. . by disregarding the first (homological) grading.
As for ordinary graded Lie algebras, one can define closed model category structures

on sLy and dbLy (see [BS, §2], and [Bl4, §4]), and we have the following analogue of
[Q3, I, Props. 2.3 & 4.6, Thm. 4.4]:

2.9. Proposition. There are adjoint functors S,COJJV:V*db,CO, which induce equivalences

of the corresponding homotopy categories ho(sLy) & ho(dbLy). N* takes free DBGLs
to free simplicial graded Lie algebras.

Proof. (We give the proof mainly to fix notation which will be needed later.) Given a
simplicial graded Lie algebra L, . € sLo, let (C.., ) be its Moore chain complex (cf.
[Ma, §22]), defined:
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P
(2.10) Chs = ﬂ[[&'er(df)]s with 9, = (=1)*dglc,...

=1

The simplicial Lie bracket [, ]: C,s @ Cyt — Cpigs4t is defined via the Eilenberg-
Zilber map:

(2.11) [x,y] = Z (—I)E(U)ﬂjt[sﬂz ST Sy S Y]
(0,7)€5p,q

where S, , denotes the set of all (p, ¢)-shuffles — that is, partitions of {0,1,...,p+¢—1}
into disjoint sets 01 < 0y < -+ <0y, I < T <--- <7, — and (o) = p+>.F_ (0s—1),
so (—1)%(?) is the sign of the permutation corresponding to (o,7). (See [Mcl, VIII,
55)).

It we forget the Lie structure, the Moore chain complex functor NV induces an equiva-
lence between the categories of simplicial graded vector spaces and bigraded chain com-
plexes (cf. [Do, Thm 1.9]), with the inverse functor ? defined for such a chain complex

(A, 0) by
(?A*,*)n,s = @ @ An—/\,s

0<A<n €3, 5

(where for each n >0 and 0 < XA <n, welet J,, denote the set of all sequences of
A non-negative integers ¢y < --- < 1,(< n)), with the obvious face maps (induced by 9)
and degeneracies (see [Ma, p. 95]).

The left adjoint N*: dbLy — sLy to N is defined N*((Lsn, 0)) = L(? (Lew))/I (L),
where L is the free graded Lie algebra functor, and [I(L..) is the ideal generated by
[7(x), 2 (y)] — 7 ([x,y]). The identities (2.7) follow from the corresponding ones in the
singly-graded case and the simplicial identities. O

3. SIMPLICIAL RESOLUTIONS

The proper algebraic setting for defining our higher homotopy operations is a suitable
notion of a simplicial resolution of . Xgq:

3.1. Definition. Recall that a category of universal graded algebras (or variety of
graded algebras, in the terminology of [Mc2, V,86]) is a category C in which the objects
are graded sets X,, together with an action of a fixed set of n-ary graded operators
W =Aw: X}, x Xp, x - x Xy, — X,,}, satisfying a set of identities £, and the mor-
phisms are functions on the sets which commute with the operators. Such categories
always come equipped with a “free graded algebra” functor F': grSet — C, left adjoint
to the “underlying graded set” functor U :C — gr&et. In all the examples we shall be
concerned with, the objects X, will be “underlying-abelian” (see [BS, §2.1.1]), and in
fact will have the underlying structure of a graded vector space over Q.

Examplesinclude £, and the categories of associative (resp. non-associative) graded al-
gebras. Note that any ordinary ungraded category of universal algebras may be thought
of as a CUGA with all objects concentrated in degree 0.
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3.2. Definition. A free simplicial resolution of an object B in a CUGA C is a weak
equivalence from a cofibrant object A, € sC to the constant simplical object associated
to B (with respect to the closed model category structure on the category sC defined
in [Q1, I, §4]). Such resolutions always exist, by [Q1, II, §4]; see section 5 below for a
specific construction.

3.3. bisimplicial objects. We shall be interested in a particular type of simplicial
resolution, which may be defined for an arbitrary CUGA C ((cf. [DKS] and [BS]),
though we shall only need it for the case where C is a category of ungraded universal
algebras, such as Lie or Alg:

Consider the category ssC of bisimplicial objects over C. We think of an object A4, €
ssC as having internal and external simplicial structures, with corresponding homotopy
group objects A, and 7EA, (each taking value in sC — see [BS, App.]). Let
sEF :gr§ — sC denote the free graded algebra functor, extended dimensionwise, and let
S™(k)s be the graded simplicial set having the simplicial n-sphere S7 := A[n]/A[n]"!
in degree k. We think of the simplicial graded algebras F(S"(k)s) as the C-spheres,
or models, for sC (cf. [BS, §3.1]). (In the ungraded case one can of course omit the
extra degree k, and write simply F'(S")). The full subcategory of sC whose objects
are weakly equivalent to coproducts of such models will be denoted by Mg, or simply
M.

One can use these models to define the so-called “FE?*-model category structure” for
ssC, as in [DKS, §5], in which a map f: X, — Y,e is a weak equivalence if

(3.4) [ 7T57TzX.. — 71'571';5/.. is an isomorphism for each s,1 >0

We shall not need an explicit description of the fibrations and cofibrations in  ssC,
but only a particular type of cofibrant object, as follows:

3.5. Definition. A bisimplicial object Aqq € ssC is called M-free if for each m >0
there are graded simplicial sets X[ml]s ~ \/;S8™(k;)s such that A,, = F(X[m].)
(so that A.,, € M), and the external degeneracies of A, are induced under F' by
maps X[ml], — X[m + 1], which are, up to homotopy, the inclusion of sub-coproduct

summands. Any X, € sC may be resolved by an M-free bisimplicial algebra A., (see
[BS, §4.1]); this is called an M-free resolution of X,.

3.6. Definition. The diagonal of a bisimplicial object A,, € ssC 1is a simplical object
diag(Aes) € sC with diag(Aes)n := Ann, face maps dy = di o dg, and degeneracies

5j =508,

3.7. Remark. There is a first quadrant spectral sequence with
Eit = 71':(71';14..) = Toprdiag(Aes)

(see [Q2], and compare [BF, Thm B.5]).

Thus in particular if A,e — X, is a resolution (in the E*-model category sense), we
see that ¢: Ape — Xo induces a weak equivalence diag(Ae.) =~ X,.

Moreover, the same is true if we disregard the degeneracies and consider only the
A-bisimplicial resolution A% — X,.
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4. RESOLUTIONS FOR RATIONAL SPACES

Given a simply-connected space X € 77, the first approximation to an algebraic
description of its rational homotopy type is given by its rational homotopy Lie algebra
¥ = .1 Xg € L.

If Xg were coformal (§2.4), then in particular all higher homotopy operations vanish
in 7.Xg, and no information beyond IIX itself is needed to determine the rational
homotopy type of X. The higher homotopy operations we shall describe may thus be
thought of as “obstructions to coformality”, much in the spirit (though not the specific
approach) of [HS].

4.1. topological resolutions. To proceed further, we need some kind of a “topolog-
ical” simplicial object (¢ which realizes a suitable “algebraic” simplicial resolution
Ve — H‘*X in sL, in the sense that V, . = m._1C,. The higher homotopy operations
we want then arise as the obstructions to realizing the “algebraic” augementation map
710y — 11X topologically.

This can be done using actual topological spaces, as in the integral case (see [BI2,
§7], as simplified in [B13, §4.9]), but for rational spaces it is more convenient to use an
algebraic model, in a category such as dL. To allow us freedom in choosing this model,
we give a general definition:

4.2. Assumptions. Let gC be a CUGA (which we may assume to have the underlying
structure of a graded vector space), and C the category of (ungraded) universal algebras
corresponding to objects of ¢gC concentrated in degree 0. The cases we shall be interested
in are C = Lie (with ¢C =L) and C=Alg (with ¢C = A).

As shown in [BS, App.], for each simplicial algebra A, € sC, the graded homotopy
object w.A, actually takes value in ¢C.

For a given A, € sC, let Co¢ — A, be an Mc-free resolution (Definition 3.5). In
particular, this implies that upon applying the functor =, we obtain a free simplicial
resolution WiC.. (in the “external” direction!) of the graded algebra =.A,. In fact,
we only need a A-bisimplicial resolution (§3.7), but we shall nevertheless usually abuse
notation by writing C,, for Cﬁ.

Next, assume given another object B, € sC, together with an isomorphism ¢ :
T.Ae = m.By (in ¢C). Define a sequence of morphisms ¢, : 7.C,4 — 7. B, by
o :=¢@oe and 41 =1, 0dy (which implies that ,11 =1, 0d; forall 0 <i <n,
by the simplicial identities).

We choose once and for all a fixed map fy: Cpe — Bs realizing o (this is possible
because Co — A, is M-free) and define f, : C, o — B, inductively by setting
fat1 := fnod,, sothat w.(f,) =1, forall n>0. It is usually most convenient to

set f|@f = 0 for all C-disks Dfx) — Coe-
Note that, because Co is M-free, the maps {¢,}>2, define an augmented A-
simplicial object "C% — B, in the homotopy category ho(sC) — or equivalently, an

augmented A-simplicial object up-to-homotopy.

4.3. Definition. Let D[n] € S. denote the standard simplicial n-simplex, together
with an indexing of its non-degenerate k-dimensional faces D[k]®) by the composite
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face maps v =d;,_,o0...0d;,, :n — k—1 in A% (cf. [BI3, §4]). Its (n —1)-
skeleton, which is a simplicial (n — 1)-sphere, is denoted by 9dD[n]. We shall take
% 1= D[0](dod1dz2dn-1) a5 the base point of D[n] € S., and we choose once and for all
a fixed isomorphism ) : D[k]") — D[k] for each face D[k]®) of Dn] (see, e.g.,
[BI3, (4.5)]).

4.4. Example. dD[2] has three vertices: D[0]%%) = D[0](%%) (the basepoint),
D[0]de®2) = D[0](@1de)  and D[0](41%2) = D[0](h141), It has three non-degenerate edges
D[1]@) D[1)¢), and D[1]2). D[2] has in addition one non-degenerate 2-simplex,
which we may denote by D[2](9). See Figure 1 below for a depiction of D[2], and
Figure 2 for a depiction of DI[3].

4.5. Definition. Given Y, € sC and a simplicial set K, € §, we define their half-
smash (in sC) by:
Yo x Ko :=Y, @ K,/({0} @ K,)

(where (Yo @ Ko)p := e, (Ya)w) — cf. [QL, 11, §1, Prop. 2]).

Similarly, the smash product (in sC) of Y, with a pointed simplicial set K, € S,
is defined Yo A Ky := Y, x K,/(Ye x {x}), and if K, =S" (the simplicial sphere), we
write X7Y, for Y, A S".

4.6. Remark. If 'Y, = F(S™) is a C-sphere (see §3.3), then X"Y, = F(S™*") is also
a C-sphere. In fact, many of the usual properties of spheres in ho7 also hold for
C-spheres — eg., 7, X, = [F(S"), X.]s¢c for any X, € sC (cf. [Ql, I, §4]), and
Vo [ F(S™) = SV, ~ 1, F($") (cf. [Q1, 1, §3))

4.7. Definition. Under the assumptions of §4.2, for each n € N; we define a 9D[n]-
compatible sequence to be a sequence of maps {hg : Wie x D[k] — B,}}Z), such that
ho = fo (under the natural identification Wy, x D[0] = Wy,), and for any iterated
face maps 6 =d;,,, 0---0d;, and y=d;; 06 (0<j<n) wehave

)

on C]-H,' X D[]]]v

41
(4.8) hjo(di; xid) = hjpy o0 (ad X ¢f

~

where ¢ : D[j] — D[j + 1] is the composite ¢} := ¢’ 010 (7)1

Here " and °
are the isomorphisms of Definition 4.3, and ¢ : D[j]®) — D[j + 1] is the inclusion
(compare [BI3, Def. 4.10]).

A sequence of maps {hy : Wie X D[k] = Be}72, satisfying condition (4.8) for all v,
6, and n is called a dD[oo]-compatible sequence.

4.9. Definition. Given such a dD[n]-compatible sequence {hy : Cro 3 D[k] = B,};Z,
the induced map h: CyexdD[n] — B, is defined on the “faces” ), ¢ 3 D[n — 1)) of
Cre X Din] by: h|cn.xD[n_1](di): hp—1 0 (d; xid). The compatibility condition (4.8)

above gnarantees that h is well-defined.

4.10. Definition. For each n > 2, the n-th order homotopy operation (associated to
the choice of Cyy — A, in §4.2) is a subset ((n)) of the track group [Y"7'C,,, Bslsc
defined as follows:

Let T, C [Cph.e x OD[n], Bs]sc be the set of homotopy classes of maps h : C, 4

dD[n] — B, induced as above by some D[n]-compatible collection {h;};Z3. Since
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each (), 1s a suspension, up to homotopy, by Remark 4.6, we have a splitting

(4.11) Cpe X OD[n] ~ (S '"ANCa) I C,,

(as for topological spaces). We define {(n)) C [¥"7'C,.., Bs]sc to be the image under
the resulting projection of the subset T, C [C,+ x dD[n], Bs]sc.

Note that the projection of a class [A] € T}, on the other summand [C,, ., B]sc coming
from the splitting (4.11) is just the homotopy class of the map f, of §4.2. On the
other hand, since C,, was assumed to be M-free, each C, 4 >~ [[,—, I1 F(Sk ))

z€Ty, i (z
is weakly equivalent to a wedge of spheres, so Y"7'C,, ~ [[,—, eer, . F(Sf;)”_l).
Thus 7

(4.12) (5" Cl ey Balse H IT [(FsE ), Balse,

k=1 l’ETnk

and we shall denote the components of ((n)) under this product decomposition by

((n,2) C [F(SEE™), Bul = T Bo.

4.13. Definition. It is clearly a necessary condition for the subset ((n)) to be non-
empty that all the lower order operations ((k)) (2 < k < n) wvanish — i.e., contain
the null class. A sufficient condition is that they vanish coherently (cf. [BI2, Def. 5.7] —
i.e., that the dD[m]-compatible collections {h}}7' for the various faces v of 9D[n]
can be chosen to agree on their intersections, so that they in fact fit together to form a
dD[n + 1]-compatible collection {hx}7_,-

4.14. Remark. The coherent vanishing of all the operations {{(n))}>2, is equivalent,
by [BV, Cor. 4.21 & Thm. 4.49] and [BI2, §4.11], to the rectifiability of the augmented
A-simplicial object up-to- homotopy *C%4 — B,: that is, its replacement by augmented
A-simplicial object CA — B, over sC (with the simplicial identities now holding
precisely, in sC, rather than just in ho(sC)), such that C),, ~ Am. for each n.

This in turn implies (by §3.7) that diag(éﬁ) ~ B,; but since diag(éﬁ) ~ diag(C3,),
and diag(C%) ~ A, by assumption, we conclude that A, ~ B, if and only if the
higher homotopy operations {{(n))}°>, vanish coherently.

4.15. Summary. This yields a first approximation to Theorem A, which may be de-
scribed as follows:

We work in C = Lie (and ¢C = L). Given a space X € 7; we consider the
simplicial Lie algebra B, corresponding to a DGL model Lx € dL for Xg (under
the functors of Proposition 2.2), and let I := 7, ;Xg € £ be its rational homotopy
Lie algebra, with A, € sLie the simplicial Lie algebra corresponding to the trivial
DGL L© .= (I1X,0). Choose some Mg;.-free resolution C,e € sslic of A,.

X is coformal if and only if A, ~ B,, and this happens if and only if all the higher
homotopy operations {{(n))}>>, associated to C,e vanish coherently, by Remark 4.14.
If not, let ngo denote the least n > 2 such that 0 ¢ {(n)).

Note that we can apply the above procedure to any DGL in dL(X) (Def. 2.4), not
only to Lx; and the existence and vanishing or non-vanishing of the higher homotopy
operation {(ng)) C 7.Xg is a homotopy invariant. Denote by FH®) the set of all
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homotopy types in hodLy(X) for which {(ng)) is defined and has the same value as for
B, itself (i.e., those DGLs which are indistinguishable from Ly as far as the primary
homotopy operations, and all the higher homotopy operations {{(n))}.°, associated to
(e, can see). For each a € HY, choose a representative DGL LU+,

Next, choose a new M-free resolution for the simplicial Lie algebra corresponding to
L) and repeat the above procedure, yielding a set of higher homotopy operations
{(n1,4) C 7.Xg which serve as obstructions to the existence of a homotopy equivalence

LU 5 Lx. For each such higher operation ((n1,)), we denote by H?%) the set of
all homotopy types in H) C hodLy(X) for which {(n;,)) has the same value as for
Lx. Now choose representatives L) for each o' € HZ), and proceed as above.

In this way we obtain a tree Ty of rational homotopy typesin hodLq(X), which also
indexes a collection of higher homotopy operations of the form (R0, a0....0.)) € T X0,
and limg_ ., ny = oo along any branch of the tree Ty, so that in fact this collection
of operations determines the rational homotopy type of X.

In a future paper we hope to show how this tree of homotopy types in hodLqy(X),
and thus the corresponding collection of higher homotopy operations, may be described
more effectively in terms of a “Postnikov tower” for an Mpg;.-free resolution for X.

5. MINIMAL RESOLUTIONS

We now explain how the bisimplicial theory described in section 4 translates into a
differential graded theory, when C = L. In particular, this allows an application of the
Halperin-Stasheff perturbation theory to our context.

First, it is sometimes convenient to have minimal M-free resolutions for a DGL,

defined for any CUGA C as follows:

5.1. Definition. Any B € C has a special kind of free simplicial resolution (see
refdsr) A, — B, called a CW-resolution, defined as follows (cf. [Bl1, §5.3]):

If we let A, denote the sub-algebra of A, generated by the non-degenerate elements
in 17, werequirethat d;]z =0 for 1 <i<n. Thesequence Ag= Ag, Ay1,..., Ay, ...
is called a C'W-basis for A,, and dy = dol|s, is the attaching map for A,.

Such a A, — B will be called minimal if each A, is minimal among those free
algebras in C which map onto the Moore n-cycles 7Z,A, = Ker(d,) (see (2.10)).

5.2. Definition. When C = L, the category of graded Lie algebras, it will be more
convenient at times to use of the adjoint functors of Proposition 2.9 to replace Aqe — X,
by a simplicial DGL L, . — X,. In this case the simplicial models are replaced by the
corresponding DGLs, namely

1. A dL-n-sphere, denoted by 87&,), is a DGL of the form (L{X.),0) where X, is
the graded set with X, = {z} and X; =0 for i # n.

2. A dL-(n + 1)-disk, denoted @?;;1, is the DGL (L(X.),0r) where X,41 = {z},
X, = {0rz}, and X; =0 for ¢ # n,n+ 1. Its boundary is the dL-n-sphere
8@”*}1 1= 8{5,0)

(z drxr)*
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3. A two-stage DGL is a DGL (L(X.),01) € dC, where for some n > 0 we have
X; =0 for i #n,n+1. Any coproduct (in dL) of two-stage DGLs will be called

a free DGL.
Evidently dL-spheres and disks are free DGLs, and any free DGL may be described
as the coproduct of dL-spheres and disks — and more canonically, as a coproduct of

dL-spheres, disks, and collections of disks with their boundaries identified to a single
sphere.

5.3. Definition. In fact, there is a comonad (cf. [EM, §2]) F : dL — dL defined for
any B = (B.,dp) € dL by

(5.4) FB)=(1 I D)/ ~.

k=1 l’EBk

where we set Dfx) = Sfx) if dgx =0, and let 6@@")1 ~ Sfan) it dpx # 0.

Clearly F/(B)is a free DGL, and by iterating F' we obtain a free simplicial DGL W, ..
with W, = F**Y(B) (see [Gd, App., §3]), which we call the canonical free simplical
DGL resolution of B = (B.,dg), which we denote by W, .(B). Observe that W,

(or equivalently, the corresponding bisimplicial Lie algebra W,,) is an M-free resolution

of B.

5.5. Remark. Note that if dg =0, by definition (5.4) F(B.,0) has only spheres, and
no disks, and thus the canonical resolution W, .(B) has 0w, =0 for all n > 0. Thus
W, . may be identified with the usual canonical resolution of the graded Lie algebra B,
(coming from the “free graded Lie algebra on underlying graded set” comonad), which
we shall denote by V, .(B.).

Note further that by (3.4), if we apply the functor H., to W,. — B. — or
equivalently, the functor 7% to W, — B, — we obtain a free simplicial resolution of

the graded Lie algebra L. := H.(B.,0s).

5.6. Notation. If we write (x) € F(B) for the generator corresponding to an element
x € B., then recursively a typical DGL generator for W, = W, . (in the canonical
resolution W, .(B)) is (a), for a € W,_1, so an element of W, is a sum of iterated
Lie products of elements of B., arranged within n+1 nested pairs of brackets ((---)).
With this notation, the i-th face map of W, . is “omit ¢-th pair of brackets”, and the
J-th degeneracy map is “repeat j-th pair of brackets”. We assume the bracket operation

(=) is linear — i.e., that (ax + By) = o(z) + B{y) for o, € Q and z,y € B.

In order to construct minimal M-simplicial resolutions, first consider the coformal
case:

5.7. the bigraded model. Any coformal DGL (§2.4), and in particular L = (L.,0),
has a bigraded model A.. — L. — that is, a bigraded DGL (A..,04) (see §2.6)
which is minimal in the sense of §2.5, along with a quasi-isomorphism A, ., — L.. The
bigraded model is unique up to isomorphism. See [O, I] for an explicit construction.

This is just the Lie algebra version of the bigraded model of [HS, §3] (see also [F2]),
which is in turn essentially the Tate-Jozefiak resolution (see [J]) of a graded commutative
algebra.
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A = (Ai, d4) will denote the DGL associated to A, . (Definition 2.8); by construction
A is the minimal model (§2.5) for L (which is not minimal itself, unless L. happens to

be a free graded Lie algebra).

5.8. Example. Consider the graded Lie algebra L. = L{a1,b1,c3)/I, where [ is the
Lie ideal generated by [a,a] and [[¢, a], [b, a]]. The minimal model for the coformal DGL
L =(L.0)€dLl is (A.,04), where A, indimensions <7 is L{ay, by, ¢z, 3, Y5, we, 27),
with aA(x) = [ava]v aA(y) = 3[1’,@], aA(w) = [[C, Cl], [bv Cl]], and aA(Z) = 4[y,a]—|—3[:1;,:1;].

The bigraded model A, . is obtained from A, by introducing an additional (homo-
logical) grading: a,b € A1, ¢ € Aga, @ € A1, w € Ayg, y € Azs, 2z € A3z, and so
on.

5.9. Proposition. Let L = (L.,0) € dC be a coformal DGL, and A.. its the
bigraded model; then there is an Mgyp-free simplicial resolution C,. — L, with a
bijection 0 : X, — Co. between a bigraded set X.. of generators for A,.. and
the set of non-degenerate dL-spheres in Co.. Moreover, H.(C,.) is a minimal

CW -resolution of L. = H.(A..), with CW basis generated by im(0).

Proof. By Proposition 2.9 there is a simplicial graded Lie algebra resolution C, . — L.
corresponding to A, ., and thus a weak equivalence of simplicial graded Lie algebras
i Cou — Voo =Vou(Ls) (see §5.5), which is one-to-one because A, ., and thus C, .,
are minimal (cf. [BL, §2]).

Now let W, . be the canonical free simplical DGL resolution of A,; the fact that
¢+ Ao — L. is a quasi-isomorphism implies that there is a weak equivalence ¢ :
Ve — W (as well as one in the other direction). The composite o) : Co. — W,
is again a one-to-one weak equivalence (by minimality); we may therefore think of C, .
as a sub-simplicial object of W, ..

Moreover, there is an embedding of bigraded vector spaces n: A.. — C,. (see proof
of Proposition 2.9), and thus another such embedding 0 : A.. — W, ., which may be
defined explicitly as follows (using the notation of §5.6):

For a € Xo., set f(z) = (x) € Co. = F(AL). Since ¢ maps Xg. onto a
(minimal) set of Lie algebra generators for L. = H.(A..), each 0(x) isa 0dw-cycle,
SO Cé?*) =11 erXo,k 8?@(1’)) is a sub free DGL of W ..

By minimality of A.., any 2 € X,,. (n > 1) is uniquely determined by 0da(z) €
An—1.. Thus if we require § to be multiplicative (with respect to the ordinary bracket
in A.., and with respect to the simplicial Lie bracket [, ] of (2.11) in W,,), we
may define 0 : A.. — W, . inductively by
(5.10) 0(x) = (0(9a())),
and we shall write (@ for O(z) if =€ X

By definition (see Proposition 2.9), dyof = 60 d4, so for x € X,. (n>2) we
have dl(:zj(o)) = d1{0(0a(x))) = (dob(Da(x))) = (8(F%(x))) = 0, while €(d1($(0))) is a
d4-boundary for = € Xj. (where ¢: Wy. — A, is the augmentation). Thus Lemma
5.13 below implies that for € X,,. (n > 1) we have di(:zj(o)) =0 forall 1 <:i<n-—1,
while dn(x(o)) is a Oy -boundary.

Therefore, if we set Cé?*) =11, 11
is an L-CW basis for HL(C, ).

8k for all n >0, we see {H;(Cﬁ?*))}gozl

v€X i ©((0))
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In order to give an explicit description of (. in terms of C.(?*), we need to know
the Lie disks in which dn(x(o)) (and their faces) lie. By a double induction on n > 1
and 1 <r < n, we shall now define, for all = € X, 5, elements 2 e Wo—r ktr such
that aw(:zj(”) = dn_T(:Jc(T_l)):

Note that for each = € A, . we have J4(x) = >, aswlyi,, ..., ¥in, |, Where wil..]
is some my-fold iterated Lie bracket, y; € X, . with E;n:tl n; =n, and a; € Q.
Then

(5.11) 0(x) = (000a(@)) = (3 awarlyt) -yl D),
t
where wyf...] is the same my-fold iterated Lie bracket as above, but now with respect

to the simplicial Lie bracket [, ], rather than [, ].
If we set (¥ =0 for i >n, we may define z() for 0 < s <n inductively by:

(5.12) =3 "a Y wl e
t 1+ FTm, =$
0<r;

Thus if we assume by induction that we have chosen yl(jj) with 8W(yl(jj)) =
dn,, (yl(jj_l)), it follows from Lemma 5.13 below that indeed aw(x<5+1>) = dn(x(s))
and di(:zj(s)) =0 for 0<i<n.

For example, y© = (y) and ({y))
r € X, we have edl(:zj(o)) = edo(:zj(o))
with aw(:zj(l)) = dl(:zj(o)).

Now if we define by induction Cy*) = X*_l) oI, erXnJ,T,k @?;E:)), and let C .
be the sub-simplicial graded Lie algebra of W, . generated (under the degeneracies of
W, ) by (07(%7:*))?:0 for all n € N, then (. is closed under face maps and includes
im(0), and 6: A..— C,. is a weak equivalence. The only non-degenerate Lie spheres

y € Ay for any y € Xg;. Therefore, for

S
Da(x), so we may set =) = (x) € Wy 41,

in C,. are those of C.(?*), as required. I

5.13. Lemma. If A, € sL 1is a simplicial graded Lie algebra, = € A, with d;x =0
for 1 <i<p—1, and y € A, with djy=0 for 1 <j<q—1, then dp([z,y])=0
Jor 1<k<p+4+q—1.

Proof. By definition (2.11) we have

(5.14) [e.y]= D (=) s swse, 50, y] € Apgy
(0,7)€Sp,q

Now for each summand w, . := [s;x,s,y] in (5.14), with (o,7) a (p,q)-shuffle,
there are two cases to consider:

The first is that there exist ¢,m such that 7 =k, 0, = k—1 — in which case
there is an associated (p, ¢)-shuffle (o', 7’), differing from (o,7) only in that 7 and
om are switched, so that dy(w, ) = di(w, ) but (—1)5(0) = —(—1)6(0/), and these
pairs thus cancel in the sum (5.14).
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In the second case, k,k—1¢€ {o1,...,0,}, say, and then there is some 0 < { < g
with 7 < k—1 and 741 > k. Since necessarily k+1—p < <k —1, we find that
dps,;® =871+ S 187, Spdp_pr = 0. ]

5.15. Example. Consider the graded Lie algebra L. = L{a1, b1, ¢2)/{[a, a], [[¢c, al, [b, a]])
of Example 5.8, with L = (L.,0). The M-free simplicial resolution C,. — L may
be described (in homological dimensions < 3) as follows:

(1) Céo*) is the coproduct (in £) of Sza(o)) = 8% Slb(o) 8%@), and 8(20(0)) = 8(2<C>).
2) C1 = 50 Ul where 20— ({ah, () and 0 — (10, (@l [ a1

(2)
3) C 2* conssts of S ¢ o where y® = (3[([{a), ()], {(a)]).
(1) C

3* consists of 8% () where

A0 = <4[<3[<[<a>7 {@)]); {{aD)]), (({a)N)] + 6[{[{{a}), {{a})]), ({[{a), (a)]))])-

For C.(l*) we need in addition
(1) Dy = G5 with Oy (2M) = dy(2®) = ([a, a)).
(2) DE )y = Cf) with yM) = (3[(2), (a)]) and Ow(yD)) = da(y) = (3[([a, a), {a)]).

(8) Dy, — C with ) = ([3[(x), (a)]), ()] + 6[([{a). ()]} ({2))]} and
Ow(21V) = ds(2©) = (4[3[([a, al), (a)]), ({a))] + 6[{[{a). (a}]), {{[a, a]))])-

For 0.7* we need in addition
(1) D, <2>ﬁcéi> with O (y?) = di (y©) = (3[x,
(2) Die) — O with 2@ = (4[(y), (a)] + 3[{z), (x)]) and O (:?) = (V) =

3t al)- ()] + 6141, e ()
(

For 0.7* we must add D(z<3>) — % with Ow (M) = dy (2D = (4]y, a] + 3[x, z]).

%

5.16. the filtered model. If B = (B.,dp) € dL is an arbitrary DGL, it no longer
has a bigraded model, as in §5.7 above. However, if L. := H.(B) is the homotopy Lie
algebra of B., the bigraded model (A..,d4) for (L.,0) may be perturbed into a filtered
model for B: that is, one may define a increasing filtration 0 = F~1(A) C F(A) C

~F(A) C FH(A) C - on Al by F(A) := P_, Ai., and a new differential
Dy =04+ 64 on A.. such that 64 : A, — F?(A) (and of course D, is a still
a derivation). We may decompose Dy : A, — Avx as Dy =0y + 0 + -+ + On1,
where 0, : A, — An_r_1. (and 0y = 04, the original differential of the bigraded
model).

See [O, II] or [Har|; this is again the Lie algebra version of a construction of Halperin
and Stasheff in [HS, §4] (see also [F1]).

Note that the filtered model is no longer unique, since its construction depends on
choices; in particular, it is not necessarily minimal. One again has the associated DGL
(A., D4), which is quasi-isomorphic to the original DGL B, and A. . is obtained by
filtering A..

5.17. Proposition. Let B = (B.,dg) be a DGL, and (A..,D4) a filtered model
for B; then there is an Mgyg-free simplicial resolution FE,. — B, with a bijection
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0: Xoo — F,. between a bigraded set X,.. of generators for A.. and the sel of
non-degenerate dL-spheres in F, ..

Proof. We start with the minimal M-free resolution C,. — L. for L. = H.(B.),
constructed as in the proof of Proposition 5.9, and deform it into an M-free resolution
for B, using the filtered model (A.., D4) as a guideline. This time we shall embed the
resulting M-free resolution in the canonical free DGL resolution W, . of (A., Dy), the
DGL associated to the filtered model:

For each x € X, (where X.. is a bigraded set of generators for the bigraded Lie
algebra A.., as above), set () = (x) € Woyg, and let Dy(x) = Oo(x)+ Oi(x)+---+

On—1(x) as above, with

87«(2?) = Z az(fT)wng)[yim R yimt] € A?’L—T—l,*7

t

(r)

where w;"”’[...] is some my-fold iterated Lie bracket, as above, and each y;; € X, .
with Y0 ny =n—r—1.
If we set (¥ =0 for i >n, we may define z() for 0 < s <n inductively by:

(518) l’(s) = <Z Z a}(f?“) Z wng) [[yz(lﬁ)v A yz(::lt ]]> € Cn s,k—n+s
r=0

1t Frmy =s—7
0<ry
Using Lemma 5.13 and the fact that for any A, € s£, 2 € A, and y € A, we
have dp_|_q([[:1; y]) = [[d (x),y] + (=1)?[x,d,(y)], one may then verify inductively that
dp_s(2®)) = O (2BtD) and di(2®)) =0 for 0 <i<n—s, for all 0<s<n. The

rest of the construction is as in the proof of Proposition 5.9. 0

5.19. Example. Consider the DGL. B = (B.,0g) € dL where B. is the free Lie
algebra L<a17617027x37y57277'">7 with aB(x) = [ava]v aB(y) = 3[1’,@] - [[bv a]vc]v
0p(z) =4[y, a] + 3[x, x], and so on.

Here L. := HJ(B) = L{a1,b,c2)/{[a,a],][[c,a],[b,a]]), so the bigraded model for
(L.,0) is (Asx d4) of Example 5.8 above, and the filtered model is obtained from it
by setting Day = 3[x,a] — [[b,a],¢] and Da(z) = 4[|y, a] + 3|z, ] — 4w + 2][z, b], ¢].

The corresponding M-free resolution is obtained from C, . of Example 5.15 by making
the following changes:

(1) ety = (3}, a)] -
as before, (but now 0
(2) Set == (4[(3[(z), (@)]), {{z))] = 4([[{e), (@)], [{6), (a)] )+
2[[{[{a), (@)}, {(01)]; {
(3) fle(t (2;()2) = (4(y), ()] + <w> T 20[(e), (B (A]), with (=) =
5 =

(4(3[z, a] = [[b,d], c]), ()] + 6[([a, a]), (x)] — K{[[¢, a], [b, a]]) + 2[[([a, a]), ()], {c}])-
(4) Finally, 8W( 3)— {4y ,a]—|—3[:1;,:1;] 4w + 2[[z, b] c]).

We have the following analogue of Definition 4.5:

5.20. Definition. Given a DGL L = (L(X.),dr) € dL and a simplicial set A € S,
we define their half-smash L x A = (L(Y.),d') € dL by setting Y, := [[,_, Xk X Ay_r,

(y') = da(y©) = (3[([a, al), (a)])

h Ow
b,a],c]), of course).
>7

3
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where 1212 denotes the set of non-degenerate i-simplicesof A. For a € Ak and z € X,,,

we set
k

J(z,a) = Z(_l)”m(:p, d;a) + (Opx, a)
=0
(and extend @ by requiring that it be a derivation).

5.21. Example. 8{ ) x D[1] = (L(X.), "), where X, = {(z,(do)),(z,(d1))}, X5 =

{(z,(id))}, and '(z,(id)) = (v, (do)) — (w, (do))-

Similarly, 8¢, » D[2] = (L(Y), '), where Y3 = {(y,(dod1)), (y.(dod2)). (y. (did>))},
Yi={(y,(do)), (y.(d1)), (y.(d2))}, and Y5 = {(y, (id))}, with I(y, (id)) = —(y, (do))+
(y7 (dl)) - (yv (dQ))v a/(yv (do)) = _(yv (dodl)) + (yv (dOdQ))v a/(yv (dl)) = _(yv (dOdl)) +
(4, (didz)), and I'(y,(d2)) = —(y, (dodz2)) + (y, (drd2)).

5.22. Remark. In order to apply the obstruction theory described in §4.15, note that all
the definitions of section 4 pass over to the DGL setting in a straightforward manner.
However, if we now start with the trivial DGL A = O = (I1X,0), we may take

Con — L% to be the minimal M-free resolution of Proposition 5.9, corresponding to
the bigraded model for (I1X,0), and let B = (B.,dg) (corresponding to B, in §4.15)
be the filtered model for Lx. We assume that A % B.

As explained in §4.15, there is a least ng > 2 such that 0 ¢ ((no)) C H.(B), and
we write {(no)) = ({{no, x:)))icr, in the notation of 4.10, where x; € X,,,; and Sf;i)
are corresponding DGL spheres in (. (we include in the index set [ only those
coordinates of (4.12) which do not vanish).

Again let H™M denote the set of all homotopy types in hodL(X) for which {(no))
has the same value as for Ly, and choose a representative L1 ¢ dL(X) for each
a € HW. By [HS, §3], we may assume L) is obtained from B by perturbation

through degree n + 1 at least, so colim, L™ ~ Lx along any branch of the tree.

Note also that because H.(C,.) is a (minimal) CW resolution of H.(B), in each
case, the maps ¢, : H.(Cy.) — H.(B) are null for all n > 1 (see §4.2). Thus any
dD[n]-compatible collection {h;};Z) in §4.10 induce a map C,.AdD[n] — B directly,
without need of the splitting (4.11).

5.23. Example. For the DGL. B = (B.,d) of example 5.19, with C, . as in example
5.15, we define hg = fo: Co — B by setting fo({a)) =a, fo({b)) =b, fo({c))=rc,
and fo =0 for all other disks in Cy. (so for example fo({[a,a])) = 0).

Thus on S(Qx(o)) x D[1] we have hy(z®,(dy)) = [a,a] and hy(z®, (dy)) = 0, by
definition (4.8), so we must choose h(z(), (id)) = z € B,

Now on S?y(o)) x D[2] we have hg(y(o), (dody)) = hg(y(o), (dodz)) = hg(y(o), (drds)) =0,
and ha(y®, (do)) = (h1odo)(y', (do) = 3[x,a], while ho(y', (d1)) = ha(y'?), (d2)) = 0.

This defines a 9D[2] compatible sequence for C,., and the resulting secondary
operation is ({2, = {(3[x,a])]} C H4{(B); but since 3[z,a] does not bound in B,
{(2)) does not vanish, and we have found the (expected) obstruction to the coformality

of B.
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5.24. Remark. The second order operation described in the previous example is actually
a secondary Whitehead product. Unlocalized higher order Whitehead products were
defined by G. Porter in [P, 1.3], and the relation between this definition and the rational
version has been studied by several authors — see [AA], [Al, A2], [R2, R1] and [T, V.1].

However, there are other higher order rational homotopy operations, too: for example,
in the DGL L. = (L{a1, b1, c1,dy, 24,4, 24, w04),0), with 9d(x) = [[b,a],c], I(y) =
[ba),d), 0(=) = [[d,c],a] and () = [[d.c], 5], the cycle [,d] + [y, + [2:5] + [w,a]
represents such an operation. There appears to be no general procedure for representing
these as integral higher order operations in 7. X; we shall offer a (partial) answer to
this difficulty in section 7.

6. HomoLoGy or DGLs

Obstructions in algebraic topology traditionally take values in suitable cohomology
groups. In order to show that this holds in our seting, too, we recall Quillen’s definition
of homology and cohomology in model categories:

6.1. Definition. An object X in a category C is said to be abelian if it is an abelian
group object — that is, if Home (Y, X) has a natural abelian group structure for any
Y € C. When Cis Lie, Alg, sLie, sAlg, L, or dL, for example, this is equivalent
to requiring that all products vanish in X (cf. [BS, §5.1.3]).

The full subcategory of abelian objects in C is denoted by C,, C C. In the cases of
interest to us, this will itself be an abelian category. It is equivalent to the category Vec
of vector spaces it C = Lie or Alg, to Vit C = L, to the category sVec of simplicial
vector spaces if C = slie or sAlg, and to the category dV if C=dL (see §l.1).

In these cases, we have an abelianization functor Ab:C — C,p, along with a natural
transformation 6 : Id — Ab having the appropriate universal property. In all the
examples above, Ab(X) = X/I(X), where I(X) istheidealin X € C generated by

all non-trivial products.

6.2. Definition. Let C be a category as above, which also has a closed model category
structure: in [Q1, 11, §5] (or [Q4, §2]), Quillen defines the homology of an object X € C
to be the total left derived functor L(Ab) of Ab, applied to X (cf. [QL, I, §4]).

In more familiar terms, this means that we construct a resolution A — X (i.e.,
replace X by a weakly equivalent cofibrant object A € C), and then define the i-th
homology group of X by H;X := x;(Ab(A)), for an appropriate concept of homotopy
groups 7. in Cu (see [QI, II, §4]). One must verify, of course, that this definition is
independent of the choice of the resolution A — X.

Similarly, the cohomology of X with coefficients in M € C,, is defined:

HY(X; M) = [L(Ab)X, QSN M]e for N large enough

(where the loop and suspension functors 2 and ¥ are defined in [Q1, I, §2]).

Again, in the cases that interest us, Q is essentially the shift operator X! of §1.1,
and so the i-th cohomology group of X with coefficients in M is then H'(X; M) :=
(S Ab(A), M]e

ab®

6.3. Definition. If C itself does not have a closed model category structure, one often
defines the homology of X € C by embedding C in some category which does have such
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a structure, which in many cases may be taken to be sC, the category of simplicial
objects over C (see [Q1, II, §4]). Thus, if ¢:C — sC is the embedding of categories
defined by taking «(C') to be the constant simplicial object equal to C' in all dimensions,
then H;(C):=m;(L(Abo ¢)C).

This is the approach usually taken for C = Lie, Alg, or L: to define the homology
of a graded Lie algebra L, € L, say, one chooses a free simplicial resolution A, . — L,
(such as the canonical resolution — cf. §5.3), and then calculate the homotopy groups
of the simplicial graded vector space Ab(A..) € sV (or the homology groups of the
bigraded chain complex in dbY corresponding to Ab(A..) — see proof of Proposition
2.9).

6.4. Remark. Note that if we apply Definition 6.2 as is to a DGL L = (L., d1) € dL,
we may take the resolution A to be the minimal model L = (L.,d) for L (cf. §2.5),

A

and since its abelianization is just the graded vector space Q(L) of indecomposables,
and Q(é) =0 by definition, H;(L) would be isomorphic to the vector space spanned
by a set of generators for L in dimension 1.

It we want cohomology with coefficients in an object M, € dL,, ~ dV with trivial
differential — i.e., M, 1is just a graded vector space — we find

HZ(X,M*) = HHomVec(Hj(X)7 Mi+])7
=1

by the universal coefficients theorem.

However, since L is itself graded, we would like H. L to be bigraded (with a “homolog-
ical” degree, as well as a “topological” one). This requires a combination of Definitions

6.2 and 6.3, as follows:

6.5. Definition. The homology H..(L.) of a simplicial Lie algebra L, € sLie is
defined to be the left derived functors of the abelianization, with respect to the F?-closed
model category structures (§3.3) on sslie and ssliey, &~ ddV  respectively. More
precisely,

(6.6) H, (Ly) := mo(L(Abo t)L,); = w,mi(AbA,,),

where A, — L, is some M-free bisimplicial resolution of L,.

Similarly, for any DGL L € dL we may define H,,(L) := 7m,H/(Ab(A..)), for a
Myc-free simplicial resolution A, . — L; and these two definitions agree under the
equivalence of homotopy categories ho(sLie) &~ ho(dL) of Proposition 2.2.

The bigraded cohomology of a DGL L with coefficients in the abelian DGL (i.e., chain
complex) M is defined analogously as H} (L) := n*(Homgc,, (Ab(Ae ), M);)

We note that the homology and cohomology of differential graded (commutative)
algebras have been defined by Goodwillie (in [Go]) and Burghelea & Vigué-Poirrier (in
[BV]), in a manner analogous to the traditional definitions of Hochschild homology. See

[Lo, §5.3].
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6.7. Proposition. For any DGL L € dL, there is a monomorphism of graded vector
spaces Hp,+(L) — H,.(L"), where L'~ (H.(L),0) is the coformal model for L; the

same holds for cohomology with trivial coefficients.

Proof. It A, . is the bigraded model for L', and C,. — L’ the simplicial resolution
of Proposition 5.9, then the non-degenerate spheres 8@,(0)) C (4, which correspond to
a vector space basis for H, (L), are in bijective correspondence with the generators
re X, for A, ..

Now let B.. be a filtered model for L obtained by perturbing (A..,d4), and
E, . — L the associated simplicial resolution of Proposition 5.17: since B, . need no
longer be minimal (§5.16), a vector space basis for H, (L) now corresponds to a subset
of the collection of non-degenerate spheres 8@,(0)) C FE.+, (which are still in bijective
correspondence with the generators = € X, ; for A.. or B..). O

Note that this description of the homology implies also that H., .(L) is indeed just a
bigraded version of the DGL homology defined in §6.3.

6.8. Proposition. The collection of higher homotopy operations {(nk.ay.a....an, L) which
determine the rational homotopy type of X € Ty (described in §4.15 above) are in-
dezed by elements x € H,, . ak¢([/(k’a1’a2"“’ak)) in the homology of the DGLs

of §5.22, and take value in the cohomology of these DGLs, with (Mo 0m,.0n ) C
H:j;:kl;af ..... ag (L(k7a1,a2,...,ozk); F*XQ) .

Proof. We may construct a simplicial resolution F, . for each successive DGL L*) =
LiFevazesar) - corresponding to the filtered models obtained as perturbations (A.., D4)
of the bigraded model (A..,d4) for L© as above. The non-degenerate spheres
8@,) = 87(7;(0)) C F,: which index the higher homotopy operations {((m,x)) are thus
in bijective correspondence with the generators 2 € X,,, for A,.. However, if z
is not minimal — in the sense that Da(x) & [A,A], or 4+ a = D,(y) for some
a€ A.. and y € X1+ — then we can construct a new simplicial resolution Fj , of
L™ in which 8@,) has been eliminated (though of course new spheres may appear in
higher simplicial dimensions). By the universal property of resolutions (i.e., of cofibrant
objects in the FE? model category for sdl — see §3.3) there is a map of resolutions
E,.— E,,, and there can be no non-vanishing higher operation {(nkay...an, @) which
serves as an obstruction to rectifying the augmentation up-to-homotopy ¢ : F, . — L~
since c,on|g(w;) can be factored through 0 € E,, — L*.  Thus the only homotopy
operations which can appear are those corresponding to non-trivial homology classes in

H*(L(k,oq,ozz,...,ak))‘ n

Proposition 6.7 thus implies that we may if we like think of all the higher homotopy
operations described in §4.15 (associated to the various deformations of L(®) as lying in
one fixed bigraded group H*(L®);7.Xg), which is of course just the usual cohomology
of a graded Lie algebra, and is easier to compute than the cohomology of a non-trivial

DGL.
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7. NON-ASSOCIATIVE ALGEBRA MODELS

The DGL higher homotopy operations, of which an example was given in §5.23, are
unsatisfactory from a topological point of view because there is no obvious way to
translate them, in general, into unlocalized topological homotopy operations. We now
describe an algebraic model for rational homotopy theory which may serve to answer
this objection.

7.1. non-associative graded algebras. Let A denote the category of non-associative
graded algebras: an object A, € A, 1is just a graded vector space equipped with a
bilinear graded product A, ® A, — A,4,. Let A(X) denote the free non-associative
graded algebra generated by a graded set X.. Asin §2.1, the functor A : grSet — A
factors through A:V — A.

dA will denote the category of differential graded non-associative algebras (A, d4),
called DGNAs; the differential 04 must satisfy d4 004 = 0 and Jda(x - y) =
Oaz -y + (—=1)"lx - 94y, as for DGLs.

For simplicity we assume each A, € A, dA is connected — thatis, Ag = {0}. Again,
we have a category dbA of differential bigraded non-associative algebras (DBGNAs),
as in §2.6.

As for any CUGA (§3.1), one can define a closed model category structure on sA
(see [QL1, II, §4]) and thus by [Bl4, §4] on dbA, and one has the expected analogues of
Propositions 2.2 and 2.9:

7.2. Proposition. There are adjoint functors S.Alg]if:v*dfl, which induce equivalences

of the corresponding homotopy categories ho(sAlg) ~ ho(dA).

7.3. Proposition. There are adjoint functors SAJ%dbA, which induce equivalences

of the corresponding homotopy categories ho(sA) & ho(dbA); and N* takes free
DBGNAs to free simplicial non-associative algebras.

7.4. Notation. For any (X.,:) € A, let [z,y] denote L(z -y + (=1)klvH+1ly . q)

We then have [y,z] = (=D)FIWH+12 4] so (X.,[,]) is now a non-associative graded
algebra with a graded-commutative multiplication. Moreover, any graded derivation 0
on (X.,-) is also a derivation with respect to [, ], and any morphism of algebras from
(X.,:) to a graded-commutative algebra will also respect [, ]. Therefore we can (and

will) assume that our non-associative algebras are all graded-commutative, and denote
the product by [, ].

Moreover, if A, € sA is a simplicial graded algebra, we shall also use the notation
[z.y] = 20 r)es, ., (1)@l s 2, 5,,...55,y] for the corresponding simplicial
bracket (compare (2.11)).

7.5. Definition. Any simplicial Lie algebra L, € sLie is in particular an object in
sAlg; let ¢ :dL — dA be the inclusion functor. Note that even if each L, is free
as a Lie algebra, it is not free as a non-associative algebra: a free simplicial resolution

Jo — «(Ls) in the category sAlg (see §3.2) will be called a sAlg-model for L,. Such

models can be constructed functorially, for example by a variant of §5.5.
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There is also the analogous concept of a dA-model J. € dA of a DGL L; we can
of course translate back and forth between these two types of models using Proposition
7.2.

Since the DGL L = (L.,d;) has an internal grading, and its d.A-model J = (J.,dy)
is constructed as a resolution of L, it is natural to define a second “homological” degree
on J., so asto have a filtered dA-model (cf. §5.16). If the DGL is trivial (i.e., d; = 0),
a dA-model for (L.,0) will be a differential bigraded non-associative algebra (DBGNA)
J=(Jex,05) (cf. §5.7).

7.6. Remark. Define a Jacobi algebra to be a DGNA J = (J.,0;5) € dA such that
H!J € L£. In particular, any dA-model J of a DGL L is a Jacobi algebra, since
H.J = H!L. We denote by J C dA the full subcategory of Jacobi algebras. These
algebras are clearly related to the strongly homotopy Lie algebras of [SS] (see also [LM]),
though in general a Jacobi algebra is just a “Lie algebra up to homotopy”.

Note that even though dA itself is a CUGA, J apparently is not, and it does not
inherit many desirable properties from dA: for example, J is not closed under the
coproduct in dA. However, one still has free Jacobi algebras, in the following sense:

7.7. Lemma. There is a functor J : dV — dA, and a natural transformation 6 :
J — L such that:

(a) JVi s free as an algebra, for any chain complex V.;

(b) Oy, is a surjective quasi-isomorphism;

(¢) any chain map ¢ : V. — K. (where V. € dV and K. € J) extends to a dA
map ¢ :JV. — K,.

Proof. As noted above, we may define .J.. = J(V.) by induction on the homological
filtration:

Start with Jo. = A(V.) (the free non-associative algebra on the differential graded
vector space (Vi,dv), with 0y extending dy as a derivation), and let 0y : Jo . — L(Vi)
be the obvious surjection, with Ko . = Ker(fy) a two-sided dA-ideal of Jy..

Choose once and for all some collection of generators My = {u;}ier for Ko, as
a Jo.-bimodule: for each choice of a dV-basis {x,},er for Vi — that is, of a

graded vector space basis of the form {x,,0va,, 2}, with dyazsz =0 — we may write
each y; as some expression (2, ...,z ). If we then choose some other dV-basis
{2l }yerr for Vi, again we will have p! := /Li(:zj’wl,...,x’%(n) € Ko.; define J;. to

be the free non-associative algebra on the DG vector subspace of Ky, spanned by all
such “canonical operations” ! (i € I), for all possible choices of dV-bases {z,} e
for V.. Again one has the obvious augmentation J;. — Jy. to serve as d; (with
dj00; =0 by construction), and one takes the kernel K. of this augmentation for
the next step.

Proceeding in this way we may define the functor J by induction on the homological
filtration; if the collections of operations M, are chosen canonically, the functor itself
will be canonical. Properties (a)-(c) are readily verified. O

7.8. Example. Let L = (L(X.),0) be the trivial free DGL on a graded set X.; in
this case the canonical DBGNA model (J..,d5) = J(X.,0) for L may be described in

part as follows:
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Let  Jo. = A(X.) (the free non-associative algebra on X.). Since the Jacobi
identity holds in L({X.), but not in A(X.), we have u(x,y,z)=[z,[y, 2] —[[=,v], z] +
(=) [[x,z],y] € Ko for all z,y,z € X.. Thus Ji. will be generated as a Jy .-
bimodule by the image of (J5.)®® under the Yj-equivariant multilinear map As :
Jip@J; 4@Jkr — Jitjtht1,p4q+r. Herethe symmetric group ¥, actson J,,, @---@J,,,
by permutations, and on J, , 4.4, Via the Koszul sign homomorphism ¢; : 3, —
{1,—1} (defined by letting ;((k,k+1)) = (—1)**+1*! for any adjacent transposition
(k,k+1) € X,). We set

dr(As(z @y @ 2)) = [, [y, 2] = [[w, 9], 2] + (=1)"" [[, 2], y].

However, there are relations among these elements A3(x @ y ® z), so we define a
Y4-equivariant multilinear map Ay : J; ), @ Jj, @ Jir @ Jos — Jigjrhtot2,ptq4r+so

DMz ©y @20 w) = [0,y © 20 w)] + Dalr @y @ 2),]
_ (_1)|zllw| s(z @y @w),z] + (_1)|y|(|z|+|w|)[)\3(x @z @w),y)
— (Qa(lz,y] @z 0 w) + As(z @y @ [z,w])
+ epsyz (As([z, 2] @y @ 2) + As(z @ 2@ [y, w]))
— (=)MEHEED Oy (e, 0] @y @ 2) + As(z @ w @ [y, 2])),

In fact, one can define a sequence of “higher Jacobi relations” A, (x1 @ ---®@ x,), for
all n >3, which yield an explicit construction of J(X,) for a the free (graded) Lie
algebra LX.. Compare [LM, 2.1].

7.9. A-homotopy operations. One can now apply the theory of section 4 verbatim
to any space X € 77 with C = Alg rather than Lie, to obtain a sequence of higher
homotopy operations as in §4.15 which determining the rational homotopy type of X —
the only difference being that the simplicial resolutions C,, of the successive simplicial
Lie algebras L(.k) are now My, free resolutions of L(.k) in ssAlg.

This is the reason that the theory of section 3 was stated for an arbitrary CUGA,
rather than specifically for C = Lee. The reason that our general theory was stated for
simplicial rather than differential graded universal algebras is that there seems to be no

reasonable version of Proposition 7.2 for an arbitrary CUGA.

7.10. minimal resolutions. To make the construction more accessible, it is again use-
ful to have minimal My, resolutions, as in section 5. For this purpose, we consider a
variant of the above approach:

Even though J does not inherit a closed model category structure from dA, one
may define models for J, in the sense of §3.3, by letting a Jacobi sphere be any d.A-
model of a L-sphere (§5.2), and more generally let M s denote the full subcategory of
J consisting of DGNAs weakly equivalent to objects in My, — i.e., Jacobi models of
DGLs which are (up to homotopy) coproducts of dL-spheres.

An M resolution of a DGL L, which we shall call simply a Jacobi resolution, is then
defined to be a free simplicial resolution of DGNAs A, . — «(L) (Def. 3.2), with each
An« € Mg. Note that such an A, . — «(L) is at the same time also an M s-Jacobi
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resolution of the dA-model J,. of L, and it is usually more convenient to think of it as
such.
There is a comonad F : dA — dA as in (5.4), which yields the canonical Jacobi
resolution U, , for any C € J, asin §5.3. Again we may use the notation of §5.6.
One also has an analogue of Propositions 5.9 and 5.17, as follows:

7.11. Proposition. Let B = (B.,05) € dL be any DGL, and (A..,Da) a filtered
model for B: then there is a Jacobi resolution J, . — «(B), with a bijection 6 : X, —

Jo o between a bigraded set X,. of generators for A.. and the set of non-degenerate
dA-spheres in J, ..

Proof. Let G = G be a dA-model for the DGL B, and U, . — G the canonical Jacobi
resolution. As in the proof of Proposition 5.9, we may define a map 0 : A, — U,
inductively by the equation 6#(x) = (6(da(z))) (compare (5.10)), and we shall again
write z(© for O(x) if = € X.o (a set of generators for A..), and let V.. be the
bigraded vector space spanned by 6(X..). For simplicity of notation we consider first
the case where B has trivial differential and A. . is bigraded (with D4 = d4).

For each n € N, define the sub-DGNA Jé?*) of U,. tobe J(V,.), in the notation

k
(2(0))”

one for each generator = € X, of A... By Lemma 7.7(c), it is enough to define the
face and degeneracy maps of J,,. on each  — where we may use the description of
§5.6.

Once again, we want di(:zj(o)) to be a dy-boundary for each 1 < ¢ < n; but the
analogues of the elements (*) of Propositions 5.9 and 5.17 are more complicated, so
we need some definitions:

For each 0 < s < n, let K,; denote the set of all sequences I = (i1,...,15) of
integers 1 <1y < --- <1, <n, corresponding to the s-fold face map d;y =d; o---0d,;, :
n—n-—s in A% (compare Definition 4.3 and the proof of Proposition 5.9). Given
I=(1,...,15) €Ky, foreach 1 <5 <s let I(j):= (il,...,@{;,...,is) € K,s—1 be
obtained from [ by omitting the j-th entry. By repeatedly using the identity dpd,, =
dp—1dy, (k< m), we can find a unique «(j) € {1,2,...,n} such that d.; od;z = d;.

For each 2 € X,;, 0 < s <mn, and [ € X,,, we want to choose choose
an element =z ¢ J?Si)s,k—n—l—s C Up—sk—nt+s by induction on n — s, starting with
200 = 2 = (), so that:

of Lemma 7.7 — that is, Jé?*) is the coproduct, in J, of a set of Jacobi spheres &

Y

S

(7.12) (alD) = Y (=1 (aH00)

i=1

for s > 1. (The index s is not really needed, since s = |I|, but it is useful for keeping
the analogy with the notation of (5.12) in mind.)

Note that since dy o8 = 60004 no longer holds here (because dy is a morphism in
dA, not in dL), it is not generally true that d;(z(®?) =0 for all = € X... However,
since applying H. still yields a C'W resolution HLJ.(?*) — H.C = H.B, (where C
is the dA-model for the DGL B), we know that d;(z(®) must be a dy-boundary

for each 1 < i < n. Thus we can choose an element =z ¢ Un-1k—n+1 with
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aU( 1) = dy (@) (a special case of (7.12)) — and in fact =} may be expressed
in terms of the “canonical operations” y; of Lemma 7.7.
Now let da(x) = >, awi[Yirs- - Yinm,] for yi, € A, &, so0

(7.13)
2O =y 0D =0 a > (=0T wlsn D). s, E))

i i (J1 eIy

as in (5.11), where the (n — n;)-multi-index J; C {0,1,...,n — 1} is obtained by
repeated shuffles, which also determine the sign (—1)%* (see (2.11) ff.). Therefore,

= Z Clt Z CUt dk 18, (yz(l ))7 s 7dk—18Jmt (yz(gl)t)D

The proof of Lemma 5.13 (Which is valid in dA, too) implies by induction on ¢ > 2

that for each summand v; = CUt[SJl(yZ(lO))7 . ,SJmt(yl(Sl)t)], there is exactly one 1 < j <t
and 0 </ <k—1 such that

At (vr) = @rlsgg (Ve () sapda(l ) s (L), (i),
for suitable multi-indices Ji,...,J; ,Ji,,...,J) and JI.

Since { < k and n; < n, we may assume by induction that we have defined

yfjw) € Uy —1, such that 8U(yfjl;£)) = dg(yg))), and then let (%) be

S0 S 0™ edsn s 0 s ) s W)y, (D)

t (Jiyeerdimy)

s;:1)

The rest of the construction of the elements x(*!), as well as the generalization to

the filtered case, is similar to that in the proofs of Propositions 5.9 and 5.17. 0

7.14. Example. Consider the coformal DGL L = (L{ay, b1, ¢2)/{[a, a], [[¢c, a], [b, a]]), 0)
of Example 5.8, with G € J its dA-model. We construct the minimal Jacobi resolution
Jo« — G corresponding to the bigraded model for L (embedded in the canonical Jacobi

resolution U, . — ) by modifying the Myc-free resolution C,. — L of Example

5.15, as follows:

For each n € N, define the Jacobi algebras Jé*) (n=0,1,...) tobethe Coproducts
in Jo I3 = 8l TSl T8, T =82 T8 o, Ji) =87, T =80,
and so on.

The face maps d; (¢ =0,1,...,n) are defined by §5.6, where [, ] is now as in §7.4:

(1) For y() (3[{[{a), {a >]> ((a))]) € J52, we have do(y®) = 3[{[(a), (a)]), ((a))] =
32,0 and dy(y"®) = (3[([a, a]), (a)]), while di(y"*) = (3[[{a). (a)], (a}]).

This no longer vanishes as in §5. 15 since the Jacobi identity deos not hold in A,
but we have an element y(l;l) = (As3({a) @ (a) @ (a))) € J1(,14) (in the notation of
Example 7.8), with 9(y(1) = d;(y©).

On the other hand, we also have an element y"? := (3[(z), (a)]) € Jl 4 (which
we denoted simply by y") in §5.15), with 9(y(?)) = dy(y®). The simplicial
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identity dydy = dydy implies that dl( (1 )) dl(y(l 1)) = (3[x,a] — A3(a @ a @ a))
isa dj-cycle, so we have y(zlz)EJ( with d;(y 212)2(3[ al — As(a @ a @ a)).

(2) F?g) 2O = (A[B[([a). (@), ({a))])s ((a)))] + 6L{T(a)). ({a]). (L), (@)]))])  in
J34:

(a) U= (A2 @ ((a)) @ ({a)))), with
( V) = {62[[«, ({a))], {{a))]. +[[{{a)), {(a))]. <)) = 0s(=11),
(b) =) = (4] (< ) @ {a) © (a)), {{a))]), with
dy (V) = (4[[[a,al],a), ((@))]) = 05(:1"?)  since [+, 2] = 0).
(c) =1 = (4[(3[{[a, a]), ()]}, {(a))] + 6([(a), )]}, {([as al))]) € Jo, with

Next, in J(Q)'
) The simplicial identity dydy = didy implies that

(a
dy (z0) — dy (1)) = (4As((a) @ (a) @ (a)), ()] = 6Xs([(a), {a)] @ (a) @ (a)))
2)

isa dj-cycle — and indeed we have 2(212) . (M({a) ® (a) @ (a) @ (a))) € J2(76
with 6( (21,2) ) dl(z(l;l)) — dl(z(lﬂ)).
(b) Similarly,

di(z019) = dy(zD) = (12[[{), (a)], {@)] + 6[[(a), ()], (x)] = 6Xa({[a, a]) @ {a) @ {a}))
e

is a dj-cycle, so we have 213) .— (6As3({x) @ (a) @ (a))) € Jz(?g with
(231 = dy (21)) — dy(211),

(¢) do(z1?))=dy(:1%)) = (4[(3[x, a]), ()] + 6[([a, a]), ()] = 4[{As(a @ a @ a)), (a)])
is a dj-cycle, hit by 2223 .= (4[(y), (a)] + 3[(z), (x)]) € ‘]2(,26)'

Finally, we have

(a) For dyz(312) — (Mla®a®@a®@a)) we have
aj(dlz@ i 2)) = dldg(z( )) — dldg(z(l;l)) = (4 ds(e®@a®@a),a] — 6A3([a,a] @ a @ a))

{
05(dy 231 = dydy(z0V) —dy dy (20)) = (6)3([a, 0] @ a @ a) — 12[[x, a], a] — 6[[a, a], z])
(¢) For dy2®29 = (4[y, a] + 3[z,a]) we have
05(d 23 = dydy(:0)—dydy (:0)) = (1 \s(a © a ® a), a] — 12[[x, a], a] — 6[[a, a], z]),
So there is an element (123 ¢ J§) with
Dr(zC12) = My(a @®a @ a @ a) — 6Xs(z @ a @ a) + 4ly, a] + 3]z, a]).

We can now summarize the main result of this paper in the following
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7.15. Theorem. Let X be a simply connected space, and X = 7, 1Xg € L its
rational homotopy Lie algebra. There is a tree Tx of DGLs L¥1-9%) = starting with
LO ~ (IIX,0), and for each branch oy, ... o, ... of Tx, an increasing sequence of
positive integers (or 00) (ng = Nkay.. 0 ) ey Such that

(@) B(Lb o)) 2 T

(b)  The higher homotopy operations {((m)) C HI'(LFev--ox) 11X} associated to a
minimal Jacobi resolution of LU¥1-%) a5 in §4.10, wvanish for m < ny.

(¢) The operation {(nk)) = (Mkay...0n) C ka(L(k);H‘*X) does not vanish (unless
ng = 00).

(d) For any agyy along the branch of (ay,...,ax), the DGL Lot cmantn) gy
be chosen so that it agree with LF*1-%) in degrees < nj + 1, so the sequential
colimit L(*) = colimy, L™, along any branch, is well defined, and is a DGL model
for X.

.....

.....

The main difference between the construction described here (in sJ) and that of
Proposition 5.17 is that the “higher order information” in .J, .. is no longer concentrated
in the last face map d,, : J, . — Ju—1.. As a result, the higher homotopy operations
associated to the (minimal) Jacobi resolution (as in section 4) are true simplicial opera-
tions, which can be translated more directly into topological ones. This is perhaps best
illustrated by an example.

7.16. Example. Consider a space X € 7; whose minimal model is the DGL. B =
(B.,0B) of example 5.19: B, = L{ay, by, ¢z, x3,y5, 27,...), and dg(x) = [a,a], Ip(y) =
3[x,a] —[[b,a],c], O(2) =4[y,a] + 3[x,z], and so on, and let G € J be a dA-model
for B. The corresponding coformal DGL L®) ~ L{ay, by, ¢;)/{[a, a], [[¢, a], [b, a]]), with
GO ¢ J asits dA-model, is that considered in Example 7.14.

The first obstruction to the coformality of B is again ((2;y®) € II¥, as in Example
5.23 — but now it is represented by the map # : S?y(o)) x 0D(2) — G depicted in

Figure 1:

3[a, al, a]
(y(O)’ dodg = d0d1)

(y(O)’dl)
3[z,a As(a @ a @ a)

(49, drdo) = dod2) o (B didy = dids)
0 0 0

FIGURE 1. The operation {(2;%®)) on S(Qy(o)) x dD(2)

Thus A maps the 3-dimensional generator of 8§ ~ S(Qy(o)) X 0D(2) to the cycle
(3[x,a] — As(a @ a @ a)) € G4 (which does not bound, because dg(y) = 3]z, a] — As(a @
a® a)—[[b,a],c] in ). This may be interpreted as a proper “Toda bracket”, in the
sense that 3[[a,a],a] = 0 in IIX “for two different reasons”. (Compare this with the
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analogous description of the corresponding integral operation — namely, the second-
order Whitehead product — in [BI2, Ex. 4.13].)

We may next construct the DGL LM (in which 9(y) = 3[z,a] — [[b, a], ¢]), perturb
the Jacobi resolution J, ., — GO of Example 7.14 to obtain a Jacobi resolution of LW
(or rather, of the corresponding dA-model G(V), and identify the next obstruction as
((3; ) € I

However, to avoid cluttering the picture we describe instead the third order homotopy
operation ((3; (") for G itself (where of course it vanishes) in Figure 2. Again we
simply depict 9D(3), representing S?Z(O)) x 0D(3), where the maps h; are marked in
the corresponding face of D(3) (except where they are 0):

vertex (20, dod1da)

ho =0
«003 013e
back 2-face (Z(O), ds) «020 021e
- 100 191
00 01
al + 6[[a, a]

I

2-face (29, do) 000 001 2-face (09, dy)
4ly, a] + 3[=, 7] ( (© d0d1d3) 6)‘3( ®aeR )
ho = 12[[

¢« 010 010 .

/ e 002 0026 \
12

6Aa ([

2- face 2(0) d2
120 121
/ Ai(a ®a ® ® a) \
vertex 110« o111 vertex
0 102e o112 (Z

ho =0 0226 2:2 0122 ho =0

023 e 0123
23

FIGURE 2. Depiction of S?Z(O)) X 0D(3)

7.17. Remark. While it is clear that the simplicial higher homotopy operations we obtain
by means of Jacobi resolutions are closer to topological (unlocalized) ones, it is still by
no means a trivial task to translate the algebraic description so obtained into a precise
topological one. Moreover, care must be taken when dealing with unlocalized operations,
since the ones we describe are essentially in the F category (in which, essentially, we
disregard maps of finite order in the ordinary homotopy category). See [Ba, ch. II] for
a sample computation, illustrating the pitfalls involved.

Nevertheless, we claim that the Jacobi resolutions point the way towards a precise
integral description of the homotopy operations involved to a much greater extent than



28

DAVID BLANC

the corresponding DGL operations. Of course, we could get an even fuller description of
these operations if we replace Alg by the category of algebras with a non-cummutative

and non-bilinear product, which is (skew) commutative and bilinear up to homotopy.
But working in such a setting is clearly impracticable.

[A1]
[A2]
[AA]
[Ba]
[BL]
[BI1]
[B12]
[B13]

[Bl4]
[BS]

[BV]

[Do]
[DKS]

[EM]
[F1]

[F2]
[GHT]
[Gd]
[Go]

[HS]
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