
GENERALIZED ANDR�E-QUILLEN COHOMOLOGYDAVID BLANCAbstrat. We explain how the approah of Andr�e and Quillen to de�ning ohomol-ogy and homology as suitable derived funtors extends to generalized (o)homologytheories, and how this identi�ation may be used to study the relationship betweenthem. IntrodutionAfter the ohomology of topologial spaes was disovered in the 1930's, the oneptwas expanded to groups, and later to assoiative, ommutative, and Lie algebras, inthe 1940's and early 1950's. In the following deade the �rst generalized ohomologytheories for spaes appeared (see [M2, Mas℄). All these examples started out in theform of expliit onstrutions, and only later were their theoretial underpinnings pro-vided: in partiular, ohomology for general algebrai ategories was desribed by Bekand others in terms of triples (see [Be℄, and ompare [D1℄), and then by Andr�e andQuillen in terms of (non-abelian) derived funtors (see [An, Q1℄). In the latter version,ohomology groups are the derived funtors of Hom into a �xed abelian group objet(and homology groups are the derived funtors of abelianization).However, for topologial spaes the only abelian group objets are (produts of)Eilenberg-Ma Lane spaes, whih represent ordinary ohomology. Thus we need adi�erent framework to desribe generalized (o)homology: this is provided by stablehomotopy theory (f. [Br, Wh℄).Our goal here is to provide a uniform de�nition for homology and ohomology en-ompassing the theories mentioned above, as well as some new ones. As a side bene�t,we larify exatly what assumptions on an (algebrai) ategory C are needed in orderfor the approah of Andr�e and Quillen to work. (This is the reason for the somewhattehnial Setion 3.)The approah given here applies, inter alia, to:(a) Homology and ohomology of groups and various types of algebras;(b) Versions of the above with loal oeÆients (x4.1-4.2);() Unstable generalized (o)homology of spaes (x5.7-5.10);(d) Generalized (o)homology of spetra and spaes (x2.18);(e) Cohomology of operads, and of algebras over an operad (x4.15);(f) Cohomology of diagrams of spaes or algebras (x4.7).The last two have appliations to deformation theory (see [Mar1, MS2℄ and [GS1,GGS℄, respetively).The ohomology of sheaves has a dual de�nition to the one presented here here (seex4.17). Of ourse, there are other onepts of ohomology whih do not �t into ourDate: August 10, 2007; revised: February 10, 2008 .1



2 DAVID BLANCframework; most notably, a number of versions of the ohomology of ategories (seex4.16).0.1. Representing ohomology. In order to de�ne a ohomology theory in aategory C, we need a representing objet G 2 C, as well as a suitable model ategorystruture on the ategory sC = C�op of simpliial objets over C (see x2.7). However,in this generality Hom C(�; G) will take values in sets, and applying this funtor toa simpliial resolution V� ! X in sC just yields a osimpliial set, for whih wehave no appropriate model ategory. It turns out that in order to get an interestingohomology theory, two ingredients are generally needed:� The ategory C must be enrihed over a symmetri monoidal ategory V;� The representing objet G must have additional \algebrai" struture.We shall use the onept of a sketh { a straightforward generalization of Lawvere'sonept of a theory { to desribe this additional struture (see x1.1). In this language,we say that G is a �-algebra in C, for a suitable FP-sketh �. We also use skethes todesribe the kind of algebrai ategories to whih our approah applies: this will allowus to treat operads and their algebras, for example, uniformly with the usual universalalgebras.� Note that the funtor HomC(�; G) now takes values in the ategory D of(osimpliial) �-algebras in V. Our �nal requirement is that the above twoingredients must ombine to make D into a (semi-) triangulated model ategory(see x2.2).The question we onsider here is in some sense dual to that of Brown Representabilityin triangulated ategories (f. [CKN, F, K, N℄): rather than asking whih ohomologyfuntors are representable, we seek onditions for a representable funtor to be a o-homology theory.0.2. Examples. In the ategory of groups (where V = Set), with an abelian group Gas the oeÆients, the model ategory we onsider is that of simpliial groups. Thetotal left derived funtor of Hom(�; G) then takes values in the semi-triangulatedategory of osimpliial abelian groups (equivalently, ohain omplexes).On the other hand, for pointed simpliial sets or topologial spaes (where V = S�),we may take � = �, and Hom(�; G) takes values in �-spaes { again, a semi-triangulated ategory.Note that the ategory of spetra is triangulated (and enrihed over itself), so wean take any spetrum G as oeÆients.Our original motivation for reating a joint setting for algebrai and generalizedtopologial (o)homology theories was to try to gain a better understanding of therelationship between homology and ohomology. This is provided by a universal o-eÆients spetral sequene (see Theorem 6.12 below). We obtain a similar result forhomology (Proposition 6.14), as well as \reverse Adams spetral sequenes" (Theorems6.17 and 6.18) relating homotopy to (o)homology.0.3. Notation and onventions. The ategory of topologial spaes is denoted byT , and that of pointed onneted topologial spaes by T�. The ategory of groupsis denoted by Gp, that of abelian groups by Abgp, and that of pointed sets bySet�. For any ategory C, grS C denotes the ategory of S-graded objets over C



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 3(i.e., diagrams indexed by the disrete ategory S), sC that of simpliial objets overC, and C that of osimpliial objets over C. The ategory of simplial sets will bedenoted by S, that of redued simpliial sets by S�, and that of simpliial groups byG. For any Z 2 C, we write (Z)� for the onstant simpliial objet determined byZ, and (Z)� for the onstant osimpliial objet. If A is any abelian ategory, wedenote the ategory of hain omplexes over A by Ch(A); however, we write ChRfor Ch(R-Mod), and similarly ChR for ohain omplexes of R-modules.0.4. Organization. Setion 1 provides bakground material on skethes, theories,and algebras over them. In Setion 2 we give our abstrat de�nition of homologyand ohomology, in the ontext of suitable model ategories. Abelian group objets inskethable ategories are desribed in Setion 3, and these are used in Setion 4 to de�nethe (o)homology of �-algebras. Setion 5 explains how generalized ohomologies �tinto our framework, using �-spaes. Finally, the theory is applied in Setion 6 toonstrut universal oeÆient and reverse Adams spetral sequenes in this generalframework.0.5. Aknowledgements. This paper is an outgrowth of joint work with George Peshke,in [BP℄, and I would like to thank him for many useful disussions and insights. I alsothank the referee for his or her helpful omments, and the Institut Mittag-Le�er (Djur-sholm, Sweden) for its hospitality during the period when this paper was ompleted.1. Algebras and theoriesAs Lawvere observed (f. [La℄), `varieties of universal algebras' in the sense ofMa Lane (f. [M1, V,6℄) an be orepresented by funtors out of a �xed ategory�. This idea was later generalized by Ehresmann to skethes (see [BE℄), whih turnout to be the most onvenient language to desribe both the algebrai ategories wework in, and the representing objets for ohomology.1.1. De�nition. A sketh h�;P; Ii is a small ategory � with distinguished sets Pof (limit) ones and I of (olimit) oones. In partiular, a �nite produt (FP-)skethis a sketh in whih P onsists only of �nite produts (and I = ;). A theory is anFP-sketh � ontaining a zero objet, for whih P onsists of all �nite produts.We think of a map f : #1 � : : : � #n ! � in � as orepresenting a (possiblygraded) n-ary operation. A theory � is sorted by a set S � Obj� if every objetin � is uniquely isomorphi to a �nite produt of objets from S (see [Bor, x5.6℄).Lawvere originally onsidered only theories sorted by f1g, so that Obj(�) = N ,with n �=Qni=1 1 for n � 0.If � is an FP-sketh and C is any pointed ategory, a �-algebra in C is a pointedfuntor X : � ! C whih preserves all produts in P. More generally, if � is anysketh, a �-algebra X : �! C is required to preserve all distinguished limits (in P)and olimits (in I). The ategory of �-algebras in C is denoted by �-C; a �-algebrain Set� will be alled simply a �-algebra, and we write �-Alg for �-Set�. Weall a ategory D skethable if it is equivalent to �-Alg, and say that � skethesD. Suh ategories are aessible, in the sense of model theory, as well as beingloally presentable (see [AR, Cor. 2.61 & 1.52℄). A map of theories (or of skethes) : � ! �0 is a funtor whih preserves all produts (respetively, all distinguishedlimits and olimits). Suh a map  indues a funtor  � : �0-Alg ! �-Alg.



4 DAVID BLANCMore generally, if � is a theory (or FP-sketh), a �-algebra in any symmetrimonoidal ategory hV;
; Ii (f. [Bor, x6.1℄) is a funtor X : � ! V taking the(distinguished) produts in � to 
-produts in V, with X(�) = I.1.2. Remark. Sine we an think of a �-algebra X in C as a ertain kind of diagram inC (with spei�ed produts), we see that Hom C(�; X) takes values in �-Alg. Moregenerally, if C is enrihed over a symmetri monoidal ategory hV;
; Ii via mapC(f. [Bor, x6.2℄), and mapC(A;�) takes produts to 
, then mapC(�; X) take valuesin �-V.1.3. Examples. (a) The ategory of groups is skethed by a theory G, with � : 2! 1representing the group operation, � : 1! 1 the inverse, and e : 0! 1 the identity(satisfying the obvious relations). Similarly, the ategory of abelian groups is skethedby a theory A (with the same maps, satisfying a further relation) and the inlusioni : G � A indues the inlusion of ategories Abgp � Gp.(b) An operad � = (�(n))1n=0 is an O-algebra in a symmetri monoidal ategoryhV;
; Ii, where O is a \universal" theory for operads. Similarly, an algebra over theoperad � (see [May2, x14℄) is just a ��-algebra in hV;
; Ii, where the theory ��is obtained from � in the obvious way (replaing 
 with �). The same applies moregenerally to PROP's, olored operads, and other variants (see [MSS℄ for a survey onoperads, espeially in the algebrai ontext).() Given a topologial spae X, let U denote the direted set of non-empty open setsin X, with inlusions { so that Uop skethes presheaves of sets. By adding arbitraryformal oproduts `�2A U� for any olletion fU�g�2A in U , we obtain a ategoryÛ , in whih the diagram;(1.4) `(�;�)2A�A U� \ U� i //j // `�2A U� � // S�2A U�is a oequalizer (if the �rst term is empty, � is an isomorphism).If we now let �U := Ûop (sorted by U), with P onsisting of the opposites of theformal oproduts and of all the oequalizers (1.4) (and I = ;), we obtain a skethwhose algebras F : �U ! Set are sheaves of sets on X. Furthermore, for any V 2 U ,if: CV (U) := (f�g if U � V; if U 6� V;there is a natural isomorphism Hom �U -Alg(CV ;F) = F(V ).1.5. De�nition. Given a theory X, an X-theory (or sketh) � is one equipped witha map of theories (or skethes)  : `S X ! � whih is bijetive on objets, wherethe oprodut is taken in the ategory of theories (or skethes) over some index set S.If X is sorted by f1g, an X-struture at an objet  in a ategory C is an X-algebra� : X! C with �(1) = . A theory � sorted by S is an X-theory if and only if it isequipped with an X-struture at eah s 2 S.If all other maps of � ommute with those oming from  , we all � a strong X-theory(or sketh).



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 51.6. Example. If � is a G-theory, then the map of theories  :`S G! � indues an\underlying S-graded group" funtor  �, whih we denote by V : �-Alg ! GpS =`S G-Alg. � is a strong G-theory if all the operations in � are homomorphisms ofthe underlying graded group.1.7. Free �-algebras. For any theory �, let �Æ denote the disrete theory withthe same objets (and produts) as �. If � is sorted by S, �Æ skethes the ategoryof S-graded sets, and the inlusion I : �Æ ,! � indues the forgetful funtor U =U� : �-Alg ! �Æ-Alg. As usual, there is a free funtor F = F� : �Æ-Alg ! �-Algleft adjoint to U�. We denote by F� the full subategory of �-Alg whose objetsare free (that is, in the image of F�).Sine all limit-skethable ategories are loally presentable, they are omplete (see,e.g., [AR, Theorem 1.46℄) and oomplete. Thus for any theory �, the ategory �-Algof �-algebras has all limits and olimits.1.8. Skething �-algebras in �-Alg. If � is a theory (sorted by S) and � isanother theory (singly sorted, for simpliity), the ategory �-�-Alg of �-algebras in�-Alg is skethed by a theory �(�) (sorted by S), de�ned as follows:(a) We �rst add an S-graded opy of � to �, setting �� := � [S `S �, sothat we now have eah operation of � ating on eah � 2 S. The inlusioni : � ,! �� indues a forgetful funtor i� : ��-Alg ! �-Alg.(b) Next, we fore all operations of � to ommute with the new operations - thatis, for eah f : �1 ! �2 in � and g : n! k in �, we require that�n1 g //fn�� �k1fk���n2 g // �k2ommute, so we obtain a quotient of theories q : �� !! �(�).By onstrution �(�)-Alg �= �-�-Alg. Note that q� and i� ommute withthe underlying S-graded set funtors U�, U�� , and U��, whih reate all limits intheir respetive ategories, so q� and i� ommute with all (small) limits. Thus by[Bor, Theorem 5.5.7℄ eah has a left adjoint. The adjoint of the omposite i� Æ q� :�-�-Alg ! �-Alg will be alled the �-loalization of �-Alg, and denoted byL� : �-Alg ! �-�-Alg.1.9. Remark. Note that given G in �-�-Alg, by Remark 1.2 Hom�-Alg(�; G) has anatural struture of a �-algebra. Furthermore, if i� Æ q� is a faithful embedding ofategories (whih will happen if � is a �-theory, for example), then L� is idempotentand any �-algebra in �-Alg is in the image of L�, up to natural isomorphism. ThusHom�-�-Alg(�;�) has a natural struture of a �-algebra, in this ase. By mimikingthe onstrution of A�B ! A
B for abelian groups, one an then make �-�-Alginto a losed symmetri monoidal ategory (see [Bor, x6.1.3℄).2. Generalized homology and ohomologyWe are now able to give a de�nition of homology and ohomology for model ate-gories, somewhat more general than Quillen's original approah (f. [Q1, II, x5℄):



6 DAVID BLANC2.1. Triangulated ategories.The target of a ohomology funtor should be a model ategory whose homotopyategory is triangulated. There are a number of variants of this onept, originally dueto Grothendiek. For our purposes, a triangulated ategory is an additive ategory Cequipped with an automorphism T : C ! C (alled the translation funtor), and aolletion D of distinguished triangles of the form hX f�! Y g�! Z h�! TXi, satisfyingthe four axioms of [Ha, x1℄ (whih odify the properties of o�bration sequenes inpointed model ategories { see [Q1, I, x3℄).2.2. De�nition. A semi-triangulated ategory is an additive ategory Ĉ equipped witha olletion D of distinguished triangles of satisfying the above four axioms, as well asa translation funtor T : Ĉ ! Ĉ whih is an isomorphism onto its image. In all asesof interest, T an be formally inverted to yield a full triangulated ategory C = Ĉ[T�1℄with Ĉ as a full subategory; however, this property is not needed in what follows.A set P of ogroup objets in Ĉ will be alled a set of generators if the olletion offuntors fHom Ĉ(T iP;�)gP2P;i�0 detets all isomorphisms in Ĉ.2.3. Example. Typially, (semi-)triangulated ategories appear as the homotopy ate-gory of a suitable (semi-)stable model ategory, as de�ned axiomatially in [Ho, Ch.7℄ (see also [HPS℄). Thus, the motivating example of a triangulated ategory is thehomotopy ategory of (unbounded) hain omplexes over an abelian ategory A. An-other example is provided by Boardman's stable homotopy ategory ho Spe (f. [V℄),where there are a number of di�erent underlying stable model ategories (see [HSS℄,[S1℄, or [EKMM℄).The subategory Ĉ of non-negatively graded hain omplexes is semi-triangulated; ifA has a projetive generator P , then K(P; 0) (the hain omplex with P onentratedin degree 0) is a generator for Ĉ.Similarly, the homotopy ategory of onnetive spetra, ho Spe(0), is semi-triangu-lated (with generator S0).2.4. Cohomology. In order to de�ne ohomology funtors on a model ategory E ,we assume that E is equipped with:(a) An FP-sketh � and a ategory V suh that V and �-V are symmetrimonoidal, E is enrihed over V via mapE(�;�) : Eop � E ! V, and �-E isenrihed over �-V via Hom(�;�) : (�-E)op � �-E ! �-V.(b) An FP-sketh � and a model ategory struture on �-V for whih ho�-V issemi-triangulated.Then for any G 2 �-E , we de�ne the ohomology of X 2 E with oeÆients inG to be the total left derived funtor LmapE(�; G) of mapE(�; G), applied to X.Reall that total left derived funtor of a \left exat" funtor F : C ! D betweenmodel ategories is de�ned by applying F to a o�brant replaement of X (see [Q1, I,x4℄ or [Hi, 8.4℄).If ho�-E has a set of generators P, then the P-graded group Hn(X;G) :=[T nP; (LmapE(�; G))X℄P2P is alled the n-th ohomology group of X with oeÆientsin G.2.5. Homology. To de�ne homology, we need also a homotopy funtor A� : E ! �-Eequipped with a natural isomorphism mapE(E;X) �=�! Hom(A�E;X) in �-V (f.



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 7x1.2) for E 2 E and X 2 �-E . We then de�ne the homology of X 2 E to be thetotal left derived funtor of A�, applied to X (x2.4). Again the n-th homology groupof X is: HnX := [T nA�P; (LA�)X℄P2P :If �-E is a symmetri monoidal model ategory (see [Ho, x4.2.6℄), with Hom(�; Y )right adjoint (over �-V) to �
Y , then for any G 2 �-E , homology with oeÆientsin G is the total left derived funtor of A�(�)
G (assuming A�E is always o�brant).The homology groups Hn(X;G) are de�ned as above. Compare [BB, I℄.2.6. Example. If E = V = S� (or T�) and � = A, then �-C �= �-V �= sAbgp andG is a (generalized) Eilenberg-Ma Lane spae, so we have ordinary ohomology. Thefuntor A� : E ! �-C is the usual `abelianization' X 7! ZX, whih yields ordinary(singular) homology.2.7. Resolution model ategories.To provide a uniform treatment of the various kinds of (o)homology it will beonvenient to use a framework originally oneived by Dwyer, Kan and Stover in [DKS℄under the name of \E2 model ategories", and later generalized by Bous�eld (see[Bou, J℄.Reall that the onept of a model ategory was introdued by Quillen in [Q1℄ toallow appliation of the methods and onstrutions of homotopy theory (of topologialspaes) in more general ontexts. This is a ategory C, equipped with three distin-guished lasses of morphisms { weak equivalenes, o�brations, and �brations {satisfying ertain axioms (analogous to those whih hold for the orresponding lassesin T ). See [Hi℄ or [Ho℄ for further details.Let C be a pointed o�brantly generated right proper model ategory (f. [Hi, 7.1,11.1℄), equipped with a setM of o�brant homotopy ogroup objets in C, alledmodels(playing the role of the spheres in T�). Let �M denote the smallest full subategoryof C ontainingM and losed under oproduts, and suspensions (f. [Q1, I, x3℄). Forany X 2 C, M 2 M, and k � 0, set �M;kX := [�kM;X 0℄, where X ! X 0 is a�brant replaement. We write �M;kX for the M-graded group (�M;kX)M2M.2.8. De�nition. A map f : V ! Y in sC is homotopially M-free if for eah n � 0,there is:a) a o�brant objet Wn 2 �M, andb) a map 'n : Wn ! Yn in C induing a trivial o�bration (VnqLnV LnY )qWn !Yn, where the n-th lathing objet for Y is LnY := `0�i�n�1 Yn�1= �, withsj1sj2 : : : sjkx 2 (Yn�1)i is equivalent to si1si2 : : : sikx 2 (Yn�1)j wheneversisj1sj2 : : : sjk = sjsi1si2 : : : sik .The resolution model ategory struture on sC determined by M is now de�ned bydelaring a map f : X ! Y to be:(i) a weak equivalene if �M;kf is a weak equivalene of M-graded simpliialgroups for eah k � 0;(ii) a o�bration if it is a retrat of a homotopiallyM-free map;(iii) a �bration if it is a Reedy �bration (f. [Hi, 15.3℄) and �M;kf is a �bration ofsimpliial groups for eah M 2 M and k � 0.



8 DAVID BLANC2.9. Remark. The resolution model ategory sC is simpliial (f. [Q1, II, x1℄, and isitself endowed with a set of models, of the form M̂ := fSn 
M j M 2 M; n 2 Ng,where Sn 2 S is the simpliial sphere.2.10. Examples. Typial resolution model ategories inlude the following:(i) When C = Gp, let M := fZg, so �M is the subategory of all free groups.The resulting resolution model ategory struture on the ategory G = sGp ofsimpliial groups is the usual one (see [Q1, II, x3℄).(ii) More generally, if � is a G-theory (x1.5), let M := F0� denote the olletionof all monogeni free �-algebras F�(s) in F�, with s a singleton in �Æ-Alg(i.e., a graded set, indexed by the disrete sketh �Æ, onsisting of a singleelement in some degree). In this ase �M �= F�, and the model ategory ons�-Alg is that of [Q1, II, x4℄).(iii) For C = T�, let M := fS1g, so that �M is the homotopy ategory of wedgesof spheres. In this ase the model ategory of simpliial spaes is the originalE2-model ategory of Dwyer, Kan and Stover (f. [DKS℄).2.11. Remark. The above disussion is also valid if we work in the omma ategory�-Alg=X (f. [M1, II,6℄), for a G-theory � and some �xed �-algebra X. In fat, anyp : F� ! X in F�=X is determined by its adjoint ~p : T ! U�X { in other words,by the U�X-graded set fp�1(x)℄gx2U�X . Therefore, �-Alg=X an be skethed bya theory �=X, sorted by U�X = f�x j x 2 U�Xg. Note that �=X is a G-skethover X in the sense that it has G-strutures of the form:m(x1;x2) : �x1 � �x2 ! �m�(x1;x2)for every � 2 � and x1; x2 2 U�X� (and similarly for other morphisms in �).Equivalently, we an equate the disrete theory �=XÆ with �Æ-Alg=U�X, anduse the adjointness of (F�; U�) to de�ne an adjoint pair:�=X-Alg = �-Alg=X F�
U� �Æ-Alg=U�X = �=XÆ :We an then take the monogeni free �-algebras F0�=X (f. x2.10(ii)) as our models,and obtain a resolution model ategory struture on s(�-Alg=X). In partiular, anyfree resolution V� ! X in s�-Alg is also a resolution (o�brant replaement) ins(�-Alg=X).2.12. A simpliial version of (o)homology.In order to make the abstrat desription of (o)homology given in x2.4-2.5 moreonrete, it is onvenient to formalize the ingredients needed in the following:2.13. De�nition. A ohomologial setting hC;M;V;�; A�i onsists of:(1) A model ategory C, enrihed via mapC(�;�) over a symmetri monoidalategory V.(2) A set of models M for C.(3) An FP-sketh �, suh that:(i) h�-C;
; I;Homi is a losed symmetri monoidal ategory (with Hom(G;�)right adjoint to �
G).(ii) �-V has a model ategory struture for whih ho �-V semi-triangulated.



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 9(4) A homotopy funtor A� : �M ! �-C, equipped with a natural isomorphism:(2.14) � : mapC(F;G) �= Hom(A�F;X)for F 2 �M and G 2 �-C.2.15. De�nition. Given a ohomologial setting hC;M;V;�; A�i, take E := sC,with the resolution model ategory struture de�ned by M. Then for any objet Xand �-algebra G in C, the ohomology of X with oeÆients in G is the total leftderived funtor of mapC(�; G), applied to X. The n-th ohomology group of X withoeÆients in G is the M-graded group:Hn(X;G) := [T n(A�M)�; (LmapC(�; G))X℄M2M :2.16. De�nition. For hC;M;V;�; A�i as above, note that A�M is a homotopyogroup objet in �-C for eah M 2 M, so we have a resolution model ategorystruture on s�-C determined by the set of models M� := fA�MgM2M. De�nethe homology of X to be the total left derived funtor of A� applied to X. The n-thhomology group of X 2 C is the M-graded group:HnX := �M�;nLA�X(f. x2.9). (For this part of the de�nition we only require that �-C be enrihed overitself via Hom { we do not need the symmetri monoidal struture.)If G 2 �-C, we de�ne the n-th homology group of X with oeÆients in G to be:Hn(X;G) := �M�;n(L(A�(�)
G)(X)2.17. Example. The simplest example is when C = Gp (with M = fZg as on x2.10(i)),� = G (or A), and V = Set, so �-C �= �-V �= Abgp.In this ase �-C �= Abgp, so the ategory �-C of osimpliial �-algebras in C isequivalent to the ategory of ohain omplexes. Thus K(Z; n) (a ohain omplexonentrated in degree n) orepresents the n-th ohomology group of a ohain omplex(n 2 N). This yields the usual ohomology groups of a group X with oeÆients inan abelian group G (as a trivial X-module).The funtor A� : �M ! �-C is the abelianization Ab : Gp ! Abgp, and thelosed symmetri monoidal struture hAbgp;
;Z;HomAbgpi yields the usual homologyof groups.2.18. Example. Another simple example is provided by a symmetri monoidal ategoryof spetra, suh as the symmetri spetra of [HSS℄, or the S-modules of [EKMM℄.In the latter version, for example, we take E =MS, with the symmetri monoidalsmash produt ^S, and the internal funtion omplexes FS(�;�) 2 V = E (f.[EKMM, II, 1.6℄). Sine hoMS is the usual stable homotopy ategory, it is trian-gulated, with generator S. Thus we an take � = � to be the trivial FP theory,any S-module M yields a ohomology theory FS(�;M), and A� : E ! �-E is theidentity. Similarly if E =MR for some S-algebra R.2.19. Remark. These de�nitions may appear somewhat onvoluted; they have been setup to desribe both the algebrai and (generalized) topologial theories in a uniformway, as appropriate derived funtors. Note that in general the total homology andohomology funtors, as well as the homology and ohomology groups, take values indi�erent ategories.



10 DAVID BLANC3. Theories and AbelianizationIn this setion we desribe the neessary bakground for de�ning (o)homology in aategory C = �-Alg of �-algebras. Most of it should be familiar from the ase C = Gp,and the generalizations of Bek and Quillen for algebras (see [Be, Q3℄); however, itseems that the literature laks a full desription in this generality. We start with theonept of (abelian) group objets, whih are to play the role of �-algebras in C.3.1. Group objets. In general, for a skethable ategory C = �-Alg we do notexpet any enrihment beyond V = Set; so the natural hoie for a ohomologialsetting is � = A.Reall that an (abelian) group objet struture on an objet G in a ategory C is anatural (abelian) group struture on Hom C(X;G) for all X 2 C { in other words,a lifting of the funtor Hom C(�; G) from Set to Gp (or Abgp); this is equivalentto a G- (resp., A-) struture at G.3.2. Remark. Note that if C = �-Alg for some G-theory �, any group objet strutureon G ommutes with the underlying (graded) G-struture, so that the two neessarilyagree and are ommutative. In partiular, in this ase a �-algebra an have at mostone (neessarily abelian) group objet struture. This is of ourse not true for generalC (as is shown by the example of sets).3.3. Abelianization of �-algebras. If � is any theory (sorted by S), the ategoryof abelian group objets in �-Alg is skethed by the theory �ab := A� of x1.8. Weall the A-loalization LA : �-Alg ! �ab-Alg the abelianization funtor for �, anddenote it by A�. Note that A�(F�T ) = F�abT .3.4. Examples. (a) When � is a G-theory, �ab := G(�), by Remark 3.2, and wean take �G := � in x1.8, so q : � !! �ab is a quotient of theories, and q�is simply the inlusion of the full subategory of abelian �-algebras in �-Alg(f. [BP, x2.8℄). Note that by Remark 1.9 we an then make �ab into a losedsymmetri monoidal ategory.(b) On the other hand, if � = �Æ, then �ab = �A skethes S-graded abeliangroups, q� : �ab-Alg ! �-Alg is the forgetful funtor U : grS Abgp! grS Set,and its left adjoint A� is the free graded abelian group funtor.3.5. �-algebras over X.We now show how the above disussion extends to the ategory �-Alg=X of �-algebras over a �xed objet X (see x2.11). First, we need a:3.6. De�nition. If � is any theory and X 2 �-Alg, then:(a) AnX-algebra is an objet K in �-Alg equipped with maps f̂ : K(#)�X(#) !K(#0) for eah f : #! #0 in �, satisfying:ĝ(f̂(k; x); X(f)(x)) = [g Æ f(k; x)for every (k; x) 2 K(#)�X(#), and g : #0 ! #00, with f̂(k; 0) = K(f)(x).(b) The semi-diret produt of a �-algebra X by an X-algebra K is the �-algebraK oX over X given by:(i) (K oX)(#) := K(#)�X(#) (as sets);



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 11(ii) For eah f : #! #0 in �, (K oX)(f)(k; x) := (f̂(k; x)); X(f)(x)).If we want KoX to be a group objet in �-Alg=X, we must require more. Fromnow on, let � be a G-theory (sorted by S), and X a (�xed) �-algebra.3.7. De�nition. An X-module is an X-algebra K whih is an abelian group objet in�-Alg, suh that for eah �xed x 2 X(#), eah f̂(�; x) : K(#)! K(#0) is additive(in the sense that it ommutes with the given abelian group struture). The ategoryof X-modules will be denoted by X-Mod (see [Be, x3℄).3.8. Remark. In this ase the underlying S-graded group V K is an S-graded V X-module in the traditional sense (a module over the graded group ring Z[VX℄), andthe group operation at eah � 2 � is given by m�((k; x); (`; y) = (k + x � `; xy), asusual.3.9. De�nition. Assume that p : Y ! X is a map of �-algebras, and K is anX-module. A funtion � : Y ! K (preserving the produts of �) will be alled aderivation with respet to p if �(Y (f)(y)) = f̂(�(y); p(y)) for any f : # ! #0 in �.The set of all suh will be denoted by Der p(Y;K). In partiular, a derivation withrespet to Id X will be alled simply a derivation, and Der(X;K) := Der Id(X;K).3.10. Remark. Note that this holds in partiular for f = m� : � � � ! �, so that byRemark 3.8:�(m�(y1; y2))) = m̂�((�(y1); p(y1)); (�(y2); p(y2)) = �(y1) + p(y1) � �(y2) :Thus � is a derivation (rossed homomomorphism) with respet to the G-struture.Furthermore, Derp(Y;K) is an abelian group (under the addition of K), and anymap of X-modules � : K ! L indues a homomorphism �� : Derp(Y;K) !Derp(Y; L).The following results do not appear in this form in the literature, but their proofsare straightforward generalizations of the orresponding (lassial) results for groups(see, e.g., [Be, x3-4℄ and [R, x11.1℄).3.11. Proposition. Any group objet struture on p : Y ! X in �-Alg=X isneessarily abelian. Moreover, K := Ker(p) is an X-module, with Y �= K oX, andfor some derivation � : X ! K, the group operation map � : Y �X Y ! Y is given(under the identi�ation UY = UK � UX) by �(k; k0; x) = (k + k0 + �(x); x), thezero map by (k; x) 7! (��(x); x), and the inverse by (k; x) 7! (�k � 2�(x); x).Conversely, for any X-module K and derivation � : X ! K, the above formulasmake K oX into an abelian group objet over X.3.12.Corollary. There is an equivalene of ategories `�G-(�-Alg=X)! A-(�-Alg=X),indued by the quotient map ` : G ,! A.3.13. Lemma. Any homomorphism � : K o X ! L o X between group objetsover X (with group operations determined by � 2 Der(X;K) and � 2 Der(X;L),respetively) is of the form �(k; x) = (�(k) + �(x); x), where � : K ! L is ahomomorphism of X-modules and � := � Æ � � � .In partiular, any two group objet strutures over X on the semi-diret produtK oX are anonially isomorphi, so we dedue:



12 DAVID BLANC3.14. Proposition. The funtor � : X-Mod! A-(�-Alg=X), de�ned �(K) := K oX (with the group operation map determined by the zero derivation), is an equivaleneof ategories, with inverse � : A-(�-Alg=X) ! X-Mod whih assigns to an abeliangroup objet p : Y ! X the X-module Ker(p).3.15. Remark. Sine the forgetful funtor U = U� : �-Alg ! �Æ-Alg is faithful, forany �-algebra Y and semi-diret produt K oX 2 �-Alg we have:Hom �-Alg(Y;K oX) U,! Hom �Æ-Alg(UY; U(K oX)) =Hom �Æ-Alg(UY; UK � UX) = Hom �Æ-Alg(UY; UK) � Hom �Æ-Alg(UY; UX) :(3.16)Thus given p : Y ! X, we an write any map � : Y ! K oX over X in the form�(y) = (�(y); p(y)), and the requirement that � be a map of �-algebras means that� : F�T ! K is a derivation with respet to p (x3.9), so in fat:(3.17) Hom �-Alg=X(Y;K oX) �= Derp(Y;K)as abelian group (one we hoose a �xed group struture on K oX).Three speial ases should be noted:(a) For p = Id : X ! X, we see that Der(X;K) is the spae of setions forK oX, as usual.(b) If Y = LoX for some L 2 X-Mod, then by Proposition 3.14:Hom X-Mod(L;K) �= Hom �-Alg=X(LoX;K oX) = Derp(LoX;K) :On the other hand, by Lemma 3.13 any map of X-modules � : L! K induesa homomorphism of group objets � = �(�) : LoX ! K oX (where we usethe zero derivation to de�ne the group strutures on the semi-diret produts).Thus in fat:(3.18) Hom A-(�-Alg=X)(LoX;K oX) = Der�2(LoX;K)as abelian groups.() If Y = F�T is free, then by adjointness we atually have equalities of sets:Hom �-Alg(F�T;K oX) = Hom �Æ-Alg(T; UK)� Hom �Æ-Alg(T; UX)in (3.16), so for p : F�T ! X in F�=X, we have:(3.19) Hom �-Alg=X(F�T;K oX) �= Hom �Æ-Alg(T; UK) �= Hom �-Alg(F�T;WK) ;where W : X-Mod! �-Alg is the forgetful funtor. In partiular:Derp(F�T;K) �= Hom �-Alg(F�T;WK)as sets (though this identi�ation is not natural in the full subategory F� in�-Alg).3.20. Abelianization over a �-algebra. Reall from x2.11 that for a �xed �-algebra X, �-Alg=X an be skethed by �=X (sorted by U�X). Similarly,A-(�-Alg=X) an be skethed by A�=X, obtained from �=X as in x1.8 by adding:(a) a setion { i.e., onstants in eah �x (in the notation of x2.11);(b) group struture maps � : �x � �x ! �x and � : �x ! �x,



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 13satisfying the obvious identitites. Again the map of theories i : �=X ,! A�=Xindues the forgetful funtor i� : A-(�-Alg=X)! �-Alg=X, with an adjoint A�=X :�-Alg=X ! A-(�-Alg=X) alled the abelianization of �-Alg=X. This is needed inorder to de�ne homology for �-algebras (see x4.2 below).Note that the ategory X-Mod an also be skethed by an A-theory �X , obtainedfrom �ab (x3.3) by adding operations x � (�) : � ! � for eah x 2 U�X, satisfyingthe obvious identitites. The inlusion j : �ab ,! �X indues the forgetful funtorj� : �X-Alg ! �ab-Alg. If we de�ne � : �-Alg=X ! �-Alg as in Proposition 3.14,we obtain the ommutative outer diagram:(�-Alg=X)ab i� //� �� �-Alg=X���Â�=Xssg g g g g g g g g g g gX-Mod = �X-Alg��= OO j� // �ab-Alg q� // �-Algin whih the horizontal arrows are forgetful funtors (and q�, i� have adjoints A�,A�=X , respetively, with Â�=X := � Æ A�=X : �-Alg=X ! X-Mod).Note that by (3.19), the abelianization funtor Â�=X takes any free �-algebrap : F�T ! X over X to the orresponding freeX-module F�XT 2 �X-Alg = X-Mod.Moreover, for any ' 2 Derp(F�T;K) (determined by '(ti) = ki 2 K for ti 2 T ),the orresponding '̂ 2 Hom X-Mod(F�XT;K) is also determined by requiring that'̂(ti) = ki. Now assume given a map  : F�T 0 ! F�T in F�=X, determined bythe ondition that, for eah t0 2 T 0,  (t0) = f 0�(ti1 ; : : : ; tin) for some f 0 in �. Then:( �')(t0) = f̂ 0((ti1 ; : : : ; tin); (p(ti1); : : : ; p(tin))) 2 K :3.21. Remark. Evidently, the disussion of abelian group objets and abelianizationover a �-algebra X extends the absolute ase of x3.1�., taking X = 0.More generally, K will be alled a trivial X-module if f̂(k; x) = f(k) for everyf 2 � (x3.6) { so that K is simply an abelian �-algebra, K oX is the produt in�-Alg, and a derivation into K is just a map of �-algebras.4. (Co)homology of �-algebrasAndr�e (in [An℄) and Quillen (in [Q1, II, x5℄ and [Q3, x2℄) de�ned homology andohomology groups in ategories of universal algebras. Quillen also showed how thisgeneralized the earlier de�nition of triple ohomology (see [Be, x2℄). We now indiatebriey how this de�nition �ts into the setup of x2.4.4.1. Cohomology of �-algebras. Let � be a G-theory, and C := �-Alg (or�-Alg=X for a �xed �-algebra X), with the resolution model ategory struture onsC desribed in x2.10(ii) (or x2.11).As in Example 2.17, here V = Set, so we must take � = A (or equivalently, byCorollary 3.12: � = G), sine osimpliial sets do not have any useful model ategorystruture (see however [Bou℄). Thus if G is an abelian group objet in C, and V� ! Yis a free simpliial resolution (o�brant replaement in sC), then the osimpliialabelian group W � := Hom C(V�; G) orresponds under the Dold-Kan equivalene (f.[DP, x3℄ and [We, 9.4℄) to a ohain omplex W �, and the ategory ChZ of non-negatively graded ohain omplexes of abelian groups embeds in the ategory ChZof unbounded (o)hain omplexes, whih is a stable model ategory (f. [Ho, Ch. 7℄.



14 DAVID BLANCSuspensions of g := K(Z; 0) detet homology in ChZ (or ChZ), so Abgp �= ChZis semi-triangulated in the sense of x2.2, and in fat [T ig;W �℄ = H i(Y ;G) is the i-thAndr�e-Quillen ohomology group of Y .Remark 3.15 shows that these an be thought of as usual as the derived funtors ofDer(�; G), in the ase C = �-Alg=X, and as Exti(Y;G) in the ase C = �-Alg(x3.21). This identi�ation has been the basis for a number of de�nitions of ohomologyin various topologial settings - see, e.g., [MS2℄, and the survey in [BR℄.4.2. Homology of �-algebras. In this situation one an de�ne the homology of a�-algebra Y as the total left derived funtor of abelianization A� : �-Alg ! �ab-Alg(x3.3), whih takes values in the ategory s�ab-Alg of simpliial �ab-algebras (asusual, we only need to evaluate A� on F�, so LA� atually takes values in sF�ab).Sine �ab-Alg is an abelian ategory (with enough projetives, namely: F�ab),s�ab-Alg is equivalent to the stable model ategory Ch(�ab) of hain omplexesover �ab, and the homology groups [T iK(F�abs; 0); A�V�℄ = HiY (for s an S-gradedsingleton) are themselves �ab-algebras.The same holds for Y 2 �-Alg=X: using x3.20, we may de�ne Hi(Y=X) as the i-thderived funtor of A�X : F�=X ! (�-Alg=X)ab, taking values in (�-Alg=X)ab { orequivalently (Proposition 3.14) in X-modules. For groups, H�(G=G) is the homologyof G with oeÆients in Z[G℄. For a pointed onneted spae X with G = �1(X; x),H�(X=BG) is the homology of X with oeÆients in the loal system Z[G℄.4.3. De�nition. To de�ne homology of Y ! X with oeÆients in an arbitraryX-module G, we need a monoidal struture on X-Mod �= (�-Alg=X)ab, indued viathe adjoint pair �X-Alg F�X
U�X �Æ-Algfrom the usual monoidal struture (�Æ-Alg;�) of Cartesian produts of graded sets.More preisely, de�ne 
 : F�X � F�X ! F�X by F�XT 
 F�XS := F�X (T � S).The 0-th derived funtor in the seond variable de�nes F�XT 
G for any �X-algebra(X-module) G; and the n-th left derived funtor of A�X (�)
G (in the �rst variable)is by de�nition Hn(Y=X;G).4.4. Example. When � = G, a free simpliial resolution V� of a group G in sGpis atually a o�brant model for the lassifying spae BG (in S�). Applying thefuntor Â�=X of x3.20 to V� dimensionwise yields a model for the hains on theuniversal ontratible G-spae EG (sine onversely, taking the free Z-module on thebar onstrution model for EG and dividing out by the free G-ation yields ZBG,so ZEG ' Z[G℄V�). Taking homotopy groups of Z[G℄V� is the same as taking thehomology of the hain omplex orresponding to ZEG, whih is just H�(G;Z[G℄).4.5. Remark. Note that the previous disussion atually de�nes homology and oho-mology for any simpliial �-algebra Y�, not only for the onstant ones. Moreover, if� = G, the adjoint pairs of funtors:(4.6) T� j�j
S S� G
�W G = sGpindue equivalenes of the homotopy ategories of pointed onneted topologialspaes, redued simpliial sets, and simpliial groups. Here j � j is the geometri



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 15realization funtor, S is the singular set funtor, �W is the Eilenberg-Ma Lane lassify-ing spae funtor, and G is Kan's loop funtor (f. [May1, x26.3℄ and [Q1, I,4 & II,3℄).Thus Quillen's approah provides an algebrai desription of ordinary homology andohomology of spaes (with loal oeÆients). Note, however, the shift in indexing: inpartiular, we lose H0, sine we an deal only with onneted spaes from this pointof view.There is also an algebrai model for not-neessarily-onneted spaes due to Dwyerand Kan, using simpliial groupoids (see [GJ, V, x5℄), and Quillen's approah, as wellas muh of the disussion here, arries over to that setting (ompare [D2℄). However,in order to avoid further ompliating the desription, we restrit attention here tosimpliial groups.4.7. Diagrams of �-algebras. If D is a small ategory and � is a G-theory, thereis a model ategory struture on the funtor ategory s�-AlgD, and the objetwisedesriptions of abelian group objets and abelianization (for eah d 2 D) providede�nitions of (o)homology for diagrams of �-algebras, too (see [BJT, x4℄ for thedetails).Moreover, even for C = �-Alg or �-Alg=X, we an allow our oeÆients to bediagrams G : D ! A-�-Alg of abelian group objets (or X-modules). This enablesus to treat a map suh as Z !! Z=p (redution mod p), say, as the oeÆients for aohomology theory (rather than a natural transformation). In partiular, we an applyany general mahinery, suh as universal oeÆient theorems, to H�(�;G), too.4.8. Spherial model ategories.When C = �-Alg for some G-theory �, the resolution model ategory sC (andthe models M = F0� - f. x2.10(ii)) will have additional useful struture whih isfamilar to us from topologial spaes:1. For any n � 1, �M;n(�) is naturally an abelian group objet over �M;0(�).2. Eah V� 2 sC has a funtorial Postnikov tower of �brations:: : :! PnV� p(n)��! Pn�1V� p(n�1)���! � � � ! P0V� ;as well as a weak equivalene r : V� ! P1V� := limn PnV� and �brationsP1V� r(n)��! PnV� suh that r(n�1) = p(n) Æ r(n) for all n, and (r(n) Æ r)# :�M;kV� ! �M;kPnV� is an isomorphism for k � n, and zero for k > n.3. For every �-algebra X, there is a lassifying objet BX with BX ' P0BXand �M;0BX �= X, unique up to homotopy.4. Given a �-algebra X and an X-module G, there is an extended G-Eilenberg-Ma Lane objet E = EX(G; n) in sC=X for eah n � 1, unique up tohomotopy, equipped with a setion s for p(0) : E ! P0E ' BX, suh that��M;nE �= G as X-modules; and �M;kE = 0 for k 6= 0; n. If G is a trivialX-module (x3.21), we write simply E(G; n).Any resolution model ategory with this additional struture (as well as funtorialk-invariants) is alled a spherial model ategory. See [B3, x1-2℄ for the details.4.9. Remark. The homotopy groups �M;n in the resolution model ategory s�-Algare orepresented by Sn 
 F�(s) for M = F�(s) 2 F0�, s 2 S � � (f. x2.9). Thus



16 DAVID BLANCby adjointness for any V� 2 s�-Alg we have:�M;nV� = [Sn 
 F�(s); V�℄� = [Sn; (U�V�)s℄ = �n(U�V�)s ;so that the group �M;nX (indued by the homotopy ogroup struture of Sn) isthe usual n-th simpliial homotopy group of the graded simpliial group U�V� in theappropriate degree.This works also in s�-Alg=X: more preisely, �M;nV� as de�ned above is anabelian group objet in �-Alg=�M;0V�, and applying � of Proposition 3.14 yields a�M;0V�-module, whose underlying S-graded set is �nU�V� (see [BP, x4.14℄).4.10. Cohomology in s�-Alg. It may appear more natural to take as a representingobjet an abelian group objet in the model ategory s�-Alg itself. In most asesthis will yield no new ohomology groups, but it will enable us to de�ne, and in someases ompute, the primary ohomology operations { as we do for topologial spaes(see, e.g., [P℄).The obvious examples are those of the form E(G; n) as above (or EX(G; n) ins�-Alg=BX, if we want loal oeÆients). In most ases of interest { inluding T�,S�, G = sGp { the only objets in A-s�-Alg are produts of the above. Furthermore,sine E(�; n) : A-�-Alg ! s�-Alg is a funtor, we an de�ne an Eilenberg-Ma Lanediagram E(G; n) for any diagram G : D! A-�-Alg as in x4.7.Thus for any o�brant W� in s�-Alg and oeÆients M 2 A-�-AlgD, foreah n � 1 we de�ne the n-th ohomology group of W� with oeÆients in G,denoted by Hn(W�;G), to be the set of omponents of map(W�; E(G; n)) (whih isa D-diagram of simpliial abelian groups, so the omponents onstitute a D-diagramof abelian groups).Again, there is also a loal version, for G in �-Alg=X or M : D ! A-�-Alg=X,yielding:Hn(W�=X;G) := �0map s�-Alg=X(W�; EX(G; n)) for eah n � 1:4.11. Proposition. If � a G-theory, X is a �-algebra, and G is in A-(�-Alg=X),then ohomology with oeÆients in G as de�ned in x4.1 is naturally isomorphi tothat de�ned in x4.10.Compare [D1, x3℄.Proof. Let K be the X-module orresponding to G = K o X, so E� := EX(G; n)is of the form E(K; n) o X, where E(K; n) is obtained from the analogous hainomplex (over X-Mod) by the Dold-Kan equivalene (f. [May1, p. 95℄). Thus:(4.12) Ei = 8>>><>>>:X for 0 � i < nK oX i = n(Lnj=0 sjK) oX i = n+ 1MiE� i � n + 2 ;(where MiE� is the i-th mathing objet { see [BK, X, x4.5℄ or [BJT, x2.1℄), withthe di�erential:(4.13) �n+1(x; �)) := (n+1Xi=0 dix; �) for every (x; �) 2 En+1 :



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 17Let W� be a free simpliial objet in sC, with " :W0 ! X induing �0W� �= X(for example, W� ould be a resolution of X). From (4.12) and (4.13) we see thatHom sC=X(W�; E�) is naturally isomorphi to the subgroup of Hom C=X(Wn; K o X)onsisting of maps f : Wn ! K oX (over X) for whih f Æ di is the projetion toX (the zero of Hom(C=X)(Wn+1; K oX) for eah 0 � i � n + 1. Here Wn mapsto X by " Æ d0 Æ � � � Æ d0.Again by the Dold-Kan equivalene, there is a path objet EI� for E� in s�-Alg=Xwith(4.14) EIi = 8>>><>>>:X for 0 � i < n� 1K oX i = n� 1(K �K �Ln�1j=0 sjK) oX i = nMiE� i � n+ 1 ;with d0 the identity on the �rst opy of K oX in EIn, and minus the identity onthe seond opy. There are two obvious projetions p0; p1 : EI� ! E�, and a homotopybetween two maps f0; f1 : W� ! E� over X is a map F : W� ! EI� with pi ÆF = fi(i = 0; 1), whih in turn orresponds to a map F 0 : Wn�1 ! KoX over X for whihF 0 Æ d0 represents f0; f1 respetively on the two opies of K oX.Thus we see that Hn(W�=X;M) := [W�; E�℄sC=X is anonially isomorphi to then-th ohomotopy group of the osimpliial abelian group Hom(C=X)(W�; K oX), aslaimed. �4.15. Cohomology of operads and their algebras.As noted in x1.3(b), our de�nition of skethable ategories overs both the ategoryof operads, O-Alg, and that of algebras over a given operad P.Of ourse, O is not a G-theory; however, essentially all known appliations are tooperads of (onneted) topologial spaes or of hain omplexes (see [MSS℄). In the�rst ase, we an use (4.6) to replae T� by G, so that in both ases we may assume,without loss of generality, that our operad takes value in s�-Alg for some G-theory�. Note that the ategory of O-algebras in s�-Alg is equivalent to s~�-Alg, where~� = O�� (produt of FP-skethes) is now an G-theory (see x1.8). Thus the de�nitionof x4.10 (applied to ~�) is valid for operads of spaes or hain omplexes.The same applies to algebras over a �xed operad P taking values in T� or Chk forsome �eld k (see [May2, x2℄), as well as to the ohomology of a k-linear ategory (thatis, algebras over a k-linear PROP) onsidered in [Mar2℄.We should observe, however, that the various ohomology theories onstruted {in the ontext of deformation theory { in [Mar2℄, in [MS1℄ (for Drinfel'd algebras),in [GS2℄ (for bialgebras), and so on, are de�ned in terms of a spei� di�erentialgraded resolution. To show that these agree with our general de�nition requires ageneralization of Quillen's equivalene between simpliial and di�erential graded Liealgebras over Q (see [Q2, I, x4℄, and ompare [DP, x3℄). One an expet suh anequivalene only for suitable k-linear ategories over a �eld k of harateristi 0.4.16. Remark. We should point out that a di�erent de�nition of (o)homology for�-algebras, based on the Baues-Wirshing and Hohshild-Mithell ohomologies ofategories (f. [BW, Mit℄), is given by Jibladze and Pirashvili in [JP℄. See [S2,Theorem 6.7℄ for an equivalent formulation in terms of the topologial Hohshild(o)homology of suitable ring spetra.



18 DAVID BLANC4.17. Cohomology of sheaves. We have assumed so far that � was a G-theory.This is neessary for the approah desribed here at two points: in order to identify the(abelian) group objets in �-Alg (see Setion 3), and to de�ne the model ategorystruture on s�-Alg (see x2.10(ii)). This is a resolution model ategory (induedby the adjoint pair (F�; U�) of x1.7) only with some suh additional assumption (f.[B2℄): otherwise the free �-algebras are not neessarily ogroup objets.One obvious example where this fails is the ategory of sets, where we apparentlyhave no meaningful onept of ohomology. A more interesting ase is the ategory ofsheaves on a topologial spae X, skethed by �U (see x1.3). Note that there is nofree/forgetful adjoint pair between �ÆU -Alg and �U -Alg or �ab = A-�U �= �U -Abgp,sine sheaves of abelian groups rarely have any projetives (e.g., ZCU in x1.3 () isnot generally a sheaf). However, they do have enough injetives, so if we replae leftderived funtors by right derived funtors in x2.4, with E = �U -Alg, V = Set, and� = A, we may de�ne Hn(X;F), for any F 2 �-E , to be the right derived funtorsof Hom E(CX ;�), applied to F . This also explains why our de�nition of homologydoes not make sense for sheaves.5. Generalized ohomologyFor simpliial �-algebras over a G-theory � { and thus for simpliial sets ortopologial spaes { the only strit abelian group objets are generalized Eilenberg-Ma Lane objets (f. [Moo, 19.6℄). Of ourse, in any model ategory D, any abeliangroup objet G in hoD de�nes a funtor [�; G℄ : hoD ! Abgp; but suh funtors donot usually satisfy the axioms of a ohomology theory. From our point of view, this isbeause the struture maps on the higher produts Gk (k � 3) whih are needed tomake G an G- or A-algebra in D are not uniquely de�ned.One way to deal with this problem would be to require that G have an E1-operadating on it (f. [May2, x14℄). If D = T� (or S�), by a result of Boardman and Vogt,under mild topologial restritions any E1 H-spae is homotopy equivalent to a stritabelian monoid in D (f. [BV, Theorem 4.58℄.5.1. �-spaes. Homotopy-oherent abelian monoids may be onveniently desribedin terms of a lax version of A, representing �-spaes (f. [Se2℄):Let � denote the ategory of �nite pointed sets, and hoose a set n+ = f0; : : : ; ng(with basepoint 0) for eah n 2 N . A �-objet in a pointed ategory C is a pointedfuntor G : �! C; the ategory of all suh will be denoted by �-C. Note that if C isoomplete, we an extend G to all of Set� by assuming it ommutes with arbitraryolimits. A �-spae G { that is, an objet in �-S� (or �-T�) { is alled speial iffor A;A0 2 �, the natural map G(A _ A0) ! G(A) � G(A0) is a weak equivalene.This implies that for eah n 2 N , the obvious map(5.2) G(n+)! G(1+)� : : :�G(1+)| {z }nis a weak equivalene. Suh a G is alled very speial if in addition �0G(1+) is anabelian group under the indued monoid struture.5.3. De�nition. A speial �-spae G has a lassifying �-spae BG, whih is itselfspeial, de�ned by setting (BG)(n+) := G(n+�n+), with the diagonal struture maps



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 19(see [Se2, 1.3℄ and ompare [Mil℄). By iterating the funtor B we obtain a 
-spetrumBG := h(BiG)(1+)i1i=0.Thus G(1+) itself is an in�nite loop spae (with a spei�ed H-spae struture) ifand only if G is very speial.5.4. The �+-onstrution. For any pointed simpliial set K 2 S�, Barratt de�nesthe free simpliial monoid �+K to be `n�1 Kn��n W�n= �, where � is generatedby the obvious inlusions Kn ,! Kn+1 and �n ,! �n+1 (f. [Ba, x4℄). Then �+K isatually a �-spae (see [A1, x8℄). To avoid onfusion in the notation we shall denote thisfuntor by + : S� ! �-S�. The (dimensionwise) group ompletion K := 
B+Kis a very speial �-spae, whih models the in�nite loop spae 
1�1K.The funtor  : S� ! �-S� is left adjoint to G 7! G(1+). If K is onneted, then+K ' K (f. [Ba, Theorem 6.1℄). Note that we an think of S := S0 as theinlusion funtor �! S� (f. [Ly, 2.7℄).5.5. The model ategory of �-spaes. In [BF, x3℄, Bous�eld and Friedlander de�nea proper simpliial model ategory struture on �-S� as a diagram ategory with �n-ation on eah G(n+), whih they all the strit model ategory: a map f : G! G0 isa weak equivalene if f(n+) : G(n+)! G0(n+) is a �n-equivariant weak equivalenefor eah n � 1, and it is a (o)�bration if it is a �n-Reedy (o)�bration (see [Hi,x15.3℄).They show that the homotopy ategory of very speial �-spaes is equivalent to thatof onnetive spetra (see [BF, Theorem 5.1℄), with Quillen equivalenes provided byiterations of the funtor B and its adjoint. They then de�ne a stable weak equivaleneof �-spaes to be a map induing a weak equivalene of the orresponding spetra,and so obtain a new simpliial model ategory struture on �-S� (with the sameo�brations, but fewer �brations), whose homotopy ategory is again equivalent to theusual stable ategory of onnetive spetra (see [BF, Theorem 5.8℄).Variants on these two model ategory strutures (with the same weak equivalenes)are provided in [S1, App. A℄.5.6. �-simpliial groups. In view of (4.6), it is natural to think of the ategory�-G of �-simpliial groups as representing onneted in�nite loop spaes; note thatevery speial �-objet here is trivially very speial, beause of the shift in indexing forhomotopy groups.A �-simpliial group G also known as a hain funtor (f. [A2, x1℄), sine one anassoiate to it a generalized homology theory by setting Hn(X;G) := �n(G�X) foreah X 2 S�, where the simpliial group G�X is de�ned by GnX := G(Xn)n. Hereeah G(Xn) 2 G is de�ned as above by extending G from � to Set�, so that G�Xis atually the diagonal of a bisimpliial group.Equivalently, given a �-spae G 2 �-S�, extend it via olimits from � to Set� andthus via the diagonal to a funtor ~G : S� ! S�, whih in fat takes a (pre)spetrum(Xn)n2N to a (pre)spetrum ( ~GXn)n2N using:S1 ^ ~G(Xn)! ~G(S1 ^Xn)! ~G(Xn+1) :Thus for eah X 2 S�, one may evaluate the homology theory assoiated to G on Xby: Hn(X;G) �= �Sn ~G(S ^X) = olimk!1 �n+k ~G(Sk ^X) ;



20 DAVID BLANCwhere S := hSni1n=0 is the sphere spetrum.Note that if G is very speial, then ~G(S ^X) is the 
-spetrum orresponding toAnderson's G�X (see [BF, x4℄.5.7. Generalized ohomology. We now explain how the de�nitions of x2.4 applyin this ontext: �rst, note that the usual model ategory struture on E = S� issymmetri monoidal and enrihed over V = S� (f. [Q1, II, x3℄). Now for � = �,Lydakis (in [Ly℄) de�ned a smash produt of �-spaes making �-V = �-S�, too, into asymmetri monoidal ategory, with unit S. He also de�nes internal funtion omplexesHom�-S�(G;H) 2 �-S� for G;H 2 �-S� by setting:(5.8) Hom�-S�(G;H)(n+) := map�-S�(G;H(n+ ^ �)) ;where H(n+^�))(k+) := H(n+^k+) and map�-S�(�;�) 2 S� is the usual simpliialfuntion omplex.Thus �-E = �-S� is indeed enrihed over �-V (f. [Ly, 2.1℄). Moreover, �-Vis semi-triangulated, with the delooping B : �-S� ! �-S� (x5.3) as the \suspensionautomorphism" T of x2.3. The deloopings of the 0-sphere fBnSg1n=0 orepresenthomotopy groups in ho �-S�, sine its homotopy ategory is equivalent to that ofonnetive spetra, with generator S (orresponding to S0).Now for any �-spae G 2 �-E and any pointed simpliial set K 2 E , Hom E(K;G)is a �brant �-set (x1.2), so the S�-funtion omplex M := map�(K;G) is a �-spae. IfG is (very) speial, so is M , sine map�(K;�) has homotopy meaning and preservesproduts.Moreover, applying Barratt's funtor yields a speial �-spae K, and the adjun-tion isomorphism:(5.9) M = map�(K;G) �=�! Hom�-E(K;G)indues an isomorphism between the homotopy groups ofM and those of Hom�-E(K;G)(orepresented by S and its suspensions).Therefore, for speial G the homotopy groups of M are determined by those ofM(1+) = map�(K;G(1+)), whih are by de�nition H�(K;G), the generalized oho-mology groups assoiated to the 
-spetrum for G.5.10. Generalized homology. Barratt's funtor  : E ! �-E is the requiredfuntor A�, by (5.9), so its left derived funtors are ��K (sine every Kis o�brant). These turn out to be the stable homotopy groups of K, and are byde�nition the homology groups of K in this ontext.Finally, sine the smash produt of (o�brant) �-spaes is taken to the smash produtof spetra under the equivalene of homotopy ategories (see [Ly, Lemma 5.16℄), we seethat the groups H�(K;G) of x2.5 are just the generalized homology groups assoiatedto the 
-spetrum for G.5.11. The (o)simpliial version.We next show how these de�nitions an be made to �t the desription in x2.12:First, note that sS, as well as sT� and sG (f. x4.5), have resolution modelategory strutures with M = fS1g { this is the original E2-model ategory of [DKS,x5.10℄, whih was onstruted preisely so that if V� is a resolution of X 2 S, thenthe diagional diagV� (or equivalently, the realization of the orresponding simpliial



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 21spae) is weakly equivalent to X. Moreover, S, as well as T� and G, are enrihed overV := S with its usual losed symmetri monoidal struture.We also need a suitable model ategory struture on the ategory �-S� of osimpli-ial �-spaes { namely, the dual of Moerdijk's model ategory of bisimpliial sets (f.[Moe, x1℄), in whih a map f : X� ! Y � of osimpliial �-spaes is a weak equivalene(resp., o�bration) if Tot f is a weak equivalene (resp., o�bration) of �-spaes. Thisimplies that Tot : �-S� ! �-S� indues an equivalene of homotopy ategories, sofor all pratial purposes we an avoid working with osimpliial objets altogether(but see Theorem 6.18 below). The inverse equivalene �-S� ! �-S� is de�ned by� 7! (�)� (the onstant osimpliial objet). Thus ho(�-S�) (with this struture)is equivalent to the stable ategory of onnetive spetra, whih is semi-triangulated,with (B)� Æ Tot : �-S� ! �-S� (x5.3) as the suspension automorphism T , and(S)� as generator.Now, given a speial �-spae G 2 �-S� and a free simpliial resolution V� ! X inthe original resolution model ategory sS, for any simpliial set Y { in partiular,for Y = G(1+) { we have:(5.12) map�(diagV�; Y ) �= Totmap�(V�; Y )(see [BK, XII, x4.3℄). Thus in our ase the osimpliial �-spae map�(V�; G) is weaklyequivalent to the (onstant osimpliial) spae (map�(X;G(1+)))�, whose homotopygroups are H�(K;G) (x5.7).Finally, note that Barratt's funtors + and  are de�ned dimensionwise on asimpliial set K, so that diag V� =  diagV�for any bisimpliial set V�. Thus we may de�ne A� : E ! �-E to be , and itstotal left derived funtor is naturally equivalent to  (in Moerdijk's model ategorysS�), sine diagV� '�! K for any free simpliial resolution V� ! K. Thus again the(unadorned) homology groups are the stable homotopy groups of K, and H�(K;G)are the generalized homology groups assoiated to the 
-spetrum for G.6. The spetral sequenesWe now want to use this mahinery to try to understand relationships among thevarious homology and ohomology theories. First, we shall need a preliminary notion:6.1. De�nition. If M is a set of models in a model ategory C (with �M � C asin x2.7), then C-� := (ho�M)op is a G-theory, whih skethes the ategory C-�-Algof C-�-algebras (f. [BS, x3℄).6.2. Remark. If we think ofM and its suspensions as orepresenting homotopy groupsin C (f. x4.9), then C-�-algebras are graded groups equipped with an ation ofthe orresponding primary homotopy operations - the motivating example being�M;�X for any X 2 sC. This notion may be extended to any onrete ategoryC by the onventions of [BS, x3.2.2℄, and may also be dualized as in [Bou℄ by takingC-� := ho�M, rather than the opposite ategory (f. [BP, x1.13℄).Note that the derived funtors of any funtor into C atually take values in C-�-Alg.6.3. Examples. (a) If C has a trivial model ategory struture, and M onsists of(enough) projetive generators { e.g., if C = �-Alg and M = F0� { thenC-�-Alg �= C.



22 DAVID BLANC(b) If C = sD or D for some abelian ategory D, and M again onsists of(enough) projetive generators { e.g., for C = s�X and M as above {then C-�-Alg �= grN D (where we use lower or upper indies for the gradingaording to the usual onvention).() For C = T� or S�, with M = fS1g, then C-�-Alg �= �-Alg is the ategory ofordinary �-algebras, modeling the usual homotopy groups of topologial spaes.(d) If C = �-S� and M = fSg, then C-�-Alg is equivalent to the ategory ofgraded onneted �-modules for � = �S� S0 (homotopy groups of the spherespetrum), sine �M;�G are just the stable homotopy groups of the 
-spetrumorresponding to G 2 �-S�.Using the Quillen equivalene of (4.6), we see that when C = s�-Alg we oftenhave interesting ategories of C-�-algebras (see, e.g., [BS, x3.2.1℄).We shall also need the following version of [BS, Prop. 3.2.3℄:6.4. Proposition. Any ontravariant funtor T : C ! B from a model ategory C(equipped with a set of models M) to a onrete ategory B indues a graded funtor�T � : sC-�-Alg ! sB-�-Alg by setting �T k(�M;�V�) := �k(TV�) for o�brant V� 2 sC,and extending by taking 0-th derived funtor.Proof. Sine �M;� : ho�M ! FC-� is an equivalene of ategories (onto the free C-�-algebras), in partiular �M;�V� �= �M;�W� , V� ' W� for o�brant V�;W� 2 sC,so �T � is well-de�ned on free C-�-algebras. �6.5. A general setting.In Setions 3-5 the algebrai and topologial versions of homology and ohomologyhave been treated separately. We now show how the Prorustean framework of x2.12may be used in order to obtain a uniform desription of various relations between them.6.6. Examples. We wish to onentrate on the following list of ohomologial settings(De�nition 2.13), disussed above:(a) hC = �-Alg;M = F0�;V = Set;� = A; A� = A�i for some G-theory �;(b) More generally, hC = �-Alg=X;M = F0�=X;V = Set;� = A; A� = A�X i forsome G-theory � and �xed X 2 �-Alg.() hC = s�-Alg=X;M = f(F�(s))� j F�(s) 2 F0�g;V = S�;�; A�i where � is somestrong A-sketh.(d) hC = S�;M = fS1g;V = S�;� = �; A� = i (with the symmetri monoidal stru-ture on �-S� of x5.7).In all these examples we have additional properties whih we shall require in ourappliations, whih we may formalize as follows:6.7. De�nition. A ohomologial setting hC;M;V;�; A�i is omplete if if it isequipped with:(1) A left adjoint diag : sC ! C to the inlusion (�)� : C ! sC, whih induesdiag : s�-C ! �-C, as well as a onvergent �rst-quadrant spetral sequenewith:(6.8) E2s;t �= �s�M;tV� =) �M;s+t(diagV�) ;for eah V� 2 sC and M 2 M;



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 23(2) A right adjoint Tot : V ! V to the inlusion (�)� : V ! V, whih induesTot : �-V ! �-V, as well as a seond-quadrant spetral sequene with:(6.9) Es;t2 �= �s�M 0;tX� =) �M 0;t�s(TotX�) ;for eah X� 2 V and M 0 2 M� (we do not address questions of onver-gene);(3) A natural \�-C-adjointness" isomorphism:(6.10) Tot(Hom(V�; G) �=�! Hom(diagV�; G)for any V� 2 s�-C and G 2 �-C.6.11. Proposition. Eah of the examples of x6.6 is a omplete ohomologial setting.Proof. Sine (a) and (b) are instanes of (), we have only two ases to onsider:(1) Assume C = s�-Alg=X for some G-theory � sorted by S. Then V� 2 sCis a bisimpliial �-algebra (over X), and let diagV� be the usual diagonal (with(diagV�)n := (Vn)n). Note that U�V� is just an an S-graded bisimpliial set, withU� diagV� = diagU�V� (even though olimits are not generally preserved by U�).By Remark 4.9 we see that the Bous�eld-Friedlander spetral sequene for U�V� ineah degree (f. [BF, Theorem B.5℄) has the form (6.8).Similarly, given a osimpliial objet X� 2 (s�-�-Alg=X), the usual Tot forthe (S-graded) osimpliial simpliial set U�X� is de�ned to be the simpliial setT� with Tn := HomSet(�� 
 �[n℄; X�), and this has a natural struture of a �-algebra in �-Alg=X by Remarks 1.2 and 2.11 and x1.8. Thus TotU�X� lifts toTotX� 2 s�-Alg. The homotopy spetral sequene for the osimpliial spae U�X�,with: Es;t2 = �s�tU�X� =) �t�s(TotU�X�) ;(see [BK, X, 6.1 & 7.2℄) gives (6.9) (though it does not neessarily onverge!).Finally, (6.10) follows from (5.12).(2) For C = S� we an use the usual diagonal and Tot and the original spetralsequenes for (o)simpliial spaes. For (6.10), onsider the osimpliial �-spaeE� := Hom�-S�(V�; G): De�nition (5.8) of Hom�-S� in terms of the simpliialfuntion omplex map�-S� shows that TotE� �= Hom�-S�(diagV�; G) again, by(5.12). �With this at hand, we an desribe several spetral sequenes onneting the variousfuntors we have de�ned so far. First, a universal oeÆients theorem for ohomology:6.12. Theorem. Let hC;M;V;�; A�i be a omplete ohomologial setting, and letG be a �-algebra in C. Then for any Y 2 C there is a natural ohomologial spetralsequene with Es;t2 �= Ext s;t(H�Y;G) =) H t�s(Y ;G) ;where Ext s;t(C;G) := (Ls �T (C))t for any C 2 (�-C)-�-Alg, and T := Hom(�; G).Proof. Let Z ! Y be a o�brant replaement in C, and assume G is �brant. We useM� := fA�MgM2M as models in �-C (x2.12), with T n as the suspension (x2.1),to de�ne the resolution model ategory struture on s�-C. As in the proof of [BS,Theorem 4.2℄, let V� ! A�Z be a free simpliial resolution in s�-C, so that by (6.8)the natural map diagV� ! A�Z is a weak equivalene.



24 DAVID BLANCIf we set E� := Hom(V�; G) (a osimpliial �-algebra in C), then by (6.10) and(2.14):TotE� = Hom(diagV�; G) ' Hom(A�Z;G) �= map(Z;G) = Lmap(�; G)(Y )ao �M�;t�s(TotE�) = �M�;t�smap(Z;G) = H t�s(Y ;G) by De�nition 2.15.On the other hand, sine eah Vn is o�brant:�M�;�En = �M�;�Hom(Vn; G) = �T (�M�;�Vn)and sine V� ! A�Z is a o�brant replaement, �M�;�V� ! �M�;�A�Z =: H�Y isa free resolution in (�-C)-�-Alg, so:�s�M�;�E� = �s( �T (�M�;�V�)) = �sL �T (H�Y ) = Ls �T (H�Y ) ;as laimed. �Note that for generalized ohomology of spaes this takes the familar form (f. [Ad℄and [EKMM, IV, x4℄):6.13. Corollary. For any speial G 2 �-S� and K 2 S� there is a seond quadrantspetral sequene with:Es;�2 �= Exts�-Mod(�S�K;G) =) Hs�t(K;G):There is also a version for homology:6.14. Proposition. Let hC;M;V;�; A�i be a omplete ohomologial setting, and letG be a �-algebra in C. Then for any Y 2 C there is a natural �rst quadrant spetralsequene with(6.15) E2s;t �= Tor s;t(H�Y;G) =) Ht+s(Y ;G) ;where Tor s;�(C;G) := (Ls �T (C)) for any C 2 (�-C)-�-Alg, and T := �
G.Proof. This generalization of [BS, Theorem 4.4℄ for the omposite funtor:�M A���! �-C �
G���! �-Cis proven like Theorem 6.12, with (6.8) replaing (6.9). �For generalized homology this takes the form:6.16. Corollary. For any speial G 2 �-S� and K 2 S� there is a natural �rstquadrant spetral sequene with:E2s;t �= Tor�-Mods;t (�S�K;G) =) Ht+s(K;G):Finally, we have the following two generalizations of [B1℄:6.17. Theorem. Let hC;M;V;�; A�i be a omplete ohomologial setting, and letG be a �-algebra in C. Then for any Y 2 C there is a natural �rst quadrant spetralsequene with E2s;t �= Ls �T (�M;�Y )t =) Ht+s(Y ;G) ;where where T := A�(�)
G.
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