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Abstract. We review Quillen’s concept of a model category as the proper setting for
defining derived functors in non-abelian settings, explain how one can transport a model
structure from one category to another by mean of adjoint functors (under suitable
assumptions), and define such structures for categories of cosimplicial coalgebras.

1. Introduction

Model categories, first introduced by Quillen in [Q1], have proved useful in a number
of areas – most notably in his treatment of rational homotopy in [Q2], and in defining
homology and other derived functors in non-abelian categories (see [Q3]; also [BoF,
BlS, DwHK, DK, DwS, Goe, ScV]). From a homotopy theorist’s point of view, one
interesting example of such non-abelian derived functors is the E2-term of the mod p
unstable Adams spectral sequence of Bousfield and Kan. They identify this E2-term
as a sort of Ext in the category CA of unstable coalgebras over the mod p Steenrod
algebra (see §7.4).

The original purpose of this note was to provide an element in this identification which
appears to be missing from the literature: namely, an explicit model category structure
for the category cCA of cosimplicial coalgebras as above. What one would really like is
a model category for arbitrary categories of cosimplicial universal coalgebras , analogous
to Quillen’s treatment of simplicial universal algebras in [Q1, II, §4]. This treatment is
based on Quillen’s “small object argument” (see Proposition 4.8 below), and implicitly
uses a procedure for transfering model category structures by means of adjoint functors
(in the direction of the left adjoint). The procedure is made explicit in Theorem 4.15
below.

Unfortunately, Quillen’s procedure cannot be dualized, in the categorical sense. The
reason is essentially set-theoretic: more can be said about maps into a sequential colimit
of sets than about maps out of a sequential limit (and thus, for example, colim is exact,
for R-modules, while lim is not).

Therefore, for our purposes we describe, in Theorem 4.14, alternative (and less elegant)
conditions for using adjoint functors to create new model category structures. The dual
version, Theorem 7.6, then allows us to define model category structures for certain
categories of cosimplicial universal coalgebras – including cCA (see Proposition 7.7).

1.1. notation and conventions. For any category C, we denote by grC the category
of non-negatively graded objects over C, by gr+C the category of positively graded
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objects, by sC the category of simplicial objects over C (cf. [May, §2]), and by cC
the category of cosimplicial objects over C. For an abelian category M, we let c∗M
denote the category of chain complexes over M (in non-negative degrees); similarly
c∗M is the category of cochain complexes.

The category of sets will be denoted by Set, that of topological spaces by Top,
that of groups by Gp, and that of simplicial sets by S (rather than sSet). For any
ring R, the categories of left (respectively, right) R-modules are denoted by R-Mod
(resp. Mod-R). Fp denotes the field with p elements. We have tried to be consistent in
using A for a category of universal algebras (§3.6 below), B for a category of universal
coalgebras (§7.3), andM for an abelian category.

Throughout we shall use “dual” to refer to the categorical dual (cf. [Mac1, II,§1]); other
duals (such as the vector space dual) will be called by other names (e.g., “conjugate”).

For any functor F : I → C we denote the (inverse) limit of F simply by lim F or
limI F , (rather than lim←), and the colimit (i.e., direct limit) by colim F . In particular,
sequential limits of type κ are limits indexed by an (infinite) ordinal κ: limν<κ Xν , and
similarly for colimits. An initial object (in any category C) will be denoted by ∗I , and
a terminal object by ∗T .

1.2. organization. In section 2 we review the definition of model categories and some
related concepts, as well as their relevance to derived functors. In section 3 we make
explicit the relation between adjoint functors and limits, and in section 4 we explain
their relation to defining new model category structures. In sections 5 & 6 respectively
we discuss simplicial and cosimplicial objects over abelian categories. Finally, in section
7 we describe the “universal coalgebras” we are interested in, and apply our results to
define a model category structure on such categories of cosimplicial coalgebras.

Acknowledgements 1.3. I would like to thank the referee for many useful comments, and
in particular for suggesting Theorem 4.15 in its present generality.

I understand that in [CaG], Cabello and Garzón have also given conditions for defining
model category structures by means of adjoint functors.

2. Model categories

We begin with an exposition of Quillen’s theory of model categories, in a form suited
to our (algebraic) purposes:

Definition 2.1. A class W of morphisms in a category C will be called a class of quasi-
isomorphisms if there is a functor γ : C → D such that f ∈ W ⇔ γ(f) is an
isomorphism in D.

Definition 2.2. A map f : X → Y is called a retract of a map g : K → L if there
are maps k, `, r, s making the following diagram commute:

Note that any class of quasi-isomorphisms is closed under retracts (i.e., g ∈ W ⇒
f ∈W in Figure 1).

2.3. axioms for model categories. Let C be a category with three distinguished
classes of morphisms: W, C, and F. Consider the following two axioms:
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Axiom 1. For any morphism f : A→ B in C

(i) there is a factorization A
i−→ C

p−→ B (f = p ◦ i) with i ∈ C∩W and p ∈ F.

(ii) Moreover, if also f = p′ ◦ i′ with i′ ∈ C ∩W and p′ ∈ F for A
i′−→ C ′

p′−→ B,
then there is a map h : C → C ′ making the following diagram commute:

A
�

����*i
CHHH

HHj

p

B
HHH

HHji′ C ′�
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��*

p′

ppppppppppppp
?

h

Figure 2

Note that if W is a class of quasi-isomorphisms, necessarily h ∈W – so that (ii) says
the factorization in (i) is unique up to quasi-isomorphism.

Axiom 2. For any morphism f : A→ B in C

(i) there is a factorization A
i−→ C

p−→ B with i ∈ C and p ∈ F ∩W.

(ii) If f = p′ ◦ i′ is another such factorization, there is an h making the diagram in
Figure 2 commute.

Definition 2.4. Let C be a category and W, C and F classes of morphisms in C. Assume
that W is a class of quasi-isomorphisms and C and F are each closed under compositions.
Then

(i) If C has all finite limits, and 〈C; W, C, F〉 satisfy Axiom 1, we call this a right
model category (RMC) structure on C, or say that C is an RMC.

(ii) If C has all finite colimits, and 〈C; W, C, F〉 satisfy Axiom 2, we call this a left
model category (LMC) structure on C.

(iii) If both hold, 〈C; W, C, F〉 is called a model category .

Remark 2.5. In order to “do homotopy theory” in C one requires the full force of a model
category; in fact, it is often convenient to have additional structure, such as simplicial
Hom-objects (cf. [Q1, II, §1]), properness (cf. [BoF, Def. 1.2]), and so on (see [Bau, I]
and [He, II] for more general treatments). However, for the purposes of “homotopical
algebra” – i.e., homological algebra in non-abelian categories – it is enough to have
an RMC or an LMC (see §§2.14-2.16 below).
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Example 2.6. The original motivating example of a model category is the category
Top of topological spaces, with W the class of homotopy equivalences, C the class of
cofibrations, and F the class of (Hurewicz) fibrations (cf. [St]). An alternative model
category structure on Top is given in [Q1, II,§3].

However, for our purposes the basic example of a model category will be the category S
of simplicial sets, with W the class of weak equivalences (maps inducing an isomorphism
in π∗(−)), C the class of one-to-one maps, and F the class of Kan fibrations (cf. [May,
§7]). See sections 5 & 6 below for further examples.

Remark 2.7. Given 〈C; W, C, F〉 satisfying axioms 1 and 2, in order for W to be a class
of quasi-isomorphisms it suffices that:

(a) W include all isomorphisms,
(b) W be closed under retracts, and

(c) Given A
f−→ B

g−→ C with two out of {f, g, g ◦ f} in W, the third is, too.

In this situation Quillen constructs in [Q1, I,§1] a localization of C with respect to
W, which comes with a functor γ : C → HoC such that f ∈ W ⇔ γ(f) is an
isomorphism in HoC. However, in almost all known examples of model categories W
is given to begin with as a class of quasi-isomorphisms.

Definition 2.8. We call the closure of F under retracts (§2.2) the class of fibrations in
C; similarly, the closure of C under retracts is called the class of cofibrations .

A fibration which is in W will be called a trivial fibration, and a cofibration in W will
be called a trivial cofibration.

Remark 2.9. In Quillen’s definition no distinguished subclasses F, C of the classes
of (co)fibrations appear (nor are right or left model categories mentioned). But such
classes occur naturally in many examples (just as free R-modules form a distinguished
subclass of projective R-modules), and allow a convenient simplification of the axioms.

There is in fact no loss of generality in our definition, in light of the following facts:

Definition 2.10. Given any commutative square

A -α
X

?

i

B
?

f

Y-βp p p p p p p
p p p p p p p

p�

we say that f has the right lifting property (RLP) with respect to i – or equivalently,
that i has the left lifting property (LLP) with respect to f – if a dotted arrow exists
making the diagram commute.

Lemma 2.11. If 〈C; W, C, F〉 is an RMC, any fibration in C has the RLP with respect
to any trivial cofibration; dually, if 〈C; W, C, F〉 is an LMC, any trivial fibration in C
has the RLP with respect to any cofibration.

Proof. Let C be a right model category, and assume given a diagram as in Figure 1.
First, if f ∈ F and i ∈W ∩ C, one can factor α and β using Axiom 1(i):
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Thus we have h′ : B′ → X ′ by Axiom 1(ii) (since C and F are closed under
compositions, and (f ◦ p) ◦ k and q ◦ (j ◦ i) are two factorizations of f ◦ α = β ◦ i),
and h = p ◦ h′ ◦ j is the required lifting.

Next, assume that f is a fibration – i.e., a retract of a map g ∈ F – so we have a
commutative diagram:

A -α

?

i

B -
β

X -idX
X

?

f

?

f

XXXXzk K ����:
r

Y -
idY

Y
����:` L XXXXz

s
?

g

and by the first case (for g ∈ F) there is a lifting

A -k ◦ α
K

?

i

B
?

g

L-` ◦ βp p p p p p p
p p p p p p p

p
�

h

so r ◦ h : B → X is the required lifting for the i with respect to the fibration f . The
case where i is any trivial cofibration is dealt with similarly; and the case of a left model
catgeory is of course dual. �

Fact 2.12. ([Q2, II, Prop. 1.1]). The fibrations of a right model category are precisely
those morphisms having the RLP with respect to all i ∈ C ∩W, and conversely, the
trivial cofibrations are those morphisms which have the LLP with respect to all f ∈ F.
The cofibrations of a left model category are characterized by having the LLP with respect
to all f ∈ F ∩W, and the trivial fibrations are those morphisms which have the RLP
with respect to all i ∈ C.

Proof. If f : A → B has the RLP with respect to all i ∈ C ∩W, use Axiom 1 to

factor f as A
i−→ C

p−→ B with i ∈ C ∩W; the lifting r : X → A which exists by
hypothesis shows that f is a retract of p ∈ F, so a fibration. Similarly for the other
cases. �

Corollary 2.13. The (trivial) fibrations of an RMC (resp. LMC) are preserved under
base change, products, and sequential limits – that is,

(a) If p : X → Y is a (trivial) fibration, f : X → Z is any map, and W is the
pushout of (q, f), with structure maps q : Z → W , g : Y → W , then q is a (trivial)
fibration.
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(b) If {pα : Xα → Yα}α∈A are all (trivial) fibrations, so is
∏

α pα :
∏

α Xα →
∏

α Yα.

(c) If (pν : Xν+1 → Xν)ν<κ is a sequence of (trivial) fibrations, the map qν : X =
limν<κ Xν → Xν is a (trivial) fibration for each ν < κ.

Similarly, the (trivial) cofibrations of a LMC (resp., RMC) are preserved under cobase
change, coproducts, and sequential colimits.

Proof. The constructions (a)-(c) all preserve the lifting property with respect to any
(fixed) map. �

We now recall how model categories are used to define derived functors in non-abelian
categories. Let 〈C; W, C, F〉 be a model category.

Definition 2.14. The homotopy category HoX of any model category X is obtained
from it by localizing with respect to the weak equivalences, with γ : X → HoX the
localization functor. Quillen shows that HoX is equivalent to the category π(Xcf ),
whose objects are those objects X ∈ X for both fibrant (i.e., X → ∗T is a fibration)
and cofibrant (i.e., ∗I → X is a cofibration), and whose morphisms are homotopy
classes of maps (cf. [Q1, I, §1]).

Under this equivalence of HoX and π(Xcf ), the localization functor is determined
by the choice, for each object X ∈ X , of a cofibrant and fibrant object A with a weak
equivalence A → X. This is called a resolution of X, and all such are homotopy
equivalent. However, we can sometimes make do with less:

Definition 2.15. If H : X → Y is a functor between model categories which preserves
weak equivalences between cofibrant objects, the total left derived functor of H is the
functor LH = H̃ ◦ γ : X → HoY , where H̃ : HoX → HoY is induced by H on Xc

(the subcategory of cofibrant objects in X ).

Remark 2.16. In fact we need only a left model category structure on X in order for
L to be defined. Of course right derived functors are defined analogously in any right
model category.

In the particular case where Y = sC is a category of simplicial objects over some
concrete category C, the usual n-th derived functor of any T : X → sC, denoted LnT ,
assigns to an object X ∈ C the object (LnT )X = πn(LT )X = πnTA, where A→ X
is any resolution.

If also X = sD for some D, and T : C → D is prolonged to a functor sT : sC → sD
(by applying it dimensionwise to simplicial objects), then for C ∈ C we have (LnT )C =
πn(sT )A•, where A• is a resolution of the constant simplicial object which is equal to
C in each dimension. When T is an additive functor between abelian categories with
enough projectives, this reduces to the usual definition of derived functors (see also
[Bo2, §7], [DoP], [EM2], & [Hu]).

We have avoided the question of when a functor will in fact preserve weak equivalences
between cofibrant objects. This depends on the specific model categories in question
(see Remark 7.8 below).

3. adjoint functors and limits

We next recall some general facts about limits and adjoint functors: Let C F


U
D

be a pair of adjoint functors (i.e., F is (left) adjoint to U), with the natural adjunction
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isomorphism ϑ : HomC(FD, C) ∼= HomD(D, UC). We denote ϑ−1(idUC) : FUD →
D by εD.

Remark 3.1. It is not hard to see that U preserves all limits which exist in C, and dually,
F preserves all colimits which exist in D (cf. [Mac1, V, §6]).

F evidently preserves projectivity, so if D is a category in which all objects are pro-
jective (e.g., D = Set) and εD is always an epimorphism, then im(F ) consists of
projectives and εD : FUD → D is a functorial projective cover.

Definition 3.2. Given a diagram S : I → C, we say that a functor T : C → D creates
the limit limI S in C (cf. [Mac1, V,1]) if limI T ◦ S exists in D, limI S exists in C,
and T (limI S) = limI(TS). Similarly for creation of colimits.

Definition 3.3. Given adjoint functors C F


U
D and a diagram S : I → C, we say

the pair (U, F ) produces the colimit colim S ∈ C if colimI(US) ∈ D exists, and
colimI S ∈ C exists and is obtained as follows:

Let L0 = colimI(US), and L1 = colimI(UFUS). There are two natural morphisms
FL1 → FL0, namely: d0, induced by the natural transformation εFU(j) for every
j ∈ I, and d1, induced by FU(εj). We require that colim S be the coequalizer (in
C) of d0 and d1 (see [L] or [Mac1, X, §1]; there seems to be no accepted name for this
procedure).

In order for this construction to be of use, we need some information on coequalizers in
C – at least for those which appear here. Such coequalizers, called split (or contractible),
have a map s : FL0 → FL1 such that d0s = id, d1sd0 = d1sd1. In the cases of interest
to us split coequalizers are created by U , so the definition makes sense (cf. [BaW, 3.3,
Prop. 3]).

Remark 3.4. Since we know that F preserves all colimits – so that the colimit of a
diagram in C which factors through F is determined by the corresponding colimit in D
– in our situation (see §3.6) the left model category structure we shall define on sC
will allow us to identify any colimit in C as the 0-th left derived functor (§2.16) of the
same colimit defined on the image of F .

This is analogous to viewing the usual tensor product of R-modules, say, as the 0-th
derived functor of the more naturally defined functor of tensor product of free R-modules
on specified sets of generators X, Y :

R〈X〉 ⊗R〈Y 〉 Def
= R〈X × Y 〉.

One may dually define “the pair (F, U) produces the limit lim S in D”, (with
equalizers replacing coequalizers, etc.).

Example 3.5. Let Gp F


U
Set denote the adjoint “underlying set” and “free group”

functors between the categories of groups and sets respectively. Then U creates all
limits in Gp – i.e., an inverse limit of a diagram of groups is just the corresponding
limit for the underlying sets, endowed with a natural group structure. Likewise, the
adjoint pair (U, F ) produces all colimits in Gp. For instance, the coproduct (“free
product”) GqH of two groups is obtained by choosing sets of generators X, Y for G,
H respectively – say, X = U(G), Y = U(H) – and setting

GqH = F (X ∪ Y )/ ∼ ,
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where [a][a′] ∼ [aa′], [a]−1 ∼ [a−1] for a, a′ both in X or both in Y – which is
precisely the coequalizer of the two obvious homomorphisms

F (UFU(G) ∪ UFU(H)) →→ F (U(G) ∪ U(H)).

Definition 3.6. Recall that in a category of universal algebras (or variety of algebras)
the objects are sets X, together with an action of a fixed set of n-ary operators W =
∪∞n=0{ω : Xn → X}, satisfying a set of identities E; the morphisms are functions on
the sets which commute with the operators.

(We can slightly modify the definition to cover the case where the set X is pointed ,
non-negatively graded , and so on.)

Example 3.7. Categories of universal algebras include:
The category Gp of groups; the category R-Mod of left R-modules for any ring R, as

well as that of (commutative or associative) algebras over R; the category of Fp-algebras
over the mod-p Steenrod algebra; and the categories of Lie rings, or of restricted Lie
algebras over Fp.

All the above examples, and many others (though not the categories of monoids,
semigroups, and semirings), have another convenient feature: their objects have the
underlying structure of a (possibly graded) group.

Remark 3.8. For each category C of universal algebras there is a pair of adjoint functors

C F


U
Set, with U(A) the underlying set of A ∈ C, and F (X) the free algebra on the

set of generators X (cf. [Co, III.5 & IV.2]
Thus in particular every category of universal algebras has enough projectives (§3.1).

In fact, the functor U : C → Set is monadic in the sense that the category C can
be reconstructed from the monad (=triple) UF : Set → Set (compare §7.1 below; cf.
[BaW, 3.3, Prop. 4] or [Co, VIII.3] for the precise statement). Moreover:

Proposition 3.9. For any category of universal algebras C, the functor F creates all
limits and sequential colimits of monomorphisms in C, and the pair (U, F ) produces all
colimits in C.
Proof. Just as in example 3.5 above. The statement on colimits is due to Linton ([L];
see also [BaW, 9.3]). �

4. adjoint functors and model categories

We now explain how adjoint functors C F


U
D can be used to transfer an existing

model category structure on D to the category C.
Convention 4.1. To simplify the statements of our results, we assume that in all (left
or right) model categories discussed in this section, all cofibrations are in particular
monomorphisms. This need not hold in general (see Proposition 6.4 below), but it will
hold in all situations we are interested in. It should be clear from the proofs how the
statements must be modified without this assumption.

First, we require the following somewhat ad hoc

Definition 4.2. We say that a left model category 〈C; WC, CC, FC〉 has canonical

factorizations of type κ for Axiom 2 (for some ordinal κ) if the factorization X
j−→

Z
p−→ Y of Axiom 2(i) for any f : X → Y in C is obtained as follows:
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(a) There is a sequence of commuting diagrams

Z(−1) = X -j(0)

XXXXXXXXXXz
p(−1) = f

Z(0) q q q q
PPPPPPPq

p(0)
Z(ν) -j(ν)

Q
Q

QQs
p(ν)

Z(ν+1)

�
�

��+
p(ν+1)

q q q q
Y

for ν < κ, such that Z = colimν<κ Z(ν) and p and j are induced by the maps (p(ν))ν<κ

and (j(ν))ν<κ respectively.

(b) For each ν ≥ −1, the object Z(ν+1) is constructed as a pushout:

V -
g

Z(ν)

?

i

?

j(ν)

W - Z(ν+1)

PO
PO(ν)

(c) i : V → W is in turn constructed functorially as a coproduct:

V =
∐

α∈Kν

Vα
-

∐
iα ∐

α∈Kν

Wα = W

where the set of maps {iα}α∈Kν depends functorially on p(ν) (i.e., this is a functor on
the comma category of maps in C), and each iα is in CC.

(d) There is a set of maps hα : Wα → Y (α ∈ Kν), also depending functorially on p(ν),
such that p(ν+1) : Z(ν+1) → Y is induced by p(ν) : Z(ν) → Y and (

∐
α∈Kν

hα) : W → Y .

(e) For each limit ordinal ν we have Z(ν) = colimµ<ν Z(µ).

Remark 4.3. Note that because each iα is a cofibration, the maps j(ν) : Z(ν) → Z(ν+1),
as well as the structure maps Z(ν) → Z (and thus j : X → Z itself) are cofibrations
by Corollary 2.13.

Note also that canonical factorization implies in particular functoriality in Axiom 2(i)

– that is, any f : X → Y may be factored X
jf−→ Zf

pf−→ Y (with jf ∈ C and
pf ∈ F ∩W), in such a way that, given maps f ′ : X ′ → Y ′, x : X → X ′ and
y : Y → Y ′ such that y ◦ f = f ′ ◦ x, there is a map z : Zf → Zf ′ such that
z ◦ if = if ′ ◦ x and y ◦ pf = pf ′ ◦ z. While this functoriality is not part of Quillen’s
original definition, it is a useful property (which is in fact enjoyed by almost all model
categories).

For examples of canonical factorizations, see Example 4.6 and Remark 5.3(ii) below.
The most common situation is when κ = ω.

The above is of course simply a partial axiomatization of Quillen’s “small object
argument” construction (see [Q1, II, 3.3-3.4]). Were we not interested in a dualizable
version (see sections 6 and 7 below) – we could have started with a full axiomatization
of Quillen’s construction, as follows:
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Definition 4.4. If 〈C; WC, CC, FC〉 is a left model category, we say that a set of cofi-
brations {iγ : Vγ → Wγ}γ∈Γ is a collection of κ-compact test cofibrations for C if:

(a) any map f : X → Y in C which has the RLP with respect to each iγ (γ ∈ Γ) is
a trivial fibration, and

(b) the domain Vγ of each test cofibration is κ-compact in C – that is, HomC(Vγ,−)
commutes with sequential colimits of monomorphisms of type κ. (When κ = ω, such
objects are called (sequentially) small – cf. [Mit, II, §16]).

Remark 4.5. Note that if C is a concrete category, any object C is κ-compact for any
ordinal κ of cofinality greater than the cardinality |C| of C (cf. [TZ, 10.51]), so
(b) above is automatically satisfied for κ = (supγ∈Γ{|Vγ|})+, the successor cardinal of
the supremum of the cardinalities of (the underlying sets of) all objects Vγ. (The idea
of thus eliminating the requirement of “smallness” in Quillen’s construction is due to
Bousfield – cf. [Bo1, §11].)

It will also hold in other cases – for example, any finite simplicial set (i.e., one with
finitely many non-degenerate simplices), or finitely generated R-module, is ω-compact.

Example 4.6. The motivating example of test cofibrations is the model category of
simplicial sets S (§2.6): by [Q1, II, §2, Prop. 1], a map f : X → Y is a trivial fibration

if it has the RLP with respect to all the cofibrations ik :
•
∆[k]→ ∆[k] (k ≥ 0), where

∆[k] is the standard simplicial k-simplex, and ik :
•
∆[k] ↪→∆[k] is the inclusion of its

(k − 1)-skeleton.

Definition 4.7. If {iγ : Vγ → Wγ}γ∈Γ is a set of morphisms in some category C, the

associated Quillen construction of type κ is a functorial factorization X
j−→ Z

p−→ Y
of any morphism f : X → Y in C, constructed as in §4.2, where for each ν < κ, the
set Kν (in 4.2(c)) is Kν =

∐
α∈ADν,α, with Dν,α = the set all commutative diagrams

(d) of the form:

Vα
-

gd
Z(ν)

?
iα

Wα

?

p(ν)

Y-hd

(d) ,

with iα in the given collection {iγ}γ∈Γ. We set hα = hd in 4.2(d).

This is the ingredient needed to make Quillen’s small object argument [Q1, II, 3.4]
work:

Proposition 4.8. If 〈C; WC, CC, FC〉 is a left model category with a collection of κ-
compact test cofibrations {iγ : Vγ → Wγ}γ∈Γ, then the associated Quillen construction
of type κ yields canonical factorizations (which we shall call canonical Quillen factoriza-
tions) for Axiom 2.

Proof. For any f : X → Y in C, let X
j−→ Z

p−→ Y be the Quillen construction
associated to the set of test cofibrations; then j is a cofibration by Corollary 2.13. To
see that p is a trivial fibration, we must show that it has the RLP with respect to all
test cofibrations iγ : Vγ → Wγ – i.e., we must produce liftings h̃ for any h, g as below:
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Vγ
-

g
Z

?

iγ

Wγ

?

p

B-hp p p p p p p
p p p p p p p�h̃

But by the κ-compactness of Vγ, any map g : Vγ → Z = colimν<κ Z(ν) factors
through ĝ : Vα → Z(ν) for some ν < κ, and the diagram

Vγ
-ĝ

Z(ν)

?

iγ

Wγ

?

p(ν)

B-h

is one of the diagrams (d) used to construct Z(ν+1) in §4.7, so the structure map
Wγ → Z(ν+1) defines the required lifting for the original g and h. �

Remark 4.9. The same definitions are possible for a right model category – although
contrary to what one might expect, the construction is not dual to the above:

We say that a right model category 〈C; WC, CC, FC〉 has canonical factorizations if
the factorization f = p ◦ j (j ∈ C ∩W, p ∈ F) of Axiom 1(i) is obtained functorially
precisely as in Definition 4.2, except that the maps iα of 4.2(c) are required to be trivial
cofibrations. Of course, Proposition 4.8 also holds for right model categories, with the
Quillen construction using test trivial cofibrations.

Example 4.10. Let V (n, k) ⊂∆[n] (0 ≤ k ≤ n) denote the simplicial set generated
by all the (n− 1)-dimensional faces of ∆[n], except for the k-th one. The inclusions
in,k : V (n, k) ↪→ ∆[n] are the test trivial cofibrations for S (cf. [Q1, II, §2, Prop. 2]),
so S has canonical Quillen factorizations (of type ω) for Axiom 1, too.

Definition 4.11. Let C F


U
D be adjoint functors, and D a left model category with

canonical factorizations (of type κ) as in Definition 4.2. The derived factorization of

any f : A → B in C is A
i−→ C

q−→ B, where C = colimν<κ C(ν), and the maps
i : A→ C and q : C → B, are obtained from a commutative diagram

A -i(0)

XXXXXXXXXXz
f

C(0) q q q q
PPPPPPPq

q(0)
C(ν) -i(ν)

Q
Q

QQs
q(ν)

C(ν+1)

�
�

��+
q(ν+1)

q q q q
B

defined as follows: apply the construction in D to the map U(f) : U(A) → U(B)
to get the pushout diagram PO(−1) of §4.2; then C(0) is the pushout of the adjoint

diagram P̂O(−1):
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FV -ĝ
A

?

Fi

?

i(0)

FW - C(0)

PO
P̂O(−1)

in which ĝ : F (V )→ A is the adjoint of g : V → UA, and q(0) : C(0) → B is induced

by f and the adjoint ĥ : F (W ) → B of the coproduct of the maps hα : Wα → UB
(see §4.2).

More generally, for each ν < κ, since the diagram PO(ν) depends functorially only

on the map Up(ν) : UC(ν) → UB, we may define its adjoint P̂O(ν) precisely as for
PO(−1), and let C(ν+1) be its pushout. Setting C(ν) = colimµ<ν C(µ) for each limit
ordinal ν < κ completes the construction.

Note that if the pair (U, F ) produces the colimits in C (§3.3), applying U to the
above factorization yields, for any map of the form Uϕ : UA→ UB, a construction of

UA
Ui−→ UC

Up−→ UB in D which can be described purely in terms of colimits in D and
the monad (or triple) UF : D → D (which in fact determines the category C – see
[Mac1, VI, §2]).

Example 4.12. If A F


U
S are adjoint functors, with A a category of universal algebras

(§3.6), the derived factorization A → C → B of any ϕ : A → B in A is constructed
as in [Q1, II, §4, Prop. 3].

Definition 4.13. Let 〈D; WD, CD, FD〉 be a left model category with canonical factor-

izations, and C F


U
D a pair of adjoint functors. We say that the pair (U, F ) creates

a left model category structure 〈C; WC, CC, FC〉 if

(i) f ∈ FC ⇔ Uf ∈ FD;
(ii) f ∈WC ⇔ Uf ∈WD;
(iii) CC = {i = i1 ◦ . . . ◦ in | each ik is the first factor of some derived factorization}.

Theorem 4.14. Let 〈D; WD, CD, FD〉 be a left model category with canonical factor-

izations of type κ, and C F


U
D a pair of adjoint functors. Assume that U creates

sequential colimits of monomorphisms of type κ, that C has all finite colimits, and that

(∗) the derived factorization A
i−→ C

p−→ B for any f in D satisfies Up ∈ FD∩WD.

Then (U, F ) creates a left model category structure with canonical factorizations.

Proof. For Axiom 2(i) use the derived factorization of §4.11. For Axiom 2(ii), it suffices
to show that any i : A→ C constructed by the derived factorization of some f : A→ B
has the LLP with respect to any trivial fibration in C; but if j : V → W is a cofibration
in D, then Fj : FV → FW has the LLP with respect to any trivial fibration in C,
by Def. 4.13(i)-(ii). We then see that the i’s constructed in §4.11 have the LLP by
Corollary 2.13. �

Hypothesis (∗) of Theorem 4.14 may seem hard to verify, but it seems unavoidable
for our purpose (that is, for categorical dualizing). However, for other purposes the
following version of the theorem, using the Quillen construction, may be more useful:
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Theorem 4.15. Let 〈D; WD, CD, FD〉 be a left model category with a set {iγ}γ∈Γ of κ-

compact test cofibrations (and thus canonical Quillen factorizations), let C F


U
D be a pair

of adjoint functors, and assume that U creates sequential colimits of monomorphisms of
type κ, and that C has all finite colimits. Then (U, F ) create a left model category
structure on C with a set {Fiγ}γ∈Γ of κ-compact test cofibrations (and thus canonical
Quillen factorizations).

Proof. Since U creates sequential colimits of monomorphisms of type κ, its left adjoint
F preserves κ-compactness, and by Definition 4.13, F preserves the property of being
test cofibrations. Thus {Fiγ}γ∈Γ is a set of κ-compact test cofibrations for C.

Alternatively, one could show directly (as in the proof of Proposition 4.8) that for any

derived factorization A
i−→ C

p−→ B, the map Up : UC → UB has the RLP with
respect to all test cofibrations – and then apply Theorem 4.14. Of course, the derived
factorizations are just the canonical Quillen factorizations with respect to the new set
of test cofibrations. �

Again, the analogous theorem holds for right model categories, so that in fact we have
a way to transport full model category structures using adjoint functors.

Example 4.16. When C = sA for some category of universal algebras A, the functors

sA F


U
S allow us to transfer the left model category structure of S to sA, by Theorem

4.15. This yields the left model category structure on C described in [Q1, II, §4], in
which CC is the class of free maps of simplicial algebras (ibid.). This is actually a
full model category structure on sA, with the derived factorization obtained from the
construction of §4.10 serving for Axiom 1(i).

5. simplicial object over abelian categories

If M is any abelian category, there are adjoint functors sM K


N

c∗M which are

equivalences between the categories of (respectively) the simplicial objects and the chain
complexes over M (cf. [Do, Thm 1.9]). In order to define a model category structure
on sM it thus suffices to do so for the more familiar category of chain complexes, as
Quillen does in [Q1, II, 4.11-4.12]:

Definition 5.1. Let M be an abelian category. Define Wc∗M to be the class of
homology isomorphisms, Fc∗M the class of maps f : A∗ → B∗ which are surjective in
positive degrees, and Cc∗M the class of one-to-one maps whose cokernel is projective
in each dimension (if M = R-Mod, we may require the cokernel to be dimensionwise
free).

Proposition 5.2. If M is an abelian category with enough projectives, then 〈c∗M;
Wc∗M, Cc∗M, Fc∗M〉 is a model category.

Proof. For notational simplicity we consider the case where every A∗ ∈ c∗M has a
functorial projective cover εA∗ : FA∗ → A∗.

For Axiom 1(i), let L : grM→ c∗M denote the left adjoint of the forgetful functor
V : c∗M → grM, with natural transformation ϑL

B : LV B∗ → B∗, and use the
factorization:

A∗
-

iA∗
A∗ q FLV (B∗)

-(f, ϑL
B ◦ εLV B∗)

B∗
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For Axiom 2(i), we wish to construct a sequence of commuting diagrams:

A∗
-j(0)

XXXXXXXXXXz
f

C
(0)
∗

q q q q
PPPPPPPq

p(0)
C

(n−1)
∗

-j(n)

Q
Q

QQs
p(n−1)

C
(n)
∗

�
�

��+
p(n)

q q q q
B∗

where (i) each j(n) is a cofibration;
(ii) each p(n) is a fibration;

(iii) p(n) induces an epimorphism p
(n)
∗ : HiC

(n)
∗ →→ HiB∗ for all i;

(iv)(n) p
(n)
∗ : HiC

(n)
∗ → HiB∗ is a monomorphism for i < n.

and then set C∗ = colim C
(n)
∗ .

To get a factorization A∗
j(0)

−→ C
(0)
∗

p(0)

−→ B∗ of the given f satisfying conditions (i), (ii),
& (iii), let T : grM→ c∗M be the left adjoint of the functor Z : c∗M→ grM defined

Z(A∗)n = ZA
n

Def
= Ker{∂n : An → An−1}, and set C

(0)
∗ = A∗ q FTZ(B∗) q FLV (B∗).

For the inductive step, assume given f : A∗ → B∗ satisfying conditions (ii), (iii), &

(iv)(n) above; we wish to construct a factorization A∗
j−→ C∗

p−→ B∗ of f satisfying
conditions (i)-(iv)(n+1):

Let Kn = Ker{fn : An → Bn} ∩ ZA
n

i
↪→ An and Kn

q→→ Qn = Kn/(Im{∂n+1 ∩Kn),
and let L denote the set of liftings λ : FQn → Kn in

FQn

??
εQn

qqqqqqλ
	

Kn
--

q Qn .

Let E∗ equal A∗ in degrees ≤ n, En+1 =
∐

λ∈L(FQn)λ, and Ei = 0 for i > n + 1,
with ∂E

n+1 : En+1 → An equal to i ◦ λ on (FQn)λ. We have a map g : E∗ → B∗
equal to f in dimensions ≤ n and 0 elsewhere, and define C∗ to be the pushout of
A∗ ←↩ τnA∗ ↪→ E∗ (where τnA∗ is A∗ truncated above degree n).

The lifting properties of Axioms 1(ii) & 2(ii) follow from those of projective objects
inM in a straightforward manner. �

Remark 5.3. We have given the proof because we have not seen it elsewhere; furthermore,
it provides an illustration of the various types of model categories and factorizations
which may occur:

(i) IfM has enough projectives, we merely get a model category structure on c∗M, as
stated.

(ii) If M has functorial projective covers, the construction given in the proof shows
the (left and right) model categories c∗M have canonical factorizations as in Def. 4.2.

Thus if C F


U
M are adjoint functors satisfying suitable hypotheses, then the (left)

model category structure for c∗M, and thus on sM, can be used to define a (left)
model category structure on sC (in addition to the existence of suitable colimits in C,
we require that UFX be projective inM for any X ∈M).
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(iii) Of course, if M = R-Mod then c∗M∼= sM has canonical Quillen factorizations
– by 4.16, since thenM is a category of universal algebras.

Note however that for categories of universal algebras over R-Mod (in which the
objects have the underlying structure of a R-module, and all operations are R-linear),
the construction given in the proof above, combined with Theorem 4.14, yields a simpler
description of the factorization of Axiom 2 – and thus of “projective resolutions” –
than that provided for arbitrary universal algebras by Theorem 4.15 and §4.16.

(iv) The situation is of course greatly simplified when all objects in M are projective,
(e.g., for M = F-mod where F is a field), since then the fibrations are just epimorphims.

In that case, if we let B̂∗ denote the (shifted) cone on B∗ – i.e., B̂n = Bn+1 ⊕ Bn,

with ∂̂n(b, b′) = (∂B
n+1b

′ − b, ∂B
n b) – and p the projection B̂∗ →→ B∗, then a functorial

factorization of f for Axiom 2(i) is then given by:

A∗
(id,0)−→ A∗ ⊕ B̂∗

(f,p)→→ B∗.

Nevertheless, this is not a canonical factorization in the sense of Def. 4.2, so it will
not be suitable for the purposes of Theorem 4.14.

6. cosimplicial object over abelian categories

The definitions and results of section 5 are readily dualized to cosimplicial objects, as
follows:

Definition 6.1. Recall that a cosimplicial object X• over any category C is a sequence
of objects X0, X1, . . . , Xn, . . . in C equipped with coface and codegeneracy maps di :
Xn → Xn+1, sj : Xn+1 → Xn (0 ≤ i, j ≤ n) satisfying the cosimplicial identities (cf.
[BoK1, X, §2.1]).

We denote the category of cosimplical objects over C by cC. If M is an abelian
category, we denote by c∗M the category of cochain complexes overM.

Dual to [Do, Thm. 1.9] (noted in the beginning of section 5) we have:

Proposition 6.2. For any abelian category M there is a natural isomorphism of cate-
gories cM∼= c∗M.

Proof. Given C• ∈ cM, the functor N : cM→ c∗M is defined by Nn = (NC•)n =⋂n−1
j=0 Ker{sj : Cn → Cn−1}, with δn : Nn → Nn+1 equal to

∑n
i=0(−1)i(di|∩n−1

j=0 Kersj).

Given A∗ ∈ c∗M, the inverse functor L : c∗M→ cM is defined LA∗ = C•, where
C• may be described explicitly in a manner dual to [May, p. 95] or [Bl, 5.2.1]:

For each n ≥ 0 and 0 ≤ λ ≤ n, let Iλ
n denote the set of all sequences I = (i1, . . . , iλ)

of |I| = λ integers such that 0 ≤ i1 < i2 < . . . < iλ ≤ n; let sI = si1 ◦ · · · ◦ siλ be
the corresponding λ-fold codegeneracy map. (We allow λ = 0, with the corresponding
s∅ = 0). Then

(6.3) Cn Def
=

∏
0≤λ≤n

∏
I∈Iλ

n

An−λ
(I) .

We write π(I) : Cn →→ A
n−|I|
(I) for the projection onto the copy of An−|I| indexed by I.

For each 0 ≤ λ ≤ n and 0 ≤ k ≤ n−1 there is a one-to-one function s̄k
n : Iλ−1

n−1 → Iλ
n ,

where s̄k
n(I) = J is defined by the requirement that sI ◦sk = sJ under the cosimplicial

identities. The codegeneracy map sk : Cn → Cn−1 is then defined to be the composite:
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Cn --
∏

1≤λ≤n

∏
I∈im(s̄k

n)⊂Iλ
n

An−λ
(s̄k

nI)
-(s̄k

n)−1
∗ ∏

0≤µ≤n−1

∏
I∈Iµ

n−1

An−µ
(I) = Cn−1 .

The coface map dj : Cn → Cn+1 is determined by the requirement that π(∅) ◦ d0 =
δn : An → An+1 and π(∅) ◦ dj = 0 for j > 0, and by the cosimplicial identities
– that is, given J ∈ Iλ

n+1, use the cosimplicial identities to write sJ ◦ dj = φ ◦ SI

(where |I| = |J | + ε − 1, and either φ = id, ε = 0 or φ = di, ε = 1). Then

π(J) ◦ dj : Cn → A
n+1−|J |
(J) is the composite

Cn
π(I)−→ A

n−|I|
(I)

∼= A
n−|I|
(∅)

φ−→ A
n−|I|+ε
(∅)

∼= A
n+1−|J |
(J) .

�

One thus has a model category structure on cM, induced by the following dual of
Proposition 5.2:

Proposition 6.4. If M is an abelian category with enough injectives, there is a model
category structure on c∗M with Wc∗M the class of cohomology isomorphisms, Cc∗M
the maps which are one-to-one in positive degrees, and Fc∗M the surjective maps with
injective kernel.

Proof. The proof is precisely dual to the case of chain complexes. For convenience of
reference below we briefly recapitulate the factorization for Axiom 1(i):

Given f : A∗ → B∗ in c∗M, we want A∗
i−→ C∗

p−→ B∗ with i ∈ Cc∗M ∩Wc∗M
and p ∈ Fc∗M (f = p ◦ i), again under the assumption that every A∗ ∈ c∗M has a
functorial injective envelope εA∗ : A∗ ↪→ IA∗. As in §4.2 we wish to construct a sequence
of commuting diagrams:

A∗

q q q q
��

���
���

j(n)

C∗(n)
-

p(n)

?
j(n−1)

C∗(n−1)
q q q q

HH
HHH

HHj
j(0)

C∗(0)
-

p(0)
B∗

XXXXXXXXXXXXXXz

f

where each p(n) is a fibration, and each j(n) is a cofibration which is monic in
cohomology (in all dimensions), and epic in cohomology through dimension n− 1. We
then set C∗ = lim C∗(n).

In this case the forgetful functor V : c∗M→ grM has a right adjoint R : grM→
c∗M, and the functor C : c∗M→ grM, defined by: CA∗n = Coker(δn−1

A ), has a right

adjoint T : grM→ c∗M. Thus if we set C∗(0)
Def
= B∗ × ITC(A∗) × IRV (A∗), we

find that the map j(0) : A∗ ↪→ C∗(0) is a cofibration which is monic in cohomology, and
the projection πB∗ : C∗(0) →→ B∗ is a fibration.

For the inductive step, assume given a cofibration f : A∗ → B∗ which is monic in

cohomology, and epic in cohomology through dimension n−1. Let P n = Zn
B∪An in

↪→ Bn)
and Qn = P n/(An ∪ Im(δn−1

B )), with tn : P n → IQn the obvious composite map.
Let N denote the set of extensions ν : Bn → IQn (ν ◦ in = tn), and define the

cochain complex E∗ to be equal to B∗ in dimensions ≤ n, zero above dimension n+1,
with En+1 =

∏
ν∈N IQn

(ν) and δn+1
E : Bn → En+1 determined by the ν’s. Finally
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let C∗ be the pullback of B∗ → τnB∗ ← E∗, (where τnB∗ is again the truncated

complex), so Ci = Bi for i ≤ n. The obvious maps A∗
j−→ C∗

p−→ B∗ give a
factorization with j a cofibration which is monic in cohomology, and epic in cohomology
through dimension n.

Note that since the maps p(n) are isomorphisms in degrees ≤ n, there is no lim1

in calculating H iC∗ = H i(lim C∗(n)) (cf. [Mil]). This problem did not arise in the dual

case (§4.2 and Proposition 5.2), since colim is exact. �

Note that M = R-Mod has functorial injective envelopes (constructed as in [Mac2,
III, 7.4]). The construction given here is of course an example of dual canonical factor-
izations (defined dually to Def. 4.2).

Remark 6.5. The explicit factorization of any f : A• → B• in the category cM of
cosimplicial objects over M is easily obtained from the proof of Proposition 6.4 using
Proposition 6.2. It should be pointed out that in place of the truncated cochain complex

τnA∗, which vanished above dimension n, we must use the n-th coskeleton csknA•
Def
=

L(τnNA•), which is defined in cosimplicial dimensions > n by (6.3) (compare the dual
description in [Bl, 5.3.4]). Similarly for the construction of E∗ from τnA∗ (cf. [Bl,
5.3.2]).

7. Cosimplicial coalegbras

In order to define right derived functors over a category of coalgebras, one would
obviously like to dualize the constructions of section 4. However, there seems to be no
reasonable (right) model category structure on the category of cosimplicial sets. Thus
our approach here is more restricted. First, we recall the definition of a category of
coalgebras:

Definition 7.1. (i) A comonad (or cotriple) S on a category C consists of a functor
S : C → C equipped with two natural transformations: ε : S → idC and ν : S → S2

satisfying: Sε ◦ ν = εS ◦ ν = idC and νS ◦ ν = Sν ◦ ν : S3 → S (cf. [EM1, §2]).

(ii) A coalgebra over a comonad S = 〈S : C → C, ν, ε〉 is an object C ∈ C together
with a morphism ϕ : C → SC such that Sϕ◦εC = idC and Sϕ◦ϕ = ν◦ϕ : C → S3C.
The category of coalgebras over S (with the obvious morphisms) will be denoted by CS.

Remark 7.2. For every comonad S = 〈S : C → C, ν, ε〉 there is a pair of adjoint

functors C G


V
CS such that S = V G (and conversely, every pair of adjoint functors

yield a comonad). V : CS → C is the faithful “underlying C-object” functor, and
GC = (C, ν).

The relation between the categorical definition and the more concrete analogue of
Definition 3.6 is more problematic, since we need the underlying C-object to be an
object in an abelian category, and not just a set. (This is in order to make use of the
model category structure on cM defined in section 6, since we do not have one on cSet,
as noted above). Thus we specialize to the case where C is a monoidal abelian category
〈M,⊗〉 (see [Mac1, VII,1] for the definition; the only example we shall actually need
being M = R-Mod and ⊗ = −⊗R −):

Definition 7.3. A category of universal coalgebras over 〈M,⊗〉 is a category B, whose
objects are objects A ∈M, together with an action of a fixed set of n-ary co-operators
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W = ∪∞n=0{ω : A→ A⊗n}, satisfying a set of identities E; the morphisms are functions
on the sets which commute with the co-operators.

Example 7.4. Categories of universal coalgebras include:
The category CR of coalgebras over a ring R ([Sw, 1.0]) ; the category CCR of

cocommutative coalgebras over R ([Sw, 3.2]) ; and for each prime p, the category CAp

of (graded) unstable coalgebras over the mod p Steenrod algebra (see [BoK2, §11.3]).

More generally, let A be a category of universal algebras (see §3.7), in which U :
A → Set factors through U ′ : A → R-Mod, for some ring R. We may then define a
conjugate category A? of universal coalgebras as follows:

Since the n-ary operators of A are in one-to-one correspondence with the elements
of the set UFXn, where Xn is a set with n elements, we let An = U ′FXn, and
define the n-ary co-operators of A? to be the elements of the R-module conjugate (or

R-dual): A?
n

Def
= HomR(An, R) ∈Mod-R. We assume that An is a finitely generated

R-module for each n (of finite type, if R is a graded ring).
The relations among the co-operators correspond to the elements of HomR(A?

n, A
?
m),

just as the relations in A are determined by HomSet(UFXn, UFXm).

In some cases the functor G : M → B, which is right adjoint to the “underlying
object” functor V : B →M, has a description as a “cofree coalgebra” functor. This is
true for B = CF, where F is a field; see [Sw, 6.4.1] for an explicit description. Similarly
for B = CCF (see [Sw, 6.4.1,6.4.4]). For B = CAp, we have

GX∗ = H∗(
∞∏

n=1

K(Xn, n); Fp)

where M = gr+Fp-Mod (see [BoK2, 11.4]).

It is clear that Proposition 6.2 and Theorem 4.14 (as well as their proofs, and §§4.1,
4.2, 4.7, 4.11, and 4.13) may be dualized to yield:

Proposition 7.5. For any category of universal coalgebras B over M = R-Mod, the
functor G creates all colimits and sequential colimits of epimorphisms in B, and the pair
(G, V ) produces all limits in B.

Theorem 7.6. Let 〈C; WC, CC, FC〉 be a right model category with dual canonical fac-

torizations of type κ, and C V


G
D a pair of adjoint functors. Assume that V creates

sequential limits of epimorphisms of type κ, that D has all finite limits, and that

(∗) the derived factorization A
i−→ C

p−→ B for any f in D satisfies V i ∈ CC ∩WC.

Then (G, V ) create a right model category structure 〈D; WD, CD, FD〉.

In order to see when hypothesis (∗) of the Theorem applies, let us consider the
case where C = cB and D = cM are both categories of cosimplicial objects, over
a category B of universal coalegbras and an abelian category M, respectively, and the

adjoint functors C 
 D have been prolonged (§2.16) from some pair M V


G
B.

Now the derived factorization of a map f : A• → B• in C = cB, as given by the
proof of Proposition 6.4, may be described as follows:
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We start with C•(0)

Def
= A• × GITC(B•) × GIRV (B•), where G : cM→ cB is as

above, I : cM→ cM is the (prolonged) injective envelope functor, and grM T


C

c∗M
are the adjoint pair of Proposition 6.4. (Here we identify cM with c∗M by Proposition
6.2).

In general, C•(n) is the pullback of

C•(n−1) → GcsknC•(n) ← GE•

(see remark 6.5), so we see that C•(n) agrees with C•(n−1) through dimension n,

Cn+1
(n) = Cn+1

(n−1) × GEn+1, and Ci
(n) (i > n) is determined by (6.3). Thus it is clear

that A• → C• will be a cofibration. To verify that the inductive cohomology conditions
hold for the derived construction in cB, note that they hold in c∗M ∼= cM because
the composite map

H ↪→ P n in−→ Bn = V Cn
(n−1)

(ν)−→ En+1

is a monomorphism. Here H ∼= HnB∗/Im(f∗) ∼= Hn(V C•(n−1))/Im(j(n−1))∗. In the
derived factorization we need to know that the composite:

H ↪→ V Cn
(n−1)

V f(ν)−→ V GEn+1

is monic, where (̃ν) : Cn
(n−1) → GEn+1 is adjoint to (ν). This follows because for any

f : V X → Y inM we have η ◦ V f̃ = f (for η : V GY → Y the adjoint of idGY ).

Thus even though Proposition 4.8, and thus Theorem 4.15, do not dualize usefully to
our situation (because Quillen’s small object argument does not dualize to limits), we
have the following simplified situation where (∗) of Theorem 7.6 holds:

Proposition 7.7. Let cM be the category of cosimplicial objects over an abelian cat-
egory M with functorial injective envelopes, endowed with the model category structure

given by Propositions 6.2 & 6.4, and let M V


G
B be a pair of adjoint functors such

that V is faithful. Then the factorization given in the proof of Proposition 6.4 satisfies
hypothesis (∗) of Theorem 7.6.

Remark 7.8. Theorem 7.6 provides a right model category structure on cB for any
category of universal coalgebras B over an abelian categoryM, since the hypotheses of
Proposition 7.7 will in fact hold for such a B (compare [BaW, 3.3, Thm. 9]). However,
for the purposes of “homotopical algebra”, further assumptions may be needed.

In particular, in order for the “triple derived functors” (cf. [BaB]) of T to coincide
with the right derived functors (as defined in §4.11), we would want GA to be an
injective in B for any A ∈ M. This will be true, for example, if all objects in M are
injective (e.g., if M = F-Mod for some field F ).

For any B ∈ B one has a cosimplicial coalgebra C• ∈ cB obtained by the “dual
standard construction” (cf. [BaB] or [God, App., §3]), with Cn = (GV )n+1B and the
coface and codegeneracy maps determined by the comonad structure maps ε and ν of
§7.1. Moreover, the coaugmentation ε : B → C0 defines a map i : c(B)• → C•

(where c(B)• is the constant cosimplicial object which is B in each dimension).
Under the hypothesis that GA is always an injective, it is readily verified that

i : c(B)• → C• is a trivial cofibration: it is always a weak equivalence, and it is
a cofibration by Fact 2.12 and the extension properties of injective objects. A similar
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argument shows that if T : B → B′ is a functor between such categories of universal
algebras (possibly trivial – that is, simply abelian categories), its prolongation cT :
cB → B′ will preserve weak equivalences between cofibrant objects (compare [Mac1,
III, Thm 3.1]), so that its right derived functors are defined (§2.16). Thus in particular
we have the following

Fact 7.9. In the right model category structure on cCAp defined by Theorem 7.6 and
Proposition 6.4, we may identify the E2-term of the mod p Bousfield-Kan spectral se-
quence as the right derived functors of HomCAp(B,−), as in [BoK2, Thm. 12.1].

Remark 7.10. It should perhaps be observed that the situation for an abelian category
M, in which both left and right derived functors may be defined, is anomolous: it arises
because M may be viewed either as a category of universal algebras or as a category
of universal coalgebras, over itself. In general, most algebraic categories will support
either left or right derived functors, but not both.

Moreover, the situations are not precisely dual, because categories of simplicial uni-
versal algebras derive their left model category structure from S, while cosimplicial
universal coalgebras get their right model category structure only from the underlying
abelian category (which will usually be M = F-Mod, for some field F).

Finally, as noted above, the failure of Quillen’s small object argument for limits, even
in abelian categories (see [Mil]), implies that some of the pleasant properties of adjoint
functors with respect to model categories do not dualize.
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