
The plus 
onstru
tion, Postnikov towers anduniversal 
entral module extensionsDavid Blan
 and George Pes
hke�June 18, 2002Abstra
tGiven a 
onne
ted spa
e X, we 
onsider the e�e
t of Quillen's plus 
onstru
tion onthe homotopy groups of X in terms of its Postnikov de
omposition. Spe
i�
ally,using universal properties of the �bration sequen
e AX ! X ! X+, we explainthe 
ontribution of �nX to �nX+, �n+1X+ and �nAX, �n+1AX expli
itly interms of the low dimensional homology of �nX regarded as a module over �1X. Keyingredients developed here for this purpose are universal �-
entral �brations anda theory of universal 
entral extensions of modules, analogous to universal 
entralextensions of perfe
t groups. 1Introdu
tion Quillen's plus 
onstru
tion (
f. [10℄), applied to a spa
e X, yields auniversal map � : X ! X+, whi
h is 
hara
terized by the fa
t that it quotients outthe maximal perfe
t subgroup of �1X and indu
es isomorphisms in all homology theories(in
luding homology with twisted 
oeÆ
ients). In general, a map between 
onne
tedspa
es satis�es this homologi
al 
ondition if and only if its homotopy �ber is a
y
li
; see[11℄ and 
ompare [5℄. We denote the homotopy �ber of � : X ! X+ by AX.Understanding the map ��� : ��X ! ��X+ is helpful in studying the e�e
t of homolog-i
al lo
alization fun
tors on homotopy groups (see 4.5) and in higher algebrai
 K-theory.Su
h understanding was obtained early on in low dimensions and, ex
ept for spe
ial 
ases,this has remained the extent of our knowledge. With the following result we 
larify 
om-pletely the 
ontribution of �nX to �nX+ and �n+1X+, for ea
h n � 2.Theorem A Let X be a 
onne
ted CW 
omplex. Applying the plus 
onstru
tion tothe Postnikov se
tion K(�nX; n) ! PnX ! Pn�1X (n � 2), yields the 
ommutative�Resear
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diagram of �brations whose properties are formulated below:F /

�

K(�nX; n) /

�

�
�APnX /

�

PnX /

�

(PnX)+
�APn�1X / Pn�1X / (Pn�1X)+

(FD)
The �bers F and � are (n�1)-
onne
ted, and their lowest non-vanishing homotopy groups�t into the natural 
ommutative diagram of exa
t sequen
es in whi
h every verti
al arrowis an isomorphism.H1( eG; �nX) / /�=

�

I[ eG℄
 eG �nX �
/�=

�

�nX / / H0( eG; �nX)�=
��n+1� / / �nF / �nX / / �n� (UCE)

Moreover, there is an epimorphism�n+2� �=�! �n+1F �!! Hn+1F �= � H2( eG; I[ eG℄
 eG �nX):Here eG is the universal 
entral extension of the maximal perfe
t subgroup G of �1X, andI[ eG℄ is the augmentation ideal of the integral group ring of eG. �On the ba
kground of Theorem A: Our approa
h to Theorem A is guided by prop-erties of the homotopy �bration sequen
e of �:
X+ i�! AX �! X ��! X+As noted in [9, 0.1.iv℄, the a
y
li
 spa
e AX is just the a
y
lization of X, as de�ned byDror in [3℄ (see also [4℄). The following two theorems express the universal properties of theplus 
onstru
tion and a
y
lization in a form whi
h lends itself better to an interpretationin terms of homotopy groups.Theorem B [9, 7.7℄ The �bration 
X+ i! AX ! X is �-
entral, in the sensethat all Whitehead produ
ts [i��; �℄ vanish, where � 2 �p
X+ and � 2 �qAX, p; q � 1.�Theorem C The �bration 
X+ ! AX ! X is initial amongst �-
entral �brationsin the following sense: given a solid diagram of �-
entral �brations
X+ /

�

AX /

�

XF / E q / X2



in whi
h G := im(q) is the maximal perfe
t subgroup of �1X, dotted maps exist makingthe diagram 
ommute. Moreover, the dotted maps are unique up to verti
al homotopy.�To get a feel for the impli
ations of Theorems B and C, 
onsider �rst the following wellknown exa
t sequen
e�2X+ /

� �
??

??
??

?
�1AX /

� �
??

??
??

?
�1X / �1X+H2G?

?������� G ?

?�������in whi
h �1AX is the universal 
entral extension of G.This sequen
e 
an be ni
ely explained as a 
onsequen
e of Theorems B and C, usingresults on the universal 
entral extension of a perfe
t group, due to Milnor [8, Se
t. 5℄and Kervaire [6℄.As another 
onsequen
e of Theorems B and C, we obtain Theorem A. It depends upon anew 
on
ept from algebra, namely the universal 
entral extension of a perfe
t module:Theorem D If G is a 2-a
y
li
 group (that is, H1(G;Z) = 0 = H2(G;Z)), thenevery G-module M �ts into an exa
t sequen
eH1(G;M) / / I[G℄
G M �
/ M / / H0(G;M)whose terms have the following properties:(i) im(�) = I[G℄:M is the unique maximal perfe
t submodule of M ; i.e. I[G℄:im(�) =im(�).(ii) H1(G;M)� I[G℄
GM � im(�) is a 
entral extension of im(�) (i.e. G a
ts triviallyon H1(G;M)), and it is initial amongst all su
h 
entral extensions. �Organization of the paper Se
tion 1 supplies some fa
ts on �-
entral �brations,leading up to Theorem C. Se
tion 2 develops material on universal 
entral extensions ofa module over a group ring, leading up to Theorem D. In Se
tion 3 we prove Theorem A,and in Se
tion 4 we 
ompute the a
y
li
 Postnikov invariants of AX (
f. [3℄) in terms ofthe ordinary Postnikov invariants of X.We thank the referees of this paper for their 
onstru
tive 
omments.

3



1 �-
entral �brations with perfe
t targetHere we develop properties of �-
entral �brations, leading up to Theorem C whi
h, inturn, guides our approa
h towards analyzing the e�e
t of the plus 
onstru
tion on ho-motopy groups. We assume throughout that spa
es, maps and homotopies are pointed.Spa
es are assumed to be path 
onne
ted, ex
ept possibly those arising as homotopy�bers.1.1 De�nition [9, Se
t. 7℄ A �bration sequen
e F i�! E ! B is 
alled �-
entralif all Whitehead produ
ts [i��; �℄ vanish for any � 2 �pF and � 2 �qE with p; q � 1.Given a map q : W ! Y , we refer to G := im(q�) < �1Y as its target in homotopydimension 1. We say that q has perfe
t target (in homotopy dimension 1) if G is a perfe
tgroup.1.2 Lemma Let F ! W q�! Y be a �-
entral �bration, su
h that q has perfe
ttarget G < �1Y , and suppose f : X ! Y is a map for whi
h G0 := (�1f)�1G is aperfe
t subgroup of �1X. Then the pullba
k �brationF i0
/ W 0 q0

/f 0
�

pullba
k Xf
�F i / W q / Yis �-
entral, and q0 has perfe
t target G0.Proof The pullba
k of a �-
entral �bration is again �-
entral by [9, 7.6℄. An elemen-tary argument shows that im(�1q0) = G0, whi
h is perfe
t by assumption. �1.3 Example For every 
onne
ted CW-spa
e X, the sequen
e 
X+ ! AX 
�! Xis a �-
entral �bration, and 
 has perfe
t target equal to the maximal perfe
t subgroupof �1X. �1.4 De�nition A �-
entral �bration F !W q�! X su
h that q has perfe
t targetG is universal if, under 
onditions (i) and (ii) below, for every solid diagramF /

�

W q
/ef

�

Xf
�F1 / W1 q1 / Y4



there exists a morphism ef of �brations, unique up to homotopy, whi
h makes the diagram
ommute. Diagram 
onditions:(i) The bottom row is a �-
entral �bration su
h that q1 has perfe
t target G1;(ii) f�(G), the image of G under �1f , is 
ontained in G1.1.5 Theorem For every 
onne
ted CW-spa
e X, the �-
entral �bration 
X+ !AX 
�! X is universal, and 
 has target G (=the maximal perfe
t subgroup of �1X).Proof A

ording to De�nition 1.4, suppose we are given a solid diagram
X+ /

�

AX 

/ef

�

Xf
�F1 / W1 q1 / YWe use obstru
tion theory to obtain the required morphism of �brations. At the level offundamental groups we have the diagram of 
entral extensionsH2G / /

�

�1AX �1

/ /

�

G�1f
�ker(�1q1) / / �1W1 / / G1with universal top row. Thus there exists a lift ef 2 : (AX)2 ! W1 from the 2-skeletonof AX to W1, and its restri
tion to (AX)1 is homotopi
ally unique. The existen
e andhomotopi
al uniqueness of ef follow be
ause AX is a
y
li
 and the a
tion of �1Y on ��F1is trivial. �Theorem C follows as a spe
ial 
ase of Theorem 1.5.2 Universal 
entral extensions of perfe
t G-modulesIn this se
tion we develop the 
on
ept of perfe
t modules and their 
entral extensions,and prove Theorem D. We assume some ba
kground material on perfe
t groups and theiruniversal 
entral extensions from [8, Se
t. 5℄.Given a group G and a left G-moduleM , we often use the exa
t \multipli
ation sequen
e"H1(G;M) / / I 
G M �

/ M / / H0(G;M) (MS)5



whi
h 
omes from applying TorZ[G℄� (�;M) to I � Z[G℄� Z. Here Z[G℄ is the integralgroup ring of G and I is its augmentation ideal. All tensor produ
ts are over Z[G℄, and� is the multipli
ation map.2.1 De�nition For n � 1, a group G is 
alled n-a
y
li
 if Hk(G;Z) = 0 for 1 �k � n.Thus 1-a
y
li
 groups are known as perfe
t groups. 2-a
y
li
 groups are sometimes 
alled\superperfe
t".2.2 De�nition Let G be a group and n � 0. A G-module M is 
alled n-a
y
li
 ifHk(G;M) = 0 for 0 � k � n.In analogy with the group theoreti
 terminology, we sometimes refer to a 0-a
y
li
 G-module as a \perfe
t G-module".2.3 Lemma A group G is n-a
y
li
 if and only if its augmentation ideal I is an(n� 1)-a
y
li
 G-module.Proof Apply H�(G;�) to I � Z[G℄� Z. �2.4 Corollary A group G is 1-a
y
li
 if and only if the multipli
ation map � :I 
G I ! I is an epimorphism. G is 2-a
y
li
 if and only if � is an isomorphism.Proof Apply Lemma 2.3 to (MS), using M = I. �2.5 Corollary For n = 1; 2 let G be an n-a
y
li
 group, and letM be an arbitraryG-module; then the G-module I 
G M is (n� 1)-a
y
li
.Proof The multipli
ation map �0 for M 0 = I 
G M is given by the 
ompositeI 
G (I 
G M) �=
/ (I 
G I)
G M �I
M

/ I 
G M:Thus the 
laim follows from Corollary 2.4. �2.6 Corollary If G is an n-a
y
li
 group and A is an abelian group with trivialG-a
tion, then TorZ[G℄k (I; A) = 0, for 0 � k � n� 1.Proof Use the long exa
t sequen
e obtained by applying TorZ[G℄� (�; A) to I �Z[G℄� Z. �6



2.7 De�nition A 
olo
alizing fun
tor on a 
ategory C is a fun
tor C : C ! C,together with a natural transformation " : C ! IdC making the diagram below 
ommu-tative. C Æ C C"�= /"ÆC �=
�

C"
�C " / Id2.8 Theorem For a 2-a
y
li
 group G, the fun
tor E := I 
G�, together with thenatural transformation � : E ! Id de�ned by�M : I 
G M multiply��! M ;is a 
olo
alizing fun
tor from the 
ategory Z[G℄-Mod of left G-modules onto the 
ategoryA1Z[G℄-Mod of 1-a
y
li
 G-modules.Proof E takes values in A1Z[G℄-Mod by Corollary 2.5. The 
olo
alizing propertiesof E require that(1) the diagram EEM E�M�= /�EM �=

�

EM�M
�EM �M / Mbe 
ommutative and natural in M ; and(2) the designated arrows in this diagram be isomorphisms.(1) follows from basi
 properties of the tensor produ
t. For (2), use Corollary 2.4 todedu
e that �EM is an isomorphism. To see that E�M = I 
G �M is an isomorphism,too, we break the sequen
e (MS) up into short exa
t sequen
es:H1(G;M)� I 
G M �M�!! PM and PM �M � H0(G;M):Apply TorZ[G℄� (I;�) to these sequen
es, and use Corollary 2.6 to see that I 
G �M is the
omposite of the two isomorphismsI 
G (I 
G M) �=�! I 
G PM and I 
G PM �=�! I 
G M:The 
laim follows. �7



2.9 De�nition The 
enter of a G-module N is the submodule of elements on whi
hG a
ts trivially. A 
entral extension of a G-module M is a short exa
t sequen
e of G-modules A� N �M so that A maps into the 
enter of N .In analogy with universal 
entral extensions of perfe
t groups we prove2.10 Theorem Given a 2-a
y
li
 group G, a 
entral extension A � fM � M ofG-modules is initial amongst all 
entral extensions of M if and only if fM is 1-a
y
li
 .Proof Assume fM is 1-a
y
li
. In the diagram below, we assume the solid part of thefront fa
e is given. 0
���

��
��

��

/

�

�

�

�

�

�

�

fM �=
/

��
��

��

��
��

��

�

�

�

�

�

�

�

EM
���

��
��

��A / /

�

fM / /

�

M0
���

��
��

��

/ EN
���

��
��

��

�=
/ EM

���
��

��
��B / / N q / / MThe solid part of the ba
k fa
e results from applying the 
olo
alizing fun
tor E. We�nd EA = 0 = EB by Corollary 2.6. Thus the ba
k rows are exa
t, being the ends ofTorZ[G℄� (I;�)-long exa
t sequen
es. So there is a map fM ! EN whi
h makes the righthand ba
k square 
ommute. This yields a map f : fM ! N making the verti
al squarein the 
enter, as well as the right front fa
e, 
ommute. To see that it is unique, assumeg : fM ! N is another su
h map. Then q Æ (f � g) : fM !M is the zero map, so (f � g)lifts to B. This implies that (f � g) = 0, be
ause H0(G;M) = 0 and G a
ts triviallyon B. Thus f = g, implying that the sequen
e is initial amongst all 
entral extensions ofM .To see the 
onverse, we invoke Theorem (2.11) whi
h, of 
ourse, does not depend on thepart of (2.10) we are going to prove now: Part (ii) shows that M is 0-a
y
li
. Part (i)implies that fM �= EM whi
h is 1-a
y
li
. �We 
all a sequen
e of G-modules, as in Theorem 2.10, the universal 
entral extension ofM .2.11 Theorem Given a 2-a
y
li
 group G, the following hold:(i) For every 0-a
y
li
 G-module MH1(G;M)� I 
G M = EM �Mis a universal 
entral extension of M . 8



(ii) A G-module M has a universal 
entral extension if and only if M is 0-a
y
li
;
ompare [8, 5.7℄.Proof (i) The given sequen
e is (MS), taking into a

ount that M is 0-a
y
li
. EMis 1-a
y
li
 by Corollary 2.5. So the 
laim follows from Theorem 2.10.(ii) Suppose M is not 0-a
y
li
, and A � N � M is a universal 
entral extension ofM . Then M , and hen
e N , have H0(G;M) 6= 0 as a G-trivial quotient. Therefore thereare at least two distin
t morphisms from the assumed universal 
entral extension to the
entral extension H0(G;M) / / H0(G;M)�M / / M;a 
ontradi
tion. �We remark that [7, Thm. 1℄ 
an be regarded as a pre
ursor of Theorem 2.11.Proof of Theorem D (i) The module I 
G M is 1-a
y
li
 by Corollary 2.5. SoPM = im(�) is 0-a
y
li
 by 2.12. It is a maximal 0-a
y
li
 submodule of M be
auseany module N with PM < N < M yields a quotient N=PM < H0(G;M) with trivialG-a
tion. However, N=PM is again perfe
t by Proposition 2.12 below. So N = PM .That PM is the unique maximal perfe
t submodule of M also follows from Proposition2.12.(ii) follows from Theorem 2.10. �We 
on
lude this se
tion by formulating some 
losure properties of the 
lasses of n-a
y
li
modules:2.12 Proposition For any group G, and n � 0, the 
lass of perfe
t G-modules is
losed under quotients and arbitrary 
olimits.Proof The natural isomorphism H�(G;��2�M�) �= ��2�H�(G;M�) shows that the
lass of perfe
t G-modules is 
losed under dire
t sums. Further, any quotient M of aperfe
t G-module N is again perfe
t be
ause 0 = H0(G;N)� H0(G;M). �2.13 Proposition Given a 2-a
y
li
 group G, the 
lass of 1-a
y
li
 G-modules is
losed under extensions and arbitrary 
olimits.Proof If M 0 � M � M 00 is an extension of G-modules with M 0 and M 00 1-a
y
li
,then inspe
tion of the asso
iated long exa
t sequen
e in homology shows that M is 1-a
y
li
 as well. By Corollary 2.5 I 
G� takes values in the 
lass of 1-a
y
li
 G-modules.Moreover, I 
G � 
ommutes with arbitrary 
olimits. �
9



3 Proof of Theorem ABy passing to the appropriate 
overing spa
e of X, if ne
essary, we 
an assume that �1Xis perfe
t. So X+ and ea
h Postnikov se
tion (PnX)+ (n � 1) are simply 
onne
ted.3.1 Lemma For n � 2, � is (n� 1)-
onne
ted.Proof This follows from the fa
t that, for k � n,0 = Hk(Pn�1X;PnX;Z) �=�! Hk((Pn�1X)+; (PnX)+;Z): �3.2 Lemma For n � 2, F is (n� 1)-
onne
ted.Proof F is at least (n�2)-
onne
ted be
ause K(�nX; n) and � are (n�1)-
onne
ted.We must show that �n�1F = 0 as well. First of all, we have an epimorphism �n� ��n�1F . So �n�1F is abelian, and the Hurewi
z map �n�1F �=�! Hn�1F is an isomorphismeven for n = 2. Next, by applying the Serre spe
tral sequen
e to the �bration APnX !APn�1X, we see that Hn�1F is a 1-a
y
li
 eG-module. Furthermore, the 
ommutativediagram �n�1
� / /

�

�n�1F
��n�1
(PnX)+ / �n�1APnXtells us that eG a
ts trivially on the image of �n�1F ! �n�1APnX. But the 
lass of 0-a
y
li
 modules is 
losed under quotients by Proposition 2.12. So this image is trivial, andwe have an epimorphism � : �nAPn�1X � �n�1F . On the other hand, eG a
ts triviallyon �kAPn�1X for k � n, be
ause we have isomorphisms �k
(Pn�1X)+ �=�! �kAPn�1Xin the �-
entral �bration 
(Pn�1X)+ ! APn�1X ! Pn�1X. Now � is a morphism ofeG-modules, implying that eG a
ts trivially on the 1-a
y
li
 eG-module �n�1F . Therefore�n�1F = 0, as 
laimed. �Thus we have established the �rst part of Theorem A. We now turn to diagram (UCE)of the Theorem and its properties:The bottom row 
omes from the �bration F ! K(�nX; n)! �, using Lemma 3.2. Theterms �n+1� and �n� are trivial eG-modules and �n+1� is 
ontained in the 
enter of �nF .Further, �nF �= HnF is seen to be a 1-a
y
li
 eG-module, by using the Serre spe
tralsequen
e of the �bration F ! APnX ! APn�1X. Thus N := im(�nF ! �nX) =I[ eG℄:�nX = im(�) is the maximal perfe
t submodule of �nX; see Theorem D(i). FromTheorem 2.10 we see that �n+1�� �nF � N is the universal 
entral extension of N . So10



the verti
al arrows on the left are isomorphisms by Theorem D(ii). The verti
al arrow onthe right is an isomorphism by the Five Lemma.As to �n+1F , it is a trivial eG-module be
ause it �ts into the exa
t sequen
e �n+2APn�1X !�n+1F ! �n+1APnX, where eG a
ts trivially on the outside terms. The Hurewi
z map�n+1F � Hn+1F is onto and is a eG-module map. Thus eG a
ts trivially on Hn+1F as well.Now the Serre spe
tral sequen
e yields an isomorphismH2( eG; I 
 eG �nX) �=�! H0( eG;Hn+1F ) �= Hn+1F;whi
h proves the 
laim, and 
ompletes the proof of Theorem A. �3.3 Remark By 
hasing the diagram of homotopy groups 
oming from the �brationdiagram (FD) one 
an dedu
e further that the maximal perfe
t submodule of �nX isalways 
ontained in ker(�nPnX ! �n(PnX)+). Moreover, the two modules are equalexa
tly when �n+1(PnX)+ ! �n+1(Pn�1X)+ is onto. �4 The a
y
li
 Postnikov tower of AXAlready in the early 1970's Dror showed how to use the a
y
li
 Postnikov tower [3℄ toanalyze an a
y
li
 spa
e Z. The a
y
li
 Postnikov n-stage of Z is simply the a
y
lizationAPnZ of the usual Postnikov se
tion. The a
y
li
 Postnikov n-stage need not havetrivial homotopy groups above dimension n. Instead, the only requirement is that thefundamental group must a
t trivially on these higher homotopy groups.When passing from an (n � 1)-stage Zn�1 to an n-stage, one spli
es into ��Zn�1 a 1-a
y
li
 �1Z-module �n, and there is a 
orresponding \a
y
li
 Postnikov invariant" �n 2Hn+1(Zn�1;M). In addition, in dimensions greater than n, one spli
es into ��Zn�1 
ertain�1Z-modules with trivial a
tion.In general, starting with an arbitrary spa
e X, Dror's a
y
li
 Postnikov tower of AX hasAPnAX as its n-th a
y
li
 Postnikov stage. In Theorem A, we were working with a towerwhose n-th stage is APnX. Below, we establish expli
itly a natural equivalen
e betweenthese towers. With the aid of Theorem A, we express the a
y
li
 Postnikov invariants ofAX in terms of the ordinary Postnikov invariants of X.4.1 Lemma Let X be a 
onne
ted CW-spa
e. Applying su

essively the appropri-
11



ate fun
tors to the map AX ! X yields the 
ommutative 
ubeAPnAX /

�

un
(

PPPPPPPPPP
PnAX

'
NNNNNNNNN

�

APnX /

�

PnX
�

APn�1AXun�1
'

PPPPPPPPPP
/ Pn�1AX

&
NNNNNNNNNAPn�1X / Pn�1Xwhose left hand fa
e is a homotopy equivalen
e of a
y
li
 Postnikov towers.Proof To see that ea
h un is a homotopy equivalen
e, we argue as follows. ApplyingA to the 
ommutative diagramAX /

�

X
�

yields AAX �=
/

�

AX
�PnAX / PnX APnAX un / APnXFor k � n, the right hand square indu
es �k-isomorphisms be
ause the maps on the topand the sides do. This follows from Lemma 3.2. By [3, 3.4℄, un is a homotopy equivalen
e.�4.2 Corollary The fun
tors APnA and APn are naturally equivalent. �In order to determine the a
y
li
 Postnikov invariants of AX, we require the following
ohomologi
al re
ognition tool for a
y
li
 spa
es:4.3 Lemma A 
onne
ted CW-spa
e X is a
y
li
 if and only if its fundamentalgroup G is 2-a
y
li
 and, for every G-moduleM , the morphism � : I
GM !M indu
esisomorphisms �� : Hr(X; I 
G M) �=�! Hr(X;M) for r � 2:Proof IfX is a
y
li
, thenG is 2-a
y
li
; see [3, 4.1℄. To see that �� is an isomorphism,we split the sequen
e (MS) up into short exa
t sequen
esH1(G;M)� I 
G M � PM and PM �M � H0(G;M);

12



where PM denotes the maximal perfe
t submodule of M ; see Theorem D. We then get
oeÆ
ient sequen
es of the formHr(X;H1(G;M))! Hr(X; I 
G M) / Hr(X;PM) / Hr+1(X;H1(G;M))Hr�1(X;H0(G;M)) / Hr(X;PM) / Hr(X;M)! Hr(X;H0(G;M))The 
oeÆ
ient map �� appears as a 
omposite in the middle of the diagram. If X isa
y
li
, then the end terms of both rows are 0. So �� is an isomorphism.Now suppose G is 2-a
y
li
 and �� is an isomorphism for allM and r � 2. WithM = Z[G℄we have H1(G;M) = 0 and, 
onsequently, isomorphisms Hr(X; I) �=�! Hr(X;PM) forall r � 2. So Hr(X;PM) �=�! Hr(X;Z[G℄) are isomorphisms for r � 2 as well. We haveH1(X;Z) = H1(G;Z) = 0. But then Hr(X;Z) = 0 for r � 1. So X is a
y
li
. �4.4 Proposition Let X be a 
onne
ted CW-spa
e with n-th k-invariant kn inHn+1(Pn�1X; �nX). Then the n-th a
y
li
 k-invariant of AX (see [3℄) is ��1 Æ 
n�1(kn):Hn+1(Pn�1X; �nX) 
n�1�! Hn+1(APn�1X; �nX) ��1�! Hn+1(APn�1X; I 
G �nX):Here 
n�1 : APn�1X ! Pn�1X is the 
olo
alizing map, G is �1AX, I is the augmentationideal of Z[G℄, and ��1 is the 
oeÆ
ient isomorphism of Lemma 4.3.Sket
h of Proof Consider the �bration Y ! APn�1X obtained from the proposeda
y
li
 k-invariant. There is a morphism of �brations ' : APnX ! Y over APn�1X.With the methods supplied in the previous dis
ussion it is possible to show that(1) �r' is an isomorphism for 1 � r � n;(2) �r(AY ! Y ) is an isomorphism for 1 � r � n;(3) the unique lift f : APnX ! AY of ' is a weak homotopy equivalen
e.This implies the 
laim. �4.5 Remark In many situations our work 
an be used to 
larify the e�e
t on homo-topy groups of plus 
onstru
tions and lo
alizations with respe
t to more general homologytheories h. For example, let h be 
onne
tive. Note �rst that X ! Xh (the h-homologylo
alization of X) fa
tors through X ! X+. If X+ is simply 
onne
ted, then the 
anon-i
al map X+h ! Xh is a homotopy equivalen
e; see [9, 1.7℄. Now X ! X+h agrees withX ! X+HR for a suitable ring R of the form ZP or �p2PZ=p, where P is a set of primes;see [1, 1.1℄ and 
ompare [12, Se
t. 4℄.Consequently, the four lo
alization mapsX ! Xh; X ! X+h; X ! XHR; X ! X+HRall agree and fa
tor as X u�! X+ v�! (X+)HR. The map ��v is 
ompletely understoodby [2℄, and here we provide new information on ��u.13
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