
HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPEDAVID BLANCAbstract. We describe a collection of higher homotopy operations which determinethe rational homotopy type of a simply-connected space X. These are described interms of simplicial resolutions of successive approximations L(k;�) to the Quillen DGLmodel for X. The operations lie in suitable cohomology groups H�(L(k;�);��XQ) ofthese DGLs. To facilitate the recovery of an integral version of the operations from therational description, we also de�ne a di�erential graded non-associative algebra modelfor rational spaces. 1. IntroductionThe homotopy type of a spaceX is determined by its homotopy groups ��X, togetherwith the action of all primary homotopy operations on it, and of certain higher homotopyoperations (see [Bl2, x7.17]).If we are interested only in the rational homotopy type of a simply-connected spaceX, Whitehead products are the only non-trivial primary homotopy operations on therational homotopy groups ��XQ = ��X 
 Q, which, after re-indexing, constitute agraded Lie algebra over Q. The relevant higher order operations are also simpler thanin the integral case. It is the purpose of this note to explain just how these determinethe rational homotopy type, and make sense ofTheorem A. For any simply-connected space X, there is a sequence of higher homotopyoperations taking value in ��X, which, together with the rational homotopy Lie algebra���1X 
ZQ itself, determine the rational homotopy type of X. (See Theorem 7.15below).These higher operations are certain subsets of ��X which are indexed by elementsin the homology of a certain inductively de�ned collection of di�erential graded Liealgebras (DGLs) de�ned below. Thus they take values in the corresponding cohomologygroups, with coe�cients in ��X.Now it is clear intuitively that if L is any DGL, those cycles in the homology ofL which are not generators, or products of other cycles, represent \higher homotopyoperations" in L, in some sense. One of the objectives of this paper is to formalizethis intuition within a more general framework. Moreover, if L represents the rationalhomotopy type of a topological space X, it is not always evident how to represent theserational operations as integral higher order operations in ��X (see x5.24 below). Inorder to address this problem, we must consider a somewhat \
abbier" model of rationalDate: June 18, 1996.1991 Mathematics Subject Classi�cation. Primary 55P62; Secondary 55Q35, 55P15, 18G50.Key words and phrases. rational homotopy type, higher homotopy operations, homology of DGLs,non-associative algebras, obstruction theory. 1



2 DAVID BLANChomotopy than that provided by di�erential graded Lie algebras, namely a certain classof di�erential graded non-associative algebras.Thus we also provide a (somewhat incomplete) answer to the following question: whatadditional structure on the ordinary homotopy groups ��X of a simply-connected spaceX, beyond the Whitehead products, is needed to determine its homotopy type up torational equivalence?1.1. notation and conventions. The ground �eld for all vector spaces, algebras, andtensor products will be Q (the rationals), unless otherwise stated.T� denotes the category of pointed CW complexes with base-point preserving maps,and by a space we shall always mean an object in T�, which will be denoted by aboldface letter: X;Sn; : : : . The subcategory of 1-connected spaces is denoted by T1,and the rationalization of a space X 2 T1 is XQ. The category of rational 1-connectedtopological spaces is denoted by TQ.Let � denote the category of ordered sequences n = h0; 1; : : : ; ni (n 2 N), withorder-preserving maps. For any category C, we let sC denote the category of simplicialobjects over C { i.e., functors �op ! C (cf. [Ma, x2]); objects therein will be writtenA�; : : : . If we omit the degeneracies, we have a �-simplicial object, which we denoteby A�� ; : : : .The category of non-negatively graded objects over a category C will be denoted bygrC, with objects written T�; : : : ; we will write jxj = p if x 2 Tp. An upward shiftby one in the indexing will be denoted by � : grC ! grC, so that (�X�)k+1 = Xk,and (�X�)0 = 0. The category of graded vector spaces is denoted by V.The category of chain complexes (over Q) will be denoted by dV, and that of doublechain complexes by ddV. The di�erential of any di�erential graded object is written @(to distinguish it from the face maps di of a simplicial object).If C is a closed model category (cf. [Q1, I] or [Q3, II, x1]), we denote by hoC thecorresponding homotopy category. If X 2 C is co�brant and Y 2 C is �brant, wedenote by [X;Y ]C the set of homotopy classes of maps between them.Let Set denote the category of sets, Vec the category of vector spaces (over Q),Lie the category of Lie algebras, and Alg the category of non-associative algebras.We write S rather than sSet for the category of simplicial sets, and S� for thecategory of pointed simplicial sets.1.2. organization: In section 2 we review some background material on the QuillenDGL model for rational homotopy theory, and describe a bigraded variant of it; and insection 3 we give some more background on simplicial resolutions.These are applied to the rational context in section 4, where we also de�ne higherorder homotopy operations for DGLs. These appear as the obstructions to realizingcertain algebraic equivalences, and serve to determine the rational homotopy type of asimply-connected space. We give a �rst approximation to Theorem A in x4.15.In section 5 we explain how to translate the usual bigraded and �ltered DGL modelsinto simplicial DGLs, which allows us to construct appropriate minimal simplicial reso-lutions. In section 6 we de�ne the homology and cohomology of a DGL (after Quillen),and show that the obstructions we de�ne above actually take value in the appropri-ate cohomology groups. Finally, in section 7 we describe a non-associative di�erential



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 3graded algebra model for rational homotopy theory, which facilitates the translation ofthe higher homotopy operations described above into integral homotopy operations. Wesummarize our main results in Theorem 7.15.1.3. Acknowledgements. I would like to thank Ron Livn�e for arousing my interest inrational higher homotopy operations, Martin Arkowitz and Jean-Michel Lemaire forproviding me with copies of hard-to-get theses, and Steve Halperin for some usefulcomments. 2. Lie modelsIn this section we brie
y recall some well-known de�nitions and facts of rationalhomotopy theory, and describe variants thereof.2.1. di�erential graded Lie algebras. Let L denote the category of graded Liealgebras, or GL's. An object L� 2 L is thus a graded vector space: L� = �1n=0Lnover Q, equipped with a bilinear graded product [ ; ] : Lp 
 Lq ! Lp+q for eachp; q;� 0, such that [x; y] = (�1)jxjjyj+1[y; x] and (�1)jxjjzj[[x; y]; z]+(�1)jyjjxj[[y; z]; x]+(�1)jzjjyj[[z; x]; y] = 0.The free graded Lie algebra generated by a graded set X� is denoted by LhX�i.The functor L : grSet ! L is left adjoint to the forgetful \underlying graded set"functor U : L ! grSet, and it factors through V: that is, LhX�i = L(VhX�i), whereVhX�i 2 V is the graded vector space with basis X�.The category of di�erential graded Lie algebras, or DGLs, will be denoted by dL,with dL0 the subcategory of 0-connected Lie algebras (i.e., those with L0 = 0).An object L = (L�; @L) 2 dL is a graded Lie algebra L� 2 L, together with adi�erential @L = @nL : Ln ! Ln�1, for each n > 0, such that @n�1L � @nL = f0g and@L[x; y] = [@Lx; y] + (�1)jxj[x; @Ly].The homology of the underlying chain complex of a DGL L = (L�; @) will bedenoted H 0�L, to distinguish it from the DGL homology de�ned in x6.5 below. Becausethe di�erential @ is a derivation, H 0�L inherits from L the structure of a graded Liealgebra.A morphism of DGLs which induces an isomorphism in homology will be called aquasi-isomorphism, or weak equivalence.In [Q3, II,x4-5], Quillen de�ned closed model category structures for the categoriesdL0 and sLie, as well as for topological spaces (and thus for TQ), and proved:2.2. Proposition. There are pairs of adjoint functors TQ
 sLie and sLie
 dL0,which induce equivalences between the corresponding homotopy categories: hoTQ �ho(sLie) � ho(dL0).2.3. Notation. To every simply-connected space X 2 T1 one can thus associate aDGL (L�; @L) 2 dL0, unique up to quasi-isomorphism, which determines its rationalhomotopy type. We denote any such DGL by LX . In particular, H 0�(LX) �= ���1X
ZQ,the rational homotopy algebra of X, which we denote by �X� 2 L.2.4. De�nition. The graded Lie algebra H 0�(LX) does not su�ce to determine therational homotopy type of X 2 T1: in fact, there may be in�nitely many DGLsfL(n)g1n=1 with H 0�(L(n)) �= H 0�(LX), no two of which are quasi-isomorphic as DGLs;



4 DAVID BLANCsee e.g. [LS]. We shall denote by dL0(X) the full subcategory of dL0 whose objectsA satisfy H 0�A �= H 0�(LX), with the isomorphism in L (see [SS], [LS], or [F1] fortreatments of the cohomology analogue of dL0(X) in terms of algebraic varieties).The objects of ho dL0(X) are thus all rational homotopy types which are indistin-guishable from XQ on the primary homotopy operation level. Among these there isa distinguished simplest one: recall that a space XQ 2 TQ (or its corresponding DGLmodel LX 2 dL) is called coformal (cf. [MN]) if LX is weakly equivalent to the trivialDGL (L�; 0) (where of course L� = H 0�(LX)).2.5. minimal models. Baues and Lemaire (in [BL, Cor. 2.4]; see also [N, Props. 5.6,8.1 & 8.8]) showed that each connected DGL (L�; @) has a minimal model (L̂�; @̂),such that L̂� is a free graded Lie algebra, @̂ : L̂! L̂ factors through [L̂; L̂], and thereis a quasi-isomorphism of DGLs ' : (L̂�; @̂)! (L�; @) (unique up to chain homotopy).In particular, we can choose such a minimal model L̂X for any space X 2 T1 (cf.x2.3).As Neisendorfer observes in [N, x5], in general minimal models do not exist for non-connected DGLs (but see [Me] or [GHT] for ways around this).2.6. bigraded Lie algebras. A di�erential bigraded Lie algebra, or DBGL, is a bi-graded vector space L�;� = �1p=0 �1s=0 Lp;s, equipped with a di�erential @L = @p;sL :Lp;s ! Lp�1;s and a bilinear graded product [ ; ] : Lp;s 
 Lq;t ! Lp+q;s+t for eachp; q; s; t � 0 satisfying:[x; y] = (�1)(p+s)(q+t)+1[y; x](2.7i) (�1)(p+s)(r+u)[[x; y]; z] + (�1)(p+s)(q+t)[[y; z]; x] + (�1)(q+t)(r+u)[[z; x]; y] = 0(2.7ii) @L � @L = 0(2.7iii) @L[x; y] = [@Lx; y] + (�1)p+s[x; @Ly](2.7iv)for x 2 Lp;s, y 2 Lq;t, and z 2 Lr;u. The category of such DBGLs will be denoted bydbL, with dbL0 the subcategory with Lp;0 = 0 for all p.2.8. De�nition. Each DBGL (L�;�; @L) has an associated DGL (L�; @L), de�nedLn =Lp+q=n Lp;q (same @L); some authors re-index L�;� so that L̂p;s = Lp;p+s, andthen L� is obtained from L̂�;� by disregarding the �rst (homological) grading.As for ordinary graded Lie algebras, one can de�ne closed model category structureson sL0 and dbL0 (see [BS, x2], and [Bl4, x4]), and we have the following analogue of[Q3, I, Props. 2.3 & 4.6, Thm. 4.4]:2.9. Proposition. There are adjoint functors sL0 N
N�dbL0, which induce equivalencesof the corresponding homotopy categories ho(sL0) � ho(dbL0). N� takes free DBGLsto free simplicial graded Lie algebras.Proof. (We give the proof mainly to �x notation which will be needed later.) Given asimplicial graded Lie algebra L�;� 2 sL0, let (C�;�; @) be its Moore chain complex (cf.[Ma, x22]), de�ned:



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 5Cp;s = p\i=1[Ker(dpi )]s with @p = (�1)s dp0jCp;s:(2.10)The simplicial Lie bracket [[ ; ]] : Cp;s 
 Cq;t ! Cp+q;s+t is de�ned via the Eilenberg-Zilber map: [[x; y]] = X(�;�)2Sp;q (�1)"(�)+pt[s�q : : : s�1x; s�p : : : s�1y](2.11)where Sp;q denotes the set of all (p; q)-shu�es { that is, partitions of f0; 1; : : : ; p+q�1ginto disjoint sets �1 < �2 < � � � < �p, �1 < �2 < � � � < �q { and "(�) = p+Ppi=1(�i�i),so (�1)"(�) is the sign of the permutation corresponding to (�; � ). (See [Mc1, VIII,x8]).If we forget the Lie structure, the Moore chain complex functor N induces an equiva-lence between the categories of simplicial graded vector spaces and bigraded chain com-plexes (cf. [Do, Thm 1.9]), with the inverse functor � de�ned for such a chain complex(A�;�; @) by (�A�;�)n;s := M0���n MI2In;�An��;s(where for each n � 0 and 0 � � � n, we let I�;n denote the set of all sequences of� non-negative integers i1 < � � � < i�(< n)), with the obvious face maps (induced by @)and degeneracies (see [Ma, p. 95]).The left adjoint N� : dbL0 ! sL0 to N is de�ned N�((L�;�; @)) = L(�(L�;�))=I(L�;�),where L is the free graded Lie algebra functor, and I(L�;�) is the ideal generated by[[�(x);�(y)]]� �([x; y]). The identities (2.7) follow from the corresponding ones in thesingly-graded case and the simplicial identities.3. Simplicial resolutionsThe proper algebraic setting for de�ning our higher homotopy operations is a suitablenotion of a simplicial resolution of ��XQ:3.1. De�nition. Recall that a category of universal graded algebras (or variety ofgraded algebras, in the terminology of [Mc2, V,x6]) is a category C in which the objectsare graded sets X�, together with an action of a �xed set of n-ary graded operatorsW = f! : Xk1 �Xk2 � � � � �Xkn ! Xmg, satisfying a set of identities E, and the mor-phisms are functions on the sets which commute with the operators. Such categoriesalways come equipped with a \free graded algebra" functor F : grSet! C, left adjointto the \underlying graded set" functor U : C ! grSet. In all the examples we shall beconcerned with, the objects X� will be \underlying-abelian" (see [BS, x2.1.1]), and infact will have the underlying structure of a graded vector space over Q.Examples include L, and the categories of associative (resp. non-associative) graded al-gebras. Note that any ordinary ungraded category of universal algebras may be thoughtof as a CUGA with all objects concentrated in degree 0.



6 DAVID BLANC3.2. De�nition. A free simplicial resolution of an object B in a CUGA C is a weakequivalence from a co�brant object A� 2 sC to the constant simplical object associatedto B (with respect to the closed model category structure on the category sC de�nedin [Q1, II, x4]). Such resolutions always exist, by [Q1, II, x4]; see section 5 below for aspeci�c construction.3.3. bisimplicial objects. We shall be interested in a particular type of simplicialresolution, which may be de�ned for an arbitrary CUGA C ((cf. [DKS] and [BS]),though we shall only need it for the case where C is a category of ungraded universalalgebras, such as Lie or Alg:Consider the category ssC of bisimplicial objects over C. We think of an object A�� 2ssC as having internal and external simplicial structures, with corresponding homotopygroup objects �itA�� and �esA�� (each taking value in sC { see [BS, App.]). LetsF : grS ! sC denote the free graded algebra functor, extended dimensionwise, and letSn(k)� be the graded simplicial set having the simplicial n-sphere Sn� := �[n]=�[n]n�1in degree k. We think of the simplicial graded algebras F (Sn(k)�) as the C-spheres,or models, for sC (cf. [BS, x3.1]). (In the ungraded case one can of course omit theextra degree k, and write simply F (Sn)). The full subcategory of sC whose objectsare weakly equivalent to coproducts of such models will be denoted by MC, or simplyM.One can use these models to de�ne the so-called \E2-model category structure" forssC, as in [DKS, x5], in which a map f : X�� ! Y�� is a weak equivalence iff? : �s�itX�� ! �s�itY�� is an isomorphism for each s; t � 0(3.4)We shall not need an explicit description of the �brations and co�brations in ssC,but only a particular type of co�brant object, as follows:3.5. De�nition. A bisimplicial object A�� 2 ssC is called M-free if for each m � 0there are graded simplicial sets X[m]� ' Wi Sni(ki)� such that A�;m �= F (X[m]�)(so that A�;m 2 M), and the external degeneracies of A�� are induced under F bymaps X[m]� ! X[m+ 1]� which are, up to homotopy, the inclusion of sub-coproductsummands. Any X� 2 sC may be resolved by an M-free bisimplicial algebra A�� (see[BS, x4.1]); this is called an M-free resolution of X�.3.6. De�nition. The diagonal of a bisimplicial object A�� 2 ssC is a simplical objectdiag(A��) 2 sC with diag(A��)n := An;n, face maps dk = dik � dek, and degeneraciessj = sij � sej.3.7. Remark. There is a �rst quadrant spectral sequence withE2s;t = �es(�itA��)) �s+tdiag(A��)(see [Q2], and compare [BF, Thm B.5]).Thus in particular if A�� ! X� is a resolution (in the E2-model category sense), wesee that " : A0;� ! X� induces a weak equivalence diag(A��) ' X�.Moreover, the same is true if we disregard the degeneracies and consider only the�-bisimplicial resolution A��� ! X�.



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 74. Resolutions for rational spacesGiven a simply-connected space X 2 T1, the �rst approximation to an algebraicdescription of its rational homotopy type is given by its rational homotopy Lie algebra�X� := ���1XQ 2 L.If XQ were coformal (x2.4), then in particular all higher homotopy operations vanishin ��XQ, and no information beyond �X� itself is needed to determine the rationalhomotopy type of X. The higher homotopy operations we shall describe may thus bethought of as \obstructions to coformality", much in the spirit (though not the speci�capproach) of [HS].4.1. topological resolutions. To proceed further, we need some kind of a \topolog-ical" simplicial object C� which realizes a suitable \algebraic" simplicial resolutionV�;� ! �X� in sL, in the sense that V�;� = ���1C�. The higher homotopy operationswe want then arise as the obstructions to realizing the \algebraic" augementation map���1C� ! �X� topologically.This can be done using actual topological spaces, as in the integral case (see [Bl2,x7], as simpli�ed in [Bl3, x4.9]), but for rational spaces it is more convenient to use analgebraic model, in a category such as dL. To allow us freedom in choosing this model,we give a general de�nition:4.2. Assumptions. Let gC be a CUGA (which we may assume to have the underlyingstructure of a graded vector space), and C the category of (ungraded) universal algebrascorresponding to objects of gC concentrated in degree 0. The cases we shall be interestedin are C = Lie (with gC = L) and C = Alg (with gC = A).As shown in [BS, App.], for each simplicial algebra A� 2 sC, the graded homotopyobject ��A� actually takes value in gC.For a given A� 2 sC, let C�� ! A� be an MC-free resolution (De�nition 3.5). Inparticular, this implies that upon applying the functor �� we obtain a free simplicialresolution �i�C�� (in the \external" direction!) of the graded algebra ��A�. In fact,we only need a �-bisimplicial resolution (x3.7), but we shall nevertheless usually abusenotation by writing C�� for C���.Next, assume given another object B� 2 sC, together with an isomorphism ' :��A� �= ��B� (in gC). De�ne a sequence of morphisms  n : ��Cn;� ! ��B� by 0 := ' � " and  n+1 :=  n � d0 (which implies that  n+1 =  n � di for all 0 � i � n,by the simplicial identities).We choose once and for all a �xed map f0 : C0;� ! B� realizing  0 (this is possiblebecause C�� ! A� is M-free) and de�ne fn : Cn;� ! B� inductively by settingfn+1 := fn � dn, so that ��(fn) =  n for all n � 0. It is usually most convenient toset f jDk(x)= 0 for all C-disks Dk(x) ,! C0;�.Note that, because C�� is M-free, the maps f ng1n=0 de�ne an augmented �-simplicial object hC��� ! B� in the homotopy category ho(sC) { or equivalently, anaugmented �-simplicial object up-to-homotopy.4.3. De�nition. Let D[n] 2 S� denote the standard simplicial n-simplex, togetherwith an indexing of its non-degenerate k-dimensional faces D[k](
) by the composite



8 DAVID BLANCface maps 
 = din�k � : : : � din : n ! k � 1 in �op (cf. [Bl3, x4]). Its (n � 1)-skeleton, which is a simplicial (n � 1)-sphere, is denoted by @D[n]. We shall take� := D[0](d0d1d2:::dn�1) as the base point of D[n] 2 S�, and we choose once and for alla �xed isomorphism '(
) : D[k](
) ! D[k] for each face D[k](
) of D[n] (see, e.g.,[Bl3, (4.5)]).4.4. Example. @D[2] has three vertices: D[0](d0d1) = D[0](d0d0) (the basepoint),D[0](d0d2) = D[0](d1d0), and D[0](d1d2) = D[0](d1d1). It has three non-degenerate edgesD[1](d0), D[1](d1), and D[1](d2). D[2] has in addition one non-degenerate 2-simplex,which we may denote by D[2](id). See Figure 1 below for a depiction of D[2], andFigure 2 for a depiction of D[3].4.5. De�nition. Given Y� 2 sC and a simplicial set K� 2 S, we de�ne their half-smash (in sC) by: Y� oK� := Y� 
K�=(f0g 
K�)(where (Y� 
K�)n :=`x2Kn (Yn)(x) { cf. [Q1, II, x1, Prop. 2]).Similarly, the smash product (in sC) of Y� with a pointed simplicial set K� 2 S�is de�ned Y� ^K� := Y� oK�=(Y� o f�g), and if K� = Sr (the simplicial sphere), wewrite �rY� for Y� ^ Sr.4.6. Remark. If Y� = F (Sn) is a C-sphere (see x3.3), then �rY� �= F (Sn+r) is alsoa C-sphere. In fact, many of the usual properties of spheres in hoT also hold forC-spheres { e.g., �rX� �= [F (Sn);X�]sC for any X� 2 sC (cf. [Q1, I, x4]), andY� '`i F (Sni)) �rY� '`i F (Sni+r) (cf. [Q1, I, x3]).4.7. De�nition. Under the assumptions of x4.2, for each n 2 N, we de�ne a @D[n]-compatible sequence to be a sequence of maps fhk : Wk;� oD[k]! B�gn�1k=0, such thath0 = f0 (under the natural identi�cation W0;� o D[0] = W0;�), and for any iteratedface maps � = dij+1 � � � � � din and 
 = dij � � (0 � j < n) we havehj � (dij o id) = hj+1 � (ido �
� ) on Cj+1;� oD[j]];(4.8)where �
� : D[j]! D[j + 1] is the composite �
� := '� � � � ('
)�1. Here '
 and '�are the isomorphisms of De�nition 4.3, and � : D[j](
) ! D[j + 1](�) is the inclusion(compare [Bl3, Def. 4.10]).A sequence of maps fhk :Wk;� oD[k]! B�g1k=0 satisfying condition (4.8) for all 
,�, and n is called a @D[1]-compatible sequence.4.9. De�nition. Given such a @D[n]-compatible sequence fhk : Ck;�oD[k]! B�gn�1k=0the induced map �h : Cn;�o@D[n]! B� is de�ned on the \faces" Cn;�oD[n�1](di) ofCn;� oD[n] by: �hjCn;�oD[n�1](di)= hn�1 � (di o id). The compatibility condition (4.8)above guarantees that �h is well-de�ned.4.10. De�nition. For each n � 2, the n-th order homotopy operation (associated tothe choice of C�� ! A� in x4.2) is a subset hhnii of the track group [�n�1Cn;�; B�]sCde�ned as follows:Let Tn � [Cn;� o @D[n]; B�]sC be the set of homotopy classes of maps �h : Cn;� o@D[n] ! B� induced as above by some @D[n]-compatible collection fhkgn�1k=0 . Since



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 9each Cn;� is a suspension, up to homotopy, by Remark 4.6, we have a splittingCn;� o @D[n] ' (Sn�1 ^ Cn;�)q Cn;�(4.11)(as for topological spaces). We de�ne hhnii � [�n�1Cn;�; B�]sC to be the image underthe resulting projection of the subset Tn � [Cn;� o @D[n]; B�]sC.Note that the projection of a class [�h] 2 Tn on the other summand [Cn;�; B�]sC comingfrom the splitting (4.11) is just the homotopy class of the map fn of x4.2. On theother hand, since C�� was assumed to be M-free, each Cn;� ' `1k=1`x2Tn;k F (Sk(x))is weakly equivalent to a wedge of spheres, so �n�1Cn;� ' `1k=1`x2Tn;k F (Sk+n�1(x) ).Thus [�n�1Cn;�; B�]sC �= 1Yk=1 Yx2Tn;k [F (Sk+n�1(x) ); B�]sC;(4.12)and we shall denote the components of hhnii under this product decomposition byhhn; xii � [F (Sk+n�1(x) ); B�]sC = �k+n�1B�.4.13. De�nition. It is clearly a necessary condition for the subset hhnii to be non-empty that all the lower order operations hhkii (2 � k < n) vanish { i.e., containthe null class. A su�cient condition is that they vanish coherently (cf. [Bl2, Def. 5.7] {i.e., that the @D[m]-compatible collections fh
kgm�1k=0 for the various faces 
 of @D[n]can be chosen to agree on their intersections, so that they in fact �t together to form a@D[n+ 1]-compatible collection fhkgnk=0.4.14. Remark. The coherent vanishing of all the operations fhhniig1n=2 is equivalent,by [BV, Cor. 4.21 & Thm. 4.49] and [Bl2, x4.11], to the recti�ability of the augmented�-simplicial object up-to-homotopy hC��� ! B�: that is, its replacement by augmented�-simplicial object Ĉ��� ! B� over sC (with the simplicial identities now holdingprecisely, in sC, rather than just in ho(sC)), such that Cn;� ' Ĉn;� for each n.This in turn implies (by x3.7) that diag(Ĉ���) ' B�; but since diag(Ĉ���) ' diag(C���),and diag(C���) ' A� by assumption, we conclude that A� ' B� if and only if thehigher homotopy operations fhhniig1n=2 vanish coherently.4.15. Summary. This yields a �rst approximation to Theorem A, which may be de-scribed as follows:We work in C = Lie (and gC = L). Given a space X 2 T1 we consider thesimplicial Lie algebra B� corresponding to a DGL model LX 2 dL for XQ (underthe functors of Proposition 2.2), and let �X� := ���1XQ 2 L be its rational homotopyLie algebra, with A� 2 sLie the simplicial Lie algebra corresponding to the trivialDGL L(0) := (�X� ; 0). Choose some MLie-free resolution C�� 2 ssLie of A�.X is coformal if and only if A� ' B�, and this happens if and only if all the higherhomotopy operations fhhniig1n=2 associated to C�� vanish coherently, by Remark 4.14.If not, let n0 denote the least n � 2 such that 0 62 hhnii.Note that we can apply the above procedure to any DGL in dL(X) (Def. 2.4), notonly to LX ; and the existence and vanishing or non-vanishing of the higher homotopyoperation hhn0ii � ��XQ is a homotopy invariant. Denote by H(1) the set of all



10 DAVID BLANChomotopy types in ho dL0(X) for which hhn0ii is de�ned and has the same value as forB� itself (i.e., those DGLs which are indistinguishable from LX as far as the primaryhomotopy operations, and all the higher homotopy operations fhhniign0n=2 associated toC��, can see). For each � 2 H(1), choose a representative DGL L(1;�).Next, choose a new M-free resolution for the simplicial Lie algebra corresponding toL(1;�), and repeat the above procedure, yielding a set of higher homotopy operationshhn1;�ii � ��XQ which serve as obstructions to the existence of a homotopy equivalenceL(1;�) '�! LX . For each such higher operation hhn1;�ii, we denote by H(2;�) the set ofall homotopy types in H(1) � ho dL0(X) for which hhn1;�ii has the same value as forLX . Now choose representatives L(2;�;�0) for each �0 2 H(2;�), and proceed as above.In this way we obtain a tree TX of rational homotopy types in ho dL0(X), which alsoindexes a collection of higher homotopy operations of the form hhnk;�1;�2;:::;�kii � ��XQ,and limk!1 nk = 1 along any branch of the tree TX , so that in fact this collectionof operations determines the rational homotopy type of X.In a future paper we hope to show how this tree of homotopy types in ho dL0(X),and thus the corresponding collection of higher homotopy operations, may be describedmore e�ectively in terms of a \Postnikov tower" for an MLie-free resolution for X.5. Minimal resolutionsWe now explain how the bisimplicial theory described in section 4 translates into adi�erential graded theory, when C = L. In particular, this allows an application of theHalperin-Stashe� perturbation theory to our context.First, it is sometimes convenient to have minimal M-free resolutions for a DGL,de�ned for any CUGA C as follows:5.1. De�nition. Any B 2 C has a special kind of free simplicial resolution (seexrefdsr) A� ! B, called a CW -resolution, de�ned as follows (cf. [Bl1, x5.3]):If we let �An denote the sub-algebra of An generated by the non-degenerate elementsin T n� , we require that dij �An= 0 for 1 � i � n. The sequence �A0 = A0; �A1; : : : ; �An; : : :is called a CW -basis for A�, and �d0 = d0j �An is the attaching map for �An.Such a A� ! B will be called minimal if each �An+1 is minimal among those freealgebras in C which map onto the Moore n-cycles ZnA� = Ker(@n) (see (2.10)).5.2. De�nition. When C = L, the category of graded Lie algebras, it will be moreconvenient at times to use of the adjoint functors of Proposition 2.9 to replace A�� ! X�by a simplicial DGL L�;� ! X�. In this case the simplicial models are replaced by thecorresponding DGLs, namely1. A dL-n-sphere, denoted by Sn(x), is a DGL of the form (LhX�i; 0) where X� isthe graded set with Xn = fxg and Xi = ; for i 6= n.2. A dL-(n + 1)-disk, denoted Dn+1(x) , is the DGL (LhX�i; @L) where Xn+1 = fxg,Xn = f@Lxg, and Xi = ; for i 6= n; n + 1. Its boundary is the dL-n-sphere@Dn+1(x) := Sn(@Lx).



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 113. A two-stage DGL is a DGL (LhX�i; @L) 2 dL, where for some n � 0 we haveXi = ; for i 6= n; n+1. Any coproduct (in dL) of two-stage DGLs will be calleda free DGL.Evidently dL-spheres and disks are free DGLs, and any free DGL may be describedas the coproduct of dL-spheres and disks { and more canonically, as a coproduct ofdL-spheres, disks, and collections of disks with their boundaries identi�ed to a singlesphere.5.3. De�nition. In fact, there is a comonad (cf. [EM, x2]) F : dL ! dL de�ned forany B = (B�; @B) 2 dL by F (B) = ( 1ak=1 ax2Bk Dk(x))= �;(5.4)where we set Dk(x) := Sk(x) if @Bx = 0, and let @Dk+1(x) � Sk(@Bx) if @Bx 6= 0.Clearly F (B) is a free DGL, and by iterating F we obtain a free simplicial DGL W�;�with Wn = F n+1(B) (see [Gd, App., x3]), which we call the canonical free simplicalDGL resolution of B = (B�; @B), which we denote by W�;�(B). Observe that W�;�(or equivalently, the corresponding bisimplicial Lie algebra W��) is anM-free resolutionof B.5.5. Remark. Note that if @B � 0, by de�nition (5.4) F (B�; 0) has only spheres, andno disks, and thus the canonical resolution W�;�(B) has @Wn = 0 for all n � 0. ThusW�;� may be identi�ed with the usual canonical resolution of the graded Lie algebra B�(coming from the \free graded Lie algebra on underlying graded set" comonad), whichwe shall denote by V�;�(B�).Note further that by (3.4), if we apply the functor H 0� to W�;� ! B� { orequivalently, the functor �i� to W�� ! B� { we obtain a free simplicial resolution ofthe graded Lie algebra L� := H 0�(B�; @B).5.6. Notation. If we write hxi 2 F (B) for the generator corresponding to an elementx 2 B�, then recursively a typical DGL generator for Wn = Wn;� (in the canonicalresolution W�;�(B)) is h�i, for � 2 Wn�1, so an element of Wn is a sum of iteratedLie products of elements of B�, arranged within n+1 nested pairs of brackets hh� � �ii.With this notation, the i-th face map of W�;� is \omit i-th pair of brackets", and thej-th degeneracy map is \repeat j-th pair of brackets". We assume the bracket operationh�i is linear { i.e., that h�x+ �yi = �hxi + �hyi for �; � 2 Q and x; y 2 B.In order to construct minimal M-simplicial resolutions, �rst consider the coformalcase:5.7. the bigraded model. Any coformal DGL (x2.4), and in particular L = (L�; 0),has a bigraded model A�;� ! L� { that is, a bigraded DGL (A�;�; @A) (see x2.6)which is minimal in the sense of x2.5, along with a quasi-isomorphism A�;� ! L�. Thebigraded model is unique up to isomorphism. See [O, I] for an explicit construction.This is just the Lie algebra version of the bigraded model of [HS, x3] (see also [F2]),which is in turn essentially the Tate-Joze�ak resolution (see [J]) of a graded commutativealgebra.



12 DAVID BLANCA = (A�; @A) will denote the DGL associated to A�;� (De�nition 2.8); by constructionA is the minimal model (x2.5) for L (which is not minimal itself, unless L� happens tobe a free graded Lie algebra).5.8. Example. Consider the graded Lie algebra L� = Lha1; b1; c2i=I, where I is theLie ideal generated by [a; a] and [[c; a]; [b; a]]. The minimalmodel for the coformal DGLL = (L�; 0) 2 dL is (A�; @A), where A� in dimensions� 7 is Lha1; b1; c2; x3; y5; w6; z7i,with @A(x) = [a; a], @A(y) = 3[x; a], @A(w) = [[c; a]; [b; a]], and @A(z) = 4[y; a]+3[x; x].The bigraded model A�;� is obtained from A� by introducing an additional (homo-logical) grading: a; b 2 A0;1, c 2 A0;2, x 2 A1;3, w 2 A1;6, y 2 A2;5, z 2 A3;7, and soon.5.9. Proposition. Let L = (L�; 0) 2 dL be a coformal DGL, and A�;� its thebigraded model; then there is an MdL-free simplicial resolution C�;� ! L, with abijection � : X�� ,! C�;� between a bigraded set X�� of generators for A�;� andthe set of non-degenerate dL-spheres in C�;�. Moreover, H 0�(C�;�) is a minimalCW -resolution of L� = H 0�(A�;�), with CW basis generated by im(�).Proof. By Proposition 2.9 there is a simplicial graded Lie algebra resolution C�;� ! L�corresponding to A�;�, and thus a weak equivalence of simplicial graded Lie algebras : C�;� ! V�;� = V�;�(Ls) (see x5.5), which is one-to-one because A�;�, and thus C�;�,are minimal (cf. [BL, x2]).Now let W�;� be the canonical free simplical DGL resolution of A�; the fact that� : A�;� ! L� is a quasi-isomorphism implies that there is a weak equivalence ' :V�;� ! W�;� (as well as one in the other direction). The composite ' � : C�;� ! W�;�is again a one-to-one weak equivalence (by minimality); we may therefore think of C�;�as a sub-simplicial object of W�;�.Moreover, there is an embedding of bigraded vector spaces � : A�;� ! C�;� (see proofof Proposition 2.9), and thus another such embedding � : A�;� ! W�;�, which may bede�ned explicitly as follows (using the notation of x5.6):For x 2 X0;�, set �(x) = hxi 2 C0;� = F (A�). Since � maps X0;� onto a(minimal) set of Lie algebra generators for L� = H 0�(A�;�), each �(x) is a @W -cycle,so C(0)0;� :=`1k=1`x2X0;k Sk(�(x)) is a sub free DGL of W0;�.By minimality of A�;�, any x 2 Xn;� (n � 1) is uniquely determined by @A(x) 2An�1;�. Thus if we require � to be multiplicative (with respect to the ordinary bracketin A�;�, and with respect to the simplicial Lie bracket [[ ; ]] of (2.11) in W��), wemay de�ne � : A�;� !W�;� inductively by�(x) = h�(@A(x))i;(5.10)and we shall write x(0) for �(x) if x 2 X��.By de�nition (see Proposition 2.9), d0 � � = � � @A, so for x 2 Xn;� (n � 2) wehave d1(x(0)) = d1h�(@A(x))i = hd0�(@A(x))i = h�(@2A(x))i = 0, while "(d1(x(0))) is a@A-boundary for x 2 X1;� (where " : W0;� ! A� is the augmentation). Thus Lemma5.13 below implies that for x 2 Xn;� (n � 1) we have di(x(0)) = 0 for all 1 � i � n�1,while dn(x(0)) is a @W -boundary.Therefore, if we set C(0)n;� :=`1k=1`x2Xn;k Sk(x(0)) for all n � 0, we see fH 0�(C(0)n;�)g1n=1is an L-CW basis for H 0�(C�;�).



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 13In order to give an explicit description of C�;� in terms of C(0)�;� , we need to knowthe Lie disks in which dn(x(0)) (and their faces) lie. By a double induction on n � 1and 1 � r � n, we shall now de�ne, for all x 2 Xn;k, elements x(r) 2 Wn�r;k+r suchthat @W (x(r)) = dn�r(x(r�1)):Note that for each x 2 An;� we have @A(x) = Pt at!t[yi1; : : : ; yimt ], where !t[: : :]is some mt-fold iterated Lie bracket, yij 2 Xnj ;� with Pmtj=1 nj = n, and at 2 Q.Then �(x) = h�(@A(x))i = hXt at!t[[y(0)i1 ; : : : ; y(0)imt ]]i;(5.11)where !t[[: : :]] is the same mt-fold iterated Lie bracket as above, but now with respectto the simplicial Lie bracket [[ ; ]], rather than [ ; ].If we set x(s) = 0 for i > n, we may de�ne x(s) for 0 < s � n inductively by:x(s) = hXt at Xr1+���+rmt=s0�rj !t[[y(r1)i1 ; : : : ; y(rmt)imt ]]i 2 C(s)n�s;k�n+s:(5.12)Thus if we assume by induction that we have chosen y(rj)ij with @W (y(rj)ij ) =dnj0 (y(rj�1)ij ), it follows from Lemma 5.13 below that indeed @W (x(s+1)) = dn(x(s))and di(x(s)) = 0 for 0 < i < n.For example, y(0) = hyi and "(hyi) = y 2 Ak for any y 2 X0;k. Therefore, forx 2 X1;� we have "d1(x(0)) = "d0(x(0)) = @A(x), so we may set x(1) = hxi 2 W1;k+1,with @W (x(1)) = d1(x(0)).Now if we de�ne by induction C(r)n;� := C(r�1)n;� q`1k=1`x2Xn+r;k Dk+r(x(r)), and let C�;�be the sub-simplicial graded Lie algebra of W�;� generated (under the degeneracies ofW�;�) by (C(r)n;�)nr=0 for all n 2 N, then C�;� is closed under face maps and includesim(�), and � : A�;� ! C�;� is a weak equivalence. The only non-degenerate Lie spheresin C�;� are those of C(0)�;� , as required.5.13. Lemma. If A� 2 sL is a simplicial graded Lie algebra, x 2 Ap with dix = 0for 1 � i � p� 1, and y 2 Aq with djy = 0 for 1 � j � q� 1, then dk([[x; y]]) = 0for 1 � k � p + q � 1.Proof. By de�nition (2.11) we have[[x; y]] = X(�;�)2Sp;q(�1)"(�)+pjyj[s�q : : : s�1x; s�p : : : s�1y] 2 Ap+q:(5.14)Now for each summand w�;� := [s�x; s�y] in (5.14), with (�; � ) a (p; q)-shu�e,there are two cases to consider:The �rst is that there exist `;m such that �` = k, �m = k � 1 { in which casethere is an associated (p; q)-shu�e (�0; � 0), di�ering from (�; � ) only in that �` and�m are switched, so that dk(w�;� ) = dk(w�0;� 0) but (�1)"(�) = �(�1)"(�0), and thesepairs thus cancel in the sum (5.14).



14 DAVID BLANCIn the second case, k; k � 1 2 f�1; : : : ; �pg, say, and then there is some 0 � ` � qwith �` < k � 1 and �`+1 > k. Since necessarily k + 1� p � ` � k � 1, we �nd thatdks�x = s�q�1 � � � s�`+1�1s�` � � � s�1dk�`x = 0.5.15. Example. Consider the graded Lie algebra L� = Lha1; b1; c2i=h[a; a]; [[c; a]; [b; a]]iof Example 5.8, with L = (L�; 0). The M-free simplicial resolution C�;� ! L maybe described (in homological dimensions � 3) as follows:(1) C(0)0;� is the coproduct (in L) of S1(a(0)) = S1(hai), S1(b(0)) = S1(hbi), and S2(c(0)) = S2(hci).(2) C(0)1;� = S2(x(0)) q S6(w(0)), where x(0) = h[hai; hai]i and w(0) = h[[hci; hai]; [hbi; hai]]i.(3) C(0)2;� consists of S5(y(0)), where y(0) = h3[h[hai; hai]i; hhaii]i.(4) C(0)3;� consists of S6(z(0)), wherez(0) = h4[h3[h[hai; hai]i; hhaii]i; hhhaiii] + 6[h[hhaii; hhaii]i; hh[hai; hai]ii]i.For C(1)�;� we need in addition(1) D3(x(1)) ,! C(1)0;� with @W (x(1)) = d1(x(0)) = h[a; a]i.(2) D6(y(1)) ,! C(1)1;� with y(1) = h3[hxi; hai]i and @W (y(1)) = d2(y(0)) = h3[h[a; a]i; hai]i.(3) D7(z(1)) ,! C(1)2;� with z(1) = h4[h3[hxi; hai]i; hhaii] + 6[h[hai; hai]i; hhxii]i and@W (z(1)) = d3(z(0)) = h4[h3[h[a; a]i; hai]i; hhaii] + 6[h[hai; hai]i; hh[a; a]ii]i.For C(2)�;� we need in addition(1) D7(y(2)) ,! C(2)0;� with @W (y(2)) = d1(y(1)) = h3[x; a]i.(2) D8(z(2)) ,! C(2)1;� with z(2) = h4[hyi; hai] + 3[hxi; hxi]i and @W (z(2)) = d2(z(1)) =h4[h3[x; a]i; hai] + 6[h[a; a]i; hxi]i.For C(3)�;� we must add D9(z(3)) ,! C(3)0;� with @W (z(1)) = d1(z(2)) = h4[y; a] + 3[x; x]i.5.16. the �ltered model. If B = (B�; @B) 2 dL is an arbitrary DGL, it no longerhas a bigraded model, as in x5.7 above. However, if L� := H 0�(B) is the homotopy Liealgebra of B�, the bigraded model (A�;�; @A) for (L�; 0) may be perturbed into a �lteredmodel for B: that is, one may de�ne a increasing �ltration 0 = F�1(A) � F0(A) �� � �Fr(A) � Fr+1(A) � � � � on A�;� by Fr(A) := Lri=0Ai;�, and a new di�erentialDA = @A + �A on A�;� such that �A : An;� ! Fn�2(A) (and of course DA is a stilla derivation). We may decompose DA : An;� ! A�;� as DA = @0 + @1 + � � � + @n�1,where @r : An;� ! An�r�1;� (and @0 = @A, the original di�erential of the bigradedmodel).See [O, II] or [Har]; this is again the Lie algebra version of a construction of Halperinand Stashe� in [HS, x4] (see also [F1]).Note that the �ltered model is no longer unique, since its construction depends onchoices; in particular, it is not necessarily minimal. One again has the associated DGL(A�;DA), which is quasi-isomorphic to the original DGL B, and A�;� is obtained by�ltering A�.5.17. Proposition. Let B = (B�; @B) be a DGL, and (A�;�;DA) a �ltered modelfor B; then there is an MdL-free simplicial resolution E�;� ! B, with a bijection



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 15� : X�� ,! E�;� between a bigraded set X�� of generators for A�;� and the set ofnon-degenerate dL-spheres in E�;�.Proof. We start with the minimal M-free resolution C�;� ! L� for L� = H 0�(B�),constructed as in the proof of Proposition 5.9, and deform it into an M-free resolutionfor B, using the �ltered model (A�;�;DA) as a guideline. This time we shall embed theresultingM-free resolution in the canonical free DGL resolution W�;� of (A�;DA), theDGL associated to the �ltered model:For each x 2 Xn;k (where X�� is a bigraded set of generators for the bigraded Liealgebra A�;�, as above), set x(n) = hxi 2 W0;k, and let DA(x) = @0(x) + @1(x) + � � �+@n�1(x) as above, with@r(x) =Xt a(r)t !(r)t [yi1; : : : ; yimt ] 2 An�r�1;�;where !(r)t [: : :] is some mt-fold iterated Lie bracket, as above, and each yij 2 Xnj ;�with Pmtj=1 nj = n � r � 1.If we set x(s) = 0 for i > n, we may de�ne x(s) for 0 < s � n inductively by:x(s) = h sXr=0Xt a(r)t Xr1+���+rmt=s�r0�rj !(r)t [[y(r1)i1 ; : : : ; y(rmt)imt ]]i 2 C(s)n�s;k�n+s(5.18)Using Lemma 5.13 and the fact that for any A� 2 sL, x 2 Ap and y 2 Aq wehave dp+q([[x; y]]) = [[dp(x); y]] + (�1)q[[x; dq(y)]], one may then verify inductively thatdn�s(x(s)) = @W (x(s+1)) and di(x(s)) = 0 for 0 < i < n� s, for all 0 � s < n. Therest of the construction is as in the proof of Proposition 5.9.5.19. Example. Consider the DGL B = (B�; @B) 2 dL where B� is the free Liealgebra Lha1; b1; c2; x3; y5; z7; : : :i, with @B(x) = [a; a], @B(y) = 3[x; a] � [[b; a]; c],@B(z) = 4[y; a] + 3[x; x], and so on.Here L� := H 0�(B) = Lha1; b1; c2i=h[a; a]; [[c; a]; [b; a]]i, so the bigraded model for(L�; 0) is (A�;�; @A) of Example 5.8 above, and the �ltered model is obtained from itby setting DAy = 3[x; a]� [[b; a]; c] and DA(z) = 4[y; a] + 3[x; x]� 4w + 2[[x; b]; c].The correspondingM-free resolution is obtained from C�;� of Example 5.15 by makingthe following changes:(1) Set y(1) := h3[hxi; hai]� [[hbi; hai]; hci]i, with @W (y(1)) = d2(y(0)) = h3[h[a; a]i; hai]ias before, (but now @W (y(2)) = h3[x; a]� [[b; a]; c]i, of course).(2) Set z(1) := h4[h3[hxi; hai]i; hhaii] + 6[h[hai; hai]i; hhxii]� 4h[[hci; hai]; [hbi; hai]]i+2[[h[hai; hai]i; hhbii]; hhcii]i (with @W (z(1)) unchanged).(3) Set z(2) := h4[hyi; hai] + 6[hxi; hxi] � 4hwi + 2[[hxi; hbi]; hci]i, with @W (z(2)) =d3(z(1)) =h4[h3[x; a]� [[b; a]; c]i; hai]+6[h[a; a]i; hxi]�4h[[c; a]; [b; a]]i+2[[h[a; a]i; hbi]; hci]i.(4) Finally, @W (z(3)) = h4[y; a] + 3[x; x]� 4w + 2[[x; b]; c]i.We have the following analogue of De�nition 4.5:5.20. De�nition. Given a DGL L = (LhX�i; @L) 2 dL and a simplicial set A 2 S,we de�ne their half-smash LoA = (LhY�i; @ 0) 2 dL by setting Yn :=`nk=0Xk� Ân�k,



16 DAVID BLANCwhere Âi denotes the set of non-degenerate i-simplices of A. For a 2 Âk and x 2 Xm,we set @0(x; a) = kXi=0 (�1)i+m(x; dia) + (@Lx; a)(and extend @ 0 by requiring that it be a derivation).5.21. Example. S2(x) oD[1] = (LhX�i; @ 0), where X2 = f(x; (d0)); (x; (d1))g, X3 =f(x; (id))g, and @ 0(x; (id)) = (x; (d0))� (x; (d0)).Similarly, S3(y) oD[2] = (LhY�i; @ 0), where Y3 = f(y; (d0d1)); (y; (d0d2)); (y; (d1d2))g,Y4 = f(y; (d0)); (y; (d1)); (y; (d2))g, and Y5 = f(y; (id))g, with @ 0(y; (id)) = �(y; (d0))+(y; (d1))� (y; (d2)), @ 0(y; (d0)) = �(y; (d0d1)) + (y; (d0d2)), @ 0(y; (d1)) = �(y; (d0d1)) +(y; (d1d2)), and @ 0(y; (d2)) = �(y; (d0d2)) + (y; (d1d2)).5.22. Remark. In order to apply the obstruction theory described in x4.15, note that allthe de�nitions of section 4 pass over to the DGL setting in a straightforward manner.However, if we now start with the trivial DGL A = L(0)� := (�X� ; 0), we may takeC�;� ! L(0)� to be the minimal M-free resolution of Proposition 5.9, corresponding tothe bigraded model for (�X� ; 0), and let B = (B�; @B) (corresponding to B� in x4.15)be the �ltered model for LX . We assume that A 6' B.As explained in x4.15, there is a least n0 � 2 such that 0 62 hhn0ii � H 0�(B), andwe write hhn0ii = (hhn0; xiii)i2I , in the notation of 4.10, where xi 2 Xn0;i and Ski(xi)are corresponding DGL spheres in Cn0 ;� (we include in the index set I only thosecoordinates of (4.12) which do not vanish).Again let H(1) denote the set of all homotopy types in ho dL(X) for which hhn0iihas the same value as for LX , and choose a representative L(1;�) 2 dL(X) for each� 2 H(1). By [HS, x3], we may assume L(1;�) is obtained from B by perturbationof @B. Proceeding as in x4.15 we obtain a tree of DGLs L(k;�1;�2;:::;�k) 2 dL(X), andby [Bl1, Theorem 3.1], we know that L(k;�1;�2;:::;�k) may be chosen to agree with LXthrough degree n+ 1 at least, so colimn L(n) ' LX along any branch of the tree.Note also that because H 0�(C�;�) is a (minimal) CW resolution of H 0�(B), in eachcase, the maps  n : H 0�(Cn;�) ! H 0�(B) are null for all n � 1 (see x4.2). Thus any@D[n]-compatible collection fhkgn�1k=0 in x4.10 induce a map Cn;�^@D[n]! B directly,without need of the splitting (4.11).5.23. Example. For the DGL B = (B�; @B) of example 5.19, with C�;� as in example5.15, we de�ne h0 = f0 : C0;� ! B by setting f0(hai) = a, f0(hbi) = b, f0(hci) = c,and f0 = 0 for all other disks in C0;� (so for example f0(h[a; a]i) = 0).Thus on S2(x(0)) o D[1] we have h1(x(0); (d0)) = [a; a] and h1(x(0); (d1)) = 0, byde�nition (4.8), so we must choose h1(x(0); (id)) = x 2 B3.Now on S3(y(0))oD[2] we have h2(y(0); (d0d1)) = h2(y(0); (d0d2)) = h2(y(0); (d1d2)) = 0,and h2(y(0); (d0)) = (h1�d0)(y(0); (d0) = 3[x; a], while h2(y(0); (d1)) = h2(y(0); (d2)) = 0.This de�nes a @D[2] compatible sequence for C�;�, and the resulting secondaryoperation is hh2; y(0)ii = fh3[x; a]i]g � H 04(B); but since 3[x; a] does not bound in B,hh2ii does not vanish, and we have found the (expected) obstruction to the coformalityof B.



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 175.24. Remark. The second order operation described in the previous example is actuallya secondary Whitehead product. Unlocalized higher order Whitehead products werede�ned by G. Porter in [P, 1.3], and the relation between this de�nition and the rationalversion has been studied by several authors { see [AA], [A1, A2], [R2, R1] and [T, V.1].However, there are other higher order rational homotopy operations, too: for example,in the DGL L� = (Lha1; b1; c1; d1; x4; y4; z4; w4i; @), with @(x) = [[b; a]; c], @(y) =[[b; a]; d], @(z) = [[d; c]; a] and @(w) = [[d; c]; b], the cycle [x; d] + [y; c] + [z; b] + [w; a]represents such an operation. There appears to be no general procedure for representingthese as integral higher order operations in ��X; we shall o�er a (partial) answer tothis di�culty in section 7. 6. Homology of DGLsObstructions in algebraic topology traditionally take values in suitable cohomologygroups. In order to show that this holds in our seting, too, we recall Quillen's de�nitionof homology and cohomology in model categories:6.1. De�nition. An object X in a category C is said to be abelian if it is an abeliangroup object { that is, if HomC(Y;X) has a natural abelian group structure for anyY 2 C. When C is Lie, Alg, sLie, sAlg, L, or dL, for example, this is equivalentto requiring that all products vanish in X (cf. [BS, x5.1.3]).The full subcategory of abelian objects in C is denoted by Cab � C. In the cases ofinterest to us, this will itself be an abelian category. It is equivalent to the category Vecof vector spaces if C = Lie or Alg, to V if C = L, to the category sVec of simplicialvector spaces if C = sLie or sAlg, and to the category dV if C = dL (see x1.1).In these cases, we have an abelianization functor Ab : C ! Cab, along with a naturaltransformation � : Id ! Ab having the appropriate universal property. In all theexamples above, Ab(X) = X=I(X), where I(X) is the ideal in X 2 C generated byall non-trivial products.6.2. De�nition. Let C be a category as above, which also has a closed model categorystructure: in [Q1, II, x5] (or [Q4, x2]), Quillen de�nes the homology of an object X 2 Cto be the total left derived functor L(Ab) of Ab, applied to X (cf. [Q1, I, x4]).In more familiar terms, this means that we construct a resolution A ! X (i.e.,replace X by a weakly equivalent co�brant object A 2 C), and then de�ne the i-thhomology group of X by HiX := �i(Ab(A)), for an appropriate concept of homotopygroups �� in Cab (see [Q1, II, x4]). One must verify, of course, that this de�nition isindependent of the choice of the resolution A! X.Similarly, the cohomology of X with coe�cients in M 2 Cab is de�ned:H i(X;M) := [L(Ab)X;
i+N�NM ]Cab for N large enough(where the loop and suspension functors 
 and � are de�ned in [Q1, I, x2]).Again, in the cases that interest us, 
 is essentially the shift operator ��1 of x1.1,and so the i-th cohomology group of X with coe�cients in M is then H i(X;M) :=[�iAb(A);M ]Cab.6.3. De�nition. If C itself does not have a closed model category structure, one oftende�nes the homology of X 2 C by embedding C in some category which does have such



18 DAVID BLANCa structure, which in many cases may be taken to be sC, the category of simplicialobjects over C (see [Q1, II, x4]). Thus, if � : C ,! sC is the embedding of categoriesde�ned by taking �(C) to be the constant simplicial object equal to C in all dimensions,then Hi(C) := �i(L(Ab � �)C).This is the approach usually taken for C = Lie, Alg, or L: to de�ne the homologyof a graded Lie algebra L� 2 L, say, one chooses a free simplicial resolution A�;� ! L�(such as the canonical resolution { cf. x5.3), and then calculate the homotopy groupsof the simplicial graded vector space Ab(A�;�) 2 sV (or the homology groups of thebigraded chain complex in dbV corresponding to Ab(A�;�) { see proof of Proposition2.9).6.4. Remark. Note that if we apply De�nition 6.2 as is to a DGL L = (L�; @L) 2 dL,we may take the resolution A to be the minimal model L̂ = (L̂�; @̂) for L (cf. x2.5),and since its abelianization is just the graded vector space Q(L̂) of indecomposables,and Q(@̂) = 0 by de�nition, Hi(L) would be isomorphic to the vector space spannedby a set of generators for L̂ in dimension i.If we want cohomology with coe�cients in an object M� 2 dLab � dV with trivialdi�erential { i.e., M� is just a graded vector space { we �ndH i(X;M�) �= 1Yj=1HomVec(Hj(X); Mi+j);by the universal coe�cients theorem.However, since L is itself graded, we would like H�L to be bigraded (with a \homolog-ical" degree, as well as a \topological" one). This requires a combination of De�nitions6.2 and 6.3, as follows:6.5. De�nition. The homology H�;�(L�) of a simplicial Lie algebra L� 2 sLie isde�ned to be the left derived functors of the abelianization, with respect to the E2-closedmodel category structures (x3.3) on ssLie and ssLieab � ddV respectively. Moreprecisely, Hs;t(L�) := �s(L(Ab � �)L�)t = �s�it(AbA��);(6.6)where A�� ! L� is some M-free bisimplicial resolution of L�.Similarly, for any DGL L 2 dL we may de�ne Hs;t(L) := �sH 0t(Ab(A�;�)), for aMdL-free simplicial resolution A�;� ! L; and these two de�nitions agree under theequivalence of homotopy categories ho(sLie) � ho(dL) of Proposition 2.2.The bigraded cohomology of a DGL L with coe�cients in the abelian DGL (i.e., chaincomplex)M is de�ned analogously as Hst (L) := �s(HomdLab(Ab(A�;�);M)t)We note that the homology and cohomology of di�erential graded (commutative)algebras have been de�ned by Goodwillie (in [Go]) and Burghelea & Vigu�e-Poirrier (in[BV]), in a manner analogous to the traditional de�nitions of Hochschild homology. See[Lo, x5.3].



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 196.7. Proposition. For any DGL L 2 dL, there is a monomorphism of graded vectorspaces Hn;t(L) ,! Hn;t(L0), where L0 ' (H 0�(L); 0) is the coformal model for L; thesame holds for cohomology with trivial coe�cients.Proof. If A�;� is the bigraded model for L0, and C�;� ! L0 the simplicial resolutionof Proposition 5.9, then the non-degenerate spheres Sk(x(0)) � Cn;t, which correspond toa vector space basis for Hn;t(L0), are in bijective correspondence with the generatorsx 2 Xn;t for A�;�.Now let B�;� be a �ltered model for L obtained by perturbing (A�;�; @A), andE�;� ! L the associated simplicial resolution of Proposition 5.17: since B�;� need nolonger be minimal (x5.16), a vector space basis for Hn;t(L) now corresponds to a subsetof the collection of non-degenerate spheres Sk(x(0)) � En;t, (which are still in bijectivecorrespondence with the generators x 2 Xn;t for A�;� or B�;�).Note that this description of the homology implies also that H�;�(L) is indeed just abigraded version of the DGL homology de�ned in x6.3.6.8. Proposition. The collection of higher homotopy operations hhnk;�1;�2;:::;�k ; xii whichdetermine the rational homotopy type of X 2 T1 (described in x4.15 above) are in-dexed by elements x 2 Hnk;�1 ;�2 ;:::;�k ;t(L(k;�1;�2;:::;�k)) in the homology of the DGLsof x5.22, and take value in the cohomology of these DGLs, with hhnk;�1 ;�2;:::;�k ; xii �Hnk;�1 ;�2 ;:::;�kt+nk�1 (L(k;�1;�2;:::;�k);��XQ).Proof. We may construct a simplicial resolution E�;� for each successive DGL L(k) =L(k;�1;�2;:::;�k), corresponding to the �ltered models obtained as perturbations (A�;�;DA)of the bigraded model (A�;�; @A) for L(0), as above. The non-degenerate spheresSm(x) = Sm(x(0)) � Em;t which index the higher homotopy operations hhm;xii are thusin bijective correspondence with the generators x 2 Xm;t for A�;�. However, if xis not minimal { in the sense that DA(x) 62 [A;A], or x + � = Da(y) for some� 2 A�;� and y 2 Xm+1;t { then we can construct a new simplicial resolution E 0�;� ofL(k) in which Sm(x) has been eliminated (though of course new spheres may appear inhigher simplicial dimensions). By the universal property of resolutions (i.e., of co�brantobjects in the E2 model category for sdL { see x3.3) there is a map of resolutionsE�;� ! E 0�;�, and there can be no non-vanishing higher operation hhnk;�1;:::;�k ; xii whichserves as an obstruction to rectifying the augmentation up-to-homotopy ' : E�;� ! LX ,since 'njSm(x) can be factored through 0 2 E 0�;� ! LX . Thus the only homotopyoperations which can appear are those corresponding to non-trivial homology classes inH�(L(k;�1;�2;:::;�k)).Proposition 6.7 thus implies that we may if we like think of all the higher homotopyoperations described in x4.15 (associated to the various deformations of L(0)) as lying inone �xed bigraded group H�� (L(0);��XQ), which is of course just the usual cohomologyof a graded Lie algebra, and is easier to compute than the cohomology of a non-trivialDGL.



20 DAVID BLANC7. Non-associative algebra modelsThe DGL higher homotopy operations, of which an example was given in x5.23, areunsatisfactory from a topological point of view because there is no obvious way totranslate them, in general, into unlocalized topological homotopy operations. We nowdescribe an algebraic model for rational homotopy theory which may serve to answerthis objection.7.1. non-associative graded algebras. Let A denote the category of non-associativegraded algebras: an object A� 2 A, is just a graded vector space equipped with abilinear graded product Ap 
Aq ! Ap+q. Let A hXi denote the free non-associativegraded algebra generated by a graded set X�. As in x2.1, the functor A : grSet! Afactors through A : V ! A.dA will denote the category of di�erential graded non-associative algebras (A�; @A),called DGNAs; the di�erential @A must satisfy @A � @A = 0 and @A(x � y) =@Ax � y + (�1)jxjx � @Ay, as for DGLs.For simplicity we assume each A� 2 A, dA is connected { that is, A0 = f0g. Again,we have a category dbA of di�erential bigraded non-associative algebras (DBGNAs),as in x2.6.As for any CUGA (x3.1), one can de�ne a closed model category structure on sA(see [Q1, II, x4]) and thus by [Bl4, x4] on dbA, and one has the expected analogues ofPropositions 2.2 and 2.9:7.2. Proposition. There are adjoint functors sAlg N
N�dA, which induce equivalencesof the corresponding homotopy categories ho(sAlg) � ho(dA).7.3. Proposition. There are adjoint functors sAN
N�dbA, which induce equivalencesof the corresponding homotopy categories ho(sA) � ho(dbA); and N� takes freeDBGNAs to free simplicial non-associative algebras.7.4. Notation. For any (X�; �) 2 A, let [x; y] denote 12(x � y + (�1)jxjjyj+1y � x).We then have [y; x] = (�1)jxjjyj+1[x; y], so (X�; [ ; ]) is now a non-associative gradedalgebra with a graded-commutative multiplication. Moreover, any graded derivation @on (X�; �) is also a derivation with respect to [ ; ], and any morphism of algebras from(X�; �) to a graded-commutative algebra will also respect [ ; ]. Therefore we can (andwill) assume that our non-associative algebras are all graded-commutative, and denotethe product by [ ; ].Moreover, if A� 2 sA is a simplicial graded algebra, we shall also use the notation[[x; y]] =P(�;�)2Sp;q (�1)"(�)+pjyj[s�q : : : s�1x; s�p : : : s�1y] for the corresponding simplicialbracket (compare (2.11)).7.5. De�nition. Any simplicial Lie algebra L� 2 sLie is in particular an object insAlg; let � : dL ,! dA be the inclusion functor. Note that even if each Ln is freeas a Lie algebra, it is not free as a non-associative algebra: a free simplicial resolutionJ� ! �(L�) in the category sAlg (see x3.2) will be called a sAlg-model for L�. Suchmodels can be constructed functorially, for example by a variant of x5.5.



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 21There is also the analogous concept of a dA-model J� 2 dA of a DGL L; we canof course translate back and forth between these two types of models using Proposition7.2.Since the DGL L = (L�; @L) has an internal grading, and its dA-model J = (J�; @J)is constructed as a resolution of L, it is natural to de�ne a second \homological" degreeon J�, so as to have a �ltered dA-model (cf. x5.16). If the DGL is trivial (i.e., @L = 0),a dA-model for (L�; 0) will be a di�erential bigraded non-associative algebra (DBGNA)J = (J�;�; @J) (cf. x5.7).7.6. Remark. De�ne a Jacobi algebra to be a DGNA J = (J�; @J) 2 dA such thatH 0�J 2 L. In particular, any dA-model J of a DGL L is a Jacobi algebra, sinceH 0�J �= H 0�L. We denote by J � dA the full subcategory of Jacobi algebras. Thesealgebras are clearly related to the strongly homotopy Lie algebras of [SS] (see also [LM]),though in general a Jacobi algebra is just a \Lie algebra up to homotopy".Note that even though dA itself is a CUGA, J apparently is not, and it does notinherit many desirable properties from dA: for example, J is not closed under thecoproduct in dA. However, one still has free Jacobi algebras, in the following sense:7.7. Lemma. There is a functor J : dV ! dA, and a natural transformation � :J ! L such that:(a) JV� is free as an algebra, for any chain complex V�;(b) �V� is a surjective quasi-isomorphism;(c) any chain map ' : V� ! K� (where V� 2 dV and K� 2 J ) extends to a dAmap '̂ : JV� ! K�.Proof. As noted above, we may de�ne J�;� = J(V�) by induction on the homological�ltration:Start with J0;� = A(V�) (the free non-associative algebra on the di�erential gradedvector space (V�; @V ), with @J extending @V as a derivation), and let �0 : J0;� ! L(V�)be the obvious surjection, with K0;� = Ker(�0) a two-sided dA-ideal of J0;�.Choose once and for all some collection of generators M0 = f�igi2I for K0;� asa J0;�-bimodule: for each choice of a dV-basis fx
g
2� for V� { that is, of agraded vector space basis of the form fx�; @V x�; x�g, with @V x� = 0 { we may writeeach �i as some expression �i(x
i1 ; : : : ; x
in ). If we then choose some other dV-basisfx0
0g
02�0 for V�, again we will have �0i := �i(x0
0i1 ; : : : ; x0
0in ) 2 K0;�; de�ne J1;� tobe the free non-associative algebra on the DG vector subspace of K0;� spanned by allsuch \canonical operations" �0i (i 2 I), for all possible choices of dV-bases fx0
0g
02�0for V�. Again one has the obvious augmentation J1;� ! J0;� to serve as @J (with@J � @J = 0 by construction), and one takes the kernel K1;� of this augmentation forthe next step.Proceeding in this way we may de�ne the functor J by induction on the homological�ltration; if the collections of operations Mn are chosen canonically, the functor itselfwill be canonical. Properties (a)-(c) are readily veri�ed.7.8. Example. Let L = (LhX�i; 0) be the trivial free DGL on a graded set X�; inthis case the canonical DBGNA model (J�;�; @J) = J(X�; 0) for L may be described inpart as follows:



22 DAVID BLANCLet J0;� = A hX�i (the free non-associative algebra on X�). Since the Jacobiidentity holds in LhX�i, but not in A hX�i, we have �(x; y; z) = [x; [y; z]]� [[x; y]; z]+(�1)qr[[x; z]; y] 2 K0;� for all x; y; z 2 X�. Thus J1;� will be generated as a J0;�-bimodule by the image of (J0;�)
3 under the �3-equivariant multilinear map �3 :Ji;p
Jj;q
Jk;r ! Ji+j+k+1;p+q+r . Here the symmetric group �n acts on J�;p1
� � �
J�;pnby permutations, and on J�;p1+���+pn via the Koszul sign homomorphism "I : �n !f1;�1g (de�ned by letting "I((k; k+1)) = (�1)ikik+1+1 for any adjacent transposition(k; k + 1) 2 �n). We set@J(�3(x
 y 
 z)) = [x; [y; z]]� [[x; y]; z] + (�1)qr [[x; z]; y]:However, there are relations among these elements �3(x 
 y 
 z), so we de�ne a�4-equivariant multilinear map �4 : Ji;p 
 Jj;q 
 Jk;r 
 J`;s ! Ji+j+k+`+2;p+q+r+s ,@J(�4(x
 y 
 z 
 w)) = [x; �3(y 
 z 
 w)] + [�3(x
 y 
 z); w]� (�1)jzjjwj [�3(x
 y 
 w); z] + (�1)jyj(jzj+jwj)[�3(x
 z 
 w); y]� (�3([x; y]
 z 
 w) + �3(x
 y 
 [z;w]))+ epsyz (�3([x; z]
 y 
 z) + �3(x
 z 
 [y;w]))� (�1)jwj(jyj+jzj) (�3([x;w]
 y 
 z) + �3(x
 w 
 [y; z])):In fact, one can de�ne a sequence of \higher Jacobi relations" �n(x1
 � � � 
 xn), forall n � 3, which yield an explicit construction of J(X�) for a the free (graded) Liealgebra LX�. Compare [LM, 2.1].7.9. A-homotopy operations. One can now apply the theory of section 4 verbatimto any space X 2 T1 with C = Alg rather than Lie, to obtain a sequence of higherhomotopy operations as in x4.15 which determining the rational homotopy type of X {the only di�erence being that the simplicial resolutions C�� of the successive simplicialLie algebras L(k)� are now MAlg free resolutions of L(k)� in ssAlg.This is the reason that the theory of section 3 was stated for an arbitrary CUGA,rather than speci�cally for C = Lie. The reason that our general theory was stated forsimplicial rather than di�erential graded universal algebras is that there seems to be noreasonable version of Proposition 7.2 for an arbitrary CUGA.7.10. minimal resolutions. To make the construction more accessible, it is again use-ful to have minimal MAlg resolutions, as in section 5. For this purpose, we consider avariant of the above approach:Even though J does not inherit a closed model category structure from dA, onemay de�ne models for J , in the sense of x3.3, by letting a Jacobi sphere be any dA-model of a L-sphere (x5.2), and more generally let MJ denote the full subcategory ofJ consisting of DGNAs weakly equivalent to objects in MdL { i.e., Jacobi models ofDGLs which are (up to homotopy) coproducts of dL-spheres.An MJ resolution of a DGL L, which we shall call simply a Jacobi resolution, is thende�ned to be a free simplicial resolution of DGNAs A�;� ! �(L) (Def. 3.2), with eachAn;� 2 MJ . Note that such an A�;� ! �(L) is at the same time also an MJ -Jacobi



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 23resolution of the dA-model J� of L, and it is usually more convenient to think of it assuch.There is a comonad F : dA ! dA as in (5.4), which yields the canonical Jacobiresolution U�;� for any C 2 J , as in x5.3. Again we may use the notation of x5.6.One also has an analogue of Propositions 5.9 and 5.17, as follows:7.11. Proposition. Let B = (B�; @B) 2 dL be any DGL, and (A�;�;DA) a �lteredmodel for B: then there is a Jacobi resolution J�;� ! �(B), with a bijection � : X�� ,!J�;� between a bigraded set X�� of generators for A�;� and the set of non-degeneratedA-spheres in J�;�.Proof. Let G = GB be a dA-model for the DGL B, and U�;� ! G the canonical Jacobiresolution. As in the proof of Proposition 5.9, we may de�ne a map � : A�;� ! U�;�inductively by the equation �(x) = h�(@A(x))i (compare (5.10)), and we shall againwrite x(0) for �(x) if x 2 X�� (a set of generators for A�;�), and let V�;� be thebigraded vector space spanned by �(X��). For simplicity of notation we consider �rstthe case where B has trivial di�erential and A�;� is bigraded (with DA = @A).For each n 2 N, de�ne the sub-DGNA J (0)n;� of Un;� to be J(Vn;�), in the notationof Lemma 7.7 { that is, J (0)n;� is the coproduct, in J , of a set of Jacobi spheres Sk(x(0)),one for each generator x 2 Xn;k of A�;�. By Lemma 7.7(c), it is enough to de�ne theface and degeneracy maps of J�;� on each x { where we may use the description ofx5.6.Once again, we want di(x(0)) to be a @U -boundary for each 1 � i � n; but theanalogues of the elements x(s) of Propositions 5.9 and 5.17 are more complicated, sowe need some de�nitions:For each 0 � s � n, let Kn;s denote the set of all sequences I = (i1; : : : ; is) ofintegers 1 � i1 < � � � < is � n, corresponding to the s-fold face map dI = di1 � � � ��dis :n! n � s in �op (compare De�nition 4.3 and the proof of Proposition 5.9). GivenI = (i1; : : : ; is) 2 Kn;s, for each 1 � j � s let I (̂�) := (i1; : : : ; bij; : : : ; is) 2 Kn;s�1 beobtained from I by omitting the j-th entry. By repeatedly using the identity dkdm =dm�1dk (k < m), we can �nd a unique �(j) 2 f1; 2; : : : ; ng such that d�(j)�dI (̂�) = dI .For each x 2 Xn;k, 0 � s � n, and I 2 Kn;s, we want to choose choosean element x(s;I) 2 J (s)n�s;k�n+s � Un�s;k�n+s by induction on n � s, starting withx(0;;) := x(0) = �(x), so that:@U(x(s;I)) = sXj=1(�1)jd�(j)(x(s�1;I (̂�)))(7.12)for s � 1. (The index s is not really needed, since s = jIj, but it is useful for keepingthe analogy with the notation of (5.12) in mind.)Note that since d0 � � = � � @A no longer holds here (because d0 is a morphism indA, not in dL), it is not generally true that d1(x(0)) = 0 for all x 2 X��. However,since applying H 0� still yields a CW resolution H 0�J (0)�;� ! H 0�C = H 0�B, (where Cis the dA-model for the DGL B), we know that di(x(0)) must be a @U -boundaryfor each 1 � i � n. Thus we can choose an element x(1;1) 2 Un�1;k�n+1 with



24 DAVID BLANC@U(x(1;1)) = d1(x(0)) (a special case of (7.12)) { and in fact x(1;1) may be expressedin terms of the \canonical operations" �i of Lemma 7.7.Now let @A(x) =Pt at!t[yi1; : : : ; yimt ] for yij 2 Anj ;�, sox(0) = hXt at!t[[y(0)i1 ; : : : ; y(0)imt ]]i = hXt at X(J1 ;:::;Jmt)(�1)"t!t[sJ1(y(0)i1 ); : : : ; sJmt (y(0)imt )]i(7.13)as in (5.11), where the (n � nj)-multi-index Jj � f0; 1; : : : ; n � 1g is obtained byrepeated shu�es, which also determine the sign (�1)"t (see (2.11) �.). Therefore,dk(x(0)) = hXt at X(I1;:::;Imt)(�1)"t!t[dk�1sJ1(y(0)i1 ); : : : ; dk�1sJmt (y(0)imt )]i:The proof of Lemma 5.13 (which is valid in dA, too) implies by induction on t � 2that for each summand vt = !t[sJ1(y(0)i1 ); : : : ; sJmt (y(0)imt )], there is exactly one 1 � j � tand 0 � ` � k � 1 such thatdk�1(vt) = !t[sJ 01(y(0)i1 ); : : : ; sJ 0j�1(y(0)ij�1); sJ 00j d`(y(0)ij ); sJ 0j+1(y(0)ij+1); : : : ; sJ 0mt (y(0)imt )];for suitable multi-indices J 01; : : : ; J 0j�1; J 0j+1; : : : ; J 0mt and J 00j .Since ` < k and nj < n, we may assume by induction that we have de�nedy(1;`)ij 2 Unj�1;� such that @U(y(1;`)ij ) = d`(y(0)ij ), and then let x(1;k) behXt X(J1;:::;Jmt )(�1)"t!t[sJ 01(y(0)i1 ); : : : ; sJ 0j�1(y(0)ij�1); sJ 00j (y(1;`)ij ); sJ 0j+1(y(0)ij+1); : : : ; sJ 0mt (y(0)imt )]i:The rest of the construction of the elements x(s;I), as well as the generalization tothe �ltered case, is similar to that in the proofs of Propositions 5.9 and 5.17.7.14. Example. Consider the coformal DGL L = (Lha1; b1; c2i=h[a; a]; [[c; a]; [b; a]]i; 0)of Example 5.8, with G 2 J its dA-model. We construct the minimal Jacobi resolutionJ�;� ! G corresponding to the bigraded model for L (embedded in the canonical Jacobiresolution U�;� ! G) by modifying the MdL-free resolution C�;� ! L of Example5.15, as follows:For each n 2 N, de�ne the Jacobi algebras J (0)n;� (n = 0; 1; : : : ) to be the coproducts,in J : J (0)0;� = S1(hai) q S1(hbi) q S2(hci), J (0)1;� = S2(x(0)) q S6(w(0)), J (0)2;� = S5(y(0)), J (0)3;� = S6(z(0)),and so on.The face maps di (i = 0; 1; : : : ; n) are de�ned by x5.6, where [ ; ] is now as in x7.4:(1) For y(0) = h3[h[hai; hai]i; hhaii]i 2 J (0)2;3 , we have d0(y(0)) = 3[h[hai; hai]i; hhaii] =3[[x(0); a(0)]] and d2(y(0)) = h3[h[a; a]i; hai]i, while d1(y(0)) = h3[[hai; hai]; hai]i.This no longer vanishes as in x5.15, since the Jacobi identity deos not hold in A,but we have an element y(1;1) := h�3(hai 
 hai 
 hai)i 2 J (1)1;4 (in the notation ofExample 7.8), with @(y(1;1)) = d1(y(0)).On the other hand, we also have an element y(1;2) := h3[hxi; hai]i 2 J (1)1;4 (whichwe denoted simply by y(1) in x5.15), with @(y(1;2)) = d2(y(0)). The simplicial



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 25identity d1d2 = d1d1 implies that d1(y(1;2))� d1(y(1;1)) = h3[x; a]� �3(a
 a
 a)iis a @J -cycle, so we have y(2;1;2) 2 J (2)0;5 with @J(y(2;1;2)) = h3[x; a]� �3(a
 a
 a)i.(2) For z(0) = h4[h3[h[hai; hai]i; hhaii]i; hhhaiii] + 6[h[hhaii; hhaii]i; hh[hai; hai]ii]i inJ (0)3;4 :(a) z(1;1) := h�3(x(0) 
 hhaii 
 hhaii)i, withd1(z(0)) = h6(2[[x(0); hhaii]; hhaii];+[[hhaii; hhaii]; x(0)])i = @J(z(1;1));(b) z(1;2) := h4[�3(hai 
 hai 
 hai); hhaii]i, withd2(z(0)) = h4[[[a(0); a(0)]; a(0)]; hhaii]i = @J(z(1;2)) since [x(0); x(0)] = 0):(c) z(1;3) = h4[h3[h[a; a]i; hai]i; hhaii] + 6[h[hai; hai]i; hh[a; a]ii]i 2 J (1)2;5 , withd3(z(0)) = @J(z(1;3)):Next, in J (2)�;� :(a) The simplicial identity d1d1 = d1d2 implies thatd1(z(1;1))� d1(z(1;2)) = h4[�3(hai 
 hai 
 hai); hai]� 6�3([hai; hai]
 hai 
 hai)iis a @J -cycle { and indeed we have z(2;1;2) := h�4(hai 
 hai 
 hai 
 hai)i 2 J (2)2;6with @(z(2;1;2)) = d1(z(1;1))� d1(z(1;2)).(b) Similarly,d1(z(1;3))� d2(z(1;1)) = h12[[hxi; hai]; hai] + 6[[hai; hai]; hxi]� 6�3(h[a; a]i 
 hai 
 hai)iis a @J -cycle, so we have z(2;1;3) := h6�3(hxi 
 hai 
 hai)i 2 J (2)2;6 with@(z(2;1;3)) = d1(z(1;3))� d2(z(1;1)).(c) d2(z(1;3))�d2(z(1;2)) = h4[h3[x; a]i; hai] + 6[h[a; a]i; hxi] � 4[h�3(a
 a
 a)i; hai]iis a @J -cycle, hit by z(2;2;3) := h4[hyi; hai] + 3[hxi; hxi]i 2 J (2)2;6 .Finally, we have(a) For d1z(2;1;2) = h�4(a
 a
 a
 a)i we have@J(d1z(2;1;2)) = d1d2(z(1;2))� d1d2(z(1;1)) = h4[�3(a
 a
 a); a]� 6�3([a; a]
 a
 a)i(b) For d1z(2;1;3) = h6�3(x
 a
 a)i we have@J(d1z(2;1;3)) = d1d2(z(1;1))�d1d1(z(1;3)) = h6�3([a; a]
 a
 a)� 12[[x; a]; a]� 6[[a; a]; x]i(c) For d1z(2;2;3) = h4[y; a] + 3[x; a]i we have@J(d1z(2;2;3)) = d1d2(z(1;2))�d1d1(z(1;3)) = h4[�3(a
 a
 a); a]� 12[[x; a]; a]� 6[[a; a]; x]i;So there is an element z(3;1;2;3) 2 J (3)0;7 with@J (z(3;1;2;3)) = h�4(a
 a
 a
 a)� 6�3(x
 a
 a) + 4[y; a] + 3[x; a]i:We can now summarize the main result of this paper in the following



26 DAVID BLANC7.15. Theorem. Let X be a simply connected space, and �X� := ���1XQ 2 L itsrational homotopy Lie algebra. There is a tree TX of DGLs L(k;�1;:::;�k), starting withL(0) ' (�X� ; 0), and for each branch �1; : : : ; �k; : : : of TX , an increasing sequence ofpositive integers (or 1) (nk = nk;�1;:::;�k)1k=1 such that(a) H 0�(L(k;�1;:::;�k)) �= �X� ;(b) The higher homotopy operations hhmii � Hm� (L(k;�1;:::;�k); �X� ) associated to aminimal Jacobi resolution of L(k;�1;:::;�k) as in x4.10, vanish for m < nk.(c) The operation hhnkii = hhnk;�1;:::;�kii � Hnk� (L(k); �X� ) does not vanish (unlessnk =1).(d) For any �k+1 along the branch of (�1; : : : ; �k), the DGL L(k+1;�1;:::;�k ;�k+1) maybe chosen so that it agree with L(k;�1;:::;�k) in degrees � nk + 1, so the sequentialcolimit L(1) = colimk L(k), along any branch, is well de�ned, and is a DGL modelfor X.The main di�erence between the construction described here (in sJ ) and that ofProposition 5.17 is that the \higher order information" in J�;� is no longer concentratedin the last face map dn : Jn;� ! Jn�1;�. As a result, the higher homotopy operationsassociated to the (minimal) Jacobi resolution (as in section 4) are true simplicial opera-tions, which can be translated more directly into topological ones. This is perhaps bestillustrated by an example.7.16. Example. Consider a space X 2 T1 whose minimal model is the DGL B =(B�; @B) of example 5.19: B� = Lha1; b1; c2; x3; y5; z7; : : :i, and @B(x) = [a; a], @B(y) =3[x; a]� [[b; a]; c], @B(z) = 4[y; a] + 3[x; x], and so on, and let G 2 J be a dA-modelfor B. The corresponding coformal DGL L(0) ' Lha1; b1; c2i=h[a; a]; [[c; a]; [b; a]]i, withG(0) 2 J as its dA-model, is that considered in Example 7.14.The �rst obstruction to the coformality of B is again hh2; y(0)ii 2 �X4 , as in Example5.23 { but now it is represented by the map �h : S3(y(0)) o @D(2) ! G depicted inFigure 1: (y(0); d1d0) = d0d2) r0 �����	3[x; a](y(0); d0)(y(0); d0d0 = d0d1)r3[[a; a]; a] -(y(0); d2)0 (y(0); d1d1 = d1d2)0r@ @ @ @ @R(y(0); d1)�3(a
 a
 a)Figure 1. The operation hh2; y(0)ii on S2(y(0)) o @D(2)Thus �h maps the 3-dimensional generator of S3 ' S2(y(0)) o @D(2) to the cycleh3[x; a]� �3(a
 a
 a)i 2 G4 (which does not bound, because @G(y) = 3[x; a]��3(a
a 
 a) � [[b; a]; c] in G). This may be interpreted as a proper \Toda bracket", in thesense that 3[[a; a]; a] = 0 in �X� \for two di�erent reasons". (Compare this with the



HOMOTOPY OPERATIONS AND RATIONAL HOMOTOPY TYPE 27analogous description of the corresponding integral operation { namely, the second-order Whitehead product { in [Bl2, Ex. 4.13].)We may next construct the DGL L(1) (in which @L(y) = 3[x; a]� [[b; a]; c]), perturbthe Jacobi resolution J�;� ! G(0) of Example 7.14 to obtain a Jacobi resolution of L(1)(or rather, of the corresponding dA-model G(1)), and identify the next obstruction ashh3; z(0)ii 2 �X6 .However, to avoid cluttering the picture we describe instead the third order homotopyoperation hh3; z(0)ii for G(0) itself (where of course it vanishes) in Figure 2. Again wesimply depict @D(3), representing S4(z(0))o @D(3), where the maps hi are marked inthe corresponding face of D(3) (except where they are 0):vertex (z(0); d0d1d3)h0 = 0r
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Figure 2. Depiction of S4(z(0)) o @D(3)7.17. Remark. While it is clear that the simplicial higher homotopy operations we obtainby means of Jacobi resolutions are closer to topological (unlocalized) ones, it is still byno means a trivial task to translate the algebraic description so obtained into a precisetopological one. Moreover, care must be taken when dealing with unlocalized operations,since the ones we describe are essentially in the F category (in which, essentially, wedisregard maps of �nite order in the ordinary homotopy category). See [Ba, ch. III] fora sample computation, illustrating the pitfalls involved.Nevertheless, we claim that the Jacobi resolutions point the way towards a preciseintegral description of the homotopy operations involved to a much greater extent than



28 DAVID BLANCthe corresponding DGL operations. Of course, we could get an even fuller description ofthese operations if we replace Alg by the category of algebras with a non-cummutativeand non-bilinear product, which is (skew) commutative and bilinear up to homotopy.But working in such a setting is clearly impracticable.References[A1] C. Allday, \Rational Whitehead products and a spectral sequence of Quillen", Pac. J. Math.46 (1973) No. 2, pp. 313-323.[A2] C. Allday, \Rational Whitehead products and a spectral sequence of Quillen, II", Houston J.Math. 3 (1977), No. 3, pp. 301-308.[AA] P.G. Andrews & M. Arkowitz, \Sullivan's minimal models and higher order Whitehead prod-ucts", Can. J. Math. 30 (1978) No. 5, pp. 961-982.[Ba] J.M. Barry, Higher order Whitehead products and �bered Whitehead products, Ph.D. thesis,Dartmouth Coll., 1972.[BL] H.J. Baues & J.-M. Lemaire. \Minimal models in homotopy theory", Math. Ann. 225 (1977),pp. 219-242.[Bl1] D. Blanc, \Derived functors of graded algebras", J. Pure Appl. Alg. 64 (1990) No. 3, pp. 239-262.[Bl2] D. Blanc, \Higher homotopy operations and the realizability of homotopy groups", Proc. Lond.Math. Soc. (3) 70 (1995), pp. 214-240.[Bl3] D. Blanc, \Homotopy operations and the obstructions to being an H-space", Manus. Math. 88(1995) No. 4, pp. 497-515.[Bl4] D. Blanc, \New model categories from old", J. Pure Appl. Math. 109 (1996) No. 1, pp. 37-60.[BS] D. Blanc & C.S. Stover, \A generalized Grothendieck spectral sequence", in N. Ray & G.Walker, eds., Adams Memorial Symposium on Algebraic Topology, Vol. 1, Lond. Math. Soc.Lec. Notes Ser. 175, Cambridge U. Press, Cambridge, 1992, pp. 145-161.[BV] J.M. Boardman & R.M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces,SpringerVerlag Lec. Notes Math. 347, Berlin-New York, 1973.[BF] A.K. Bous�eld & E.M. Friedlander, \Homotopy theory of �-spaces, spectra, and bisimplicialsets", in M.G. Barratt & M.E. Mahowald, eds., Geometric Applications of Homotopy Theory,II, Springer-Verlag Lec. Notes Math. 658, Berlin-New York, 1978, pp. 80-130.[BV] D. Burghelea & M. Vigu�e-Poirrier, \Cyclic homology of commutative algebras, I", in Y. F�elix,ed., Algebraic Topology { Rational Homotopy 1986, Springer-Verlag Lec. Notes Math. 1318,Berlin-New York, 1987, pp. 51-72.[Do] A. Dold, \Homology of symmetric products and other functors of complexes", Ann. Math. (2)68 (1958), pp. 54-80.[DKS] W.G. Dwyer, D.M. Kan, & C.R. Stover, \An E2 model category structure for pointed simplicialspaces", J. Pure & Appl. Alg. 90 (1993) No. 2, pp. 137-152.[EM] S. Eilenberg & J.C. Moore, \Adjoint functors and triples", Ill. J. Math., 9 (1965), pp. 381-398.[F1] Y. F�elix, D�enombrement des types de k-homotopie: th�eorie de la d�eformation, Mem. Soc. Math.France 3, Paris, 1980.[F2] Y. F�elix, \Mod�eles bi�ltr�es: une plaque tournant en homotopie rationelle", Can. J. Math. 33(1981) No. 6, pp. 1448-1458.[GHT] A. G�omez-Tato, S. Halperin & D. Tanr�e, \Rational homotopy theory for non simply connectedspaces", preprint 1996.[Gd] R. Godement, Topologie alg�ebrique et th�eorie des faisceaux, Act. Sci. & Ind. No. 1252, Publ.Inst. Math. Univ. Strasbourg XIII, Hermann, Paris 1964.[Go] T.G. Goodwillie, \Cyclic homology, derivations, and the free loopspace", Topology 24 (1985)No. 2, pp. 187-216.[HS] S. Halperin & J.D. Stashe�, \Obstructions to homotopy equivalences", Adv. in Math. 32 (1979)No. 3, pp. 233-279.
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