MAPPING SPACES AND M-CW COMPLEXES
DAVID BLANC

ABSTRACT. We describe a procedure for recovering X from the space of maps from M
into X, when M is constructed by cofibers of self-maps. This can be used to define
an M-C'W approximation functor. The case when M is a Moore space is discussed in
greater detail.

1. INTRODUCTION

The concept of “homotopy groups with coefficients”, in which spheres are replaced by
a Moore spaces as the representing objects, were first studied by Peterson in [P], and in
greater detail by Neisendorfer in his thesis ([N1]; see [N2]). Much of homotopy theory can
be redone in this spirit, with an arbitrary but fixed space M and its suspensions replacing
the spheres not only in the definition of homotopy groups, but also in that of a C'W-
complex, loop space, and so on. In particular, an M-C'W complex is a space constructed
inductively by successively attaching M-cells. This concept has been studied (under
various names) by Bousfield, Dror-Farjoun, and others (cf. [Bol, Bo2, BT1, Ch, DJ.
Some of the properties of ordinary C'W complexes carry over mutatis mutandis to M-
CW complexes — e.g., the Whitehead theorem - but others do not. Compare [BT2].

In this note we address the question of recovering the space X from the mapping
space. XM for a special class of “self-map resolvable” spaces M (see §2.1 below), a
question analogous to the classical one of recovering X from Q"X (83.6). Just as
for loop spaces, one needs some additional structure on X in order to do so. Our
procedure for recovering X is given recursively by a sequence of homotopy colimits, in
Theorem 2.13. We may also think of this procedure as another construction of an M-
CW approximation functor. Qur approach can be made more explicit in the case of the
mod p” Moore space (see Theorem 3.8).

1.1. notation and conventions. 7, will denote the category of pointed C'W complexes

with base-point preserving maps, and by a space we shall always mean an object in 7.,
for which we shall use boldface letters: X, S”. Then n-fold smash product will be
denoted X I X A AX. The space of (pointed) maps between X and Y will be
written Y, rather than map.(X,Y), and the map induced by f: A — B will
be written f# : XP — X4. When f is the degree & map between spheres, we write

simply &k : Q"X — Q"X.

Let M € 7, be some d-dimensional “model space”, which we shall assume to be a
suspension. We adopt the stable convention that M’” denotes ¥'~“M (so that M’
does not necessarily exist for r < d).
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Definition 1.2. The k-th homotopy group with coefficients in M of any space X € 7,

is defined to be (X5 M) et [MF, X] & mp_gXM, for k > d. We say that a map

f:X =Y in 7. is an M-equivalence if f.: m(X; M) — 7(Y; M) is an isomorphism
for all + >d — thatis,if fM: XM —YM isa weak homotopy equivalence (since M
was assumed to be a suspension).

Definition 1.3. The class Cj; is defined to be the smallest class of spaces in 7,
containing M and closed under homotopy equivalences and arbitrary pointed homotopy
colimits (cf. [D, Ch. 2, D.1]). If X € Cp, wesay X is an M-CW complex.

Because M is a suspension, any M-C'W complex may be constructed inductively,
starting with a discrete space, by taking cofibers of maps from suspensions of M (see

D, Ch. 2, E.3)).

Definition 1.4. An M-CW complex X equipped with an M-equivalence f:X — X
is called an M-C'W approzimation for X. Any such X will be denoted by CWyX; it
is unique up to homotopy equivalence, by the analogue of the Whitehead Theorem ([W,
V, Thm 3.8] and [D, Ch. 2, Thm E.1]).

There are a number of different constructions of CWyX — see [Bol], [CaPP], and
[D, Ch. 2, B.1 & E.6].

1.5. organization. In section 2 we describe a recursive procedure for recovering X from
XM when M is “self-map resolvable” — that is, constructed by taking cofibers of self-
maps. In section 3 we specialize to the case where M is a Moore space, and describe
M-CW complexes explicitly. In section 4 we describe the simplicial resolution of [Stv]
in our context, and discuss its relevance to the construction of mapping spaces (Remark
4.14, as well as to M-C'W approximations (Proposition 4.15).

Acknowledgements. I would like to thank the referee for many useful comments and
suggestions.

2. MAPPING SPACES

We first consider the following question: given a space M as in §1.1, and a homotopy
equivalence Y ~ XM what information regarding Y is needed in order to recover
X from it? Note that, by Definition 1.2, we can only hope to recover X up to M-
equivalence.

The problem of recovering X from XM appears to be a hard one for arbitrary M,
so we restrict attention to the following special case:

Definition 2.1. We say that a space 'V € 7, is self-map resolvable (cf. [BT2, §2.1])
if there is a sequence of spaces {V(m)}"_ . with V = V(n), such that for each
m > 0 there is a self-map v, : ¥V (m — 1) — V(m — 1) with cofiber V(m). We
always start with a (possibly localized) sphere V(—1) = S/ (or S{p)), and assume
vo: V(—=1) — V(—1) is the degree k map (k> 2), so V(0) isthe (j+1)-dimensional
mod k& Moore space. For simplicity we assume that each wv,, is a suspension, and all
spaces are simply connected finite C'W complexes.

Thus each V(m) satisfies Bousfield’s n-supported J-torsion condtion (see [Bo2, §7.1])
for J={p:p|lk} and some n > 1.

The most useful case is when each space V(m —1) is a p-local space of type m, and
the map v, : ¥ V(m —1) — V(m — 1) is a v,-self-map (see [R, §1.5] or [HS, Thm.

5.12]). Such spaces and maps play a central role in the definition of v,-periodicity.
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2.2. notation. To simplify the notation, for the rest of this section we fix a self-map
v : Mt — MY, and denote its homotopy cofiber by V. By abuse of notation, any
suspension of v will also be denoted by v; thus r-fold composites of suspensions of v
will be written simply »” (with dimensions understood from the context). The cofiber
of v": M’ — M* will be denoted by V"1 and we shall write simply V, for
Vit (50 V =V, = V) Since we want V to be a co-H-space, we shall assume
that v : M™*? — M? is a suspension.

Thus the problem at hand is that of recovering X from XV, where V is self-map
resolvable. We assume inductively that we have a suitable procedure for recovering
X (up to M-equivalence, so in particular up to V-equivalence) from XM so in fact
the inductive step, which we consider in this section, involves recovering XM (up to
V-equivalence) from XV.

Remark 2.3. Just as in the case of loop spaces, one needs some structure on X", beyond
its bare homotopy type (in addition to the loop structure, which comes from the fact
that V is a suspension), in order to recover X. As in Stasheff’s approach to delooping,
our approach is iterative; so we shall not describe in advance the full structure on XV
which we postulate; the additional data needed at each stage in the process is given in
§2.5. Of course, such data depends on the homotopy type of X, not only on that of XV.

Again in analogy with the case of loop spaces, one really expects only to recover
CWyX from XV (since by definition the augmentation f: CWyX — X induces a
homotopy equivalence fY : (CWyX)V — XY). Thus we may as well assume that X
itself is a V-C'W complex to begin with. This may be restated as follows:

The additional structure on Y = X" which we need for our procedure consists of
homotopy invariants of X (see §2.5 below). However, on the face of it these need not be
invariant under V-equivalences, and choosing a different space X’ which is V-equivalent
to X — so that we may also view Y as (X’)¥ — may yield different invariants, and
thus different constructions for recovering X’.  We do not claim that our procedure
works for any such choice of X’ (and thus of the invariants), but only for the “canonical”
invariants — those associated to viewing Y as (CWyX)V.

2.4. cofibration sequences. The iterates of v fit into commutative diagrams, in which
both the rows and the columns are cofibration sequences (up to homotopy):

*

X

M2rt+d — M2rt+d * M2rt+d+1
" v27° l % o7
r 4 jritdt
M+ v M i vttt r M+
T
gritd ig . jritd+l
T - T
T /€2Tt+d+1 )\27°t—l—d-|—1 6Tt+d+1
2rtd41 2rt4d+1 ri+d+1 r 27t4-d+2
v, vy v, v,
cortdbdal 2rt+d+1 yritd+2
]TT o Jor l* Jr
M2+ - M2rt+d+ * M * M2rt+d+2
FIGURE 1

Thus we have:

(a) B2 =i 02 (so that §5%10 B2 ~ ).

12 =95 0k and ) = o1 so that
b) ji = js 0 and it = Ao (so that 32

oy s+2rt+1
_)\27’ Oﬂ;TOKJi).
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Remark 2.5. Mapping the third row of Figure 1 into X yields a fibration sequence:

# o .
XV AT X Ve ST VT (see [W, I, 7.8]), and thus a long exact sequence
r * AX P r
= Torpara(X; V) 2 XY XY 2 X S X

Since V,, V., and all the maps in Figure 1 were assumed to be suspensions, this is
actually an exact sequence of groups, which may be continued to the right as a sequence
of pointed sets (cf. [Sp, 7,82, Thm. 10]). In particular, one has a short exact sequence of
groups:

(2.6) 0 — Coker(37) — 7oX"2 — Ker(3) — 0

for  3r 7T2rt+d+2(X;V;) - 7TTt-I—d-|—1(X;V) = 7TOXVT and B: : 772It-|—d-|—1(X;V) -
Trra(X; V) = 71-0XVTMJr , Wwhere Z\/;”"'d = V;”"’d"'l =V, and Y3, = 3,. Note
that moX¥% " is just a pointed set, but Ker(37) = Im(x¥) is a group.

Thus Coker(87) and Ker(3;) determine 7oX"2r = [V,2HH X] = [V,,, X] as a
set, but since we shall also need its group structure, we must assume the extension in
(2.6) is given, in addition to the homotopy class of the map S¥ : XVeretatt — XVretd,

as part of the additional structure needed for our recovery procedure (see §2.3)

Remark 2.7. Moreover, again because Figure 1 desuspends, there is a topological group

H and a closed normal subgroup G <5 H such that the following diagram commutes
up to homotopy:

# # #
cee QritdEIX Ve o XVTH? i XV AT X Var Ky X Vr
== ]
- G H H/G— BG
FIGURE 2

where the rows are fibration sequences, the two left vertical maps are homotopy equiva-
lences, and the two right vertical maps are inclusions of components (up to homotopy),
by [M3, Prop 7.9]. Since all the components of X2 are homotopy equivalent, we
have

(28) X" ~ (H/G)) x [V X] > ] (/G

V%, X]

(as a loop space), where (H/G)q) is the 0-component of H/G, say, and the group
[V2Fd+t X] is assumed to be known, since the extension (2.6) is given as part of our
initial data.

Moreover, H/G is homotopy equivalent to the realization B(H,G,x*) of the geo-
metric bar construction B.(H, G, *), which is the simplicial space with B;(H, G, ) =
H x G™ x {*} (and the obvious face and codegeneracy maps — see [M3, §7]). By [D,
Ch. 2, D.16] we have thus exhibited X'?* as a homotopy colimit of a diagram defined

in terms of X7, XVTTHCHZ), the map (¥ and the extension (2.6).

The cofibration sequences of Figure 1 fit into an inverse system:
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4 2

(% (% (%

[ A M4t-|—d M2t+d Mt-l—d
1)4 1)2 v
— M* — M — M
on i2 O
Mg A A
. 4t4+d+1 2t+d+1 t+d+1
— "V V; — "V
J4 J2 J1
1)4 2 v
e M4t-|—d-|—1 M2t+d+1 - - 5 Mt-l—d-l—l
FIGURE 3

and thus the fibration sequences obtained by mapping the above diagram into a fixed
space X form a directed system as follows:

4\# 2\# #
(v ) XM‘“"'d ~ QitXM (v ) 0)2txXM OixXM
(v!)# (v*)# v#
- - -
)\# Z4 )\# Z2 )\# Zl
4 v, 2 V. 1 v
X Ve XYz X
-H -H -H
(v4)# J4 (vz)# J2 o J1
Q‘“‘HXM Q%‘HXM QH'IXM
FiGURE 4

Remark 2.9. The diagram in Figure 4 can be changed up to homotopy so that all the

S x - 28 #
. s Jos . lgs (U ) s .
maps )\i are cofibrations, and Q?7#HIXM 2, XV 25, XM T, XM g 4
fibration sequence.

Definition 2.10. Recall from [Bo2, §1] that, given a fixed space W, a space X is called

W-local (or W-periodic) if XV ~x. Amap f:A — B iscalled a Py-equivalence
#

it XB XL XA iga (weak) homotopy equivalence for every W-local space X. Finally,

amap ¢: X — X is a W-localization if X is W-local and ¢ is a Py-equivalence.

Such localizations exist for any W. A functorial version of W-localization is denoted

by PwX; see [D, Ch. 1, §B] and [Bo2, §2].

Proposition 2.11. If X is a V-CW complex, and we set

# #
V..X % hocolim {xv M,oxve 2 ox 1,

then the map 1% : Voo X — XM induced by the maps i, : XVr — XM is a weak
homotopy equivalence.
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o (+2)#

Proof. Set M. X e hocolim{Q!XM = QXM ., QuxM

the colimits of each row in Figure 4 to obtain a fibration sequence

(vH)#
—— ...}, and take

M, X 25 v x 5 xM 2 v X
(To see this is indeed a fibration sequence, consider the colimits as unions of simplicial
groups; note that the homotopy colimits used to define VX and M, X are just
ordinary colimits, if we apply Remark 2.9). Now

iMoo X = colim {m;(X; M) o Tipt (X5 M) ﬂ Tipar( X M) ... } for 1 >0
(cf. [Gr, Prop. 15.9]), and the right hand side is by definition the i-th v-periodic homo-
topy group of X, usually written o~'7;(X; M).

Taking V,.4 =M, w=v and thus V,, =V in [Bo2, §11.3], by [Bo2, Def. 9.1 &
Thm. 9.12], we have (V) < (¥W,} for a suitable space W,, (see [Bo2, 10.1]), so the
periodization map X — Py X, whichis a Py-equivalence,is alsoa P, -equivalence (see
[Bo2, §10.2]), and thus induces an isomorphism v~ '7(X;M) = v ‘7 (PyX; M) = 0
by [Bo2, Thm 11.5].

However, since X is a V-CW complex, PyX is contractible (cf. [D, Ch. 3, Prop.
B.1]). We deduce that M, X is (weakly) contractible, and so 7., : V. X ~ XM, [0

Remark 2.12. If ¢ : XV — V_X is the obvious map, then i 0 ¢ =~ zf& XV = XM,
thus ¢ is up to homotopy the inclusion of a closed normal subgroup, with quotient
map ¢ : Vo X — XM /XY (as in Remark 2.7 above). Now let w : V., X/X" — BXY
denote the classifying map of ¢ (which, up to homotopy, is just ji). Then the following
diagram commutes up to homotopy:

XV — ey x — v XXV — 2 XY

SR e M T

By 2.4(a) we have B(ﬂf) ~ Q¢ o w. This implies we can recover the columns of
Figure 3 from the spaces {X“*}°¢, and maps between them.

We may summarize the results of this section in the following

Theorem 2.13. Suppose v : XM — M is a suspended self-map with cofiber V, and
Y = XY is a mapping space; then XM is V-equivalent to the homotopy colimit of
XY — XY2 — ... asin Proposition 2.11, and each X"2++1r is a disjoint union as in
(2.8), where each component is given by the homotopy colimit B(X"2r, Q"X V"2r )
as in §2.7. At the s-th stage, the data needed to determine the diagrams over which we
take these homotopy colimits consists of the map ﬂfT and the extension (2.6).

Corollary 2.14. If V =V (n) is self-map resolvable, and Y ~ X"V, CWyX may be

recovered from Y by a countable sequence of homotopy colimits.

Proof. Since we assumed that X was a V-CW complex (§2.3), Proposition 2.11 implies
that V., X ~ XM Since any V-CW complex is in particular an M-C'W complex, the
same holds throughout the inductive application of Theorem 2.13. U

Remark 2.15. The procedure we defined above is one for recovering X (up to V-equi-
valence) from XV, rather than recognizing when Y ~ XV. Of course this yields
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an 1mplicit method for recognizing spaces of maps from a self-map resolvable space
V: apply the procedure to all possible candidates for the maps [# : Qri+d+2Y (~
errt+d+2) — Y(~ X'), etc., and verify that the resulting space X satisfies XV ~ Y.
In fact, one can say something about which maps b: Q"T42Y — Y could be of the
form A% (assuming Y ~ X"), by checking

by Titrtrar2(Y; V) = m(Y; V) = 7Tz’—(rt+d+1)YV = 7Tz’—(rt+d+1)(XVAV)-

However, this is still far from an explicit recognition principle for spaces of maps from

V, comparable to those of May [M2], Cobb [Co], Smith [Sm], and others.

3. MoOORE CW COMPLEXES

We now specialize to the simplest example of a self-map resolvable space, the d-
dimensional mod p" Moore space M = M4(p") = S* ! U, e?. Throughout this
section we shall write XM()  for the mapping space XM and m(X;p") for
m( X M) = [M'(p"), X].

In this case we can say explicitly when a space X € 7, 1is of the homotopy type of
an M-C'W complex:

Proposition 3.1. A space X € T, is an M (p")-CW complex if and only if X is
(d — 2)-connected, =X is p-torsion, and p"-m3_1X = 0.

Proof. (I)  If we assume that X is an M-C'W complex, then since M is a suspension,
we have X = hocolim, X,,, where each X, ;1 is obtained as the cofiber of a map f, :
M*» — X,,, starting with X, ~ \/wel“ M., (see [D, Ch. 2, E.3]). Since [NL'(XH,Z) =0
for each + < d—2 and [NL(Xn, Z) is a p-group for all 7, the same holds for 7,X,, by
[Sp, IX, §6, Thm 20], and thus for 7, X by [BoK, XII, 5.7]. Moreover, by the Blakers-
Massey Theorem (cf. [W, VII, Thm 7.12]) 74-1X,41 is a quotient of m43_1X,,, so it has
exponent p” by induction, and thus p" - 71X =0 by [Gr, Prop. 15.9].

pr

(IT) Now let X € 7. be arbitrary: the cofibration sequence S%~! — §4=1 — M (p")
then yields a long exact sequence

(3.2) R ¢ LN X — (X5 p") — 71 X LN T X — ...
and thus a short exact sequence
(3.3) 0> mX®Z/p" — m(X;p") = Tor(m1 X, Z[p") — 0 for ¢ > d.

(See [N2, §1] for the case t = d = 2). This short exact sequence implies that, if
f:X{d—-1) = X is the (d —2)-connected cover of X, then f is an M-equivalence, and
thus CWy(f): CWyX({d — 1) — CWyX is a homotopy equivalence. Similarly, the
p-localization X — X,y is an M-equivalence. Thus we may assume without loss of

generality that X is p-local and (d — 2)-connected.
In [Bo2, Thm 5.2] Bousfield shows that, for W = M%*1(p") we have

X if 1<d
(3.4) miPwX = ¢ 7,X/(p-torsion) if i=4d
X @ Z[1/p] if ©1>d,

Thus if X is (d — 1)-connected and #.X is p-torsion (i.e., all elements are of orders
which are powers of p) then PwX ~ %. In this case [D, Ch. 3, Prop. B.3] implies that
CWMX ~ X.
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Now let 7 be an (abelian) p-group; then
Tars(K(m,d —1); M) = f{d_l(Md"'s(pT); 7)=Tor(Z/p", )

for s =0, and 7ays(K(m,d—1); M) =0 for s> 0. Thus the inclusion induces an
M-equivalence K(Tor(Z/p",7),d—1) — K(r,d —1).

By (I) we know that 7. X is p-torsion for any M-C'W complex X. On the other hand,
CWyK(r,d—1) is a GEM (generalized Eilenberg-Mac Lane space) by [D, Ch. 5, Thm
E.1], since M is a suspension and Y*M ~ x. This implies that CWyK(r,d — 1) ~
K(Tor(Z/p",x),d—1), by (3.3).

Now if X is any (d — 2)-connected space with 7. X p-torsion, such that p" -7 =0
for m=my_1X, and X(d) is the (d — 1)-connected cover of X, then we have a map
of fibration sequences

CWaf

7

lh Jk ~|¢
CWar(X(d)) ——=X (d) I x L (1)

in which ¢ is a homotopy equivalence, by the above. If F = Fib(h) is the homotopy
fiber of h, then Fib(k) ~ F, and since k (and () are M-equivalences, so is h, so F is
M-local — that is, 7.(F;p") =0 for > d.

Moreover, by [D, Ch. 5, §E.7], F is a 2-stage Postnikov system; but since X and
CWyX are (d — 2)-connected, F is (d — 3)-connected, and thus by (3.3) we have
mF =0 for t #d—1,d—2, and 74_1F has no p-torsion. But since 7.X is p-torsion
by assumption, and x.CWy X is p-torsion by (I), the same is true of F, so that in fact
F =K(7x',d —2) for some p-torsion group =, which fits into the short exact sequence
0 — 11 CWyX — 11X — 7' — 0.

By comparing the long exact sequences (3.2) for CWyX and X, we see that
7' 2 wg1X/Tor(ng—1X,Z/p"). This completes the proof. O

An alternative proof of the Proposition may be obtained by using [Ch, Thm. 20.9].
Note that the Proposition does not provide us with any obvious construction of a

M<(p")-CW approximation functor (but compare Bousfield’s p-cocompletion functor
in [Bo2, §14.1]).

Corollary 3.5. If (p,q) = 1, and we let M = M%(p'¢®), M' = M (p"), and
M” = M%(¢*), then XM o~ XM x XM" qnd CWyX ~ CWap XV CWyX for any
XeTl.

Proof. By [N2, Prop. 1.5] we have M ~ M’V M", so a map is M-equivalence if and
only if it is both an M’-equivalence and an M"-equivalence. The Corollary then follows
from the Proposition. O

3.6. n-fold loop spaces. To start the inductive sequence of procedures described in
section 2 for recovering X from X", we need to consider the initial case, when V =
V(-1)=8"

Recall from [M2, §4] or [BV] the little n-cubes operad C,, which operates on any
n-fold loop space Y ~ Q"X (cf. [M2, §5]); conversely, any (connected) space on which
C, operates is weakly equivalent to an n-fold loop space: in fact, May defines an “n-fold
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classifying space” functor B(S",C,,—) which recovers X from Y ~ Q"X (if Y is
connected, of course — cf. [M2, Thm 13.1], and see also [Be]).

Lemma 3.7. For M = S% ! and v = p" (and thus V = M%(p"), the mod p"
Moore space), the classifying space B(S™',Cq_q1, Voo X/XY") (sec §2.12) is a V-CW

complex.
Proof. Since mX"" = 7;,,(X;p"), we see by (3.3) that

(a) X" is p-torsion for all 7 >0, and
(b) p" mXV =0

(In fact, m.X"" has exponent p" for p>2, by [N2, Prop. 7.1]).

By considering the homtopy colimits used to define them (see §2.7, Proposition 2.11,
§2.12), we conclude that each of the spaces X'2r X" ...  as well as V. (which is
the colimit of X" — X"2r — ...}, and V_X/(X"), satisfies properties (a) and (b)
above. The Lemma then follows from Proposition 3.1, since B(S*!,C;_1,—) takes
values in  (d — 2)-connected spaces. O

When M is a Moore space, we thus obtain from Theorem 2.13 a more explicit de-
scription of the procedure for recovering X from XM:

Theorem 3.8. Let p be a prime, V = M4 (p") the d-dimensional mod p" Moore
space (d > 3), and Y = X", and assume that [V,X] = 0; then CWyX ~
B(S¥1,Cy 1,V X), where V. X s the sequential homotopy colimit of X" —
XYz — .. as in Proposition 2.11, and each X"2:+1r is the homotopy colimit
B(XY2r QXY2r %), in the notation of §2.7.

If we do not assume that [V,X] = 0, we must include the extensions (2.6) in the
construction of X"2:+1» from X"2*r. Corollary 3.5 allows one to generalize the Theorem
to the mapping space from any mod k Moore space (k > 2).

4. M-CW APPROXIMATIONS

In a sense, Corollary 2.14 provides a way of constructing an M-C'W approximation
for any space X, when M is self-map resolvable. However, this procedure is somewhat
unsatisfactory, because it requires the full mapping space XM as part of the initial
data. We now show how one may construct CWyX out of simpler building blocks:

4.1. the mapping cotriple. One obvious candidate for such a functorial and relatively
efficient (i.e., countable) construction for the M-C'W approximation of a space is the M-
analogue of Stover’s construction of “simplicial resolutions by spheres”: for any space
M € 7., one can define a functor J:7, — 7., as in [Stv, §2], by

(42)  JX=(V \ My v/ \ CY'Mp)/ ~
i=0 feHomr, (M ,X) i=0 FeHomq,(CT'M,X)

where for each A = ¥'M, the subspace J(CAr) = A of CAr (which is the copy of
the cone on A indexed by F': CA — X) is identified under ~ with Ay, the copy
of A indexed by f = Flsca. Note that JX is homotopy equivalent to a wedge of
copies of M and its suspensions.

J is clearly a comonad (cf. [M, VI, §1]) on 7., with the obvious counit ¢:JX — X
— namely, “evaluation” - and comultiplication g : J(X)— J*X - where u

EiMf iS
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an isomorphism onto the copy of ¥'M in [?X indexed by the inclusion ¥'M; — JX,
for any f:¥'M — X; and similarly for CX'Mp.

Now given X € 7., one may define a functorial simplicial space J, = Jo(X)
by setting J, = J"™'X, with face and degeneracy maps induced by the counit and
comultiplication respectively (cf. [Go, Appendix, §3]). The counit also induces an
augmentation ¢ :J, — X. Moreover, if M is a suspension, then one has:

Proposition 4.3. For any t > d, the augmented simplicial group =w(Je; M) #,
(X5 M) is acyclic — that is, ws(mi(Je;M)) =0 for s>1, and wo(m(Je; M)) =
(X5 M).

Proof. Same as that of [Stv, Prop. 2.6].

O

The realization of a simplicial space Y, (cf. [M2, §11.1]) is its homotopy colimit,
denoted by ||Y.||, and constructed analogously to the geometric realization of a sim-
plicial set. In particular, for J, = Jo(X) as above we see that |J,|| is an M-CW
complex. Recall from [BoF, Thm B.5] & [BrL, App.] that for any suitable simplicial
space Y, there is a first quadrant spectral sequence with

(1.4) B2, = m(mY.) = mond[ Y.

(“Suitable” includes the cases where Y, is a simplicial loop space, or where each Y,
is connected). Applying the mapping space functor (=)™ to Y, yields a simplicial
space ' YM

y', and we have:

Corollary 4.5. If M = XM’ is a suspension, then for any space X € T, we have
(o (XM} = XM

4.6. the map . What one would really like to conclude from Proposition 4.3 is that
the augmentation ¢ : ||Jo|| — X is an M-equivalence, and thus ||J,| ~ CWyX.
Unfortunately, this is not true in general:

To see why, let M = M%(p) be the d-dimensional mod p Moore space, (so that each
J. is (d — 2)-connected). Let K, be the simplical Eilenberg-Mac Lane space with
K, =K(rq_1J,,d = 1), and g, : Jo — K, the obvious map of simplicial spaces made
into a fibration, with (dimensionwise) fiber J, = J,(d — 1), the (d — 1)-connected cover

of J,.

By [A] one then has a fibration sequence ||j.|| — || T ]| Naell, |IK.||, and thus a
fibration sequence
(4.7) ITe[™ = [ Ta]™ 2 K™

Recall from §2.4(a) that (5 = it o0 j*, so from the long exact sequence (3.2)

we see that 7, R e K, = 1 1(3,) = 7a(I; M)/ Im(B)#.  Since the spectral

sequence (4.4) for K, collapses at FE? if we set G, = 7,(7s-1K,) we see that
1Kol ~ [[—, i K(Gria—1,n) (since K, isa simplicial GEM, ||K,|| is a GEM, too).
Moreover, for any G we have mK(G, n)M = f{”_t(M, G), and K(G,n)M is again a
GEM (cf. [T, Thm. 3]), so

o0

(1.8) 1K~ T[(K(Grpicron) x K(Grsa,n))

n=0
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since p’ -G, = 0 for all ¢ (as in the proof of 3.7), and thus H'Y(M,G,) =
Hom(Z/p",G,) 2 G, and HYM,G,) = Ext(Z/p",G,) = G, by [Sp, V, §5, Thm.
3].
One similarly sees that KM ~ K(?,,0), so that again the spectral sequence for the
simplical space KM collapses, and

(4.9) KV~ J] K(zu?en—d+1).

1=d—1

~ On the other hand, applying realization to the fibration sequence of simplicial spaces
JM - JM 5 KM yields a fibration sequence (by [A] again), which maps into that of
(4.7) by naturality:

I |33 —— K3

1) 1 |7

M = [T K ™

FIGURE 5

The map ~ : ||j.||M — ||j.||M is a weak equivalence, by [BT1, Lemma 6.1]. Now
Proposition 4.3 implies that the spectral sequence for JM collapses, and thus

(4.10) 7rt||.]].w|| >~ romJ M = Terd( X5 M).

4.11. M-II-algebras. We now show how to interpret the groups appearing in the right
hand side of (4.8) and (4.9) as derived functors, which allows us to show they often do
not vanish, and thus to conclude that ¢ : ||Jo|| — X is not in general an M-equivalence.

Definition 4.12. Recall that a [I-algebra is an algebraic object modeled on the homo-
topy groups of a space, together with the action of the primary homotopy operations
on them. If we replace the spheres representing ordinary homotopy groups by a model
space. M = M? (as in §1.1), we get M-homotopy operations corresponding to each
homotopy class « € m,(M™ V...V M"™; M) (subject to the universal relations among
such operations, corresponding to compositions of maps).

We then define an M-Il-algebra to be a graded set {X;}2,, together with an action
of the M-homotopy operations on them. As usual, the free M-Il-algebras are those
isomorphic to m.(\/ e, M"*; M) for some (possibly infinite) wedge of model spaces.
(In the case of Moore spaces, one can be more explicit — cf. [BI2, §5.6]).

The category of M-Il-algebras will be denoted by M-II-Alg; since it is a category of
universal (graded) algebras, one has a concept of free simplicial resolutions, and thus of
left derived functors L,T : M-1I-Alg — AbGp for any functor T : M-II-Alg — AbGp
(see [Q, 1,84] or [BS, §2.2.4] for more details).

In particular, given an M-Il-algebra X, = {X;}2,, one has a functor 7" : M-II-
Alg — AbGp defined T(X.) = X,/Im{(3H)#* : X411 — X,;}. Now Proposition 4.3
shows that 7.(Je; M) — 7.(X; M) is a free simplicial resolution, so that w;_1(J,) =

€

w3/ Im(BY)#: M) = T(x(To; M), and thus G, = 7, (7a1ds) = (LaT)mu(X; M),

Of course, we may use any resolution of m.(X; M) to calculate these derived functors.
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Lemma 4.13. Let M = M4(p") with d >4, p > 2, and X = K(Z,n) with
n < min{2p —4,2d — 4}; then c: ||J.|| = X is not an M-equivalence.

Proof. By (3.3), m(X;M) = Z/p" for ¢ = n, and 0 otherwise. Since the only M-
homotopy operations in dimensions < n are the Bocksteins (3%)# for i =d,...n —
L (cl. [Y]), we have m(M¥ M) = Z/p{¥), ot (MY M) = Z/pr((B#5), and
m(MF; M) =0 for k<t <2(p—2).

In the stable range it suffices to find an ordinary chain-complex resolution A, —
7(X; M) (cf. [Bll, Lemma 6.10]), so we may choose A; 2 7.(M"~"; M) in dimensions
<n for 1 <n—d, with du"™" = (Br=HH#/"~F Thus G; = (L;T)m(X; M) =
mi(TA) =Z/p" for i=n—d (and G; =0 for 0 <i<n—d). Thus the map 5 in
Figure 5 cannot be an equivalence, so the fiber of 7, and thus of 4, is not trivial. The
Lemma follows. O

Remark 4.14. We have shown that the simplicial space J, does not in general provide an
M-CW approximation functor. Nevertheless, as long as M is a suspension, it does give
us a (relatively) explicit construction of XM as the homotopy colimit of a diagram of
copies of spaces LM™)M (7.5 =0,1,...). In particular, if M is self-map resolvable,
combined with Corollary 2.14 this gives a construction of CWj;X from the spaces
(MMM by a countable sequence of homotopy colimits.

This is because the Hilton-Milnor Theorem (cf. [W, XI, Thm. 6.7]) shows that J ~
Hﬁ(/\?fl MM (since J, >~ \/_X"=M). As this is in fact a weak product, and
all finite products may be expressed as pointed homotopy colimits by [D, Ch. 2, Thm
D.16], the statement follows by induction.

We observe that for most Moore spaces this result can be slightly improved:

Proposition 4.15. Let M = M%(k) be the d-dimensional mod k Moore space, where k
is odd or 4|k. Then CWyX may be constructed by homotopy colimits as in Theorem
2.13 from the simplicial space Jo(X)M of§4.1, where ecach IM is homotopy equivalent
to a product of mapping spaces of the form (S‘M)M.

Proof. By [N2, Cor. 6.6] we have M" (k) A M*(k) ~ M "~ (k) v M"t5(k) if r,s >3
and k is odd or 4|k. Thus the Proposition follows from the above Remark, again by

induction on the dimensions. O
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