
LOOP SPACES AND HOMOTOPY OPERATIONSDAVID BLANCApril 18, 1995Abstract. We describe two obstruction theories for a given topological space X tobe a loop space, the �rst requiring a given H-space structure on X, and the secondnot. Both are de�ned in terms of higher homotopy operations.1. introductionAn H-space is a topological space X with a multiplication map m : X � X ! Xand identity � 2 X. The motivating example is a topological groupG, which from thepoint of view of homotopy theory is just a loop space: G ' 
BG = map�(S1; BG).The question of whether a given H-space X is, up to homotopy, a loop space, and thusa topological group (cf. [Mi1, x3]), has been studied from a variety of viewpoints { see[A, Ba, DoL, F, H, Ma2, St1, St2, Ste, Su, Z], and the surveys in [St3], [St4, x1], and[Ke, Part II]. Here we address this question from the aspect of homotopy operations.As is well known, the homotopy groups of a space X have Whitehead products andcomposition operations de�ned on them; in addition, there are various higher orderoperations on ��X, such as Toda brackets; and the totality of these actually determinethe (weak) homotopy type of X (cf. [Bl4, x7.17]). Therefore, they should enable us (intheory) to answer any homotopy-theoretic question about X { in particular, whetherit is homotopy equivalent to a loop space. It is the purpose of this note to explain inwhat sense this can actually be done, using two possible approaches:First, we explain how an H-space structure on X can be used to de�ne the actionof the primary homotopy operations on the shifted homotopy groups G� = ���1X(which are isomorphic to ��Y if X ' 
Y). This action will behave properly withrespect to composition of operations if X is homotopy-associative, and will lift to atopological action of the monoid of all maps between spheres if and only if X is aloop space (see Proposition 5.6 below for the precise statement). The obstructions tohaving such a topological action may be stated in terms of the obstruction theories forrealizing �-algebras and their morphisms described in [Bl4].A more concrete approach, which does not require a given H-space structure on X,yields the following:Theorem A: If X is a CW complex such that all Whitehead products vanish in ��X,then X is homotopy equivalent to a loop space if and only if all the higher homotopy1991 Mathematics Subject Classi�cation. Primary 55P45; Secondary 55Q35.Key words and phrases. loop space, topological group, H-space, �-algebra, homotopy operations,secondary operation, Toda bracket. 1



2 DAVID BLANCoperations hh ii de�ned in x7.10 vanish coherently.The higher homotopy operations in question depend only on maps between wedgesof spheres, and take value in homotopy groups of spheres. They are constructed bymeans of a certain collection of convex polyhedra, de�ned in x7.1 below, which may beof independent interest.1.1. notation and conventions. T� will denote the category of pointed CW com-plexes with base-point preserving maps, and by a space we shall always mean an objectin T�, which will be denoted by a boldface letter: X, Sn, and so on. The base-pointwill be written � 2 X. The full subcategory of 0-connected spaces will be denoted byT0.The space of Moore loops on Y 2 T0 will be denoted by 
Y. This is homotopyequivalent to the usual loop space: that is, the space of pointed maps map�(S1;Y)(see [W, III, Corollary 2.19]). The reduced suspension of X is denoted by �X.S� will denote the category of pointed simplicial sets and pointed maps; its objectswill be denoted by boldface letters K;L; : : : . The subcategory of �brant simplicialsets (Kan complexes) will be denoted by Sk� , and that of reduced Kan complexes bySk0 . jKj 2 T� will denote the geometric realization of a simplicial set K 2 S�, whileSX 2 Sk� will denote the singular simplicial set associated to a space X 2 T�. Gdenotes the category of simplicial groups. (See [Ma1, xx3,14,15,17] for the de�nitions).For each of the categories C = T�, T0, Sk� , Sk0 , or G, we will denote by [X;Y]C(or simply [X;Y], if there is no danger of confusion) the set of pointed homotopyclasses of maps X! Y (cf. [Ma1, x5] and [K1, x3]). The constant pointed map willbe written c�, or simply �. The homotopy category of C, whose objects are those ofC, and whose morphisms are homotopy classes of maps in C, will be denoted by hoC.The adjoint functors S and j � j induce equivalences of categories hoT� � hoSk� ;similarly hoSk0 � hoG under the adjoint functors G, �W (see x5.1 below).For any X 2 T�, we denote by P nX the n-th Postnikov approximation to X, sothat �iX �= �iP nX for i � n and �iP nX = 0 for i > n.De�nition 1.2. A H-space structure for a space X 2 T� is a choice of an H-multiplication map m : X�X! X such that m� i = r, where i : X_X ,! X�Xis the inclusion, and r : X_X! X is the fold map (induced by the identity on eachwedge summand). If X may be equipped with such an m, we say that hX; mi (orjust X) is an H-space. Note that if we only have m� i � r, we can �nd a homotopicmap m0 � m such that m0 � i = r (since X is assumed to be well-pointed).An H-space hX; mi is homotopy-associative if m � (m; idX) � m � (idX ; m) :X�X�X! X. It is an H-group if it is homotopy-associative and has a (two-sided)homotopy inverse � : X ! X with m � (� � idX) � � � c� � m � (idX � �) � �,(where � : X! X�X is the diagonal). In fact, any connected homotopy-associativeH-space is an H-group (cf. [W, X, Theorem 2.2]).If hX; mi and hY; ni are two H-spaces, a map f : X! Y is called an H-map ifn � (f � f) � f �m : X�X ! Y. The set of pointed homotopy classes of H-mapsX! Y will be denoted by [X;Y]H.One similarly de�nes H-simplicial sets and simplicial H-maps in the category S�.1.3. organization. In section 2 we review some background material on �-algebras;in section 3 we explain how an H-space structure on X determines the �-algebra



LOOP SPACES AND HOMOTOPY OPERATIONS 3structure of its potential delooping; and in section 4 we show how the obstructiontheory of [Bl4] for �-algebras and their morphisms may be used to determine whetherX is a loop space. In section 5 we show, in the context of simplicial groups, that the�-algebra structure on ���1X can be made \topological" if and only if X is a loopspace (Proposition 5.6).In section 6 we de�ne a certain cosimplicial simplicial space up-to-homotopy, whichcan be recti�ed if and only if X is a loop space, and prove a technical result (The-orem 6.4), which also yields a simpli�cation of the general theory for realizing �-algebras described in [Bl4]. Finally, in section 7 we construct a certain collection offace-codegeneracy polyhedra, which are used to de�ne the higher homotopy operationsrefered to in Theorem A (=Theorem 7.12). We also show (Example 7.15) how thetheorem may be used in reverse to calculate a certain tertiary operations in ��S7.In an appendix (section 8) we describe a speci�c construction of a simplicial resolu-tion of the �-algebra G� = ���1X.2. �-algebrasIn this section we recall some known facts on the primary homotopy operations andtheir relation to the H-space question. First, some de�nitions and notation:De�nition 2.1. A �-algebra is a graded group G� = fGkg1k=1 (abelian in degrees> 1), together with an action on G� of the primary homotopy operations (i.e.,compositions and Whitehead products, including the \�1-action" of G1 on the higherGn's, as in [W, X, x7]), satisfying the usual universal identities. See [Bl1, x3] or [Bl2,x2.1] for a more explicit description. A morphism of �-algebras is a homomorphismof graded groups � : G� ! G0� which commutes with all the operations. �-algebrasform a category, which will be denoted �-Alg.It will sometimes be convenient to denote Gk, the k-degree of the �-algebra G�,by DkG�.De�nition 2.2. We say that a space X realizes an (abstract) �-algebra G� if there isan isomorphism of �-algebras G� �= ��X. (There may be non-homotopy equivalentspaces realizing the same �-algebra { cf. [Bl4, x7.18]). Similarly, an abstract morphismof �-algebras � : ��X! ��Y (between realizable �-algebras) is realizable if there isa map f : X! Y such that ��f = �.De�nition 2.3. The free �-algebras are those isomorphic to ��W, for some (possiblyin�nite) wedge of spheres W: More precisely, let L be a graded set fLkg1k=1, andlet W = W1k=1Wx2Lk Skx, where each Skx is a k-sphere. Then we say that ��W isthe free �-algebra generated by L. We shall consider each element x 2 Lk to be anelement of ��W, by identifying it with that generator of �kW which represents theinclusion Skx ,!W. The free �-algebra ��W is called �nite if L is �nite.Fact 2.4. If we let � denote the homotopy category of wedges of spheres, and F ��-Alg the full subcategory of free �-algebras, then the functor �� : � ! F is anequivalence of categories. Thus any �-algebra morphism � : G� ! G0� is uniquelyrealizable, if G� and G0� are free �-algebras { and in fact only G� need be free.De�nition 2.5. Let T : �-Alg ! �-Alg be the \free �-algebra" comonad (cf. [M,VI, x1]), de�ned TG� = `1k=1`g2Gknf0g ��Sk(g). The counit " = "G� : TG� !! G�



4 DAVID BLANCis de�ned by �k(g) 7! g (where �k(g) is the canonical generator of ��Sk(g)), and thecomultiplication # = #G� : TG� ,! T 2G� is induced by the natural transformation�# : idF ! T jF de�ned by xk 7! �k(xk).De�nition 2.6. An abelian �-algebra is one for which all Whitehead products vanish.These are indeed the abelian objects of �-Alg { see [Bl2, x2]. If X is an H-space,then ��X is an abelian �-algebra (cf. [W, X, (7.8)]).3. Secondary �-algebra structureWe now describe how an H-space structure on X determines the �-algebra structureof a (potential) classifying space.3.1. the James construction. For any X 2 T�, let JX be the James reducedproduct construction, with � : JX ! 
�X the homotopy equivalence of [W, VII,(2.6)], and jX : X ,! JX and iX : X ,! 
�X the natural inclusions.If hX; mi is an H-space, there is a retraction of spaces �m : JX ! X (with�m � jX = idX), de�ned�m(x1; x2; : : : ; xn) = m(: : : m(m(x1; x2); x3); : : : ; xn)(3.2)(cf. [J1, Theorem 1.8]).De�nition 3.3. Let X be an H-space. Given homotopy classes of maps � 2[�A;�B] and � 2 [B;X], we de�ne the derived composition � ? � 2 [A;X] asfollows:Choose representatives f : �A! �B and g : B! X for �; � respectively, andlet ��1 : 
�X! JX be any homotopy inverse to �. Then � ? � is represented bythe composite A iA�! 
�A 
��! 
�B ��1�! JB J��! JX �m�! X:Fact 3.4. Note that if � = ��� for some �� : A ! B, then � ? � = ��#� (this iswell-de�ned, because X is an H-space).We shall be interested in the case where B is a wedge of spheres and A = Sr,so ? associates a class ! ? (�1; : : : ; �k) 2 �nX to any k-ary homotopy operation!# : �n1+1(�) � : : : � �nk+1(�) ! �n+1(�) and collection of elements �i 2 �niX(i = 1; : : : ; k).In particular, if ! : Sp+q+1 ! Sp+1 _ Sq+1 represents the Whitehead product, onemay de�ne a \Samelson product" !?(�;�) : �pX��qX! �p+qX for any H-spaceX,even without assuming associativity or the existence of a homotopy inverse (compare[W, X, x5]).However, in general this ! ? (�;�) need not enjoy any of the usual properties ofthe Samelson product (bi-additivity, graded-commutativity, Jacobi identity { cf. [W,X, Theorems 5.1 & 5.4]). To ensure that they hold, one needs further assumptions onX.First, we note the following homotopy version of [W, VII, Theorem 2.5], whichappears to be folklore:



LOOP SPACES AND HOMOTOPY OPERATIONS 5Lemma 3.5. If hX; ni is a homotopy-associative H-space, then any map f : A! Xextends to an H-map f̂ : JA! X, which is unique up to homotopy.Proof. Given f : A! X, de�ne f̂ : JA! X byf̂(x1; : : : ; xr) = m(: : :m(m(f(x1); f(x2)); f(x3)); : : : ; f(xr)):This is an H-map by [N, Lemma 1.4]. Now let ĝ : JA ! X be another H-map,with a homotopy H : f ' g Def= ĝ � jA. Since ĝ is an H-map, there is a homotopyG : n � (ĝ � ĝ) ' ĝ � m (where m : JA � JA ! JA is the H-multiplication).Moreover, by [N, Lemma 1.3(a)] we may assume G is stationary on JA _ JA.For each r � 0, let JrA denote the r-th stage in the construction of JA, withjsr : JsA ,! JrA and js : JsA ,! JA the inclusions, starting with J0A = � andJ1A = A. We de�ne TrA to be the pushout in the following diagram:Jr�1A -i1 Jr�1A�A?jr�1r ?�qrJrA -� TrAPOfor r � 1 (so T1A = A _A); then Jr+1A is the pushout in:TrA - r = (i1; jr�1r � id) JrA�A?'r = (id; �qr) ?�qr+1JrA -jrr+1 Jr+1APONow let f̂r = f̂ jJrA and ĝr = ĝjJrA; we shall extend H : f ' g to a homotopyĤ : f̂ ' ĝ by inductively constructing homotopies Ĥr : f̂r ' ĝr (starting withĤ1 = H) such that ĤrjJr�1A = Ĥr�1: let nr : Xr ! X denote the n-foldmultiplication nr(x1; : : : ; xr) = n(: : : n(x1; x2); : : : ); xr) and qr : Ar ! JrA thequotient map, so that nr � f r = f̂r � qr.As a �rst approximation, de�ne �Hr+1 : f̂r � f ' ĝr � g on JrA � A in theabove pushout to be the sum of homotopies �Hr+1 = n � (Ĥr � H) + G � (jr � jA).This does not quite agree with Ĥr � 'r on TrA, but since G is stationary onJA _ JA we have �Hr+1jJrA = n � (Ĥr � id) + (stationary) = Ĥr + (stationary) and�Hr+1jJr�1A�A = n � (Ĥr�1 �H) +G � (jr�1 � jA) = �Hr.Since Ĥ1 = H, we see that �H2jT2A = (H + (stationary); H), while H � '1 =(H;H). Thus we may assume by induction that there is a homotopy of homotopiesF : �Hr+1jTrA ' Ĥr � 'r. Since TrA ,! JrA�A is a co�bration, the inclusionTrA� I2 [ (JrA�A)� (f0; 1g � I [ I � f0g) ,! (JrA�A)� I2is a trivial co�bration, and thus we may use the homotopy extension property to obtaina new homotopy ~F on (JrA�A)� I2 which restricts to ~Hr+1 : f̂r� f ' ĝr� g on



6 DAVID BLANCJrA�A� I � f1g, such that ~Hr+1 extends Ĥr � 'r, and thus may be combinedwith Ĥr to de�ne a homotopy Ĥr+1 as required.Corollary 3.6. If X is a homotopy-associative H-space, then for any A 2 T� theinclusion jA : A! JA induces a bijection j�A : [JA; X]H �=�! [A;X]T�.Proof. Since X is homotopy-associative H-space, the retraction �n = cidX : JX ! Xis an H-map, by the Lemma, so we may de�ne � : [A;X]T� ! [JA; X]H by �([f ]) =[ �m � J(f)], and clearly j�A(�([f ]) = [ �m � J(f) � jA] = [f ]. On the other hand, givenan H-map g : JA ! X we have �m � J(g � jA) � jA ' g � jA, which implies that�m � J(g � jA) ' g by Lemma 3.5. Thus also �(j�A([g])) = [g].3.7. notation. If X is a homotopy-associative H-space, we shall write �Ht X for[
St;X]H = [JSt�1;X]H �= �t�1X.Proposition 3.8. If X is a homotopy-associative H-space, then �?(�?
) = (�#�)?
for any � 2 [�A;�B], � 2 [�B;�C], and 
 2 [C;X].Proof. It su�ces to consider � = id�B, and so to show that
�B -
� 
�C -
�
 
�X?̂mPPPPPPPPq
�(� ? 
) 
�X -m̂ Xcommutes up to homotopy (where m̂ is the composite 
�X ��1�! JX �m�! X) { or,since � ?
 is de�ned to be the composite m̂�
�
 �
� � iB, that the two composites� = m̂ � 
�
 � 
� and  = m̂ � 
�m̂ � (
�)2
 � 
�
� � 
�iB are homotopic.Now if X is a homotopy-associative H-space, then m̂ is an H-map by Lemma 3.5, so�;  : 
�B! X are H-maps. By Corollary 3.6 it su�ces to check that ��iB �  �iB{ i.e., that m̂ � 
�
 � 
� � iB is homotopic to the composition ofB iB�! 
�B 
�iB�! (
�)2B 
�
��! (
�)2C (
�)2
�! (
�)2X 
�m̂�! 
�X m̂�! X:But 
�
 � 
� � iB is adjoint to (�
) � �, while the composition ofB iB�! 
�B 
�iB�! (
�)2B 
�
��! (
�)2C (
�)2
�! (
�)2X 
�m̂�! 
�Xis adjoint to �(m̂ � 
�
 � 
� � iB) which is equal to �(m̂ � ^(�
) � �), (where ~fdenotes the adjoint of f). Since for any f : Y! Z the adjoint of �f is 
�f � iY ,we see m̂ �g�f � f , which completes the proof.It is readily veri�ed that when X ' 
Y, the secondary composition is the adjointof the usual composition in ��Y; Thus we have:Corollary 3.9. If X is an H-group, then the graded abelian group G�, de�ned byGk = �Hk X �= �k�1X (with �
 2 Gk corresponding to 
 2 �k�1X), has a �-algebrastructure de�ned by the derived compositions: that is, if  2 �k(St1 _ : : :_ Stn) and�
j 2 Gtj for 1 � j � n, then  #(�
1; : : : ; �
n) Def= ! ? (
1; : : : ; 
n) 2 Gk. If X ' 
Y,then G� is isomorphic as a �-algebra to ��Y. �



LOOP SPACES AND HOMOTOPY OPERATIONS 7De�nition 3.10. For any H-group hX; mi, the �-algebra G� of Corollary 3.9will be called the delooping of ��X, and denoted by 
�1��X (so in particular
�1��
Y �= ��Y).Remark 3.11. Note that Corollary 3.9 provides us with an algebraic obstruction todelooping a space X: if there is no way of putting a �-algebra structure on the gradedabelian group G� = ���1X which is consistent with Fact 3.4, then X is not a loopspace, or even a homotopy-associative H-space. (This is of course assuming that the�-algebra ��X is abelian { otherwise X cannot even be an H-space.)Example 3.12. Consider the �-algebra G� de�ned by G2 = Zhxi, (i.e., x generatesthe cyclic group G2), G3 = Z=2h�#2 xi, G4 = Z=2h�#3 �#2 xi, and G5 = Z=2h�#4 �#3 �#2 xi,with Gt = 0 for t 6= 2; 3; 4; 5 and all Whitehead products zero.There can be no homotopy-associative H-space X with ��X �= G�, since the �-algebra G0� = 
�1G� cannot be de�ned consistently: we would have G03 = Zh�xi,G04 = Z=2h�#3 �xi, G05 = Z=2h�#4 �#3 xi, and G06 = Z=2h�#5 �#4 �#3 �xi by Fact 3.4; but�6S3 = Z=12h�i with 6� = �#5 �#4 �3, and thus �#�x 2 G06 cannot be de�nedconsistently with the fact that (6�)#�x 6= 0.(We do not claim that G� is realizable; but the obstructions to realizing G� by aspace X 2 T� require secondary (or higher order) information, while the obstructionsto its realization by an H-group are primary.)4. Simplicial �-algebras and spacesWe next recall some background on simplicial �-algebras and spaces and bisimplicialgroups:De�nition 4.1. A simplicial object over any category C is a sequence of objectsfXng1n=0 in C, equipped with face maps di : Xn ! Xn�1 and degeneracies sj :Xn ! Xn+1 (0 � i; j � n), satisfying the usual simplicial identities ([Ma1, x1.1]).The category of simplicial objects over C is denoted by sC. An augmented simplicalobject X� ! A over C is a simplicial object X� 2 sC, together with an augmentation" : X0 ! A in C such that " � d1 = " � d0.De�nition 4.2. A simplicial �-algebra A� is called free if for each n � 0 there is agraded set T n � An such that An is the free �-algebra generated by T n, and eachdegeneracy map sj : An ! An+1 takes T n to T n+1.A free simplicial resolution of a �-algebra G� is de�ned to be an augmented simpli-cial �-algebra A� ! G�, such that A� is a free simplicial �-algebra, the homotopygroups of the simplicial group DkA� vanish in dimensions n � 1, and the augmen-tation induces an isomorphism �0(DkA�) �= Gk.Such resolutions always exist, for any �-algebra G� { see [Q1, II, x4], or the explicitconstruction in [Bl1, x4.3].4.3. simplicial spaces. Let W� 2 sT� be a simplicial space: its realization (orhomotopy colimit) is a space kW�k 2 T� constructed by making identi�cations in`1n=0Wn ��[n] according to the face and degeneracy maps of W� (cf. [Se, x1]).For any simplicial space W�, there is a �rst quadrant spectral sequence withE2s;t = �s(�tW�)) �s+tkW�k(4.4)



8 DAVID BLANC(see [BoF, Thm B.5] and [BrL, App.]).De�nition 4.5. An augmented simplical space W� ! X is called a resolution of Xby spheres if eachWn is homotopy equivalent to a wedge of spheres, and ��W� ! ��Xis a free simplicial resolution of �-algebras (Def. 4.2).Using the above spectral sequence, we see that the natural map W0 ! kW�k theninduces an isomorphism ��X �= ��kW�k, so kW�k ' X.De�nition 4.6. A simplicial object over hoT�, say W� 2 s(hoT�), is, by de�nition,a sequence of spaces W0;W1; : : : with homotopy classes of maps: �i 2 [Wn;Wn�1],and so on, for the face maps and degeneracies, satisfying the simplicial identities (inhoT�). By making choices of actual maps representing each of these homotopy classeswe obtain an actual diagram over T�, which we shall denote by hW�; of course,the simplicial identities now hold only up to homotopy, in general. Such a hW�will be called a simplicial space up-to-homotopy . Note we can apply the functor�� : T� ! �-Alg to obtain a simplicial �-algebra ��W� = ��(hW�) 2 s�-Alg.If we can change the maps and spaces of hW� up to homotopy in such a way asto obtain a simplicial space \on the nose", say V� 2 sT�, we call this a recti�cationof W� or hW�. For our purposes we need not worry over the precise de�nition of\changing hW� up to homotopy" (see, e.g., [DwKS, x2.2]); all we require is that��(hW�) and ��V� be isomorphic simplicial �-algebras.Similarly in hoSk� or hoG.4.7. rectifying simplicial resolutions. This suggests one possible approach to de-termining whether an H-group X is equivalent to a loop space:First, choose some free simplicial �-algebra A� resolving G� (for one possibleconstruction, see Appendix 8). By Remark 2.4, the free simplicial �-algebra A�corresponds to a unique simplicial object W� 2 s(hoT�) over the homotopy category,with each Wn homotopy equivalent to a wedge of spheres, such that ��W� �= A�;this W� may be represented by a simplicial space up-to-homotopy hW� (see x4.6).As usual, W� may be recti�ed if and only if hW� can be made 1-homotopycommutative { that is, if and only if one can �nd a sequence of homotopies forthe simplicial identities among the face and degeneracy maps, and then homotopiesbetween these, and so on (cf. [BoaV, Corollary 4.21 & Theorem 4.49]). An obstructiontheory for this was described in [Bl4, x5-6]; see Remark 6.5 below. If the obstructionsvanish, hW� may be replaced by a (strict) simplicial space V�, and by x4.3 we have��kV�k �= G�, so Y Def= kV�k is a candidate for the delooping of the given H-groupX.Now we apply the obstruction theory of [Bl4, x7] to check whether the �-algebraisomorphism ��
Y �=! ��X (cf. Corollary 3.9) may be realized as a map of spaces.If so, 
Y ' X, so our given H-group X is indeed a loop space; if not, we must tryother recti�cations of hW�.5. A simplicial group versionFor our purposes it will be convenient to work at times in the category G of simplicialgroups. First, we recall some basic de�nitions and facts:



LOOP SPACES AND HOMOTOPY OPERATIONS 95.1. simplicial groups. Let F : S� ! G denote the free group functor of [Mi2, x2];this is the simplicial version of the James construction, and in particular jFKj ' J jKj.Let G : S� ! G be Kan's simplicial loop functor (cf. [Ma1, Def. 26.3]), with�W : G ! Sk0 its adjoint, the Eilenberg-Mac Lane classifying space functor (cf. [Ma1,x21]).Then jGKj ' 
jKj and jKj ' j �WGKj. Moreover, unlike T�, where we have onlya (weak) homotopy equivalence, in G there is a canonical isomorphism � : FK �= G�K(cf. [Cu, Prop. 4.15]), and there are natural bijectionsHomS�(�L; �WFK) �= HomG(G�L; FK) ��! HomG(FL; FK) �= HomS�(L; FK)(5.2)for any L 2 S� (induced by the adjunctions), and similarly for homotopy classes ofmaps.Thus, we may think of FSn as the simplicial group analogue of the r-sphere; inparticular, if K is in G, or even if K is just an associative H-simplicial set which is aKan complex, we shall write �Ht K for [FSt�1;K]H (compare x3.7). Similarly, Fen isthe G analogue of the n-disc in the sense that any nullhomotopic map f : FSn�1 ! Kextends to Fen.Remark 5.3. The same facts as in x4.3 hold also if we consider bisimplicial groups(which we shall think of as simplicial objects G� 2 sG) instead of simplicial spaces.In this case the realization kW�k should be replaced by the diagonal diag(G�), andthe spectral sequence corresponding to (4.4) is due to Quillen (cf. [Q2]).The above de�nitions provide us with a functorial simplicial version of the derivedcomposition of x3.3:De�nition 5.4. If K 2 Sk� is an H-simplicial set which is a Kan complex, one againhas a retraction of simplicial sets �m : FK ! K, de�ned as in (3.2). Given ahomomorphism of simplicial groups f : FA ! FB and a map of simplicial setsg : B! K, the composite �m � Fg � f : FA! K will be denoted by f ? g.Note that if ~f : �A! �WFB and �f : A! FB correspond to f under (5.2), thecomposite �m � Fg � �f corresponds to f ? g, and represents the derived composition[ �f ] ? [g] in [A;K]S� �= [jAj; jKj]T�.Remark 5.5. The simplicial version of the ? operation de�ned here is obviously func-torial in the sense that (e�f) ? g = e�(f ? g) for e : FC ! FA in G, andf ?(g�h) = (f ?g)�h for any H-map h : hK; mi ! hL; ni between �brant H-simplicialsets which is strictly multiplicative (i.e., n � (h� h) = h �m : K�K! L).However, Proposition 3.8 is still valid only in the homotopy category, and this is infact the obstruction to K being equivalent to a loop space:Proposition 5.6. If K is an H-group in Sk� such that(�) f ?(g?h) = (f#g)?h 8f : FA! FB and g : FB! FC in G and h : C! K;then K is H-homotopy equivalent to a simplicial group (and thus to a loop space);conversely, if K 2 G (in particular, if K = GL for some L 2 S0), then (�) holds.



10 DAVID BLANCProof. Assume that K is an H-group in Sk� satisfying (�). We shall need a simplicialvariant of Chris Stover's construction of resolutions by spheres (Def. 4.5), so as in[Stv, x2], de�ne a comonad L : G ! G byLG = 1ak=0 a�2HomG(FSk;G) FSk� [ 1ak=0 a�2HomG(Fek+1;G) Fek+1� ;(5.7)where Fek+1� , the G-disc indexed by � : Fek+1 ! G, is attached to FSk�, the G-sphere indexed by � = �jF@ek+1, by identifying F@ek+1 with FSk (see x5.1 above).The coproduct here is just the (dimensionwise) free product of groups; the counit" : LG ! G is \evaluation of indices", and the comultiplication # : LG ,! L2G isas in x2.5.Now let W = 1_k=1 _f2HomG(Sk;K) Skf [ 1_k=1 _F2HomS�(ek+1;K) ek+1F (the analoguefor S� of LG, with the corresponding identi�cations), and let z : W ! K bethe counit map. As in (1) of Appendix 8, z induces an epimorphism z� : ��W!! ��Kof �-algebras. (K is a Kan complex, butW is not, so we understand ��W to be thecorresponding free �-algebra �= ��jWj { cf. x2.3).As in (2) of Appendix 8, we have an epimorphism of �-algebras ~� : ���W !! G�,where G� = 
�1��K is the delooping of ��K { or equivalently, ~z� : �H� FW! �H� K,induced by ~z = �m � Fz : FW! K (cf. x5.4).Let Mn = LnFW for n = 0; 1; : : : , with face and degeneracy maps determinedby the comonad structure maps ", # { except for dn : Mn ! Mn�1, de�neddn = Ln�1 �d, where �d : LFW ! FW, restricted to a summand FA� in LFW(A = Sk; ek+1), is an isomorphism onto FA� ,! FW, where � : A ! K is thecomposite (� ? z) � jA.Because (�) holds on the nose, we may verify that �d � T �d = �d � T" : M2 ! M0,so that M� is a simplicial object over G (just as in the proof of Lemma 8.3 inthe Appendix). Moreover, the augmented simplicial �-algebra ��M� ~�! G� isacyclic, by a variant of [Stv, Prop. 2.6] and Lemma 8.5 of the Appendix. Thus bythe Quillen spectral sequence (see x5.3) we have �H� diagL� ' �H� K, and thus settingL = diag �WL� �= �W diagL� we obtain a Kan complex L such that K ' GL { i.e.,jKj ' 
jLj.The converse is clear, since if K 2 G then jA : A ! FA induces a one-to-onecorrespondence between maps f : A! K in S� and homomorphisms ' : FA! Kin G, by the universal property of F .Note that in fact we need only verify that 5.6(�) holds for A, B, and C in S�which are (weakly) homotopy equivalent to wedges of spheres.6. The simplicial-cosimplicial constructionOne disadvantage of directly applying the obstruction theory of [Bl4] for realizingG� = 
�1��X as a method for determining if X is a loop space is that even thealgebraic step { namely, determining the �-algebra G� { depends on a choice ofH-space structure for X, and thus cannot be described purely in terms of homotopy



LOOP SPACES AND HOMOTOPY OPERATIONS 11operations in the classical sense. In this section and the next, we shall describe a moreexplicit version of the obstruction theory, which does not presuppose such a choice,and is more in the spirit of the obstruction theories of [Bl4] and [Bl5].De�nition 6.1. A CW -resolution of a �-algebra G� is a free simplicial resolutionA� ! G� as in x4.2, together with a sequence of free �-algebras ( �An)1n=0, called aCW -basis for A�, such that An �= a0���n aI2I�;n �An��(6.2)where I�;n is the set of all sequences of � non-negative integers i1 < i2 < : : : < i�(i� < n) for 0 � � � n (compare [Bl1, x4.5.1].For each I 2 I�;n, the copy of �An�� indexed by I is in the image of the �-folddegeneracy sI = si� � : : : si1 �si0, in the obvious sense. The face maps di : An ! An�1are determinmed by the attaching map �dn0 = d0j �An : �An ! An�1, the simplicialidentities, and the requirement that dij �An = 0 for i � 1.Aside from allowing one to construct minimal resolutions, which are convenientfor explicit computations (compare [Bl5]), such CW -resolutions also have technicaladvantages for the obstruction theory of [Bl4, x5-6]:Let A� ! G� be a CW -resolution, and let W� 2 s(hoT�) be the simplicial objectover hoT� which corresponds to A� under Remark 2.4 { that is,Wn �= _0���n _I2I�;n ( �Wn��)(I)(6.3)where �Wn is a wedge of spheres such that �� �Wn �= �An (and thus ��Wn �= An as�-algebras, and �h�W� �= A� as simplicial �-algebras). Choose some simplicial spaceup-to-homotopy hW� corresponding to W� (Def. 4.6). We then have the followingTheorem 6.4. Let hW� be as above; then hW� may be recti�ed, and thusG� realized as ��Y, if and only if all the higher homotopy operations hh�ii �[�k�1 �Wn;Wn�k�1] of [Bl4, x5.3] vanish coherently.Remark 6.5. In [Bl4, x6] we required the coherent vanishing of an additional collectionof (rather inelegant) higher homotopy operations, corresponding to the degeneracies ofW�, in order for G� to be realizable. This requirement is eliminated by Theorem6.4.Proof. Assume that, for W� as above, all hh�ii vanish coherently. By de�nition,this means there is a compatible collection of maps �g� : Pn�k(�) n �Wn !Wk�1 for� 2 D(n � k; n)= �, where each such � is a composite of face maps, and Pn�k(�)is a suitable convex polyhedron. (See [Bl4, x5] for the notation and terminology). Inparticular, gd0 : �Wn !Wn�1 is in the homotopy class determined by �dn0 : �An ! An�1,and gdi � � on �Wn for i � 1.We may then de�ne a compatible collection of maps g : P ( )nWn !Wm for allsimplicial morphisms  : An ! Am (and suitable polyhedra P ( ) de�ned in [Bl4,x6.5]), as follows:By (6.3), it su�ces to de�ne g on each wedge summand ( �Wn��)(I), whereI = (i0; : : : ; i�); since sI = si� � : : : si0 : �Wn�� ! ( �Wn��)(I) is a homeomorphism, itis enough to de�ne ĝ = g �(IdP ( )nsI) : P ( )n �Wn�� !Wm for all  , I. But for



12 DAVID BLANCany vertex v 2 P ( ) we have a corresponding factorization  = �� �: : :��1 (comparex7.3 below), with each �i either a face or a degeneracy map, and ĝ jfvg� �Wn�� isrequired to be the corresponding composition of face and degeneracy maps of hW�,precomposed with sI .By de�nition of hW�, such a simplicial morphism may be computed on �Wn��by using the simplicial identities disj = sj�1di (i < j), djsj = dj+1sj = id, anddisj = sjdi�1 (i > j + 1) to bring �� � : : : � �1 � sI into \semi-canonical form"sJ � dK, where we assume J = (j1; : : : ; jr) satis�es j1 < j2 < : : : < jr, but makeno assumptions as to K = (k1; : : : ; ks). We then set ĝ jfvg� �Wn�� equal to dK (i.e.,the composite of the corresponding chosen representatives for the face maps in hW�),postcomposed with the embedding sJ :Wn���s ,!Wm.Now it is clear that the only homotopies needed for the 1-dimensional polyhedraP ( ) are those involving the various composite face maps dK in the semi-canonicalform of  � sI , since all other simplicial identities for hW� hold precisely; byinduction on the dimension we see this is true for all P ( ), so that the compatiblecollection fg g is simply the given compatible collection f�g�g, post-composed withthe appropriate embeddings sJ , and in fact we may collapse the polyhedra P ( ) tothe face-map polyhedra, or permutohedra, Pn�k(�) (cf. [Bl4, x4] and x7.1 below).De�nition 6.6. A �-cosimplicial object E�� over a category C is a sequence ofobjects E0; E1; : : : , together with coface maps di : En ! En+1 for 1 � 1 � nsatisfying djdi = didj�1 for i < j. Given a cosimplicial object E� (cf. [BoK, X,2.1]), we let E�� denote the underlying �-cosimplicial object (obtained by forgettingthe codegeneracies).6.7. the cosimplicial James construction. Given a space X 2 T�, we de�ne a�-cosimplicial space U�� = U(X)�� by setting Un = Xn+1 (the Cartesian product),and di(x0; : : : ; xn) = (x0; : : : ; xi�1; �; xi; : : : ; xn). Note that JX = colimU(X)�� andFact 6.8. If hX; mi is a (strictly) associative H-space, we can extend U�� to a fullcosimplicial space U� by setting sj(x0; : : : ; xn) = (x0; : : : ; m(xj; xj�1); : : : ; xn).De�nition 6.9. Let A� be a CW -resolution of the �-algebra ��X = ��U0. Weconstruct a �-cosimplicial augmented simplicial �-algebra (E�)�� ! ��U��, such thateach En� is a CW -resolution of ��Un = ��(Xn+1), with CW -basis f �Enr g1r=0. Westart by setting �E0r = �C0r = �Ar for all r � 0, and then de�ne �Enr by a doubleinduction (on r � 0 and then on n � 0) as�Enr = a0���n aI2I�;n [ �Cn��r ]I ;(6.10)where I�;n is as in (6.2) and �Cm0 = 0 = �C0r for all m; r � 0.The coface maps di : En�1r ! Enr are determined by the cosimplicial identitiesand the requirement that dij[ �Cn��r ](i1;::: ;in) be an isomorphism onto [ �Cn��r ](i1;::: ;in;i) ifi > in.The only summand in (6.10) which is not de�ned is thus [ �Cnr ];, which we denotesimply by �Cnr . We require that it be an n-th cross-term in the sense that �d0j �Cnrdoes not factor through the image of any coface map di : En�1r�1 ! Enr�1. Other than



LOOP SPACES AND HOMOTOPY OPERATIONS 13that, �Cnr may be any free �-algebra which ensures that (6.10) de�nes a CW -basisfor a CW -resolution En� ! ��Un. We shall call the double sequence (( �Cnr )1n=1)1r=1 across-term basis for (E�)��.Note that A� is a retract of E2� in two di�erent ways (under the two coface mapsd0, d1), corresponding to the fact that X is a retract of X�X in two di�erent ways;the presence of the cross-terms �C2r indicates that A� � A� is a resolution of ��X2,but not a free one, while A�qA� is a free simplicial �-algebra, but not a resolution.Similarly, X�X embeds in X3 in three di�erent ways, and so on.Example 6.11. For any A� ! ��X we may set �C21 = `Spx,!A(0)0 `Sqy ,!A(1)0 Sp+q�1(x;y) ,with �d0jSp+q�1(x;y) = [�x; �y] (in the notation of x2.5). The higher cross-terms �Cn1 = 0for n � 3, since any k-th order cross-term element z in `nj=0A(j)0 (k � 3) is a sumof elements of the form z = �#[: : : [[�r1(x1); �r2(x2)]; �r3(x3)]; : : : ; �rk(xk)], and thenz = d0(�#[: : : [�r1+r2�1(x1;x2) ; s0�r3(x3)]; : : : ; s0�rk(xk)]):De�nition 6.12. Let h(W�)�� ! U�� be the �-cosimplicial augmented simplicialspace up-to-homotopy which corresponds to (E�)�� ! ��U�� under Fact 2.4. Each Wnris homotopy equivalent to a wedge of spheres, and has a wedge summand �Wnr ,!Wnrcorresponding to the CW -basis free �-algebra summand �Enr ,! Enr . We let �Cnrdenote the wedge summand of �Wnr corresponding to �Cnr ,! �Enr .We do not enter here into the question of whether every free simplicial �-algebraresolution of a realizable �-algebra ��Y may be realized by a resolution of Y byspheres as in De�nition 4.5 (but see [Bl5, 4.1(a)]). However, every space Y has afunctorial resolution by spheres V�(Y )! Y by [Stv, Prop. 2.6], and one may in factconstruct smaller (non-functorial) resolutions, as in [Bl5, 3.12, 4.19]. Thus we maymake the followingAssumption 6.13. (E�)�� maps monomorphically into ��V�(U��), and h(W�)�� !U�� can be recti�ed so as to yield a strict �-cosimplicial augmented simplicial space(W�)�� ! U�� realizing (E�)�� ! ��U��.De�nition 6.14. Now assume that ��X is an abelian �-algebra (Def. 2.6) { thisis the necessary �-algebra condition in order for X to be an H-space { and let� : ��X � ��X ! ��X be the morphism of �-algebras de�ned levelwise by thegroup operation (see [Bl5, x2]). This � is of course associative, in the sense that� � (�; id) = � � (id; �) : ��(X3)! ��X, so it allows one to extend the �-cosimplicial�-algebra F �� Def= ��(U��) to a full cosimplicial �-algebra F �, de�ned as in x6.8.Since En� ! F n = ��Un is a free resolution of �-algebras, the codegeneracy mapssj : F n ! F n�1 induce maps of simplicial �-algebras sj� : En� ! En�1� , unique up tosimplicial homotopy, by the universal property of resolutions (cf. [Q1, I, p. 1.14 & II, x2,Prop. 5]). Note, however, that the individual maps sjr : Enr ! En�1r are not unique,in general; in fact, di�erent choices may correspond to di�erent H-multiplications onX.These maps sj make (E�)�� ! F �� into a full cosimplicial augmented simplicial�-algebra E�� ! F �, and thus hW�� ! U�� into a cosimplicial augmented simplicial



14 DAVID BLANCspace up-to-homotopy (for which we may assume by 6.13 that all simplicial identities,and all the cosimplicial identities involving only the coface maps, hold precisely).Proposition 6.15. The cosimplicial simplicial space up-to-homotopy hW�� of x6.14may be recti�ed if and only if X is homotopy equivalent to a loop space.Proof. If X is a loop space, it has a strictly associative H-multiplication m : X�X!X which induces � on ��(�) (cf. [Gr, Prop. 9.9]), so U�� extends to a cosimplicialspace U� by Fact 6.8. Applying the functorial construction of [Stv, x2] to U� yieldsa (strict) cosimplicial augmented simplicial space (V�)�� ! U�, and since we assumed��Wn� embeds in ��Vn� for each n, hW�� may also be recti�ed.Conversely, if W�� is a (strict) cosimplicial simplicial space realizing E�� , then wemay apply the realization functor for simplicial spaces in each cosimplicial dimensionn � 0 to obtain kWn�k ' Un = Xn+1 (by (4.4)). The realization of the codegeneracymap ks0k : kW1�k ! kW0�k induces � : ��(X2) ! ��X, so it corresponds to anH-space multiplication m : X2 ! X (see [Bl5, Prop. 2.7]).The fact that kW��k is a (strict) cosimplicial space means that all composite code-generacy maps ks0 � sj1 � : : : sjn�1k : kWn�k ! kW0�k are equal, and thus all possiblecomposite multiplications Xn+1 ! X (i.e., all possible bracketings in (3.2)) arehomotopic, with homotopies between the homotopies, and so on { in other words,the H-space hX; mi is an A1 space (see [St3, Def. 11.2]) { so that X is homotopyequivalent to loop space by [St3, Theorem 11.4]. Note that we only required that thecodegeneracies of hW�� be recti�ed; after the fact this ensures that the full cosimplicialsimplicial space is recti�able.In summary, the question of whether X is a loop space reduces to the questionof whether a certain diagram in the homotopy category, corresponding to a diagramof free �-algebras, may be recti�ed { or equivalently, may be made 1-homotopycommutative. 7. Polyhedra and higher homotopy operationsAs in [Bl4, x4], there is a sequence of higher homotopy operations which serve asobstructions to such a recti�cation, and these may be described combinatorially interms of certain polyhedra, as follows:De�nition 7.1. The N -permutohedron PN is de�ned to be the convex hull in RN ofthe points p� = (�(1); �(2); : : : ; �(N)), where � ranges over all permutations � 2 �N(cf. [Sc]). It is (N � 1)-dimensional.For any two integers 0 � n < N , the corresponding (N; n)-face-codegeneracypolyhedron PNn is a quotient of the N -permutohedron PN obtained by identifyingtwo vertices p� and p�0 to a single vertex �p� = �p�0 of PNn whenever � = (i; i+1)�0,where (i; i + 1) is an adjacent transposition and �(i); �(i + 1) > n.Since each facet A of PN is uniquely determined by its vertices (see below), thefacets in the quotient PNn are obtained by collapsing those of PN accordingly.Note that PNN�1 is the N -permutohedron PN , and in fact the quotient mapq : PN !! PNn is homotopic to a homeomorphism (though not a combinatorial iso-morphism, of course) for n � 1. On the other hand, PN0 is a single point. Fornon-trivial examples of face-codegeneracy polyhedra, see Figures 1 & 2 below.



LOOP SPACES AND HOMOTOPY OPERATIONS 15Fact 7.2. From the description of the facets of the permutohedron given in [GG], wesee that PNn has an edge connecting a vertex p� to any vertex of the form p(i;i+1)�(unless �(i); �(i+ 1) > n, in which case the edge is degenerate).More generally, let �p� be any vertex of PNn . The facets of PNn containing �p�are determined as follows:Let P = h1; 2; : : : ; `1 j `1 + 1; : : : ; `2 j : : : j `i�1 + 1; : : : ; `i j : : : j `r�1 + 1; : : : ; N ibe a partition of 1; : : : ; N into r consecutive blocs, subject to the condition that foreach 1 � j < r at least one of �(`i), �(`i+1) is � n. Denote by ni the number ofj's in the i-th bloc (i.e., `i�1 +1 � j � `i) such that �(j) � n. Then PNn will havea subpolyhedron Q(P) (containing p�) which is isomorphic to the productP`1n1 �P`2�`1n2 � � � � �P`i�`i�1ni � � � � �PN�`r�1nr :This follows from the description of the facets of the N -permutohedron in [Bl4, x4.3].We denote by (PNn )(k) the union of all facets of PNn of dimension � k. Inparticular, for n � 1 we have @PNn Def= (PNn )(N�2) = SN�2, since the homeomorphism~q : PN ! PNn preserves @PN .7.3. factorizations. Given a cosimplicial simplicial object E�� as in x6.14, any com-posite face-codegeneracy map  : En+km+` ! E k̀ may be factored uniquely  = � � �,where � : En+km+` ! Ekm+` may be written � = sj1 � sj2 � � � � sjn for 0 � j1 < j2 <: : : < jn < n + k and � : Ekm+` ! E k̀ may be written � = di1 � di2 � � � �din for0 � i1 < i2 < : : : < in � m + `.Let D( ) denote the set of all possible factorizations of  as a composite of faceand codegeneracy maps:  = �n+m � : : : � �1. We de�ne recursively a bijectivecorrespondence between D( ) and the vertices of an (n+m)-permutohedron Pn+m,as follows (compare [Bl4, Lemma 4.7]):The canonical factorization  = di1 �di2 �� � �din �sj1 �sj2 �� � � sjn corresponds to thevertex pid. Next, assume that the factorization  = �n+m � : : : � �1 corresponds top�. Then the factorization corresponding to p�0 , for � = (i; i+1)�0, is obtained from = �1 � : : : � �n+m by switching �i and �i+1, using the identity sj � si = si�1 � sjfor i > j if �i and �i+1 are both codegeneracies, and the identity di �dj = dj�1 �difor i < j if they are both face maps.Passing to the quotient face-codegeneracy polyhedron, we see that the vertices ofPn+mn are now identi�ed with factorizations of  of the formEn+km+` sjtnt�! En+k�1m+` : : : Ent+1m+` sjt1�! Entm+` �t�! Entmt : : : En1m1 sj0n1�! : : : En+1m1 sj0n0�! Enm1 �0�! Enm;(7.4)where �i is a composite of face maps (i.e., we do not distinguish the di�erent waysof decomposing �i as dk1 � : : : dkr). The collection of such factorizations of  will bedenoted by D( )=�, where � is the obvious equivalence relation on D( ). Weshall denote the face-codegeneracy polyhedron Pn+mn with its vertices so labelled byPn+mn ( ). An example for  = d0d1s0s1 appears in Figure 1.7.5. notation. For  : En+km+` ! E k̀ as above, we denote by C( ) the collectionof all composite face-codegeneracy maps � : En(�)+k(�)m(�)+`(�) ! Ek(�)`(�) such that � is of theform � = �t � : : : � �s (1 � s � t � �) for some decomposition  = �� � : : : � �1 =�0 � sj0n0 � : : : � sj0n1 � �1 � : : : � �t � sjt1 � : : : � sjtnt of (7.4). That is, we allow only those



16 DAVID BLANC
ts0d0s1d1 �����@@@@@

td0s0s1d1 td0s0s0d1QQQQQts0d0s0d1�����ts0s0d0d1s0s0d0d0ts0s1d0d1s0s1d0d0ts0d0d1s1s0d0d0s1 





@@@@@ts0d0s1d0





 ts0d0d1s0s0d0d0s0JJJJJJ �����ts0d0s1d0JJJJJJtd0s0s1d0JJJJ td0s0s0d0



td0s0d0s1 HHHHHHCCCCCC td0s0d0s0������ ������
rd0s0d1s1pppppppppppppppppppppppppppp

pppppppppppppppppppppppp
rd0d1s0s1d0d0s0s1p p p p p p p p p p p p p p p p p p p p p p p rd0d1s0s0d0d0s0s0pppppppppppppppppppppppp

pppprd0s0d1s0ppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppp pppppppppppppppppppppppppppppppppp
Figure 1. The face-codegeneracy polyhedron P42(d0d1s0s1)subsequences �b; : : : ; �a of a factorization  = �n+m � � � � � �1 in D( ) which arecompatible with the equivalence relation � in the sense that �b+1 and �b are notboth face maps, and similarly for �a�1 and �a. Such a � will be called allowable.7.6. higher homotopy operations. Given a cosimplicial simplicial space up-to-homotopy hW�� as in x6.7, we now de�ne a certain sequence of higher homotopyoperations. First recall that the half-smash of two spaces X;Y 2 T� is XnY Def=(X�Y)=(X�f�g); if X is a suspension, there is a (non-canonical) homotopy equiv-alence XnY ' X ^Y _X.De�nition 7.7. Given a composite face-codegeneracy map  : Wn+km+` ! Wk̀ asabove, a compatible collection for C( ) and hW�� is a set fg�g�2C( ) of mapsg� : Pn(�)+m(�)m(�) (�) nWn(�)+k(�)m(�)+`(�) !Wk(�)`(�) for each � 2 C( ), satisfying the followingcondition:Assume that for such a � 2 C( ) we have some decomposition� = �� � : : : � �1 = �0 � sj0n0 � : : : � sj0n1 � �1 � : : : � �t � sjt1 � : : : � sjtntin D(�)=�, as in (7.4), and let P = h1; : : : ; `1 j : : : j `i�1 + 1; : : : ; `i j : : : j `r�1 +1; : : : ; � i be a partition of (1; : : : ; �) as in x7.2, yielding a sequence of compositeface-codegeneracy maps �i 2 C(�) � C( ) for i = 1; : : : ; r.Let Q(P) �= P`1n1(�1) � � � � � P`i�`i�1ni (�i) � � � � � P��`r�1nr (�r) be the correspondingsub-polyhedron of Pn(�)+m(�)m(�) (�). Then we require that g�jQ(P)nWn(�)+k(�)m(�)+`(�) be thecomposite of the corresponding maps g�i in the sense thatg�(x1; : : : ; xr; w) = g�1(x1; g�2(x2; : : : ; g�r(xr; w) : : : ))(7.8)for xi 2 P`i�`i�1ni (�i) and w 2Wn(�)+k(�)m(�)+`(�).We further require that if � = �1 is of length 1, then g� must be in the prescribedhomotopy class of the face or codegeneracy map �1. Thus in particular, for each



LOOP SPACES AND HOMOTOPY OPERATIONS 17vertex �p� of Pn+mn ( ), indexed by a factorization  = �� � : : : � �1 in D( )=�,the map g�jf�p�g�Wn+`m+k represents the class [�� � : : : � �1].Fact 7.9. Any compatible collection of maps fg�g�2C( ) for C( ) induces a mapf = f : @Pn+mn nWn+km+` ! Wk̀ (since all the facets of @Pn+mn are products offace-codegeneracy polyhedra of the form Pn(�)+m(�)n(�) (�) for � 2 C( ), and condition(7.8) guarantees that the maps g� agree on intersections).De�nition 7.10. Given hW�� as in x6.14, for each k � 2 and each composite face-codegeneracy map  : Wn+km+` ! Wk̀, the k-th order homotopy operation associatedto hW�� and  is a subset hh ii of the track group [�n+m�2Wn+km+`;Wk̀], de�ned asfollows:Let S � [@Pn+mn nWn+km+`; Wk̀] be the set of homotopy classes of maps f = f :@Pn+mn nWn+km+` ! Wk̀ which are induced as above by some compatible collectionfg�g�2C( ) for C( ).Now choose a splitting@Pn+mn ( )nWn+km+` �= Sn+m�2 nWn+km+` ' (Sn+m�2 ^Wk̀) _Wk̀(7.11)and let hh ii � [�n+m�2Wn+km+`;Wk̀] be the image of the subset S under the resultingprojection.It is clearly a necessary condition in order for the subset hh ii to be non-emptythat all the lower order operations hh�ii vanish (i.e., contain the null class) for all� 2 C( )nf g { because otherwise the various maps g� : Pn(�)+m(�)m(�) (�)nWn(�)+k(�)m(�)+`(�) !Wk(�)`(�) cannot even extend over the interior of Pn(�)+m(�)m(�) (�). A su�cent condition isthat the operations hh�ii vanish coherently , in the sense that the choices of compatiblecollections for the various � be consistent on common subpolyhedra (see [Bl4, x5.7] forthe precise de�nition, and [Bl4, x5.9] for the obstructions to coherence).On the other hand, if hW�� is the cosimplicial simplicial space up-to-homotopy ofx6.9 (corresponding to the cosimplicial simplicial �-algebra (E�)�� with the CW -basisf �Enr g1r;n=0), then the vanishing of the homotopy operation hh j �Cnr ii { with  restrictedto the (n; r)-cross-term { implies the vanishing of hh ii, for any  :Wn+km+` !Wk̀(assuming lower order vanishing). This is because outside of the wedge summand�Cnr , the map  is determined by the maps � 2 C( ) and the coface and degeneracymaps of hW��, which we may assume to1-homotopy commute by induction and 6.13respectively.We may thus sum up the results of this section, combined with Proposition 6.15, in:Theorem 7.12. Let ��X be an abelian �-algebra (for some space X 2 T�). Then Xis homotopy equivalent to a loop space if and only if all the higher homotopy operationshh j �Cnr ii de�ned above vanish coherently.Remark 7.13. As observed in x6.7, for any X 2 T� the space JX is the colimit of the�-cosimplicial space U(X)��, and in fact the n-th stage of the James construction,JnX, is the (homotopy) colimit of the (n�1)-coskeleton of U��. Thus if we think of thesequence of higher homotopy operations \in the simplicial direction" as obstructions tothe validity of 5.6(�) (up to 1-homotopy commutativity), then the n-th cosimplicial



18 DAVID BLANCdimension corresponds to verifying the identity 5.6(�) for f � iA : A! FB of James�ltration n+ 1 (cf. [J3, x2]).In particular, if we �x k = ` = 0, n = 1 and proceed by induction on m, we arecomputing the obstructions for the existence of an H-multiplication on X, as in [Bl5].(Thus if X is endowed with an H-space structure to begin with, they must all vanish.)Observe that the face-codegeneracy polyhedron Pn1 is an (n� 1)-cube, as in Figure2, rather than the (n� 1)-simplex we had in [Bl5, x4] { so the homotopy operationswe obtain here are more complicated. This is because they take value in the homotopygroups of spheres, rather than those of the space X.
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Figure 2. The face-codegeneracy polyhedron P41(d0d1d2s0)As a corollary to Theorem 7.12 we may deduce the following result of Hilton (cf. [H,Theorem C]):Corollary 7.14. If hX; mi is a (p�1)-connected H-space with �iX = 0 for i � 3p,then X is a loop space, up to homotopyProof. Choose a CW -resolution of ��X which is (p� 1)-connected in each simplicialdimension, and let E�� be as in x6.9. By de�nition of the cross-term �-algebras Cnrin x6.9, they must involve Whitehead products of elements from all lower order cross-terms; but since X is an H-space by assumption, all obstructions of the form hh j �C1riivanish (see x7.13). Thus, the lowest dimensional obstruction possible is a third-orderoperation hh j �C2rii (r � 2), which involves a triple Whitehead product and thus takesvalue in �iWk̀ for i � 3p. If we apply the (3p�1)-Postnikov approximation functorto hW�� in each dimension, to obtain hZ��, all obstructions to recti�cation vanish,and from the spectral sequence of (4.4) we see that obvious map X = kW1�k ! kZ1�kinduces an isomorphism in �i for i < 3p. Since kZ1�k is a loop space by Theorem7.12, so is its (3p� 1)-Postnikov approximation, namely X.Example 7.15. The 7-sphere is an H-space (under the Cayley multiplication, forexample), but none of the 120 possible H-multiplications on S7 are homotopy-associative; the �rst obstruction to homotopy-associativity is a certain \separationelement" in �21S7 (cf. [J2, Theorem 1.4 and Corollary 2.5]).



LOOP SPACES AND HOMOTOPY OPERATIONS 19Since ��S7 is a free �-algebra, it has a very simple CW -resolution A� ! ��S7,with �A0 �= ��S7 (generated by �7), and �Ar = 0 for r � 1. A cross-term basis (x6.9)for the cosimplicial simplicial �-algebra E�� of x6.14 is then given in dimensions < 24by:� �C11 �= ��S13, with �d0�13 = [d0�7; d1�7];� �C22 �= ��S19, with �d0�19 = [d0�13; s0d2d1�7]� [d1�13; s0d2d0�7] + [d2�13; s0d1d0�7];� �Cnr is at least 24-connected for all other n, r.We set sjrj �Cnr = 0 for all n � 2; this determines E�� in degrees � 21 andcosimplicial dimensions � 2.By Remark 7.13, the two secondary operations hhd0s0j �C11ii and hhd1s0j �C11ii mustvanish; on the other hand, by Corollary 7.14 all obstructions to S7 being a loopspace are in degrees � 21, so the only relevant cross-term is �C22 , with three possiblethird-order operations hh j �C22ii, for  = d0d1s0s1, d0d2s0s1, or d1d2s0s1. Thecorresponding face-codegeneracy polyhedra P 42 ( ) is as in Figure 1.It is straightforward to verify that the operations hh j �C22ii are trivial for  =d0d2s0s1 or d1d2s0s1 (in fact, many of the maps g�, for � 2 C( ), may be chosento be null). On may also show that there is a compatible collection fg�g�2C(') for' = d0d1s0s1, in the sense of x7.7, so that the corresponding subset hh'j �C22ii � �21S7is non-empty; in fact, it contains the only possible obstruction to the 21-Postnikovapproximation for S7 to be a loop space.The existence of the tertiary operation hh'j �C22ii corresponds to the fact that theelement [[�7; �7]; �7] � [[�7; �7]; �7] + [[�7; �7]; �7] 2 �21S7 is trivial \for three di�erentreasons": because of the Jacobi identity, because all Whitehead products vanish in��S7, and because of the linearity of the Whitehead product { i.e., [0; �] = 0.On the other hand, we know that there is a 3-primary obstruction to the homotopy-associativity of any H-multiplication on S7, namely the element �#14�7 2 �21S7 (see[J2, Theorem 2.6]). We deduce that 0 62 hh'j �C22ii, and in fact (modulo 3) this tertiaryoperation consists exactly of the elements ��#14�7.For a detailed calculation of such higher order operations using simplicial resolutionsof �-algebras, see [Bl5, x4.13].Remark 7.16. Our approach to the question of whether X is a loop space is clearlybased on, and closely related to, the classical approaches of Sugawara and Stashe� (cf.[St1, St2, Su]. One might wonder why Stashe�'s associahedra Ki (cf. [St1, x2,6]) donot show up among the face-codegeneracy polyhedra we describe above. Apparentlythis is because we do not work directly with the space X, but rather with its simplicialresolution, which may be thought of as a \decomposition" of X into wedges of spheres.8. appendix: constructing simplicial resolutionsThe obstruction theory of section 4 required a �-algebra resolution A� of 
�1��Xas the initial algebraic ingredient. There are of course many possible constructions ofsuch resolutions; for practical purposes a minimal CW -resolution (as in x6.1) is themost convenient. We here describe an approach speci�cally geared towards 
�1��X,



20 DAVID BLANCin line with section 3, because it may help to explain the simplicial group analogueused in the proof of Proposition 5.6.Given an H-group X, we may proceed as follows to construct a free simplicial �-algebra resolving G� = 
�1��X:(1) Choose a space W which is homotopy equivalent to a wedge of spheres, and amap z : W ! X which induces a surjection z# : ��W !! ��X. We may assumethat z#(�k(�)) = � 2 �kX, where �k(�) 2 �kSk(�) is the canonical generator of the free�-algebra ��Sk(�), and ��W �= `k;� ��Sk(�) is a coproduct in �-Alg of such free�-algebras for various k and �.For example, we could let W = W1k=1W�2�kXnf0g ��Sk(�), so that ��W �= T (��X);then by Fact 2.4 there is a map z :W ! X, unique up to homotopy, which realizesthe counit "��X : T (��X)!! ��X.(2) Since X is an H-group, we may let G� = 
�1��X denote the delooping providedby Corollary 3.9, and de�ne a morphism of �-algebras ~� : ���W ! G� by setting~�(��k+1(�) ) = �� 2 Gk+1, where ��k+1(�) generates the summand ���Sk(�) in ���W.More explicitly, any � 2 �k�W is given as � =  #(��(�1); : : : ; ��(�n)) where  issome n-ary homotopy operation and ��(�j ) = ��mj+1(�j) is as above; then~�(�) =  #(~�(��(�1)); : : : ; ~�(��(�n))) =  #(��1; : : : ; ��n) =  ? (�1; : : : ; �n):(8.1)In fact, ~� may be identi�ed with ~z# : �H� (JW)! �H� X �= G� (using x3.7), where~z : JW! X is the H-map �m � J(z) of x3.1. Thus ~�(�) = � ? �, where � denotesthe homotopy class of z :W! X.Note that ~� : ���W!! G�: is also surjective, since for every 
 2 �nX there is an! 2 �nSk such that 
 = !#(z��k(�)) for some Sk(�) ,!W (! is unary since X is anH-space), and then�
 = !#(z#�k(�)) = (�!) ? (z#�k(�)) = (�!)#z#�k(�) = (�!)#�� = ~�((�!)#��k+1(�) )by Fact 3.4 and Corollary 3.9.(3) Set A0 = ���W 2 �-Alg, and for each n � 1 let An = T nA0. De�ne face mapsdi = dni : An ! An�1 by dni = T i("Tn�i), and degeneracies sj = snj : An ! An+1 bysnj = T j(#Tn�1�j ) for 0 � i; j � n� 1 (compare [Go, App., x3]), with snn = T n �# for�# : A0 ! TA0 as in De�nition 2.5.(4) We de�ne a morphism of �-algebras �d : A1 ! A0 by letting �d(�k(�)) = ��k(�?�) foreach � 2 DkA0 { that is, if � =  #(��(�1); : : : ; ��(�n)) as above, then by (8.1) we have�d(�k(�)) = �k(�?�) = �k( ?(�1 ;::: ;�n)):(8.2)We then set dnn : An ! An�1 to be T n�1 �d for all n � 1.Lemma 8.3. A� = h(An)1n=0; (dni ); (snj )i ~�! G� is an augmented simplicial �-algebra.



LOOP SPACES AND HOMOTOPY OPERATIONS 21Proof. All the simplicial identities, except for those involving dnn, follow as usual fromthe identities for the comonad hT; "; #i (cf. [Go, App., x3] or [BoK, I, x4.1]).Now let �k(
) be a generator for a coproduct summand ��Sk(
) in A2 = TA1, where
 2 DkA1. Then (T"A0)�k(
) = �k("A0�
), and thus ( �d � T"A0)�k(
) = �k(("A0�
)?�) 2 DkA0,where ("A0 � 
) ? � is in DkG�.Write 
 = !#(��1 ; : : : ; ��m) for some m-ary homotopy operation !# and ��i = �`i�ia generator of a summand ��S`i�i in A1 = TA0, where �i 2 D`iA0 (i = 1; : : : ; m).Then "A0 � 
 = !#(�1; : : : ; �m).Therefore, if we write each �i (i = 1; : : : ; m) as �i =  #i (��(�1); : : : ; ��(�n)) (for��(�j ) as in (2)), then "A0 � 
 = (!#( 1; : : : ;  n))#(��(�1); : : : ; ��(�n)), so("A0 � 
) ? � = ((!#( 1; : : : ;  n))#(��(�1) _ : : : _ ��(�n))) ? �= (!#( 1; : : : ;  n)) ? (�1; : : : ; �n) = ! ? (( 1; : : : ;  n)) ? (�1; : : : ; �n))by (8.2), and thus ( �d � T"A0)�k(
) = �k(!?(( 1 ;::: ; n))?(�1;::: ;�n)) 2 DkA0:(8.4)On the other hand (T �d)�k(
) = �k( �d
) by de�nition of T , and�d
 = �d(!#(��1 ; : : : ; ��m)) = !#( �d�(�1); : : : ; �d�(�m))) = !#(�(�1?�); : : : ; �(�m?�))since �d is a morphism of �-algebras.Thus ( �d � T �d)�k(
) = �d(�k(!#(�(�1?�);::: ;�(�m?�)))) = �k((!#(�(�1?�);::: ;�(�m?�)))?�) again by (8.2).Since �i =  #i (��(�1); : : : ; ��(�n)) for i = 1; : : : ; m, we have �i ? � =  i ? (�1; : : : ; �n),so (!#(�(�1?�); : : : ; �(�m?�))) ? � = !#( 1 ? (�1; : : : ; �n); : : : ;  m ? (�1; : : : ; �n))= ! ? (( 1 _ : : : _  m) ? (�1; : : : ; �n))by Proposition 3.8, so by (8.4) we see that �d � T �d = �d � T" : A2 ! A0.Since ~� � "A0 = ~� � �d and �d � �# = idA0 (by Fact 3.4), the remaining simplicialidentities follow from the fact that " and # are natural transformations.Lemma 8.5. The augmented simplicial �-algebra A� ~�! G� is acyclic.Proof. For any n � 0 we may represent any x 2 �nDkA� by a normalized cycle� 2 DkAn with di� = 0 for 0 � i � n (cf. [Ma1, x17]), and consider �k(�) 2DkAn+1 = DkTAn:d0�k(�) = �, while di�k(�) = T i"As�i�k(�) = T (T i�1"As�i)�k(�) = �k(T i�1"As�i�) = �k(di�1�) =�k0 = 0 (see De�nition 2.5) for 1 � i � n. If n � 1 then also dn+1�k(�) =T (T n�1) �d�k(�) = �k(Tn�1 �d�) = �k(dn�) = �k0 = 0, so � is a normalized boundary and thusx = 0 in �nDkA�.For n = 0 by (2) we know ~� : A0 ! G� is surjective. Given � 2 DkKer(~�) �DkA0, we may assume � = !#(���1 ; : : : ; ���n), and thus0 = ~�(�) = ~�(!#(���1 ; : : : ; ���n)) = !#(~�(���1); : : : ; ~�(���n)) = !#(�1; : : : ; �n) = � ? �by (8.2).
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