
GENERALIZED ANDR�E-QUILLEN COHOMOLOGYDAVID BLANCAbstra
t. We explain how the approa
h of Andr�e and Quillen to de�ning 
ohomol-ogy and homology as suitable derived fun
tors extends to generalized (
o)homologytheories, and how this identi�
ation may be used to study the relationship betweenthem. Introdu
tionAfter the 
ohomology of topologi
al spa
es was dis
overed in the 1930's, the 
on
eptwas expanded to groups, and later to asso
iative, 
ommutative, and Lie algebras, inthe 1940's and early 1950's. In the following de
ade the �rst generalized 
ohomologytheories for spa
es appeared (see [M
2, Mas℄). All these examples started out in theform of expli
it 
onstru
tions, and only later were their theoreti
al underpinnings pro-vided: in parti
ular, 
ohomology for general algebrai
 
ategories was des
ribed by Be
kand others in terms of triples (see [Be℄, and 
ompare [D1℄), and then by Andr�e andQuillen in terms of (non-abelian) derived fun
tors (see [An, Q1℄). In the latter version,
ohomology groups are the derived fun
tors of Hom into a �xed abelian group obje
t(and homology groups are the derived fun
tors of abelianization).However, for topologi
al spa
es the only abelian group obje
ts are (produ
ts of)Eilenberg-Ma
 Lane spa
es, whi
h represent ordinary 
ohomology. Thus we need adi�erent framework to des
ribe generalized (
o)homology: this is provided by stablehomotopy theory (
f. [Br, Wh℄).Our goal here is to provide a uniform de�nition for homology and 
ohomology en-
ompassing the theories mentioned above, as well as some new ones. As a side bene�t,we 
larify exa
tly what assumptions on an (algebrai
) 
ategory C are needed in orderfor the approa
h of Andr�e and Quillen to work. (This is the reason for the somewhatte
hni
al Se
tion 3.)The approa
h given here applies, inter alia, to:(a) Homology and 
ohomology of groups and various types of algebras;(b) Versions of the above with lo
al 
oeÆ
ients (x4.1-4.2);(
) Unstable generalized (
o)homology of spa
es (x5.7-5.10);(d) Generalized (
o)homology of spe
tra and spa
es (x2.18);(e) Cohomology of operads, and of algebras over an operad (x4.15);(f) Cohomology of diagrams of spa
es or algebras (x4.7).The last two have appli
ations to deformation theory (see [Mar1, MS2℄ and [GS1,GGS℄, respe
tively).The 
ohomology of sheaves has a dual de�nition to the one presented here here (seex4.17). Of 
ourse, there are other 
on
epts of 
ohomology whi
h do not �t into ourDate: August 10, 2007; revised: February 10, 2008 .1



2 DAVID BLANCframework; most notably, a number of versions of the 
ohomology of 
ategories (seex4.16).0.1. Representing 
ohomology. In order to de�ne a 
ohomology theory in a
ategory C, we need a representing obje
t G 2 C, as well as a suitable model 
ategorystru
ture on the 
ategory sC = C�op of simpli
ial obje
ts over C (see x2.7). However,in this generality Hom C(�; G) will take values in sets, and applying this fun
tor toa simpli
ial resolution V� ! X in sC just yields a 
osimpli
ial set, for whi
h wehave no appropriate model 
ategory. It turns out that in order to get an interesting
ohomology theory, two ingredients are generally needed:� The 
ategory C must be enri
hed over a symmetri
 monoidal 
ategory V;� The representing obje
t G must have additional \algebrai
" stru
ture.We shall use the 
on
ept of a sket
h { a straightforward generalization of Lawvere's
on
ept of a theory { to des
ribe this additional stru
ture (see x1.1). In this language,we say that G is a �-algebra in C, for a suitable FP-sket
h �. We also use sket
hes todes
ribe the kind of algebrai
 
ategories to whi
h our approa
h applies: this will allowus to treat operads and their algebras, for example, uniformly with the usual universalalgebras.� Note that the fun
tor HomC(�; G) now takes values in the 
ategory D of(
osimpli
ial) �-algebras in V. Our �nal requirement is that the above twoingredients must 
ombine to make D into a (semi-) triangulated model 
ategory(see x2.2).The question we 
onsider here is in some sense dual to that of Brown Representabilityin triangulated 
ategories (
f. [CKN, F, K, N℄): rather than asking whi
h 
ohomologyfun
tors are representable, we seek 
onditions for a representable fun
tor to be a 
o-homology theory.0.2. Examples. In the 
ategory of groups (where V = Set), with an abelian group Gas the 
oeÆ
ients, the model 
ategory we 
onsider is that of simpli
ial groups. Thetotal left derived fun
tor of Hom(�; G) then takes values in the semi-triangulated
ategory of 
osimpli
ial abelian groups (equivalently, 
o
hain 
omplexes).On the other hand, for pointed simpli
ial sets or topologi
al spa
es (where V = S�),we may take � = �, and Hom(�; G) takes values in �-spa
es { again, a semi-triangulated 
ategory.Note that the 
ategory of spe
tra is triangulated (and enri
hed over itself), so we
an take any spe
trum G as 
oeÆ
ients.Our original motivation for 
reating a joint setting for algebrai
 and generalizedtopologi
al (
o)homology theories was to try to gain a better understanding of therelationship between homology and 
ohomology. This is provided by a universal 
o-eÆ
ients spe
tral sequen
e (see Theorem 6.12 below). We obtain a similar result forhomology (Proposition 6.14), as well as \reverse Adams spe
tral sequen
es" (Theorems6.17 and 6.18) relating homotopy to (
o)homology.0.3. Notation and 
onventions. The 
ategory of topologi
al spa
es is denoted byT , and that of pointed 
onne
ted topologi
al spa
es by T�. The 
ategory of groupsis denoted by Gp, that of abelian groups by Abgp, and that of pointed sets bySet�. For any 
ategory C, grS C denotes the 
ategory of S-graded obje
ts over C



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 3(i.e., diagrams indexed by the dis
rete 
ategory S), sC that of simpli
ial obje
ts overC, and 
C that of 
osimpli
ial obje
ts over C. The 
ategory of simpli
al sets will bedenoted by S, that of redu
ed simpli
ial sets by S�, and that of simpli
ial groups byG. For any Z 2 C, we write 
(Z)� for the 
onstant simpli
ial obje
t determined byZ, and 
(Z)� for the 
onstant 
osimpli
ial obje
t. If A is any abelian 
ategory, wedenote the 
ategory of 
hain 
omplexes over A by Ch(A); however, we write ChRfor Ch(R-Mod), and similarly 
ChR for 
o
hain 
omplexes of R-modules.0.4. Organization. Se
tion 1 provides ba
kground material on sket
hes, theories,and algebras over them. In Se
tion 2 we give our abstra
t de�nition of homologyand 
ohomology, in the 
ontext of suitable model 
ategories. Abelian group obje
ts insket
hable 
ategories are des
ribed in Se
tion 3, and these are used in Se
tion 4 to de�nethe (
o)homology of �-algebras. Se
tion 5 explains how generalized 
ohomologies �tinto our framework, using �-spa
es. Finally, the theory is applied in Se
tion 6 to
onstru
t universal 
oeÆ
ient and reverse Adams spe
tral sequen
es in this generalframework.0.5. A
knowledgements. This paper is an outgrowth of joint work with George Pes
hke,in [BP℄, and I would like to thank him for many useful dis
ussions and insights. I alsothank the referee for his or her helpful 
omments, and the Institut Mittag-Le�er (Djur-sholm, Sweden) for its hospitality during the period when this paper was 
ompleted.1. Algebras and theoriesAs Lawvere observed (
f. [La℄), `varieties of universal algebras' in the sense ofMa
 Lane (
f. [M
1, V,6℄) 
an be 
orepresented by fun
tors out of a �xed 
ategory�. This idea was later generalized by Ehresmann to sket
hes (see [BE℄), whi
h turnout to be the most 
onvenient language to des
ribe both the algebrai
 
ategories wework in, and the representing obje
ts for 
ohomology.1.1. De�nition. A sket
h h�;P; Ii is a small 
ategory � with distinguished sets Pof (limit) 
ones and I of (
olimit) 
o
ones. In parti
ular, a �nite produ
t (FP-)sket
his a sket
h in whi
h P 
onsists only of �nite produ
ts (and I = ;). A theory is anFP-sket
h � 
ontaining a zero obje
t, for whi
h P 
onsists of all �nite produ
ts.We think of a map f : #1 � : : : � #n ! � in � as 
orepresenting a (possiblygraded) n-ary operation. A theory � is sorted by a set S � Obj� if every obje
tin � is uniquely isomorphi
 to a �nite produ
t of obje
ts from S (see [Bor, x5.6℄).Lawvere originally 
onsidered only theories sorted by f1g, so that Obj(�) = N ,with n �=Qni=1 1 for n � 0.If � is an FP-sket
h and C is any pointed 
ategory, a �-algebra in C is a pointedfun
tor X : � ! C whi
h preserves all produ
ts in P. More generally, if � is anysket
h, a �-algebra X : �! C is required to preserve all distinguished limits (in P)and 
olimits (in I). The 
ategory of �-algebras in C is denoted by �-C; a �-algebrain Set� will be 
alled simply a �-algebra, and we write �-Alg for �-Set�. We
all a 
ategory D sket
hable if it is equivalent to �-Alg, and say that � sket
hesD. Su
h 
ategories are a

essible, in the sense of model theory, as well as beinglo
ally presentable (see [AR, Cor. 2.61 & 1.52℄). A map of theories (or of sket
hes) : � ! �0 is a fun
tor whi
h preserves all produ
ts (respe
tively, all distinguishedlimits and 
olimits). Su
h a map  indu
es a fun
tor  � : �0-Alg ! �-Alg.



4 DAVID BLANCMore generally, if � is a theory (or FP-sket
h), a �-algebra in any symmetri
monoidal 
ategory hV;
; Ii (
f. [Bor, x6.1℄) is a fun
tor X : � ! V taking the(distinguished) produ
ts in � to 
-produ
ts in V, with X(�) = I.1.2. Remark. Sin
e we 
an think of a �-algebra X in C as a 
ertain kind of diagram inC (with spe
i�ed produ
ts), we see that Hom C(�; X) takes values in �-Alg. Moregenerally, if C is enri
hed over a symmetri
 monoidal 
ategory hV;
; Ii via mapC(
f. [Bor, x6.2℄), and mapC(A;�) takes produ
ts to 
, then mapC(�; X) take valuesin �-V.1.3. Examples. (a) The 
ategory of groups is sket
hed by a theory G, with � : 2! 1representing the group operation, � : 1! 1 the inverse, and e : 0! 1 the identity(satisfying the obvious relations). Similarly, the 
ategory of abelian groups is sket
hedby a theory A (with the same maps, satisfying a further relation) and the in
lusioni : G � A indu
es the in
lusion of 
ategories Abgp � Gp.(b) An operad � = (�(n))1n=0 is an O-algebra in a symmetri
 monoidal 
ategoryhV;
; Ii, where O is a \universal" theory for operads. Similarly, an algebra over theoperad � (see [May2, x14℄) is just a ��-algebra in hV;
; Ii, where the theory ��is obtained from � in the obvious way (repla
ing 
 with �). The same applies moregenerally to PROP's, 
olored operads, and other variants (see [MSS℄ for a survey onoperads, espe
ially in the algebrai
 
ontext).(
) Given a topologi
al spa
e X, let U denote the dire
ted set of non-empty open setsin X, with in
lusions { so that Uop sket
hes presheaves of sets. By adding arbitraryformal 
oprodu
ts `�2A U� for any 
olle
tion fU�g�2A in U , we obtain a 
ategoryÛ , in whi
h the diagram;(1.4) `(�;�)2A�A U� \ U� i //j // `�2A U� � // S�2A U�is a 
oequalizer (if the �rst term is empty, � is an isomorphism).If we now let �U := Ûop (sorted by U), with P 
onsisting of the opposites of theformal 
oprodu
ts and of all the 
oequalizers (1.4) (and I = ;), we obtain a sket
hwhose algebras F : �U ! Set are sheaves of sets on X. Furthermore, for any V 2 U ,if: CV (U) := (f�g if U � V; if U 6� V;there is a natural isomorphism Hom �U -Alg(CV ;F) = F(V ).1.5. De�nition. Given a theory X, an X-theory (or sket
h) � is one equipped witha map of theories (or sket
hes)  : `S X ! � whi
h is bije
tive on obje
ts, wherethe 
oprodu
t is taken in the 
ategory of theories (or sket
hes) over some index set S.If X is sorted by f1g, an X-stru
ture at an obje
t 
 in a 
ategory C is an X-algebra� : X! C with �(1) = 
. A theory � sorted by S is an X-theory if and only if it isequipped with an X-stru
ture at ea
h s 2 S.If all other maps of � 
ommute with those 
oming from  , we 
all � a strong X-theory(or sket
h).



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 51.6. Example. If � is a G-theory, then the map of theories  :`S G! � indu
es an\underlying S-graded group" fun
tor  �, whi
h we denote by V : �-Alg ! GpS =`S G-Alg. � is a strong G-theory if all the operations in � are homomorphisms ofthe underlying graded group.1.7. Free �-algebras. For any theory �, let �Æ denote the dis
rete theory withthe same obje
ts (and produ
ts) as �. If � is sorted by S, �Æ sket
hes the 
ategoryof S-graded sets, and the in
lusion I : �Æ ,! � indu
es the forgetful fun
tor U =U� : �-Alg ! �Æ-Alg. As usual, there is a free fun
tor F = F� : �Æ-Alg ! �-Algleft adjoint to U�. We denote by F� the full sub
ategory of �-Alg whose obje
tsare free (that is, in the image of F�).Sin
e all limit-sket
hable 
ategories are lo
ally presentable, they are 
omplete (see,e.g., [AR, Theorem 1.46℄) and 
o
omplete. Thus for any theory �, the 
ategory �-Algof �-algebras has all limits and 
olimits.1.8. Sket
hing �-algebras in �-Alg. If � is a theory (sorted by S) and � isanother theory (singly sorted, for simpli
ity), the 
ategory �-�-Alg of �-algebras in�-Alg is sket
hed by a theory �(�) (sorted by S), de�ned as follows:(a) We �rst add an S-graded 
opy of � to �, setting �� := � [S `S �, sothat we now have ea
h operation of � a
ting on ea
h � 2 S. The in
lusioni : � ,! �� indu
es a forgetful fun
tor i� : ��-Alg ! �-Alg.(b) Next, we for
e all operations of � to 
ommute with the new operations - thatis, for ea
h f : �1 ! �2 in � and g : n! k in �, we require that�n1 g //fn�� �k1fk���n2 g // �k2
ommute, so we obtain a quotient of theories q : �� !! �(�).By 
onstru
tion �(�)-Alg �= �-�-Alg. Note that q� and i� 
ommute withthe underlying S-graded set fun
tors U�, U�� , and U��, whi
h 
reate all limits intheir respe
tive 
ategories, so q� and i� 
ommute with all (small) limits. Thus by[Bor, Theorem 5.5.7℄ ea
h has a left adjoint. The adjoint of the 
omposite i� Æ q� :�-�-Alg ! �-Alg will be 
alled the �-lo
alization of �-Alg, and denoted byL� : �-Alg ! �-�-Alg.1.9. Remark. Note that given G in �-�-Alg, by Remark 1.2 Hom�-Alg(�; G) has anatural stru
ture of a �-algebra. Furthermore, if i� Æ q� is a faithful embedding of
ategories (whi
h will happen if � is a �-theory, for example), then L� is idempotentand any �-algebra in �-Alg is in the image of L�, up to natural isomorphism. ThusHom�-�-Alg(�;�) has a natural stru
ture of a �-algebra, in this 
ase. By mimi
kingthe 
onstru
tion of A�B ! A
B for abelian groups, one 
an then make �-�-Alginto a 
losed symmetri
 monoidal 
ategory (see [Bor, x6.1.3℄).2. Generalized homology and 
ohomologyWe are now able to give a de�nition of homology and 
ohomology for model 
ate-gories, somewhat more general than Quillen's original approa
h (
f. [Q1, II, x5℄):



6 DAVID BLANC2.1. Triangulated 
ategories.The target of a 
ohomology fun
tor should be a model 
ategory whose homotopy
ategory is triangulated. There are a number of variants of this 
on
ept, originally dueto Grothendie
k. For our purposes, a triangulated 
ategory is an additive 
ategory Cequipped with an automorphism T : C ! C (
alled the translation fun
tor), and a
olle
tion D of distinguished triangles of the form hX f�! Y g�! Z h�! TXi, satisfyingthe four axioms of [Ha, x1℄ (whi
h 
odify the properties of 
o�bration sequen
es inpointed model 
ategories { see [Q1, I, x3℄).2.2. De�nition. A semi-triangulated 
ategory is an additive 
ategory Ĉ equipped witha 
olle
tion D of distinguished triangles of satisfying the above four axioms, as well asa translation fun
tor T : Ĉ ! Ĉ whi
h is an isomorphism onto its image. In all 
asesof interest, T 
an be formally inverted to yield a full triangulated 
ategory C = Ĉ[T�1℄with Ĉ as a full sub
ategory; however, this property is not needed in what follows.A set P of 
ogroup obje
ts in Ĉ will be 
alled a set of generators if the 
olle
tion offun
tors fHom Ĉ(T iP;�)gP2P;i�0 dete
ts all isomorphisms in Ĉ.2.3. Example. Typi
ally, (semi-)triangulated 
ategories appear as the homotopy 
ate-gory of a suitable (semi-)stable model 
ategory, as de�ned axiomati
ally in [Ho, Ch.7℄ (see also [HPS℄). Thus, the motivating example of a triangulated 
ategory is thehomotopy 
ategory of (unbounded) 
hain 
omplexes over an abelian 
ategory A. An-other example is provided by Boardman's stable homotopy 
ategory ho Spe
 (
f. [V℄),where there are a number of di�erent underlying stable model 
ategories (see [HSS℄,[S
1℄, or [EKMM℄).The sub
ategory Ĉ of non-negatively graded 
hain 
omplexes is semi-triangulated; ifA has a proje
tive generator P , then K(P; 0) (the 
hain 
omplex with P 
on
entratedin degree 0) is a generator for Ĉ.Similarly, the homotopy 
ategory of 
onne
tive spe
tra, ho Spe
(0), is semi-triangu-lated (with generator S0).2.4. Cohomology. In order to de�ne 
ohomology fun
tors on a model 
ategory E ,we assume that E is equipped with:(a) An FP-sket
h � and a 
ategory V su
h that V and �-V are symmetri
monoidal, E is enri
hed over V via mapE(�;�) : Eop � E ! V, and �-E isenri
hed over �-V via Hom(�;�) : (�-E)op � �-E ! �-V.(b) An FP-sket
h � and a model 
ategory stru
ture on �-V for whi
h ho�-V issemi-triangulated.Then for any G 2 �-E , we de�ne the 
ohomology of X 2 E with 
oeÆ
ients inG to be the total left derived fun
tor LmapE(�; G) of mapE(�; G), applied to X.Re
all that total left derived fun
tor of a \left exa
t" fun
tor F : C ! D betweenmodel 
ategories is de�ned by applying F to a 
o�brant repla
ement of X (see [Q1, I,x4℄ or [Hi, 8.4℄).If ho�-E has a set of generators P, then the P-graded group Hn(X;G) :=[T nP; (LmapE(�; G))X℄P2P is 
alled the n-th 
ohomology group of X with 
oeÆ
ientsin G.2.5. Homology. To de�ne homology, we need also a homotopy fun
tor A� : E ! �-Eequipped with a natural isomorphism mapE(E;X) �=�! Hom(A�E;X) in �-V (
f.



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 7x1.2) for E 2 E and X 2 �-E . We then de�ne the homology of X 2 E to be thetotal left derived fun
tor of A�, applied to X (x2.4). Again the n-th homology groupof X is: HnX := [T nA�P; (LA�)X℄P2P :If �-E is a symmetri
 monoidal model 
ategory (see [Ho, x4.2.6℄), with Hom(�; Y )right adjoint (over �-V) to �
Y , then for any G 2 �-E , homology with 
oeÆ
ientsin G is the total left derived fun
tor of A�(�)
G (assuming A�E is always 
o�brant).The homology groups Hn(X;G) are de�ned as above. Compare [BB, I℄.2.6. Example. If E = V = S� (or T�) and � = A, then �-C �= �-V �= sAbgp andG is a (generalized) Eilenberg-Ma
 Lane spa
e, so we have ordinary 
ohomology. Thefun
tor A� : E ! �-C is the usual `abelianization' X 7! ZX, whi
h yields ordinary(singular) homology.2.7. Resolution model 
ategories.To provide a uniform treatment of the various kinds of (
o)homology it will be
onvenient to use a framework originally 
on
eived by Dwyer, Kan and Stover in [DKS℄under the name of \E2 model 
ategories", and later generalized by Bous�eld (see[Bou, J℄.Re
all that the 
on
ept of a model 
ategory was introdu
ed by Quillen in [Q1℄ toallow appli
ation of the methods and 
onstru
tions of homotopy theory (of topologi
alspa
es) in more general 
ontexts. This is a 
ategory C, equipped with three distin-guished 
lasses of morphisms { weak equivalen
es, 
o�brations, and �brations {satisfying 
ertain axioms (analogous to those whi
h hold for the 
orresponding 
lassesin T ). See [Hi℄ or [Ho℄ for further details.Let C be a pointed 
o�brantly generated right proper model 
ategory (
f. [Hi, 7.1,11.1℄), equipped with a setM of 
o�brant homotopy 
ogroup obje
ts in C, 
alledmodels(playing the role of the spheres in T�). Let �M denote the smallest full sub
ategoryof C 
ontainingM and 
losed under 
oprodu
ts, and suspensions (
f. [Q1, I, x3℄). Forany X 2 C, M 2 M, and k � 0, set �M;kX := [�kM;X 0℄, where X ! X 0 is a�brant repla
ement. We write �M;kX for the M-graded group (�M;kX)M2M.2.8. De�nition. A map f : V ! Y in sC is homotopi
ally M-free if for ea
h n � 0,there is:a) a 
o�brant obje
t Wn 2 �M, andb) a map 'n : Wn ! Yn in C indu
ing a trivial 
o�bration (VnqLnV LnY )qWn !Yn, where the n-th lat
hing obje
t for Y is LnY := `0�i�n�1 Yn�1= �, withsj1sj2 : : : sjkx 2 (Yn�1)i is equivalent to si1si2 : : : sikx 2 (Yn�1)j wheneversisj1sj2 : : : sjk = sjsi1si2 : : : sik .The resolution model 
ategory stru
ture on sC determined by M is now de�ned byde
laring a map f : X ! Y to be:(i) a weak equivalen
e if �M;kf is a weak equivalen
e of M-graded simpli
ialgroups for ea
h k � 0;(ii) a 
o�bration if it is a retra
t of a homotopi
allyM-free map;(iii) a �bration if it is a Reedy �bration (
f. [Hi, 15.3℄) and �M;kf is a �bration ofsimpli
ial groups for ea
h M 2 M and k � 0.



8 DAVID BLANC2.9. Remark. The resolution model 
ategory sC is simpli
ial (
f. [Q1, II, x1℄, and isitself endowed with a set of models, of the form M̂ := fSn 
M j M 2 M; n 2 Ng,where Sn 2 S is the simpli
ial sphere.2.10. Examples. Typi
al resolution model 
ategories in
lude the following:(i) When C = Gp, let M := fZg, so �M is the sub
ategory of all free groups.The resulting resolution model 
ategory stru
ture on the 
ategory G = sGp ofsimpli
ial groups is the usual one (see [Q1, II, x3℄).(ii) More generally, if � is a G-theory (x1.5), let M := F0� denote the 
olle
tionof all monogeni
 free �-algebras F�(s) in F�, with s a singleton in �Æ-Alg(i.e., a graded set, indexed by the dis
rete sket
h �Æ, 
onsisting of a singleelement in some degree). In this 
ase �M �= F�, and the model 
ategory ons�-Alg is that of [Q1, II, x4℄).(iii) For C = T�, let M := fS1g, so that �M is the homotopy 
ategory of wedgesof spheres. In this 
ase the model 
ategory of simpli
ial spa
es is the originalE2-model 
ategory of Dwyer, Kan and Stover (
f. [DKS℄).2.11. Remark. The above dis
ussion is also valid if we work in the 
omma 
ategory�-Alg=X (
f. [M
1, II,6℄), for a G-theory � and some �xed �-algebra X. In fa
t, anyp : F� ! X in F�=X is determined by its adjoint ~p : T ! U�X { in other words,by the U�X-graded set fp�1(x)℄gx2U�X . Therefore, �-Alg=X 
an be sket
hed bya theory �=X, sorted by U�X = f�x j x 2 U�Xg. Note that �=X is a G-sket
hover X in the sense that it has G-stru
tures of the form:m(x1;x2) : �x1 � �x2 ! �m�(x1;x2)for every � 2 � and x1; x2 2 U�X� (and similarly for other morphisms in �).Equivalently, we 
an equate the dis
rete theory �=XÆ with �Æ-Alg=U�X, anduse the adjointness of (F�; U�) to de�ne an adjoint pair:�=X-Alg = �-Alg=X F�
U� �Æ-Alg=U�X = �=XÆ :We 
an then take the monogeni
 free �-algebras F0�=X (
f. x2.10(ii)) as our models,and obtain a resolution model 
ategory stru
ture on s(�-Alg=X). In parti
ular, anyfree resolution V� ! X in s�-Alg is also a resolution (
o�brant repla
ement) ins(�-Alg=X).2.12. A simpli
ial version of (
o)homology.In order to make the abstra
t des
ription of (
o)homology given in x2.4-2.5 more
on
rete, it is 
onvenient to formalize the ingredients needed in the following:2.13. De�nition. A 
ohomologi
al setting hC;M;V;�; A�i 
onsists of:(1) A model 
ategory C, enri
hed via mapC(�;�) over a symmetri
 monoidal
ategory V.(2) A set of models M for C.(3) An FP-sket
h �, su
h that:(i) h�-C;
; I;Homi is a 
losed symmetri
 monoidal 
ategory (with Hom(G;�)right adjoint to �
G).(ii) 
�-V has a model 
ategory stru
ture for whi
h ho 
�-V semi-triangulated.
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tor A� : �M ! �-C, equipped with a natural isomorphism:(2.14) � : mapC(F;G) �= Hom(A�F;X)for F 2 �M and G 2 �-C.2.15. De�nition. Given a 
ohomologi
al setting hC;M;V;�; A�i, take E := sC,with the resolution model 
ategory stru
ture de�ned by M. Then for any obje
t Xand �-algebra G in C, the 
ohomology of X with 
oeÆ
ients in G is the total leftderived fun
tor of mapC(�; G), applied to X. The n-th 
ohomology group of X with
oeÆ
ients in G is the M-graded group:Hn(X;G) := [T n
(A�M)�; (LmapC(�; G))X℄M2M :2.16. De�nition. For hC;M;V;�; A�i as above, note that A�M is a homotopy
ogroup obje
t in �-C for ea
h M 2 M, so we have a resolution model 
ategorystru
ture on s�-C determined by the set of models M� := fA�MgM2M. De�nethe homology of X to be the total left derived fun
tor of A� applied to X. The n-thhomology group of X 2 C is the M-graded group:HnX := �M�;nLA�X(
f. x2.9). (For this part of the de�nition we only require that �-C be enri
hed overitself via Hom { we do not need the symmetri
 monoidal stru
ture.)If G 2 �-C, we de�ne the n-th homology group of X with 
oeÆ
ients in G to be:Hn(X;G) := �M�;n(L(A�(�)
G)(X)2.17. Example. The simplest example is when C = Gp (with M = fZg as on x2.10(i)),� = G (or A), and V = Set, so �-C �= �-V �= Abgp.In this 
ase �-C �= Abgp, so the 
ategory 
�-C of 
osimpli
ial �-algebras in C isequivalent to the 
ategory of 
o
hain 
omplexes. Thus K(Z; n) (a 
o
hain 
omplex
on
entrated in degree n) 
orepresents the n-th 
ohomology group of a 
o
hain 
omplex(n 2 N). This yields the usual 
ohomology groups of a group X with 
oeÆ
ients inan abelian group G (as a trivial X-module).The fun
tor A� : �M ! �-C is the abelianization Ab : Gp ! Abgp, and the
losed symmetri
 monoidal stru
ture hAbgp;
;Z;HomAbgpi yields the usual homologyof groups.2.18. Example. Another simple example is provided by a symmetri
 monoidal 
ategoryof spe
tra, su
h as the symmetri
 spe
tra of [HSS℄, or the S-modules of [EKMM℄.In the latter version, for example, we take E =MS, with the symmetri
 monoidalsmash produ
t ^S, and the internal fun
tion 
omplexes FS(�;�) 2 V = E (
f.[EKMM, II, 1.6℄). Sin
e hoMS is the usual stable homotopy 
ategory, it is trian-gulated, with generator S. Thus we 
an take � = � to be the trivial FP theory,any S-module M yields a 
ohomology theory FS(�;M), and A� : E ! �-E is theidentity. Similarly if E =MR for some S-algebra R.2.19. Remark. These de�nitions may appear somewhat 
onvoluted; they have been setup to des
ribe both the algebrai
 and (generalized) topologi
al theories in a uniformway, as appropriate derived fun
tors. Note that in general the total homology and
ohomology fun
tors, as well as the homology and 
ohomology groups, take values indi�erent 
ategories.



10 DAVID BLANC3. Theories and AbelianizationIn this se
tion we des
ribe the ne
essary ba
kground for de�ning (
o)homology in a
ategory C = �-Alg of �-algebras. Most of it should be familiar from the 
ase C = Gp,and the generalizations of Be
k and Quillen for algebras (see [Be, Q3℄); however, itseems that the literature la
ks a full des
ription in this generality. We start with the
on
ept of (abelian) group obje
ts, whi
h are to play the role of �-algebras in C.3.1. Group obje
ts. In general, for a sket
hable 
ategory C = �-Alg we do notexpe
t any enri
hment beyond V = Set; so the natural 
hoi
e for a 
ohomologi
alsetting is � = A.Re
all that an (abelian) group obje
t stru
ture on an obje
t G in a 
ategory C is anatural (abelian) group stru
ture on Hom C(X;G) for all X 2 C { in other words,a lifting of the fun
tor Hom C(�; G) from Set to Gp (or Abgp); this is equivalentto a G- (resp., A-) stru
ture at G.3.2. Remark. Note that if C = �-Alg for some G-theory �, any group obje
t stru
tureon G 
ommutes with the underlying (graded) G-stru
ture, so that the two ne
essarilyagree and are 
ommutative. In parti
ular, in this 
ase a �-algebra 
an have at mostone (ne
essarily abelian) group obje
t stru
ture. This is of 
ourse not true for generalC (as is shown by the example of sets).3.3. Abelianization of �-algebras. If � is any theory (sorted by S), the 
ategoryof abelian group obje
ts in �-Alg is sket
hed by the theory �ab := A� of x1.8. We
all the A-lo
alization LA : �-Alg ! �ab-Alg the abelianization fun
tor for �, anddenote it by A�. Note that A�(F�T ) = F�abT .3.4. Examples. (a) When � is a G-theory, �ab := G(�), by Remark 3.2, and we
an take �G := � in x1.8, so q : � !! �ab is a quotient of theories, and q�is simply the in
lusion of the full sub
ategory of abelian �-algebras in �-Alg(
f. [BP, x2.8℄). Note that by Remark 1.9 we 
an then make �ab into a 
losedsymmetri
 monoidal 
ategory.(b) On the other hand, if � = �Æ, then �ab = �A sket
hes S-graded abeliangroups, q� : �ab-Alg ! �-Alg is the forgetful fun
tor U : grS Abgp! grS Set,and its left adjoint A� is the free graded abelian group fun
tor.3.5. �-algebras over X.We now show how the above dis
ussion extends to the 
ategory �-Alg=X of �-algebras over a �xed obje
t X (see x2.11). First, we need a:3.6. De�nition. If � is any theory and X 2 �-Alg, then:(a) AnX-algebra is an obje
t K in �-Alg equipped with maps f̂ : K(#)�X(#) !K(#0) for ea
h f : #! #0 in �, satisfying:ĝ(f̂(k; x); X(f)(x)) = [g Æ f(k; x)for every (k; x) 2 K(#)�X(#), and g : #0 ! #00, with f̂(k; 0) = K(f)(x).(b) The semi-dire
t produ
t of a �-algebra X by an X-algebra K is the �-algebraK oX over X given by:(i) (K oX)(#) := K(#)�X(#) (as sets);
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h f : #! #0 in �, (K oX)(f)(k; x) := (f̂(k; x)); X(f)(x)).If we want KoX to be a group obje
t in �-Alg=X, we must require more. Fromnow on, let � be a G-theory (sorted by S), and X a (�xed) �-algebra.3.7. De�nition. An X-module is an X-algebra K whi
h is an abelian group obje
t in�-Alg, su
h that for ea
h �xed x 2 X(#), ea
h f̂(�; x) : K(#)! K(#0) is additive(in the sense that it 
ommutes with the given abelian group stru
ture). The 
ategoryof X-modules will be denoted by X-Mod (see [Be, x3℄).3.8. Remark. In this 
ase the underlying S-graded group V K is an S-graded V X-module in the traditional sense (a module over the graded group ring Z[VX℄), andthe group operation at ea
h � 2 � is given by m�((k; x); (`; y) = (k + x � `; xy), asusual.3.9. De�nition. Assume that p : Y ! X is a map of �-algebras, and K is anX-module. A fun
tion � : Y ! K (preserving the produ
ts of �) will be 
alled aderivation with respe
t to p if �(Y (f)(y)) = f̂(�(y); p(y)) for any f : # ! #0 in �.The set of all su
h will be denoted by Der p(Y;K). In parti
ular, a derivation withrespe
t to Id X will be 
alled simply a derivation, and Der(X;K) := Der Id(X;K).3.10. Remark. Note that this holds in parti
ular for f = m� : � � � ! �, so that byRemark 3.8:�(m�(y1; y2))) = m̂�((�(y1); p(y1)); (�(y2); p(y2)) = �(y1) + p(y1) � �(y2) :Thus � is a derivation (
rossed homomomorphism) with respe
t to the G-stru
ture.Furthermore, Derp(Y;K) is an abelian group (under the addition of K), and anymap of X-modules � : K ! L indu
es a homomorphism �� : Derp(Y;K) !Derp(Y; L).The following results do not appear in this form in the literature, but their proofsare straightforward generalizations of the 
orresponding (
lassi
al) results for groups(see, e.g., [Be, x3-4℄ and [R, x11.1℄).3.11. Proposition. Any group obje
t stru
ture on p : Y ! X in �-Alg=X isne
essarily abelian. Moreover, K := Ker(p) is an X-module, with Y �= K oX, andfor some derivation � : X ! K, the group operation map � : Y �X Y ! Y is given(under the identi�
ation UY = UK � UX) by �(k; k0; x) = (k + k0 + �(x); x), thezero map by (k; x) 7! (��(x); x), and the inverse by (k; x) 7! (�k � 2�(x); x).Conversely, for any X-module K and derivation � : X ! K, the above formulasmake K oX into an abelian group obje
t over X.3.12.Corollary. There is an equivalen
e of 
ategories `�G-(�-Alg=X)! A-(�-Alg=X),indu
ed by the quotient map ` : G ,! A.3.13. Lemma. Any homomorphism � : K o X ! L o X between group obje
tsover X (with group operations determined by � 2 Der(X;K) and � 2 Der(X;L),respe
tively) is of the form �(k; x) = (�(k) + �(x); x), where � : K ! L is ahomomorphism of X-modules and � := � Æ � � � .In parti
ular, any two group obje
t stru
tures over X on the semi-dire
t produ
tK oX are 
anoni
ally isomorphi
, so we dedu
e:



12 DAVID BLANC3.14. Proposition. The fun
tor � : X-Mod! A-(�-Alg=X), de�ned �(K) := K oX (with the group operation map determined by the zero derivation), is an equivalen
eof 
ategories, with inverse � : A-(�-Alg=X) ! X-Mod whi
h assigns to an abeliangroup obje
t p : Y ! X the X-module Ker(p).3.15. Remark. Sin
e the forgetful fun
tor U = U� : �-Alg ! �Æ-Alg is faithful, forany �-algebra Y and semi-dire
t produ
t K oX 2 �-Alg we have:Hom �-Alg(Y;K oX) U,! Hom �Æ-Alg(UY; U(K oX)) =Hom �Æ-Alg(UY; UK � UX) = Hom �Æ-Alg(UY; UK) � Hom �Æ-Alg(UY; UX) :(3.16)Thus given p : Y ! X, we 
an write any map � : Y ! K oX over X in the form�(y) = (�(y); p(y)), and the requirement that � be a map of �-algebras means that� : F�T ! K is a derivation with respe
t to p (x3.9), so in fa
t:(3.17) Hom �-Alg=X(Y;K oX) �= Derp(Y;K)as abelian group (on
e we 
hoose a �xed group stru
ture on K oX).Three spe
ial 
ases should be noted:(a) For p = Id : X ! X, we see that Der(X;K) is the spa
e of se
tions forK oX, as usual.(b) If Y = LoX for some L 2 X-Mod, then by Proposition 3.14:Hom X-Mod(L;K) �= Hom �-Alg=X(LoX;K oX) = Derp(LoX;K) :On the other hand, by Lemma 3.13 any map of X-modules � : L! K indu
esa homomorphism of group obje
ts � = �(�) : LoX ! K oX (where we usethe zero derivation to de�ne the group stru
tures on the semi-dire
t produ
ts).Thus in fa
t:(3.18) Hom A-(�-Alg=X)(LoX;K oX) = Der�2(LoX;K)as abelian groups.(
) If Y = F�T is free, then by adjointness we a
tually have equalities of sets:Hom �-Alg(F�T;K oX) = Hom �Æ-Alg(T; UK)� Hom �Æ-Alg(T; UX)in (3.16), so for p : F�T ! X in F�=X, we have:(3.19) Hom �-Alg=X(F�T;K oX) �= Hom �Æ-Alg(T; UK) �= Hom �-Alg(F�T;WK) ;where W : X-Mod! �-Alg is the forgetful fun
tor. In parti
ular:Derp(F�T;K) �= Hom �-Alg(F�T;WK)as sets (though this identi�
ation is not natural in the full sub
ategory F� in�-Alg).3.20. Abelianization over a �-algebra. Re
all from x2.11 that for a �xed �-algebra X, �-Alg=X 
an be sket
hed by �=X (sorted by U�X). Similarly,A-(�-Alg=X) 
an be sket
hed by A�=X, obtained from �=X as in x1.8 by adding:(a) a se
tion { i.e., 
onstants in ea
h �x (in the notation of x2.11);(b) group stru
ture maps � : �x � �x ! �x and � : �x ! �x,



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 13satisfying the obvious identitites. Again the map of theories i : �=X ,! A�=Xindu
es the forgetful fun
tor i� : A-(�-Alg=X)! �-Alg=X, with an adjoint A�=X :�-Alg=X ! A-(�-Alg=X) 
alled the abelianization of �-Alg=X. This is needed inorder to de�ne homology for �-algebras (see x4.2 below).Note that the 
ategory X-Mod 
an also be sket
hed by an A-theory �X , obtainedfrom �ab (x3.3) by adding operations x � (�) : � ! � for ea
h x 2 U�X, satisfyingthe obvious identitites. The in
lusion j : �ab ,! �X indu
es the forgetful fun
torj� : �X-Alg ! �ab-Alg. If we de�ne � : �-Alg=X ! �-Alg as in Proposition 3.14,we obtain the 
ommutative outer diagram:(�-Alg=X)ab i� //� �� �-Alg=X���Â�=Xssg g g g g g g g g g g gX-Mod = �X-Alg��= OO j� // �ab-Alg q� // �-Algin whi
h the horizontal arrows are forgetful fun
tors (and q�, i� have adjoints A�,A�=X , respe
tively, with Â�=X := � Æ A�=X : �-Alg=X ! X-Mod).Note that by (3.19), the abelianization fun
tor Â�=X takes any free �-algebrap : F�T ! X over X to the 
orresponding freeX-module F�XT 2 �X-Alg = X-Mod.Moreover, for any ' 2 Derp(F�T;K) (determined by '(ti) = ki 2 K for ti 2 T ),the 
orresponding '̂ 2 Hom X-Mod(F�XT;K) is also determined by requiring that'̂(ti) = ki. Now assume given a map  : F�T 0 ! F�T in F�=X, determined bythe 
ondition that, for ea
h t0 2 T 0,  (t0) = f 0�(ti1 ; : : : ; tin) for some f 0 in �. Then:( �')(t0) = f̂ 0((ti1 ; : : : ; tin); (p(ti1); : : : ; p(tin))) 2 K :3.21. Remark. Evidently, the dis
ussion of abelian group obje
ts and abelianizationover a �-algebra X extends the absolute 
ase of x3.1�., taking X = 0.More generally, K will be 
alled a trivial X-module if f̂(k; x) = f(k) for everyf 2 � (x3.6) { so that K is simply an abelian �-algebra, K oX is the produ
t in�-Alg, and a derivation into K is just a map of �-algebras.4. (Co)homology of �-algebrasAndr�e (in [An℄) and Quillen (in [Q1, II, x5℄ and [Q3, x2℄) de�ned homology and
ohomology groups in 
ategories of universal algebras. Quillen also showed how thisgeneralized the earlier de�nition of triple 
ohomology (see [Be, x2℄). We now indi
atebrie
y how this de�nition �ts into the setup of x2.4.4.1. Cohomology of �-algebras. Let � be a G-theory, and C := �-Alg (or�-Alg=X for a �xed �-algebra X), with the resolution model 
ategory stru
ture onsC des
ribed in x2.10(ii) (or x2.11).As in Example 2.17, here V = Set, so we must take � = A (or equivalently, byCorollary 3.12: � = G), sin
e 
osimpli
ial sets do not have any useful model 
ategorystru
ture (see however [Bou℄). Thus if G is an abelian group obje
t in C, and V� ! Yis a free simpli
ial resolution (
o�brant repla
ement in sC), then the 
osimpli
ialabelian group W � := Hom C(V�; G) 
orresponds under the Dold-Kan equivalen
e (
f.[DP, x3℄ and [We, 9.4℄) to a 
o
hain 
omplex W �, and the 
ategory 
ChZ of non-negatively graded 
o
hain 
omplexes of abelian groups embeds in the 
ategory ChZof unbounded (
o)
hain 
omplexes, whi
h is a stable model 
ategory (
f. [Ho, Ch. 7℄.



14 DAVID BLANCSuspensions of g := K(Z; 0) dete
t homology in 
ChZ (or ChZ), so 
Abgp �= 
ChZis semi-triangulated in the sense of x2.2, and in fa
t [T ig;W �℄ = H i(Y ;G) is the i-thAndr�e-Quillen 
ohomology group of Y .Remark 3.15 shows that these 
an be thought of as usual as the derived fun
tors ofDer(�; G), in the 
ase C = �-Alg=X, and as Exti(Y;G) in the 
ase C = �-Alg(x3.21). This identi�
ation has been the basis for a number of de�nitions of 
ohomologyin various topologi
al settings - see, e.g., [MS2℄, and the survey in [BR℄.4.2. Homology of �-algebras. In this situation one 
an de�ne the homology of a�-algebra Y as the total left derived fun
tor of abelianization A� : �-Alg ! �ab-Alg(x3.3), whi
h takes values in the 
ategory s�ab-Alg of simpli
ial �ab-algebras (asusual, we only need to evaluate A� on F�, so LA� a
tually takes values in sF�ab).Sin
e �ab-Alg is an abelian 
ategory (with enough proje
tives, namely: F�ab),s�ab-Alg is equivalent to the stable model 
ategory Ch(�ab) of 
hain 
omplexesover �ab, and the homology groups [T iK(F�abs; 0); A�V�℄ = HiY (for s an S-gradedsingleton) are themselves �ab-algebras.The same holds for Y 2 �-Alg=X: using x3.20, we may de�ne Hi(Y=X) as the i-thderived fun
tor of A�X : F�=X ! (�-Alg=X)ab, taking values in (�-Alg=X)ab { orequivalently (Proposition 3.14) in X-modules. For groups, H�(G=G) is the homologyof G with 
oeÆ
ients in Z[G℄. For a pointed 
onne
ted spa
e X with G = �1(X; x),H�(X=BG) is the homology of X with 
oeÆ
ients in the lo
al system Z[G℄.4.3. De�nition. To de�ne homology of Y ! X with 
oeÆ
ients in an arbitraryX-module G, we need a monoidal stru
ture on X-Mod �= (�-Alg=X)ab, indu
ed viathe adjoint pair �X-Alg F�X
U�X �Æ-Algfrom the usual monoidal stru
ture (�Æ-Alg;�) of Cartesian produ
ts of graded sets.More pre
isely, de�ne 
 : F�X � F�X ! F�X by F�XT 
 F�XS := F�X (T � S).The 0-th derived fun
tor in the se
ond variable de�nes F�XT 
G for any �X-algebra(X-module) G; and the n-th left derived fun
tor of A�X (�)
G (in the �rst variable)is by de�nition Hn(Y=X;G).4.4. Example. When � = G, a free simpli
ial resolution V� of a group G in sGpis a
tually a 
o�brant model for the 
lassifying spa
e BG (in S�). Applying thefun
tor Â�=X of x3.20 to V� dimensionwise yields a model for the 
hains on theuniversal 
ontra
tible G-spa
e EG (sin
e 
onversely, taking the free Z-module on thebar 
onstru
tion model for EG and dividing out by the free G-a
tion yields ZBG,so ZEG ' Z[G℄V�). Taking homotopy groups of Z[G℄V� is the same as taking thehomology of the 
hain 
omplex 
orresponding to ZEG, whi
h is just H�(G;Z[G℄).4.5. Remark. Note that the previous dis
ussion a
tually de�nes homology and 
oho-mology for any simpli
ial �-algebra Y�, not only for the 
onstant ones. Moreover, if� = G, the adjoint pairs of fun
tors:(4.6) T� j�j
S S� G
�W G = sGpindu
e equivalen
es of the homotopy 
ategories of pointed 
onne
ted topologi
alspa
es, redu
ed simpli
ial sets, and simpli
ial groups. Here j � j is the geometri
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tor, S is the singular set fun
tor, �W is the Eilenberg-Ma
 Lane 
lassify-ing spa
e fun
tor, and G is Kan's loop fun
tor (
f. [May1, x26.3℄ and [Q1, I,4 & II,3℄).Thus Quillen's approa
h provides an algebrai
 des
ription of ordinary homology and
ohomology of spa
es (with lo
al 
oeÆ
ients). Note, however, the shift in indexing: inparti
ular, we lose H0, sin
e we 
an deal only with 
onne
ted spa
es from this pointof view.There is also an algebrai
 model for not-ne
essarily-
onne
ted spa
es due to Dwyerand Kan, using simpli
ial groupoids (see [GJ, V, x5℄), and Quillen's approa
h, as wellas mu
h of the dis
ussion here, 
arries over to that setting (
ompare [D2℄). However,in order to avoid further 
ompli
ating the des
ription, we restri
t attention here tosimpli
ial groups.4.7. Diagrams of �-algebras. If D is a small 
ategory and � is a G-theory, thereis a model 
ategory stru
ture on the fun
tor 
ategory s�-AlgD, and the obje
twisedes
riptions of abelian group obje
ts and abelianization (for ea
h d 2 D) providede�nitions of (
o)homology for diagrams of �-algebras, too (see [BJT, x4℄ for thedetails).Moreover, even for C = �-Alg or �-Alg=X, we 
an allow our 
oeÆ
ients to bediagrams G : D ! A-�-Alg of abelian group obje
ts (or X-modules). This enablesus to treat a map su
h as Z !! Z=p (redu
tion mod p), say, as the 
oeÆ
ients for a
ohomology theory (rather than a natural transformation). In parti
ular, we 
an applyany general ma
hinery, su
h as universal 
oeÆ
ient theorems, to H�(�;G), too.4.8. Spheri
al model 
ategories.When C = �-Alg for some G-theory �, the resolution model 
ategory sC (andthe models M = F0� - 
f. x2.10(ii)) will have additional useful stru
ture whi
h isfamilar to us from topologi
al spa
es:1. For any n � 1, �M;n(�) is naturally an abelian group obje
t over �M;0(�).2. Ea
h V� 2 sC has a fun
torial Postnikov tower of �brations:: : :! PnV� p(n)��! Pn�1V� p(n�1)���! � � � ! P0V� ;as well as a weak equivalen
e r : V� ! P1V� := limn PnV� and �brationsP1V� r(n)��! PnV� su
h that r(n�1) = p(n) Æ r(n) for all n, and (r(n) Æ r)# :�M;kV� ! �M;kPnV� is an isomorphism for k � n, and zero for k > n.3. For every �-algebra X, there is a 
lassifying obje
t BX with BX ' P0BXand �M;0BX �= X, unique up to homotopy.4. Given a �-algebra X and an X-module G, there is an extended G-Eilenberg-Ma
 Lane obje
t E = EX(G; n) in sC=X for ea
h n � 1, unique up tohomotopy, equipped with a se
tion s for p(0) : E ! P0E ' BX, su
h that��M;nE �= G as X-modules; and �M;kE = 0 for k 6= 0; n. If G is a trivialX-module (x3.21), we write simply E(G; n).Any resolution model 
ategory with this additional stru
ture (as well as fun
torialk-invariants) is 
alled a spheri
al model 
ategory. See [B3, x1-2℄ for the details.4.9. Remark. The homotopy groups �M;n in the resolution model 
ategory s�-Algare 
orepresented by Sn 
 F�(s) for M = F�(s) 2 F0�, s 2 S � � (
f. x2.9). Thus



16 DAVID BLANCby adjointness for any V� 2 s�-Alg we have:�M;nV� = [Sn 
 F�(s); V�℄� = [Sn; (U�V�)s℄ = �n(U�V�)s ;so that the group �M;nX (indu
ed by the homotopy 
ogroup stru
ture of Sn) isthe usual n-th simpli
ial homotopy group of the graded simpli
ial group U�V� in theappropriate degree.This works also in s�-Alg=X: more pre
isely, �M;nV� as de�ned above is anabelian group obje
t in �-Alg=�M;0V�, and applying � of Proposition 3.14 yields a�M;0V�-module, whose underlying S-graded set is �nU�V� (see [BP, x4.14℄).4.10. Cohomology in s�-Alg. It may appear more natural to take as a representingobje
t an abelian group obje
t in the model 
ategory s�-Alg itself. In most 
asesthis will yield no new 
ohomology groups, but it will enable us to de�ne, and in some
ases 
ompute, the primary 
ohomology operations { as we do for topologi
al spa
es(see, e.g., [P℄).The obvious examples are those of the form E(G; n) as above (or EX(G; n) ins�-Alg=BX, if we want lo
al 
oeÆ
ients). In most 
ases of interest { in
luding T�,S�, G = sGp { the only obje
ts in A-s�-Alg are produ
ts of the above. Furthermore,sin
e E(�; n) : A-�-Alg ! s�-Alg is a fun
tor, we 
an de�ne an Eilenberg-Ma
 Lanediagram E(G; n) for any diagram G : D! A-�-Alg as in x4.7.Thus for any 
o�brant W� in s�-Alg and 
oeÆ
ients M 2 A-�-AlgD, forea
h n � 1 we de�ne the n-th 
ohomology group of W� with 
oeÆ
ients in G,denoted by Hn(W�;G), to be the set of 
omponents of map(W�; E(G; n)) (whi
h isa D-diagram of simpli
ial abelian groups, so the 
omponents 
onstitute a D-diagramof abelian groups).Again, there is also a lo
al version, for G in �-Alg=X or M : D ! A-�-Alg=X,yielding:Hn(W�=X;G) := �0map s�-Alg=X(W�; EX(G; n)) for ea
h n � 1:4.11. Proposition. If � a G-theory, X is a �-algebra, and G is in A-(�-Alg=X),then 
ohomology with 
oeÆ
ients in G as de�ned in x4.1 is naturally isomorphi
 tothat de�ned in x4.10.Compare [D1, x3℄.Proof. Let K be the X-module 
orresponding to G = K o X, so E� := EX(G; n)is of the form E(K; n) o X, where E(K; n) is obtained from the analogous 
hain
omplex (over X-Mod) by the Dold-Kan equivalen
e (
f. [May1, p. 95℄). Thus:(4.12) Ei = 8>>><>>>:X for 0 � i < nK oX i = n(Lnj=0 sjK) oX i = n+ 1MiE� i � n + 2 ;(where MiE� is the i-th mat
hing obje
t { see [BK, X, x4.5℄ or [BJT, x2.1℄), withthe di�erential:(4.13) �n+1(x; �)) := (n+1Xi=0 dix; �) for every (x; �) 2 En+1 :
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ial obje
t in sC, with " :W0 ! X indu
ing �0W� �= X(for example, W� 
ould be a resolution of X). From (4.12) and (4.13) we see thatHom sC=X(W�; E�) is naturally isomorphi
 to the subgroup of Hom C=X(Wn; K o X)
onsisting of maps f : Wn ! K oX (over X) for whi
h f Æ di is the proje
tion toX (the zero of Hom(C=X)(Wn+1; K oX) for ea
h 0 � i � n + 1. Here Wn mapsto X by " Æ d0 Æ � � � Æ d0.Again by the Dold-Kan equivalen
e, there is a path obje
t EI� for E� in s�-Alg=Xwith(4.14) EIi = 8>>><>>>:X for 0 � i < n� 1K oX i = n� 1(K �K �Ln�1j=0 sjK) oX i = nMiE� i � n+ 1 ;with d0 the identity on the �rst 
opy of K oX in EIn, and minus the identity onthe se
ond 
opy. There are two obvious proje
tions p0; p1 : EI� ! E�, and a homotopybetween two maps f0; f1 : W� ! E� over X is a map F : W� ! EI� with pi ÆF = fi(i = 0; 1), whi
h in turn 
orresponds to a map F 0 : Wn�1 ! KoX over X for whi
hF 0 Æ d0 represents f0; f1 respe
tively on the two 
opies of K oX.Thus we see that Hn(W�=X;M) := [W�; E�℄sC=X is 
anoni
ally isomorphi
 to then-th 
ohomotopy group of the 
osimpli
ial abelian group Hom(C=X)(W�; K oX), as
laimed. �4.15. Cohomology of operads and their algebras.As noted in x1.3(b), our de�nition of sket
hable 
ategories 
overs both the 
ategoryof operads, O-Alg, and that of algebras over a given operad P.Of 
ourse, O is not a G-theory; however, essentially all known appli
ations are tooperads of (
onne
ted) topologi
al spa
es or of 
hain 
omplexes (see [MSS℄). In the�rst 
ase, we 
an use (4.6) to repla
e T� by G, so that in both 
ases we may assume,without loss of generality, that our operad takes value in s�-Alg for some G-theory�. Note that the 
ategory of O-algebras in s�-Alg is equivalent to s~�-Alg, where~� = O�� (produ
t of FP-sket
hes) is now an G-theory (see x1.8). Thus the de�nitionof x4.10 (applied to ~�) is valid for operads of spa
es or 
hain 
omplexes.The same applies to algebras over a �xed operad P taking values in T� or Chk forsome �eld k (see [May2, x2℄), as well as to the 
ohomology of a k-linear 
ategory (thatis, algebras over a k-linear PROP) 
onsidered in [Mar2℄.We should observe, however, that the various 
ohomology theories 
onstru
ted {in the 
ontext of deformation theory { in [Mar2℄, in [MS1℄ (for Drinfel'd algebras),in [GS2℄ (for bialgebras), and so on, are de�ned in terms of a spe
i�
 di�erentialgraded resolution. To show that these agree with our general de�nition requires ageneralization of Quillen's equivalen
e between simpli
ial and di�erential graded Liealgebras over Q (see [Q2, I, x4℄, and 
ompare [DP, x3℄). One 
an expe
t su
h anequivalen
e only for suitable k-linear 
ategories over a �eld k of 
hara
teristi
 0.4.16. Remark. We should point out that a di�erent de�nition of (
o)homology for�-algebras, based on the Baues-Wirs
hing and Ho
hs
hild-Mit
hell 
ohomologies of
ategories (
f. [BW, Mit℄), is given by Jibladze and Pirashvili in [JP℄. See [S
2,Theorem 6.7℄ for an equivalent formulation in terms of the topologi
al Ho
hs
hild(
o)homology of suitable ring spe
tra.



18 DAVID BLANC4.17. Cohomology of sheaves. We have assumed so far that � was a G-theory.This is ne
essary for the approa
h des
ribed here at two points: in order to identify the(abelian) group obje
ts in �-Alg (see Se
tion 3), and to de�ne the model 
ategorystru
ture on s�-Alg (see x2.10(ii)). This is a resolution model 
ategory (indu
edby the adjoint pair (F�; U�) of x1.7) only with some su
h additional assumption (
f.[B2℄): otherwise the free �-algebras are not ne
essarily 
ogroup obje
ts.One obvious example where this fails is the 
ategory of sets, where we apparentlyhave no meaningful 
on
ept of 
ohomology. A more interesting 
ase is the 
ategory ofsheaves on a topologi
al spa
e X, sket
hed by �U (see x1.3). Note that there is nofree/forgetful adjoint pair between �ÆU -Alg and �U -Alg or �ab = A-�U �= �U -Abgp,sin
e sheaves of abelian groups rarely have any proje
tives (e.g., ZCU in x1.3 (
) isnot generally a sheaf). However, they do have enough inje
tives, so if we repla
e leftderived fun
tors by right derived fun
tors in x2.4, with E = �U -Alg, V = Set, and� = A, we may de�ne Hn(X;F), for any F 2 �-E , to be the right derived fun
torsof Hom E(CX ;�), applied to F . This also explains why our de�nition of homologydoes not make sense for sheaves.5. Generalized 
ohomologyFor simpli
ial �-algebras over a G-theory � { and thus for simpli
ial sets ortopologi
al spa
es { the only stri
t abelian group obje
ts are generalized Eilenberg-Ma
 Lane obje
ts (
f. [Moo, 19.6℄). Of 
ourse, in any model 
ategory D, any abeliangroup obje
t G in hoD de�nes a fun
tor [�; G℄ : hoD ! Abgp; but su
h fun
tors donot usually satisfy the axioms of a 
ohomology theory. From our point of view, this isbe
ause the stru
ture maps on the higher produ
ts Gk (k � 3) whi
h are needed tomake G an G- or A-algebra in D are not uniquely de�ned.One way to deal with this problem would be to require that G have an E1-operada
ting on it (
f. [May2, x14℄). If D = T� (or S�), by a result of Boardman and Vogt,under mild topologi
al restri
tions any E1 H-spa
e is homotopy equivalent to a stri
tabelian monoid in D (
f. [BV, Theorem 4.58℄.5.1. �-spa
es. Homotopy-
oherent abelian monoids may be 
onveniently des
ribedin terms of a lax version of A, representing �-spa
es (
f. [Se2℄):Let � denote the 
ategory of �nite pointed sets, and 
hoose a set n+ = f0; : : : ; ng(with basepoint 0) for ea
h n 2 N . A �-obje
t in a pointed 
ategory C is a pointedfun
tor G : �! C; the 
ategory of all su
h will be denoted by �-C. Note that if C is
o
omplete, we 
an extend G to all of Set� by assuming it 
ommutes with arbitrary
olimits. A �-spa
e G { that is, an obje
t in �-S� (or �-T�) { is 
alled spe
ial iffor A;A0 2 �, the natural map G(A _ A0) ! G(A) � G(A0) is a weak equivalen
e.This implies that for ea
h n 2 N , the obvious map(5.2) G(n+)! G(1+)� : : :�G(1+)| {z }nis a weak equivalen
e. Su
h a G is 
alled very spe
ial if in addition �0G(1+) is anabelian group under the indu
ed monoid stru
ture.5.3. De�nition. A spe
ial �-spa
e G has a 
lassifying �-spa
e BG, whi
h is itselfspe
ial, de�ned by setting (BG)(n+) := G(n+�n+), with the diagonal stru
ture maps
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ompare [Mil℄). By iterating the fun
tor B we obtain a 
-spe
trumBG := h(BiG)(1+)i1i=0.Thus G(1+) itself is an in�nite loop spa
e (with a spe
i�ed H-spa
e stru
ture) ifand only if G is very spe
ial.5.4. The �+-
onstru
tion. For any pointed simpli
ial set K 2 S�, Barratt de�nesthe free simpli
ial monoid �+K to be `n�1 Kn��n W�n= �, where � is generatedby the obvious in
lusions Kn ,! Kn+1 and �n ,! �n+1 (
f. [Ba, x4℄). Then �+K isa
tually a �-spa
e (see [A1, x8℄). To avoid 
onfusion in the notation we shall denote thisfun
tor by 
+ : S� ! �-S�. The (dimensionwise) group 
ompletion 
K := 
B
+Kis a very spe
ial �-spa
e, whi
h models the in�nite loop spa
e 
1�1K.The fun
tor 
 : S� ! �-S� is left adjoint to G 7! G(1+). If K is 
onne
ted, then
+K ' 
K (
f. [Ba, Theorem 6.1℄). Note that we 
an think of S := 
S0 as thein
lusion fun
tor �! S� (
f. [Ly, 2.7℄).5.5. The model 
ategory of �-spa
es. In [BF, x3℄, Bous�eld and Friedlander de�nea proper simpli
ial model 
ategory stru
ture on �-S� as a diagram 
ategory with �n-a
tion on ea
h G(n+), whi
h they 
all the stri
t model 
ategory: a map f : G! G0 isa weak equivalen
e if f(n+) : G(n+)! G0(n+) is a �n-equivariant weak equivalen
efor ea
h n � 1, and it is a (
o)�bration if it is a �n-Reedy (
o)�bration (see [Hi,x15.3℄).They show that the homotopy 
ategory of very spe
ial �-spa
es is equivalent to thatof 
onne
tive spe
tra (see [BF, Theorem 5.1℄), with Quillen equivalen
es provided byiterations of the fun
tor B and its adjoint. They then de�ne a stable weak equivalen
eof �-spa
es to be a map indu
ing a weak equivalen
e of the 
orresponding spe
tra,and so obtain a new simpli
ial model 
ategory stru
ture on �-S� (with the same
o�brations, but fewer �brations), whose homotopy 
ategory is again equivalent to theusual stable 
ategory of 
onne
tive spe
tra (see [BF, Theorem 5.8℄).Variants on these two model 
ategory stru
tures (with the same weak equivalen
es)are provided in [S
1, App. A℄.5.6. �-simpli
ial groups. In view of (4.6), it is natural to think of the 
ategory�-G of �-simpli
ial groups as representing 
onne
ted in�nite loop spa
es; note thatevery spe
ial �-obje
t here is trivially very spe
ial, be
ause of the shift in indexing forhomotopy groups.A �-simpli
ial group G also known as a 
hain fun
tor (
f. [A2, x1℄), sin
e one 
anasso
iate to it a generalized homology theory by setting Hn(X;G) := �n(G�X) forea
h X 2 S�, where the simpli
ial group G�X is de�ned by GnX := G(Xn)n. Hereea
h G(Xn) 2 G is de�ned as above by extending G from � to Set�, so that G�Xis a
tually the diagonal of a bisimpli
ial group.Equivalently, given a �-spa
e G 2 �-S�, extend it via 
olimits from � to Set� andthus via the diagonal to a fun
tor ~G : S� ! S�, whi
h in fa
t takes a (pre)spe
trum(Xn)n2N to a (pre)spe
trum ( ~GXn)n2N using:S1 ^ ~G(Xn)! ~G(S1 ^Xn)! ~G(Xn+1) :Thus for ea
h X 2 S�, one may evaluate the homology theory asso
iated to G on Xby: Hn(X;G) �= �Sn ~G(S ^X) = 
olimk!1 �n+k ~G(Sk ^X) ;



20 DAVID BLANCwhere S := hSni1n=0 is the sphere spe
trum.Note that if G is very spe
ial, then ~G(S ^X) is the 
-spe
trum 
orresponding toAnderson's G�X (see [BF, x4℄.5.7. Generalized 
ohomology. We now explain how the de�nitions of x2.4 applyin this 
ontext: �rst, note that the usual model 
ategory stru
ture on E = S� issymmetri
 monoidal and enri
hed over V = S� (
f. [Q1, II, x3℄). Now for � = �,Lydakis (in [Ly℄) de�ned a smash produ
t of �-spa
es making �-V = �-S�, too, into asymmetri
 monoidal 
ategory, with unit S. He also de�nes internal fun
tion 
omplexesHom�-S�(G;H) 2 �-S� for G;H 2 �-S� by setting:(5.8) Hom�-S�(G;H)(n+) := map�-S�(G;H(n+ ^ �)) ;where H(n+^�))(k+) := H(n+^k+) and map�-S�(�;�) 2 S� is the usual simpli
ialfun
tion 
omplex.Thus �-E = �-S� is indeed enri
hed over �-V (
f. [Ly, 2.1℄). Moreover, �-Vis semi-triangulated, with the delooping B : �-S� ! �-S� (x5.3) as the \suspensionautomorphism" T of x2.3. The deloopings of the 0-sphere fBnSg1n=0 
orepresenthomotopy groups in ho �-S�, sin
e its homotopy 
ategory is equivalent to that of
onne
tive spe
tra, with generator S (
orresponding to S0).Now for any �-spa
e G 2 �-E and any pointed simpli
ial set K 2 E , Hom E(K;G)is a �brant �-set (x1.2), so the S�-fun
tion 
omplex M := map�(K;G) is a �-spa
e. IfG is (very) spe
ial, so is M , sin
e map�(K;�) has homotopy meaning and preservesprodu
ts.Moreover, applying Barratt's fun
tor yields a spe
ial �-spa
e 
K, and the adjun
-tion isomorphism:(5.9) M = map�(K;G) �=�! Hom�-E(
K;G)indu
es an isomorphism between the homotopy groups ofM and those of Hom�-E(
K;G)(
orepresented by S and its suspensions).Therefore, for spe
ial G the homotopy groups of M are determined by those ofM(1+) = map�(K;G(1+)), whi
h are by de�nition H�(K;G), the generalized 
oho-mology groups asso
iated to the 
-spe
trum for G.5.10. Generalized homology. Barratt's fun
tor 
 : E ! �-E is the requiredfun
tor A�, by (5.9), so its left derived fun
tors are ��
K (sin
e every Kis 
o�brant). These turn out to be the stable homotopy groups of K, and are byde�nition the homology groups of K in this 
ontext.Finally, sin
e the smash produ
t of (
o�brant) �-spa
es is taken to the smash produ
tof spe
tra under the equivalen
e of homotopy 
ategories (see [Ly, Lemma 5.16℄), we seethat the groups H�(K;G) of x2.5 are just the generalized homology groups asso
iatedto the 
-spe
trum for G.5.11. The (
o)simpli
ial version.We next show how these de�nitions 
an be made to �t the des
ription in x2.12:First, note that sS, as well as sT� and sG (
f. x4.5), have resolution model
ategory stru
tures with M = fS1g { this is the original E2-model 
ategory of [DKS,x5.10℄, whi
h was 
onstru
ted pre
isely so that if V� is a resolution of X 2 S, thenthe diagional diagV� (or equivalently, the realization of the 
orresponding simpli
ial
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e) is weakly equivalent to X. Moreover, S, as well as T� and G, are enri
hed overV := S with its usual 
losed symmetri
 monoidal stru
ture.We also need a suitable model 
ategory stru
ture on the 
ategory 
�-S� of 
osimpli-
ial �-spa
es { namely, the dual of Moerdijk's model 
ategory of bisimpli
ial sets (
f.[Moe, x1℄), in whi
h a map f : X� ! Y � of 
osimpli
ial �-spa
es is a weak equivalen
e(resp., 
o�bration) if Tot f is a weak equivalen
e (resp., 
o�bration) of �-spa
es. Thisimplies that Tot : 
�-S� ! �-S� indu
es an equivalen
e of homotopy 
ategories, sofor all pra
ti
al purposes we 
an avoid working with 
osimpli
ial obje
ts altogether(but see Theorem 6.18 below). The inverse equivalen
e 
�-S� ! 
�-S� is de�ned by� 7! 
(�)� (the 
onstant 
osimpli
ial obje
t). Thus ho(
�-S�) (with this stru
ture)is equivalent to the stable 
ategory of 
onne
tive spe
tra, whi
h is semi-triangulated,with 
(B)� Æ Tot : 
�-S� ! 
�-S� (x5.3) as the suspension automorphism T , and
(S)� as generator.Now, given a spe
ial �-spa
e G 2 �-S� and a free simpli
ial resolution V� ! X inthe original resolution model 
ategory sS, for any simpli
ial set Y { in parti
ular,for Y = G(1+) { we have:(5.12) map�(diagV�; Y ) �= Totmap�(V�; Y )(see [BK, XII, x4.3℄). Thus in our 
ase the 
osimpli
ial �-spa
e map�(V�; G) is weaklyequivalent to the (
onstant 
osimpli
ial) spa
e 
(map�(X;G(1+)))�, whose homotopygroups are H�(K;G) (x5.7).Finally, note that Barratt's fun
tors 
+ and 
 are de�ned dimensionwise on asimpli
ial set K, so that diag 
V� = 
 diagV�for any bisimpli
ial set V�. Thus we may de�ne A� : E ! �-E to be 
, and itstotal left derived fun
tor is naturally equivalent to 
 (in Moerdijk's model 
ategorysS�), sin
e diagV� '�! K for any free simpli
ial resolution V� ! K. Thus again the(unadorned) homology groups are the stable homotopy groups of K, and H�(K;G)are the generalized homology groups asso
iated to the 
-spe
trum for G.6. The spe
tral sequen
esWe now want to use this ma
hinery to try to understand relationships among thevarious homology and 
ohomology theories. First, we shall need a preliminary notion:6.1. De�nition. If M is a set of models in a model 
ategory C (with �M � C asin x2.7), then C-� := (ho�M)op is a G-theory, whi
h sket
hes the 
ategory C-�-Algof C-�-algebras (
f. [BS, x3℄).6.2. Remark. If we think ofM and its suspensions as 
orepresenting homotopy groupsin C (
f. x4.9), then C-�-algebras are graded groups equipped with an a
tion ofthe 
orresponding primary homotopy operations - the motivating example being�M;�X for any X 2 sC. This notion may be extended to any 
on
rete 
ategoryC by the 
onventions of [BS, x3.2.2℄, and may also be dualized as in [Bou℄ by takingC-� := ho�M, rather than the opposite 
ategory (
f. [BP, x1.13℄).Note that the derived fun
tors of any fun
tor into C a
tually take values in C-�-Alg.6.3. Examples. (a) If C has a trivial model 
ategory stru
ture, and M 
onsists of(enough) proje
tive generators { e.g., if C = �-Alg and M = F0� { thenC-�-Alg �= C.



22 DAVID BLANC(b) If C = sD or 
D for some abelian 
ategory D, and M again 
onsists of(enough) proje
tive generators { e.g., for C = s�X and M as above {then C-�-Alg �= grN D (where we use lower or upper indi
es for the gradinga

ording to the usual 
onvention).(
) For C = T� or S�, with M = fS1g, then C-�-Alg �= �-Alg is the 
ategory ofordinary �-algebras, modeling the usual homotopy groups of topologi
al spa
es.(d) If C = �-S� and M = fSg, then C-�-Alg is equivalent to the 
ategory ofgraded 
onne
ted �-modules for � = �S� S0 (homotopy groups of the spherespe
trum), sin
e �M;�G are just the stable homotopy groups of the 
-spe
trum
orresponding to G 2 �-S�.Using the Quillen equivalen
e of (4.6), we see that when C = s�-Alg we oftenhave interesting 
ategories of C-�-algebras (see, e.g., [BS, x3.2.1℄).We shall also need the following version of [BS, Prop. 3.2.3℄:6.4. Proposition. Any 
ontravariant fun
tor T : C ! 
B from a model 
ategory C(equipped with a set of models M) to a 
on
rete 
ategory B indu
es a graded fun
tor�T � : sC-�-Alg ! sB-�-Alg by setting �T k(�M;�V�) := �k(TV�) for 
o�brant V� 2 sC,and extending by taking 0-th derived fun
tor.Proof. Sin
e �M;� : ho�M ! FC-� is an equivalen
e of 
ategories (onto the free C-�-algebras), in parti
ular �M;�V� �= �M;�W� , V� ' W� for 
o�brant V�;W� 2 sC,so �T � is well-de�ned on free C-�-algebras. �6.5. A general setting.In Se
tions 3-5 the algebrai
 and topologi
al versions of homology and 
ohomologyhave been treated separately. We now show how the Pro
rustean framework of x2.12may be used in order to obtain a uniform des
ription of various relations between them.6.6. Examples. We wish to 
on
entrate on the following list of 
ohomologi
al settings(De�nition 2.13), dis
ussed above:(a) hC = �-Alg;M = F0�;V = Set;� = A; A� = A�i for some G-theory �;(b) More generally, hC = �-Alg=X;M = F0�=X;V = Set;� = A; A� = A�X i forsome G-theory � and �xed X 2 �-Alg.(
) hC = s�-Alg=X;M = f
(F�(s))� j F�(s) 2 F0�g;V = S�;�; A�i where � is somestrong A-sket
h.(d) hC = S�;M = fS1g;V = S�;� = �; A� = 
i (with the symmetri
 monoidal stru
-ture on �-S� of x5.7).In all these examples we have additional properties whi
h we shall require in ourappli
ations, whi
h we may formalize as follows:6.7. De�nition. A 
ohomologi
al setting hC;M;V;�; A�i is 
omplete if if it isequipped with:(1) A left adjoint diag : sC ! C to the in
lusion 
(�)� : C ! sC, whi
h indu
esdiag : s�-C ! �-C, as well as a 
onvergent �rst-quadrant spe
tral sequen
ewith:(6.8) E2s;t �= �s�M;tV� =) �M;s+t(diagV�) ;for ea
h V� 2 sC and M 2 M;
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V ! V to the in
lusion 
(�)� : V ! 
V, whi
h indu
esTot : 
�-V ! �-V, as well as a se
ond-quadrant spe
tral sequen
e with:(6.9) Es;t2 �= �s�M 0;tX� =) �M 0;t�s(TotX�) ;for ea
h X� 2 
V and M 0 2 M� (we do not address questions of 
onver-gen
e);(3) A natural \�-C-adjointness" isomorphism:(6.10) Tot(Hom(V�; G) �=�! Hom(diagV�; G)for any V� 2 s�-C and G 2 �-C.6.11. Proposition. Ea
h of the examples of x6.6 is a 
omplete 
ohomologi
al setting.Proof. Sin
e (a) and (b) are instan
es of (
), we have only two 
ases to 
onsider:(1) Assume C = s�-Alg=X for some G-theory � sorted by S. Then V� 2 sCis a bisimpli
ial �-algebra (over X), and let diagV� be the usual diagonal (with(diagV�)n := (Vn)n). Note that U�V� is just an an S-graded bisimpli
ial set, withU� diagV� = diagU�V� (even though 
olimits are not generally preserved by U�).By Remark 4.9 we see that the Bous�eld-Friedlander spe
tral sequen
e for U�V� inea
h degree (
f. [BF, Theorem B.5℄) has the form (6.8).Similarly, given a 
osimpli
ial obje
t X� 2 
(s�-�-Alg=X), the usual Tot forthe (S-graded) 
osimpli
ial simpli
ial set U�X� is de�ned to be the simpli
ial setT� with Tn := Hom
Set(�� 
 �[n℄; X�), and this has a natural stru
ture of a �-algebra in �-Alg=X by Remarks 1.2 and 2.11 and x1.8. Thus TotU�X� lifts toTotX� 2 s�-Alg. The homotopy spe
tral sequen
e for the 
osimpli
ial spa
e U�X�,with: Es;t2 = �s�tU�X� =) �t�s(TotU�X�) ;(see [BK, X, 6.1 & 7.2℄) gives (6.9) (though it does not ne
essarily 
onverge!).Finally, (6.10) follows from (5.12).(2) For C = S� we 
an use the usual diagonal and Tot and the original spe
tralsequen
es for (
o)simpli
ial spa
es. For (6.10), 
onsider the 
osimpli
ial �-spa
eE� := Hom�-S�(V�; G): De�nition (5.8) of Hom�-S� in terms of the simpli
ialfun
tion 
omplex map�-S� shows that TotE� �= Hom�-S�(diagV�; G) again, by(5.12). �With this at hand, we 
an des
ribe several spe
tral sequen
es 
onne
ting the variousfun
tors we have de�ned so far. First, a universal 
oeÆ
ients theorem for 
ohomology:6.12. Theorem. Let hC;M;V;�; A�i be a 
omplete 
ohomologi
al setting, and letG be a �-algebra in C. Then for any Y 2 C there is a natural 
ohomologi
al spe
tralsequen
e with Es;t2 �= Ext s;t(H�Y;G) =) H t�s(Y ;G) ;where Ext s;t(C;G) := (Ls �T (C))t for any C 2 (�-C)-�-Alg, and T := Hom(�; G).Proof. Let Z ! Y be a 
o�brant repla
ement in C, and assume G is �brant. We useM� := fA�MgM2M as models in �-C (x2.12), with T n as the suspension (x2.1),to de�ne the resolution model 
ategory stru
ture on s�-C. As in the proof of [BS,Theorem 4.2℄, let V� ! A�Z be a free simpli
ial resolution in s�-C, so that by (6.8)the natural map diagV� ! A�Z is a weak equivalen
e.



24 DAVID BLANCIf we set E� := Hom(V�; G) (a 
osimpli
ial �-algebra in C), then by (6.10) and(2.14):TotE� = Hom(diagV�; G) ' Hom(A�Z;G) �= map(Z;G) = Lmap(�; G)(Y )ao �M�;t�s(TotE�) = �M�;t�smap(Z;G) = H t�s(Y ;G) by De�nition 2.15.On the other hand, sin
e ea
h Vn is 
o�brant:�M�;�En = �M�;�Hom(Vn; G) = �T (�M�;�Vn)and sin
e V� ! A�Z is a 
o�brant repla
ement, �M�;�V� ! �M�;�A�Z =: H�Y isa free resolution in (�-C)-�-Alg, so:�s�M�;�E� = �s( �T (�M�;�V�)) = �sL �T (H�Y ) = Ls �T (H�Y ) ;as 
laimed. �Note that for generalized 
ohomology of spa
es this takes the familar form (
f. [Ad℄and [EKMM, IV, x4℄):6.13. Corollary. For any spe
ial G 2 �-S� and K 2 S� there is a se
ond quadrantspe
tral sequen
e with:Es;�2 �= Exts�-Mod(�S�K;G) =) Hs�t(K;G):There is also a version for homology:6.14. Proposition. Let hC;M;V;�; A�i be a 
omplete 
ohomologi
al setting, and letG be a �-algebra in C. Then for any Y 2 C there is a natural �rst quadrant spe
tralsequen
e with(6.15) E2s;t �= Tor s;t(H�Y;G) =) Ht+s(Y ;G) ;where Tor s;�(C;G) := (Ls �T (C)) for any C 2 (�-C)-�-Alg, and T := �
G.Proof. This generalization of [BS, Theorem 4.4℄ for the 
omposite fun
tor:�M A���! �-C �
G���! �-Cis proven like Theorem 6.12, with (6.8) repla
ing (6.9). �For generalized homology this takes the form:6.16. Corollary. For any spe
ial G 2 �-S� and K 2 S� there is a natural �rstquadrant spe
tral sequen
e with:E2s;t �= Tor�-Mods;t (�S�K;G) =) Ht+s(K;G):Finally, we have the following two generalizations of [B1℄:6.17. Theorem. Let hC;M;V;�; A�i be a 
omplete 
ohomologi
al setting, and letG be a �-algebra in C. Then for any Y 2 C there is a natural �rst quadrant spe
tralsequen
e with E2s;t �= Ls �T (�M;�Y )t =) Ht+s(Y ;G) ;where where T := A�(�)
G.



GENERALIZED ANDR�E-QUILLEN COHOMOLOGY 25Proof. Similar to the proof of Theorem 6.12, ex
ept that here we start with a freesimpli
ial resolution V� ! Y in sC, and note that in this 
ase �M;�V� ! �M;�Y isa free simpli
ial resolution in the 
ategory sC-�-Alg. �In [Se1, Prop. 5.1℄, Segal produ
ed a stable version of this spe
tral sequen
e for anygeneralized homology theory k� (
onverging strongly to k�X if k� is 
onne
tive).6.18. Theorem. For Y and G as above, there is a natural se
ond quadrant spe
tralsequen
e with: Es;t2 �= dExtst(�M;�Y;G) =) H t�s(X;G) ;where dExts(�; G) := Ls �T for T := mapC(�; G).Note that S
hwede, in [S
2, x5.5℄, also de�ned a spe
tral sequen
e relating the stablehomotopy of a �-algebra to Quillen homology.Referen
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