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ABSTRACT. We describe two obstruction theories for a given topological space X to
be a loop space, the first requiring a given H-space structure on X, and the second
not. Both are defined in terms of higher homotopy operations.

1. INTRODUCTION

An H-space is a topological space X with a multiplication map m : X x X — X
and identity * € X. The motivating example is a topological group G, which from the
point of view of homotopy theory is just a loop space: G ~ QBG = map,(S!, BG).
The question of whether a given H-space X is, up to homotopy, a loop space, and thus
a topological group (cf. [Mil, §3]), has been studied from a variety of viewpoints — see
[A, Ba, DoL, F, H, Ma2, St1, St2, Ste, Su, Z], and the surveys in [St3], [St4, §1], and
[Ke, Part II]. Here we address this question from the aspect of homotopy operations.

As is well known, the homotopy groups of a space X have Whitehead products and
composition operations defined on them; in addition, there are various higher order
operations on m,X, such as Toda brackets; and the totality of these actually determine
the (weak) homotopy type of X (cf. [Bl4, §7.17]). Therefore, they should enable us (in
theory) to answer any homotopy-theoretic question about X — in particular, whether
it is homotopy equivalent to a loop space. It is the purpose of this note to explain in
what sense this can actually be done, using two possible approaches:

First, we explain how an H-space structure on X can be used to define the action
of the primary homotopy operations on the shifted homotopy groups G, = 7, 1 X
(which are isomorphic to 7,Y if X ~ QY). This action will behave properly with
respect to composition of operations if X is homotopy-associative, and will lift to a
topological action of the monoid of all maps between spheres if and only if X is a
loop space (see Proposition 5.6 below for the precise statement). The obstructions to
having such a topological action may be stated in terms of the obstruction theories for
realizing Il-algebras and their morphisms described in [Bl4].

A more concrete approach, which does not require a given H-space structure on X,
yields the following:

Theorem A: If X is a CW complex such that all Whitehead products vanish in m,X,
then X is homotopy equivalent to a loop space if and only if all the higher homotopy
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operations (1) defined in §7.10 vanish coherently.

The higher homotopy operations in question depend only on maps between wedges
of spheres, and take value in homotopy groups of spheres. They are constructed by
means of a certain collection of convex polyhedra, defined in §7.1 below, which may be
of independent interest.

1.1. notation and conventions. 7, will denote the category of pointed CW com-
plexes with base-point preserving maps, and by a space we shall always mean an object
in 7,, which will be denoted by a boldface letter: X, S™, and so on. The base-point
will be written % € X. The full subcategory of 0-connected spaces will be denoted by
oy

The space of Moore loops on Y € 7, will be denoted by €Y. This is homotopy
equivalent to the usual loop space: that is, the space of pointed maps map,(S',Y)
(see [W, III, Corollary 2.19]). The reduced suspension of X is denoted by XX.

S, will denote the category of pointed simplicial sets and pointed maps; its objects
will be denoted by boldface letters K,L,.... The subcategory of fibrant simplicial
sets (Kan complexes) will be denoted by SF, and that of reduced Kan complexes by
Sk. |K| € 7, will denote the geometric realization of a simplicial set K € S,, while
SX € S* will denote the singular simplicial set associated to a space X € 7,. @
denotes the category of simplicial groups. (See [Mal, §§3,14,15,17| for the definitions).

For each of the categories C = 7, Ty, S¥, 8%, or G, we will denote by [X,Y]e
(or simply [X,Y], if there is no danger of confusion) the set of pointed homotopy
classes of maps X — Y (cf. [Mal, §5] and [K1, §3]). The constant pointed map will
be written c¢,, or simply *. The homotopy category of C, whose objects are those of
C, and whose morphisms are homotopy classes of maps in C, will be denoted by hoC.
The adjoint functors S and || induce equivalences of categories hoZ, ~ hoS¥;
similarly hoSY ~ hoG under the adjoint functors G, W (see §5.1 below).

For any X € 7,, we denote by P"X the n-th Postnikov approximation to X, so
that mX 2 m,P"X for i <n and mP"X =0 for > n.

Definition 1.2. A H-space structure for a space X € 7, 1is a choice of an H-
multiplication map m : X x X — X such that moi =V, where i: XVX — X xX
is the inclusion, and V : XV X — X is the fold map (induced by the identity on each
wedge summand). If X may be equipped with such an m, we say that (X,m) (or
just X) is an H-space. Note that if we only have moi ~ V, we can find a homotopic
map m' ~ m such that m'oi =V (since X is assumed to be well-pointed).

An H-space (X,m) 1is homotopy-associative if m o (m,idx) ~ m o (idx,m) :
X xXxX — X. Itisan H-group if it is homotopy-associative and has a (two-sided)
homotopy inverse 1+ : X — X with mo (¢ X idx) o A ~ ¢, ~ mo (idx X 1) o A,
(where A : X — X xX is the diagonal). In fact, any connected homotopy-associative
H-space is an H-group (cf. [W, X, Theorem 2.2]).

If (X,m) and (Y,n) are two H-spaces, amap f:X — Y is called an H-map if
no(fxf)~fom:XxX —7Y. The set of pointed homotopy classes of H-maps
X —Y will be denoted by [X,Y]g.

One similarly defines H-simplicial sets and simplicial H-maps in the category S,.

1.3. organization. In section 2 we review some background material on II-algebras;
in section 3 we explain how an H-space structure on X determines the II-algebra
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structure of its potential delooping; and in section 4 we show how the obstruction
theory of [Bl4] for IT-algebras and their morphisms may be used to determine whether
X is a loop space. In section 5 we show, in the context of simplicial groups, that the
[I-algebra structure on m,_;X can be made “topological” if and only if X is a loop
space (Proposition 5.6).

In section 6 we define a certain cosimplicial simplicial space up-to-homotopy, which
can be rectified if and only if X is a loop space, and prove a technical result (The-
orem 6.4), which also yields a simplification of the general theory for realizing II-
algebras described in [Bl4]. Finally, in section 7 we construct a certain collection of
face-codegeneracy polyhedra, which are used to define the higher homotopy operations
refered to in Theorem A (=Theorem 7.12). We also show (Example 7.15) how the
theorem may be used in reverse to calculate a certain tertiary operations in 7,S7.

In an appendix (section 8) we describe a specific construction of a simplicial resolu-
tion of the II-algebra G, = 7,1 X.

2. II-ALGEBRAS

In this section we recall some known facts on the primary homotopy operations and
their relation to the H-space question. First, some definitions and notation:

Definition 2.1. A Il-algebra is a graded group G, = {Gy}2, (abelian in degrees
> 1), together with an action on G, of the primary homotopy operations (i.e.,
compositions and Whitehead products, including the “mi-action” of G; on the higher
G.'s, asin [W, X, §7]), satisfying the usual universal identities. See [BI1, §3] or [BI2,
§2.1] for a more explicit description. A morphism of I-algebras is a homomorphism
of graded groups ¢ : G, — G’ which commutes with all the operations. TI-algebras
form a category, which will be denoted TI-Alg.

It will sometimes be convenient to denote G}, the k-degree of the Il-algebra G,

Definition 2.2. We say that a space X realizes an (abstract) II-algebra G, if there is
an isomorphism of Il-algebras G, = m,X. (There may be non-homotopy equivalent
spaces realizing the same I1-algebra — cf. [Bl4, §7.18]). Similarly, an abstract morphism
of Il-algebras ¢ : 1. X — 71, Y (between realizable [T-algebras) is realizable if there is
amap f:X — Y such that n,f = ¢.

Definition 2.3. The free I[I-algebras are those isomorphic to 7, W, for some (possibly
infinite) wedge of spheres W: More precisely, let L be a graded set {L;}%2,, and
let W = V72, Ve, St where each S% is a k-sphere. Then we say that 7,W is
the free Il-algebra generated by L. We shall consider each element = € L; to be an
element of 7,W, by identifying it with that generator of 7, W which represents the
inclusion S¥ < W. The free Il-algebra 7,W is called finite if L is finite.

Fact 2.4. If we let II denote the homotopy category of wedges of spheres, and F C
II-Alg the full subcategory of free Il-algebras, then the functor =, : II — F is an
equivalence of categories. Thus any Il-algebra morphism ¢ : G, — G’ is uniquely
realizable, if G, and G are free II-algebras — and in fact only G, need be free.

Definition 2.5. Let T : II-Alg — II-Alg be the “free Il-algebra” comonad (cf. [M,
VI, §1]), defined TG. = [I}Z Hyea,\ o} W*ng). The counit ¢ = g, : TG, — G,
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is defined by Lfg) — ¢ (where Lfg) is the canonical generator of ﬂ*Sé“g)), and the
comultiplication ¢ = ¥g, : TG, — T*G, is induced by the natural transformation

V:idg — T|7 defined by wy — Lé“l,k).
Definition 2.6. An abelian I1-algebra is one for which all Whitehead products vanish.

These are indeed the abelian objects of TI-Alg — see [B12, §2]. If X is an H-space,
then 7, X is an abelian II-algebra (cf. [W, X, (7.8)]).

3. SECONDARY II-ALGEBRA STRUCTURE

We now describe how an H-space structure on X determines the I[I-algebra structure
of a (potential) classifying space.

3.1. the James construction. For any X € 7., let JX be the James reduced
product construction, with A : JX — QXX the homotopy equivalence of [W, VII,
(2.6)], and jx: X <— JX and iy : X — QXX the natural inclusions.

If (X,m) is an H-space, there is a retraction of spaces m : JX — X (with
mo jx =idy), defined

(3.2) m(xy, 29, ... ,x,) =m(...m(m(xy,z9),23),... ,2,)

(cf. [J1, Theorem 1.8]).

Definition 3.3. Let X be an H-space.  Given homotopy classes of maps «a €
[YA,YXB] and f € [B,X], we define the derived composition a3 € [A,X] as
follows:

Choose representatives f: XA — XB and ¢g: B — X for a, [ respectively, and
let A\7':QYX — JX be any homotopy inverse to A\. Then a3 is represented by
the composite

A -4 0xA 24 ovB 2 JB 22 X L X

Fact 3.4. Note that if a = Sa for some a: A — B, then axj3 = a*3 (this is
well-defined, because X is an H-space).

We shall be interested in the case where B is a wedge of spheres and A = S",
so * associates a class w % (fy,...,0) € 71, X to any k-ary homotopy operation
W L (=) X oo X T 1(—) — T (=) and collection of elements f3; € m,, X
(i=1,...,k).

In particular, if w : SPTe+t — SPFl v/ §9+1 represents the Whitehead product, one
may define a “Samelson product” wx(—, —) : 1,Xx7,X — 7,;,X for any H-space X,
even without assuming associativity or the existence of a homotopy inverse (compare
[W. X, §5]).

However, in general this w x (—, —) need not enjoy any of the usual properties of
the Samelson product (bi-additivity, graded-commutativity, Jacobi identity — cf. [W,
X, Theorems 5.1 & 5.4]). To ensure that they hold, one needs further assumptions on
X.

First, we note the following homotopy version of [W, VII, Theorem 2.5], which
appears to be folklore:
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Lemma 3.5. If (X,n) is a homotopy-associative H-space, then any map f: A — X
extends to an H-map f: JA — X, which is unique up to homotopy.

Proof. Given f:A — X, define f:JA — X by

flan,oooa) = m(om(m(f(en), f(ao)), fl@). .o flan).

This is an H-map by [N, Lemma 1.4]. Now let §: JA — X be another H-map,
with a homotopy H : f ~ g et goja. Since g is an H-map, there is a homotopy
G:no(§gxg) ~gom (where m: JA x JA — JA is the H-multiplication).
Moreover, by [N, Lemma 1.3(a)] we may assume G is stationary on JA V JA.

For each r >0, let J.A denote the r-th stage in the construction of JA, with
Js v JsA — J.A and j°: J;A — JA the inclusions, starting with JyA = % and
JiA = A. We define T,A to be the pushout in the following diagram:

i
JA——J AxA

g 1\ qu
J.A T.A

L

for r>1 (so /A=A V A); then J.,A is the pushout in:

Uy = (ilaj:_l X Zd)

T.A J,A X A
Pr = (Zd, @") Gr41
l l
JA = Jot A
]r+1

Now let f = f s.a and g, = gl;,a; we shall extend H : f ~ ¢g to a homotopy
H : f ~ ¢ by 1nduct1ve1y constructlng homotopies H, : f, ~ G- (starting with
H, = H) such that H, A = — H._y: let n, : X" — X denote the n-fold
multiplication n,(x1,...,2,.) = n(.. TL(IEl,Ig),...),IET) and ¢ : A" — J,A the
quotient map, so that n" o f" = fr 0 qy.

As a first approximation, define H, .y : f, x f
above pushout to be the sum of homotopies H, 4

gr X g on J,A X A in the
no([:[r X H) 4+ Go (j7 X ja).
This does not quite agree with H, o ¢, on T,A, but since GG is stationary on
JAV JA we have H,,1|; o =no (H, x id) + (stationary) = H, + (stationary) and
Hr—l—l J,_1AxA — N O (f{r—l X H) + Go (ijl X ]A) = Hr.

Since Hy, = H, we see that H,|pa = (H + (stationary), H), while H o ¢ =
(H,H). Thus we may assume by induction that there is a homotopy of homotopies
F: Hr+1\T,A ~ [:IT o@,. Since T,A — J.A x A is a cofibration, the inclusion

IR

T,AxI*U(J,AxA)x ({0,1} xTUIx{0})— (J,AxA)xI?

is a trivial cofibration, and thus we may use the homotopy extension property to obtain
a new homotopy F on (J,A x A) x I2 which restricts to H,4y: fo X f ~ §, X g on
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J.A x A x I x {1}, such that ﬁrﬂ extends H, o ¢, and thus may be combined

~

with H, to define a homotopy H,.; as required. [

Corollary 3.6. If X is a homotopy-associative H-space, then for any A € T, the
inclusion j4: A — JA induces a bijection ji :[JA, Xy =, [A, X] ..

Proof. Since X is homotopy-associative H-space, the retraction 7 = idy : JX = X
is an H-map, by the Lemma, so we may define ¢ : [A, X]z. — [JA, Xy by o([f]) =
[m o J(f)], and clearly j%(o([f]) = [mo J(f)oja| = [f]. On the other hand, given
an H-map ¢g:JA — X we have mo J(goja) o ja >~ goja, which implies that
mo.J(goja)~g by Lemma 3.5. Thus also ¢(j55([g])) =[g]. O

3.7. notation. If X is a homotopy-associative H-space, we shall write 77X for
[QSt,X]H = [Jst ! X]H =m 1 X,

Proposition 3.8. If X is a homotopy-associative H-space, then ax(3*v) = (a#3)x~y
for any o €[SAXB|, (€ [EB,XC|, and v € [C,X].

Proof. Tt suffices to consider o« = idypg, and so to show that

Q¥B 2 Q¥C ! Q¥X

S %

MNX—F—X
m

commutes up to homotopy (where m is the composite QXX AL X X) - or,
since (Fx~ is defined to be the composite moQ¥yo0QFoig, that the two composites
d=moQXy0QB and 1 =1moQXm o (QT)%y0 QTN 0 QTig are homotopic.

Now if X is a homotopy-associative H-space, then m is an H-map by Lemma 3.5, so
o, QX B — X are H-maps. By Corollary 3.6 it suffices to check that ¢oig ~ 9oip
— i.e., that m o Q¥yo0QpF oip is homotopic to the composition of

B -2 auB 2% (0x)B =¥ (on)2c (L7 (an)x 2 onx L X,

But QYyo0Qpfoig is adjoint to (Xv) o 3, while the composition of

29 ox)2c LT (ox)rx T oxx

is adjoint to (1 o QXy 0 QF o ip) which is equal to X(rm o (Efyggﬁ), (where f
denotes the adjoint of f). Since for any f:Y — Z the adjoint of Yf is QX f oiy,
we see mo Xf ~ f, which completes the proof. [

B £ OyB % (On)B X

It is readily verified that when X ~ QY, the secondary composition is the adjoint
of the usual composition in 7,Y; Thus we have:

Corollary 3.9. If X is an H-group, then the graded abelian group G, defined by
G, = W,fIX > . 1 X  (with 5 € Gy corresponding to v € m,_1X), has a M-algebra
structure defined by the derived compositions: that is, if 1 € mp(S" V...V S™) and

Def

Y; € Gy, for 1<j<mn, then v*(%,... %) = w* (..., %) € Gp. If X~ QY,
then G, 1is isomorphic as a I1-algebra to =, Y. O




LOOP SPACES AND HOMOTOPY OPERATIONS 7

Definition 3.10. For any H-group (X, m), the Il-algebra G, of Corollary 3.9
will be called the delooping of m,X, and denoted by Q7 '7,X (so in particular
Q' QY 2 1,Y).

Remark 3.11. Note that Corollary 3.9 provides us with an algebraic obstruction to
delooping a space X: if there is no way of putting a Il-algebra structure on the graded
abelian group G, = m,_1X which is consistent with Fact 3.4, then X is not a loop
space, or even a homotopy-associative H-space. (This is of course assuming that the
[T-algebra 7, X is abelian — otherwise X cannot even be an H-space.)

Example 3.12. Consider the IT-algebra G, defined by Gy = Z(x), (i.e., x generates
the cyclic group Gs), Gs = Z/2(nfx), Gy =Z/2(nin¥x). and Gs = Z/2(ninfnfz).
with G; =0 for t # 2,3,4,5 and all Whitehead products zero.

There can be no homotopy-associative H-space X with 7,X 2 G,, since the II-
algebra G. = Q'G, cannot be defined consistently: we would have G} = Z(z),
Gy = Z/2(nfz), Gy =Z/2ninfx), and G = Z/2(nininiz) by Fact 3.4; but
16S? = Z/12(a) with 6a = ninin;, and thus o7 € G4 cannot be defined
consistently with the fact that (6a)#z # 0.

(We do not claim that G, is realizable; but the obstructions to realizing G, by a
space X € 7, require secondary (or higher order) information, while the obstructions
to its realization by an H-group are primary.)

4. SIMPLICIAL II-ALGEBRAS AND SPACES

We next recall some background on simplicial II-algebras and spaces and bisimplicial
groups:

Definition 4.1. A simplicial object over any category C is a sequence of objects
{X,}22, in C, equipped with face maps d; : X, — X, and degeneracies s; :
X, — X, (0 <id,j < n), satisfying the usual simplicial identities ([Mal, §1.1]).
The category of simplicial objects over C is denoted by sC. An augmented simplical
object X, — A over Cis a simplicial object X, € sC, together with an augmentation
€:Xog— A in C such that cod; =¢od,.

Definition 4.2. A simplicial Il-algebra A, is called free if for each n > 0 there is a
graded set T™ C A, such that A, is the free [I-algebra generated by 7™, and each
degeneracy map s;: A, — A, takes T" to T"'.

A free simplicial resolution of a Il-algebra G, is defined to be an augmented simpli-
cial II-algebra A, — G,, such that A, is a free simplicial Il-algebra, the homotopy
groups of the simplicial group Dy A, vanish in dimensions n > 1, and the augmen-
tation induces an isomorphism 7o(DyA,) = G,

Such resolutions always exist, for any II-algebra G, — see [Q1, II, §4], or the explicit
construction in [BI1, §4.3].

4.3. simplicial spaces. Let W, € s7, be a simplicial space: its realization (or
homotopy colimit) is a space [[W,]| € 7, constructed by making identifications in
o o W, x A[n] according to the face and degeneracy maps of W, (cf. [Se, §1]).

For any simplicial space 'W,, there is a first quadrant spectral sequence with

(4.4) By =m(mW.) = T [W|



8 DAVID BLANC

(see [BoF, Thm B.5] and [BrL, App.]).

Definition 4.5. An augmented simplical space W, — X is called a resolution of X
by spheres if each W,, is homotopy equivalent to a wedge of spheres, and 7,W, — 7, X
is a free simplicial resolution of IT-algebras (Def. 4.2).

Using the above spectral sequence, we see that the natural map Wy — ||[W,|| then
induces an isomorphism 7, X = 7, [|[W,]||, so [|[W,| ~ X.

Definition 4.6. A simplicial object over hoZ,, say W, € s(ho7,), is, by definition,
a sequence of spaces Wy, Wy, ... with homotopy classes of maps: ¢; € [W,,, W,,_4],
and so on, for the face maps and degeneracies, satisfying the simplicial identities (in
hoT,). By making choices of actual maps representing each of these homotopy classes
we obtain an actual diagram over 7,, which we shall denote by "W,; of course,
the simplicial identities now hold only up to homotopy, in general. Such a "W,
will be called a simplicial space up-to-homotopy. Note we can apply the functor
7.« T, — [I-Alg to obtain a simplicial [T-algebra 7, W, = 7,("W,) € sII-Alg.

If we can change the maps and spaces of "W, up to homotopy in such a way as
to obtain a simplicial space “on the nose”, say V, € s7,, we call this a rectification
of W, or "W,. For our purposes we need not worry over the precise definition of
“changing "W, up to homotopy” (see, e.g., [DwKS, §2.2]); all we require is that
7.("W,) and 7.V, be isomorphic simplicial II-algebras.

Similarly in hoS* or hogG.

4.7. rectifying simplicial resolutions. This suggests one possible approach to de-
termining whether an H-group X is equivalent to a loop space:

First, choose some free simplicial IT-algebra A, resolving G, (for one possible
construction, see Appendix 8). By Remark 2.4, the free simplicial II-algebra A,
corresponds to a unique simplicial object W, € s(ho7,) over the homotopy category,
with each 'W,, homotopy equivalent to a wedge of spheres, such that 7,W, = A,;
this W, may be represented by a simplicial space up-to-homotopy "W, (see §4.6).
As usual, W, may be rectified if and only if "W, can be made oo-homotopy
commutative — that is, if and only if one can find a sequence of homotopies for
the simplicial identities among the face and degeneracy maps, and then homotopies
between these, and so on (cf. [BoaV, Corollary 4.21 & Theorem 4.49]). An obstruction
theory for this was described in [Bl4, §5-6]; see Remark 6.5 below. If the obstructions

vanish, "W, may be replaced by a (strict) simplicial space V,, and by §4.3 we have

.|| Vel &£ G., so Y et |IVL]| is a candidate for the delooping of the given H-group

X
Now we apply the obstruction theory of [Bl4, §7] to check whether the ITl-algebra
isomorphism 1,QY = 7,.X (cf. Corollary 3.9) may be realized as a map of spaces.

If so, QY ~ X, so our given H-group X is indeed a loop space; if not, we must try
other rectifications of "W,.

5. A SIMPLICIAL GROUP VERSION

For our purposes it will be convenient to work at times in the category G of simplicial
groups. First, we recall some basic definitions and facts:
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5.1. simplicial groups. Let F :S, — G denote the free group functor of [Mi2, §2];
this is the simplicial version of the James construction, and in particular |FK|~ J|K].
~Let G : S, — G be Kan's simplicial loop functor (cf. [Mal, Def. 26.3]), with
W : G — 8§ its adjoint, the Eilenberg-Mac Lane classifying space functor (cf. [Mal,
§21]).

Then |GK| =~ QK| and |K|=~ |[WGK|. Moreover, unlike 7,, where we have only
a (weak) homotopy equivalence, in G there is a canonical isomorphism ¢ : FK =2 GEXK
(cf. [Cu, Prop. 4.15]), and there are natural bijections
(

5.2)
Homgs, (SL,WFK) = Homg(GXL, FK) L Homg(FL,FK) 2 Homs, (L, FK)

for any L € S, (induced by the adjunctions), and similarly for homotopy classes of
maps.

Thus, we may think of F'S™ as the simplicial group analogue of the r-sphere; in
particular, if K is in G, or even if K is just an associative H-simplicial set which is a
Kan complex, we shall write 77K for [FS'!, K]y (compare §3.7). Similarly, Fe" is
the G analogue of the n-disc in the sense that any nullhomotopic map f: FS" ! — K
extends to Fe".

Remark 5.3. The same facts as in §4.3 hold also if we consider bisimplicial groups
(which we shall think of as simplicial objects G, € sG) instead of simplicial spaces.
In this case the realization ||[W,|| should be replaced by the diagonal diag(G.), and
the spectral sequence corresponding to (4.4) is due to Quillen (cf. [Q2]).

The above definitions provide us with a functorial simplicial version of the derived
composition of §3.3:

Definition 5.4. If K € S* is an H-simplicial set which is a Kan complex, one again
has a retraction of simplicial sets m : FK — K, defined as in (3.2). Given a
homomorphism of simplicial groups f : FA — FB and a map of simplicial sets
g: B — K, the composite mo Fgo f: FA — K will be denoted by f xg.

Note that if f:YA — WFB and f:A — FB correspond to f under (5.2), the
composite mo Fgo f corresponds to f*g, and represents the derived composition
[/1xlg] in [AK]s, = [[A], K]z

Remark 5.5. The simplicial version of the x operation defined here is obviously func-
torial in the sense that (e*f)*g = e*(fxg) for e : FC — FA in G, and
fx(g*h) = (f*g)*h for any H-map h: (K, m) — (L,n) between fibrant H-simplicial
sets which is strictly multiplicative (i.e., no(hx h)=hom: K x K — L).

However, Proposition 3.8 is still valid only in the homotopy category, and this is in
fact the obstruction to K being equivalent to a loop space:

Proposition 5.6. If K is an H-group in S* such that
(x) fx(gxh) = (f*g)xh Vf:FA — FBand g: FB— FC inG and h:C — K,

then K is H-homotopy equivalent to a simplicial group (and thus to a loop space);
conversely, if K € G (in particular, if K = GL for some L € Sy), then (x) holds.
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Proof. Assume that K is an H-group in SF satisfying (). We shall need a simplicial
variant of Chris Stover’s construction of resolutions by spheres (Def. 4.5), so as in
[Stv, §2], define a comonad L:G — G by

o0

G we=10 I FstUT 1 peb

k=0 ¢ecHomg(FS*G) k=0 ®cHomg(Fekt+l.G)

where Fey™, the G-disc indexed by @ : Fe**! — G, is attached to FSE, the G-
sphere indexed by ¢ = ®|pgert1, by identifying Foeft! with FSF (see §5.1 above).
The coproduct here is just the (dimensionwise) free product of groups; the counit

c: LG — G is “evaluation of indices”, and the comultiplication 9 : LG — L?G is
as in §2.5.

Now let W= )/ \/ sy U V \V eh™ (the analogue
k=1 feHomg(S*,K) k=1 FeHoms, (ek+1,K)
for S, of LG, with the corresponding identifications), and let z : W — K be
the counit map. Asin (1) of Appendix 8, z induces an epimorphism z, : 7, W—71,K
of I-algebras. (K is a Kan complex, but W is not, so we understand 7,W to be the
corresponding free IT-algebra = w,/]W| — cf. §2.3).

As in (2) of Appendix 8, we have an epimorphism of II-algebras C: mIW —G,,
where G, = Q7 !'7,K is the delooping of m,K — or equivalently, Z, : 7/ FW — 7/ K,
induced by Z=moFz: FW — K (cf. §5.4).

Let M,, = L"FW for n=20,1,..., with face and degeneracy maps determined
by the comonad structure maps £, ¥ — except for d, : M,, — M, _;, defined
d, = L"'d, where d: LFW — FW, restricted to a summand FA, in LFW
(A = S* e is an isomorphism onto FAz < FW, where 3: A — K is the
composite (a*z) 0 ja.

Because (*) holds on the nose, we may verify that doTd = do Tz : My — My,
so that M, is a simplicial object over G (just as in the proof of Lemma 8.3 in

the Appendix). Moreover, the augmented simplicial II-algebra 7, M, LN G, is
acyclic, by a variant of [Stv, Prop. 2.6] and Lemma 8.5 of the Appendix. Thus by
the Quillen spectral sequence (see §5.3) we have 7 diagL, ~ 7K, and thus setting
L = diagWL, = W diagL, we obtain a Kan complex L such that K~ GL - i.e.,
K| ~ Q|L|.

The converse is clear, since if K € G then j4: A — FA induces a one-to-one

correspondence between maps f: A — K in S, and homomorphisms ¢ : FA — K
in G, by the universal property of F. [J

Note that in fact we need only verify that 5.6(x) holds for A, B, and C in S,
which are (weakly) homotopy equivalent to wedges of spheres.

6. THE SIMPLICIAL-COSIMPLICIAL CONSTRUCTION

One disadvantage of directly applying the obstruction theory of [Bl4] for realizing
G, = Q7 '7,X as a method for determining if X is a loop space is that even the
algebraic step — namely, determining the Il-algebra G, — depends on a choice of
H-space structure for X, and thus cannot be described purely in terms of homotopy
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operations in the classical sense. In this section and the next, we shall describe a more
explicit version of the obstruction theory, which does not presuppose such a choice,
and is more in the spirit of the obstruction theories of [Bl4] and [BI5].

Definition 6.1. A CW -resolution of a Il-algebra G, is a free simlglicial resolution

As — G, as in §4.2, together with a sequence of free II-algebras (A,)2,, called a
CW -basis for A,. such that
(6.2) A, = T I 4=
0<A<n €T,
where 7, , 1is the set of all sequences of A non-negative integers i < ip < ... < iy

(ix <n) for 0 <X <n (compare [Bll, §4.5.1].

For each I € Z,,, the copy of A, , indexed by I is in the image of the M-fold
degeneracy sy = s;, 0...5;, 05;,, in the obvious sense. The face maps d; : A, — A,_;
are determinmed by the attaching map cZg = dolj, : A, — A, 1, the simplicial
identities, and the requirement that d;/;, =0 for 7> 1.

Aside from allowing one to construct minimal resolutions, which are convenient
for explicit computations (compare [BI5]), such CW-resolutions also have technical
advantages for the obstruction theory of [Bl4, §5-6]:

Let A, — G. be a CW-resolution, and let W, € s(ho7,) be the simplicial object
over ho7, which corresponds to A, under Remark 2.4 — that is,

(6.3) w, = \/ 'V W.m

0<A<n T€Ty,,
where W,, is a wedge of spheres such that 7=,W, = A, (and thus 7,W, = A, as
I-algebras, and 7"W, = A, as simplicial [T-algebras). Choose some simplicial space
up-to-homotopy "W, corresponding to W, (Def. 4.6). We then have the following

Theorem 6.4. Let "W, be as above; then "W, may be rectified, and thus
G. realized as Y, if and only if all the higher homotopy operations ((6)) C
[SF W, , W, _r_1] of [Bl4, §5.3] wanish coherently.

Remark 6.5. In [Bl4, §6] we required the coherent vanishing of an additional collection
of (rather inelegant) higher homotopy operations, corresponding to the degeneracies of
W,. in order for G, to be realizable. This requirement is eliminated by Theorem
6.4.

Proof. Assume that, for W, as above, all ((§)) vanish coherently. By definition,
this means there is a compatible collection of maps g° : P, (6) x W, — W, ; for
6 € D(n — k,n)/ ~, where each such 6 is a composite of face maps, and P, ,(9)
is a suitable convex polyhedron. (See [Bl4, §5] for the notation and terminology). In
particular, g% : W,, — W, _; isin the homotopy class determined by d : A, — A, _;,
and ¢% ~x on W, for i>1.

We may then define a compatible collection of maps ¢¥ : P(¢) x W,, — W, for all
simplicial morphisms ¢ : A, — A,, (and suitable polyhedra P(¢) defined in [Bl4,
§6.5]), as follows:

By (6.3), it suffices to define ¢¥ on each wedge summand (W,_,)). where
I = (ig,... ,iy); since s; =s;, 0...5,: Wy_y = (W,_)) is a homeomorphism, it
is enough to define §¥ = g o (Idpy) X s1) : P(¢) x W,_y — W, forall ¢, I. But for
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any vertex v € P(1)) we have a corresponding factorization ¢ = \,0...0\; (compare
§7.3 below), with each )\; either a face or a degeneracy map, and §w|{v}an,A is
required to be the corresponding composition of face and degeneracy maps of "W,,
precomposed with sj.

By definition of "W,, such a simplicial morphism may be computed on W, _,
by using the simplicial identities d;s; = s;1d; (i < j), d;s; = dj415; = id, and
dis; = sjdi—y (i > j+1) tobring A, o0...0)\ os; into “semi-canonical form”
sjody, where we assume J = (ji,...,7J,) satisfies j; < jp < ... < j,, but make
no assumptions as to K = (ki,... k). We then set %[ uw, , equal to dx (ie.,
the composite of the corresponding chosen representatives for the face maps in "W,),
postcomposed with the embedding s;: W,,_\_; — W,,.

Now it is clear that the only homotopies needed for the 1-dimensional polyhedra
P(1) are those involving the various composite face maps dx in the semi-canonical
form of 1 o sy, since all other simplicial identities for "W, hold precisely; by
induction on the dimension we see this is true for all P(v), so that the compatible
collection {g¥} is simply the given compatible collection {7°}, post-composed with
the appropriate embeddings s;, and in fact we may collapse the polyhedra P() to
the face-map polyhedra, or permutohedra, P, .(6) (cf. [Bl4, §4] and §7.1 below). O

Definition 6.6. A A-cosimplicial object FEX over a category C is a sequence of
objects E° E'. ..., together with coface maps d' : E™ — E™*!' for 1 <1 <n
satisfying d’d’ = d'd’~" for i < j. Given a cosimplicial object E* (cf. [BoK, X,
2.1]), welet E% denote the underlying A-cosimplicial object (obtained by forgetting
the codegeneracies).

6.7. the cosimplicial James construction. Given a space X € 7,, we define a
A-cosimplicial space Uy = U(X)% by setting U™ = X" (the Cartesian product),
and d'(xo,...,2,) = (To,...,Ti_1,% T, ..., x,). Notethat JX = colim U(X)% and

Fact 6.8. If (X,m) is a (strictly) associative H-space, we can extend U} to a full
cosimplicial space U*® by setting s/(zo,....xn) = (To, ... ,M(T;,Tj—1), - , Tp)-

Definition 6.9. Let A, be a CW-resolution of the IT-algebra ,X = 7,U% We
construct a A-cosimplicial augmented simplicial IT-algebra (F,)% — 7, U%, such that
each ET is a CW-resolution of 7,U" = 7, (X"!), with CW-basis {E"}>,. We
start by setting E° = C% = A, for all r > 0, and then define E" by a double
induction (on r >0 and then on n > 0) as

(6.10) Er=11 1II €.

0<A<n €T .
where Z,, isasin (6.2) and Cp"=0=C? forall m,r > 0.

The coface maps d' : E'"' — E]' are determined by the cosimplicial identities
and the requirement that d’\[éﬁxhil - be an isomorphism onto [C’f”](ih_”imi) if
0> Uy )

The only summand in (6.10) which is not defined is thus [C]']s, which we denote
simply by C}. We require that it be an n-th cross-term in the sense that do|en
does not factor through the image of any coface map d': E'™' — E" . Other than
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that, C" may be any free [T-algebra which ensures that (6.10) defines a C'W-basis

for a CW-resolution EI — 7,U". We shall call the double sequence ((C")%,)>, a

cross-term basis for (E,)%.
Note that A, is a retract of E? in two different ways (under the two coface maps

d®, d"), corresponding to the fact that X is a retract of X x X in two different ways;

the presence of the cross-terms C’f indicates that A, x A, is a resolution of m,X?2,

but not a free one, while A, II A, is a free simplicial Il-algebra, but not a resolution.
Similarly, X x X embeds in X? in three different ways, and so on.

Example 6.11. For any A4, — 7, X we may set C? = Hsp(_)A(O) qu(ﬁAu) Sg’;g;l,
x 0 y 0 ’

with CZ0|Sf+q)—1 = [tz,1,] (in the notation of §2.5). The higher cross-terms C}' = 0

for m > 3, since any k-th order cross-term element 2 in [[7_, A(()j) (k> 3) is asum

of elements of the form z = (#]... [ty L)) b)) -+ 4(ay)s and then
2= do(CF[ a2t o)y ssorh )

Definition 6.12. Let "(W,)% — U% be the A-cosimplicial augmented simplicial
space up-to-homotopy which corresponds to (F,)%\ — 7, U% under Fact 2.4. Each W
is homotopy equivalent to a wedge of spheres, and has a wedge summand W[ «— W7
corresponding to the CW-basis free Il-algebra summand E" — E". We let Cr
denote the wedge summand of W corresponding to C" — E™.

We do not enter here into the question of whether every free simplicial II-algebra
resolution of a realizable Tl-algebra =,Y may be realized by a resolution of Y by
spheres as in Definition 4.5 (but see [BlI5, 4.1(a)]). However, every space Y has a
functorial resolution by spheres V,(Y) — Y by [Stv, Prop. 2.6], and one may in fact
construct smaller (non-functorial) resolutions, as in [Bl5, 3.12, 4.19]. Thus we may
make the following

Assumption 6.13. (E,)% maps monomorphically into m,V,(UX), and "(W,)% —
U3 can be rectified so as to yield a strict A-cosimplicial augmented simplicial space
(W,)% — UL realizing (F,)%\ — 7. U%.

Definition 6.14. Now assume that 7,X is an abelian IT-algebra (Def. 2.6) — this
is the necessary Il-algebra condition in order for X to be an H-space — and let
o X x m,X — m,X be the morphism of I[I-algebras defined levelwise by the
group operation (see [B15, §2]). This p is of course associative, in the sense that
po (p,id) = po(id, p) : m(X3) — m,X, so it allows one to extend the A-cosimplicial

[T-algebra FRX el 7.(U%) to a full cosimplicial II-algebra F*, defined as in §6.8.
Since E] — F" = r,U" is a free resolution of Il-algebras, the codegeneracy maps
571 F" — F"~! induce maps of simplicial II-algebras s : E7 — E"~!, unique up to
simplicial homotopy, by the universal property of resolutions (cf. [Q1, I, p. 1.14 & I, §2,
Prop. 5]). Note, however, that the individual maps s’ : E" — E"~' are not unique,

in general; in fact, different choices may correspond to different H-multiplications on
X.

These maps s/ make (F,)% — FX into a full cosimplicial augmented simplicial
[l-algebra Ef — F*, and thus "W? — U% into a cosimplicial augmented simplicial
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space up-to-homotopy (for which we may assume by 6.13 that all simplicial identities,
and all the cosimplicial identities involving only the coface maps, hold precisely).

Proposition 6.15. The cosimplicial simplicial space up-to-homotopy "W? of §6.14
may be rectified if and only if X is homotopy equivalent to a loop space.

Proof. 1f X is a loop space, it has a strictly associative H-multiplication m : X x X —
X which induces p on m.(—) (cf. [Gr, Prop. 9.9]), so U% extends to a cosimplicial
space U* by Fact 6.8. Applying the functorial construction of [Stv, §2] to U* yields

a (strict) cosimplicial augmented simplicial space (V,)% — U®, and since we assumed
W7 embeds in 7,V{ for each n, hW: may also be rectified.

Conversely, if W? is a (strict) cosimplicial simplicial space realizing E?, then we
may apply the realization functor for simplicial spaces in each cosimplicial dimension
n >0 toobtain |[W?P|| ~U" = X" (by (4.4)). The realization of the codegeneracy
map ||s°] : [[WL|| — [[W?| induces pu : 7. (X?) — 7. X, so it corresponds to an
H-space multiplication m : X* — X (see [BI5, Prop. 2.7]).

The fact that ||[W?|| is a (strict) cosimplicial space means that all composite code-
generacy maps |[so st o... s/t |[W2| — ||[W?|| are equal, and thus all possible
composite multiplications X"*!' — X (i.e., all possible bracketings in (3.2)) are
homotopic, with homotopies between the homotopies, and so on — in other words,
the H-space (X,m) is an Ay space (see [St3, Def. 11.2]) — so that X is homotopy
equivalent to loop space by [St3, Theorem 11.4]. Note that we only required that the
codegeneracies of "W? be rectified; after the fact this ensures that the full cosimplicial
simplicial space is rectifiable. [

In summary, the question of whether X is a loop space reduces to the question
of whether a certain diagram in the homotopy category, corresponding to a diagram
of free Tl-algebras, may be rectified - or equivalently, may be made oc-homotopy
commutative.

7. POLYHEDRA AND HIGHER HOMOTOPY OPERATIONS

As in [Bl4, §4], there is a sequence of higher homotopy operations which serve as
obstructions to such a rectification, and these may be described combinatorially in
terms of certain polyhedra, as follows:

Definition 7.1. The N-permutohedron P is defined to be the convex hull in RY of
the points p, = (o(1),0(2),...,0(N)), where o ranges over all permutations o € Xy
(cf. [Sc]). Tt is (N — 1)-dimensional.

For any two integers 0 < n < N, the corresponding (N, n)-face-codegeneracy
polyhedron PY is a quotient of the N-permutohedron P obtained by identifying
two vertices p, and p, to a single vertex p, = p,» of PY whenever o = (i,i+1)o’,
where (4,74 1) is an adjacent transposition and o(7),o(i + 1) > n.

Since each facet A of P¥ is uniquely determined by its vertices (see below), the
facets in the quotient P2 are obtained by collapsing those of P accordingly.

Note that PY | is the N-permutohedron PV, and in fact the quotient map
q : PY — PY is homotopic to a homeomorphism (though not a combinatorial iso-
morphism, of course) for n > 1. On the other hand, P} is a single point. For
non-trivial examples of face-codegeneracy polyhedra, see Figures 1 & 2 below.
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Fact 7.2. From the description of the facets of the permutohedron given in [GG], we
see that P,]y has an edge connecting a vertex p, to any vertex of the form p;q1)s
(unless o(i),0(i + 1) > n, in which case the edge is degenerate).

More generally, let p, be any vertex of PY. The facets of PY containing p,
are determined as follows:

Let ]P):<1,2, 7€1 ‘él—Fl, ,EQ ‘ ‘gifl—f—l,... 7€i ‘ ‘Erfl—i—l,... ,N>
be a partition of 1,..., N into r consecutive blocs, subject to the condition that for
each 1 < j <r atleast one of o((;), o(l;41) is <n. Denote by n; the number of
7’s in the i-th bloc (i.e., {; 1 +1<j < /(;) such that o(j) <n. Then PY will have
a subpolyhedron Q(P) (containing p,) which is isomorphic to the product

0 la—1y bi—L;_q N—{, 1
P x P2 x . X P X e X P .

This follows from the description of the facets of the N-permutohedron in [Bl4, §4.3].
We denote by (PN)*) the union of all facets of PY of dimension < k. In

N Def (PN)(N=2) — gN-2

particular, for n > 1 we have OP , since the homeomorphism

q: PN — PY preserves 9PV,
7.3. factorizations. Given a cosimplicial simplicial object EJ as in §6.14, any com-
posite face-codegeneracy map 1 : Eﬁ:@ — E¥ may be factored uniquely 1 = ¢ o4,
where 6 : Elth — E® ., may be written 6 = s/ 082 0---sn for 0 < j; < jp <
. <jon<n+k and ¢: E: , — Ef may be written ¢ = d; od;, o---d;, for
0< << ...<l, <m++ VL.

Let D()) denote the set of all possible factorizations of ¢ as a composite of face
and codegeneracy maps: ¥ = M1, 0...0 A, We define recursively a bijective
correspondence between D(v)) and the vertices of an (n+ m)-permutohedron P"*™,
as follows (compare [Bl4, Lemma 4.7]):

The canonical factorization 9 = d;, od;,0---d;, 05" 0s720--- s/ corresponds to the
vertex p;q. Next, assume that the factorization ¢ = A\,,,, 0...0)\; corresponds to
po. Then the factorization corresponding to p,r, for o = (i,i+1)0’, is obtained from
Y =MAo...0\ym byswitching )\, and A, i, using the identity s’ os’' = s""tos’
for 7> j if A\; and A4y are both codegeneracies, and the identity d;od; = d;_;od,
for 7 < j if they are both face maps.

Passing to the quotient face-codegeneracy polyhedron, we see that the vertices of
PI*™™ are now identified with factorizations of ¢ of the form

(7.4)

n+k S]‘it n+k—1 ng+1 Sji n 0y n n Sjgl n+1 Sjgo n bo n
— t t t 1

gtk S griket  prett Sopee 0 poe g S0 gl S0 g G0, o

where 6; is a composite of face maps (i.e., we do not distinguish the different ways
of decomposing 6; as dy, o...dg, ). The collection of such factorizations of ¢ will be
denoted by D(%)/~, where ~ is the obvious equivalence relation on D(7)). We
shall denote the face-codegeneracy polyhedron PI*™ with its vertices so labelled by
Pt (¢)). An example for 1 = dod;s°s' appears in Figure 1.

7.5. notation. For 1+ : E!tN — EJ as above, we denote by C(3) the collection
of all composite face-codegeneracy maps p : E:l((?)i’;((i; — Ef(%) such that p is of the

form p=¢&o...0& (1 <s<t<v) for some decomposition ) =¢,0...0§ =
fposimoo.. . o5 ofjo...0f0slo.. . osm of (7.4). That is, we allow only those
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d03081d1 d03030d1

s9dps0dy
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dosOdy sY
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sododl st

s9dgdgst
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e dosodoso

/

L
dys%s0%dy

FIGURE 1. The face-codegeneracy polyhedron P3(dyd;s’s?)

subsequences A, ..., A\, of a factorization ¢ = A,y 0---0X; in D(¢) which are
compatible with the equivalence relation ~ in the sense that A,y; and ), are not
both face maps, and similarly for A\,_; and A,. Such a p will be called allowable.

7.6. higher homotopy operations. Given a cosimplicial simplicial space up-to-
homotopy "W? as in §6.7, we now define a certain sequence of higher homotopy

operations. First recall that the half-smash of two spaces X, Y € 7, is X xY el
(X xY)/(X x{x}); if Xisa suspension, there is a (non- canomcal) homotopy equiv-
alence X xY ~XAYVX.

Definition 7.7. Given a composite face-codegeneracy map ¢ : With — W§  as
above, a compatible collection for C(¢)) and "W7 is a set {¢”},ec(y) of maps

q° an((pp);rm(p)(p) X Wzl((pg)i';((’g — WZ(;)) for each p € C(¢), satisfying the following
condition:

Assume that for such a p € C(¢)) we have some decomposition
jO jO it it
p=¢&o...0& =fyos’oo...0o8mofio...0f,0s510.. . 08m

in D(p)/~, asin (7.4), andlet P=(1,... . 0; | ... |Gy + 1,000 | oo | oy +
1,...,v ) be a partition of (1,...,v) asin §7.2, yielding a sequence of composite
face-codegeneracy maps p; € C(p) C C(¢) for i=1,...,r.

Let Q(P) = Pl (p1) x -+« x Piti-1(p;) x -« x PYt=1(p,) be the corresponding
sub-polyhedron of Pfrffgﬁm(p)(p). Then we require that g”|Q(P)Kwn(p)+k(ﬂ) be the

m(p)+£(p)
composite of the corresponding maps ¢”* in the sense that

(7.8) g (x1, ... e, w) = g7 (21, g7 (29, ..., 7" (2, W) .. )

for x; € P4 t-1(p;) and wGWm((p)) ((>)

We further require that if p = Ay 1is of length 1, then ¢” must be in the prescribed
homotopy class of the face or codegeneracy map A;. Thus in particular, for each
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vertex p, of PI™™(¢y), indexed by a factorization ¢ =¢,0...0& in D)/ ~,
the map gﬂ\{ﬁ Jxwrtt  Tepresents the class [§, 0...0&].
o m+ o

Fact 7.9. Any Compatible collection of maps {¢”},cc(yy for C(7)) induces a map
f=fY:oPr™ x With — WFE  (since all the facets of 9P7+™ are products of

face-codegeneracy polyhedra of the form Pzgngrm(p)(p) for p € C(¢), and condition
(7.8) guarantees that the maps ¢ agree on intersections).

Definition 7.10. Given "W? asin §6.14, for each k > 2 and each composite face-
codegeneracy map v : anﬂ} — W¥  the k-th order homotopy operation associated
to "WJ and 1 is a subset ((¢)) of the track group [S"Tm2WIER W] defined as
follows:

Let S C [6P"+m anﬂ%, W] be the set of homotopy classes of maps f = f¥:

OPIH™ X Wntk m— W#  which are induced as above by some compatible collection

{9} pec) for C().
Now choose a splitting

(7.11) OPI™ () x Witk o2 §ntm=2 Witk ~ (§74m=2 A W) v WY

and let () C [S"=2WItE WE] be the image of the subset S under the resulting
projection.

It is clearly a necessary condition in order for the subset {((¢)) to be non-empty
that all the lower order operations ((p)) wanish (i.e., contain the null class) for all

p € C(¢¥)\{v} — because otherwise the various maps gp P (( )> mie >( )xWZl((”g;j:}((’g —

WZ(;)) cannot even extend over the interior of P (( >) ™) (p). A sufficent condition is
that the operations ((p)) vanish coherently, in the sense that the choices of compatible
collections for the various p be consistent on common subpolyhedra (see [Bl4, §5.7] for
the precise definition, and [Bl4, §5.9] for the obstructions to coherence).

On the other hand, if "W? is the cosimplicial simplicial space up-to-homotopy of
§6.9 (corresponding to the cosimplicial simplicial IT-algebra (E,)% with the CTV-basis
{E!},_o), then the vanishing of the homotopy operation (¥|eq)) — with @/J restricted
to the (n,r)-cross-term — implies the vanishing of (¥), for any ¢ : Witk — W
(assuming lower order vanishing). This is because outside of the Wedge summand
C", the map 1 is determined by the maps p € C(¢)) and the coface and degeneracy
maps of "W, which we may assume to oc-homotopy commute by induction and 6.13
respectively.

We may thus sum up the results of this section, combined with Proposition 6.15, in:

Theorem 7.12. Let 7, X be an abelian 11-algebra (for some space X € T,). Then X
18 homotopy equivalent to a loop space if and only if all the higher homotopy operations
(Vlen)) defined above vanish coherently.

Remark 7.13. As observed in §6.7, for any X € 7, the space JX is the colimit of the
A-cosimplicial space U(X)%, and in fact the n-th stage of the James construction,
J,X, is the (homotopy) colimit of the (n—1)-coskeleton of U%. Thus if we think of the
sequence of higher homotopy operations “in the simplicial direction” as obstructions to
the validity of 5.6(x) (up to oo-homotopy commutativity), then the n-th cosimplicial
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dimension corresponds to verifying the identity 5.6(x) for foi,s: A — FB of James
filtration n+1 (cf. [J3, §2]).

In particular, if we fix k=¢ =0, n =1 and proceed by induction on m, we are
computing the obstructions for the existence of an H-multiplication on X, as in [BI5].
(Thus if X is endowed with an H-space structure to begin with, they must all vanish.)
Observe that the face-codegeneracy polyhedron P? is an (n — 1)-cube, as in Figure
2, rather than the (n — 1)-simplex we had in [BI5, §4] — so the homotopy operations
we obtain here are more complicated. This is because they take value in the homotopy
groups of spheres, rather than those of the space X.

0dyd: 0
dgs%dido .:.dos dods .diod()s d2

8 dod150ds

30d0d1d0. . s0dododa

dos0dyd:
s9dgdodo® = ®s9dgdyda 05 41 2.7
SOdOdOdl. .Sododldl dosodldlo
dody s0do dododzs% edodidas”
B P d0d1d080' — 'd0d1d1so
- 0,
edodgs®dy dododos @ dgdgd, s°
O'.dlosododg dOdlsodlo
d030d0d1 |7 .7d0d050d1

FIGURE 2. The face-codegeneracy polyhedron P}(dyd;d,s°)

As a corollary to Theorem 7.12 we may deduce the following result of Hilton (cf. [H,
Theorem C]):

Corollary 7.14. If (X,m) is a (p—1)-connected H-space with mX =0 for i > 3p,
then X s a loop space, up to homotopy

Proof. Choose a C'W-resolution of m,X which is (p — 1)-connected in each simplicial
dimension, and let E] be asin §6.9. By definition of the cross-term Il-algebras C7'
in §6.9, they must involve Whitehead products of elements from all lower order cross-
terms; but since X is an H-space by assumption, all obstructions of the form ((¢'|c1))
vanish (see §7.13). Thus, the lowest dimensional obstruction possible is a third-order
operation ((¢|c2)) (r > 2), which involves a triple Whitehead product and thus takes
value in ;W4 for i > 3p. If we apply the (3p— 1)-Postnikov approximation functor
to "W? in each dimension, to obtain "Z¢, all obstructions to rectification vanish,
and from the spectral sequence of (4.4) we see that obvious map X = |[W]| — ||Z!||
induces an isomorphism in m; for 7 < 3p. Since ||Zl]| is a loop space by Theorem
7.12, so is its (3p — 1)-Postnikov approximation, namely X. O

Example 7.15. The 7-sphere is an H-space (under the Cayley multiplication, for
example), but none of the 120 possible H-multiplications on S” are homotopy-
associative; the first obstruction to homotopy-associativity is a certain “separation
element” in 75 S” (cf. [J2, Theorem 1.4 and Corollary 2.5]).
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Since 7.S7 is a free II-algebra, it has ‘a very simple C'W-resolution A, — 757,
with Ay = 7,S” (generated by ("), and A, =0 for 7 > 1. A cross-term basis (§6.9)
for the cosimplicial simplicial II-algebra E? of §6.14 is then given in dimensions < 24
by:

o Clxn,SB with dy'® = [d%7,d"];
o C227,SY with do!® = [d%"2, sod?d ) — [dN'3, sod?d® ] + [d*113, sodtd®.T];
e (" is at least 24-connected for all other n, 7.

We set si|@p = 0 for all n < 2; this determines FE; in degrees < 21 and
cosimplicial dimensions < 2.

By Remark 7.13, the two secondary operations ((dos’|¢1)) and {(d15%|¢1)) must
vanish; on the other hand, by Corollary 7.14 all obstructions to S being a loop
space are in degrees > 21, so the only relevant cross-term is C7, with three possible
third-order operations ((¢|ez)), for ¢ = dodis®s', dodyss', or didys’s'.  The
corresponding face-codegeneracy polyhedra Py(1)) is as in Figure 1.

It is straightforward to verify that the operations ((¢|gs)) are trivial for ¢ =
dodss®s' or dydys’s' (in fact, many of the maps ¢”, for p € C(¢)), may be chosen
to be null). On may also show that there is a compatible collection {g”},cc(,) for
¢ = dody5°s', in the sense of §7.7, so that the corresponding subset ((¢[cz)) C 721S’
is non-empty; in fact, it contains the only possible obstruction to the 21-Postnikov
approximation for S” to be a loop space.

The existence of the tertiary operation ((¢|gz)) corresponds to the fact that the
element [[¢7,¢7], 0] — [[t7,¢7], 0] + [[¢7,07],0"] € 791 S” s trivial “for three different
reasons”’: because of the Jacobi identity, because all Whitehead products vanish in
7,57, and because of the linearity of the Whitehead product — i.e., [0,a] = 0.

On the other hand, we know that there 7s a 3-primary obstruction to the homotopy-
associativity of any H-multiplication on S7, namely the element o7 € 75187 (see
[J2, Theorem 2.6]). We deduce that 0 ¢ ((¢|¢z)), and in fact (modulo 3) this tertiary

operation consists exactly of the elements iaﬁﬁ.
For a detailed calculation of such higher order operations using simplicial resolutions
of TI-algebras, see [B15, §4.13].

Remark 7.16. Our approach to the question of whether X is a loop space is clearly
based on, and closely related to, the classical approaches of Sugawara and Stasheff (cf.
[St1, St2, Su]. One might wonder why Stasheff’s associahedra K; (cf. [St1, §2.,6]) do
not show up among the face-codegeneracy polyhedra we describe above. Apparently
this is because we do not work directly with the space X, but rather with its simplicial
resolution, which may be thought of as a “decomposition” of X into wedges of spheres.

8. APPENDIX: CONSTRUCTING SIMPLICIAL RESOLUTIONS

The obstruction theory of section 4 required a Il-algebra resolution A, of Q~!'7,X
as the initial algebraic ingredient. There are of course many possible constructions of
such resolutions; for practical purposes a minimal C'W-resolution (as in §6.1) is the
most convenient. We here describe an approach specifically geared towards Q 'z, X,
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in line with section 3, because it may help to explain the simplicial group analogue
used in the proof of Proposition 5.6.

Given an H-group X, we may proceed as follows to construct a free simplicial II-
algebra resolving G, = Q 'r.X:

(1) Choose a space W which is homotopy equivalent to a wedge of spheres, and a
map z: W — X which induces a surjection zy4 : 7, W — 7, X, We may assume
that z#(Lé“a)) = a € m; X, where L( o) € 7rkS( is the canonical generator of the free
[I-algebra W*Sé“a), and mW Z [ , TS (a) is a coproduct in II-Alg of such free
[I-algebras for various £ and a.

For example, we could let W = V3%, Voerx\(o} T+S(a); S0 that mW = T(1.X);
then by Fact 2.4 there is a map z: W — X, unique up to homotopy, which realizes
the counit e, x : T(m.X)—>m.X.

(2) Since X is an H-group, we may let G, = Q7 'r,X denote the delooping provided
by Corollary 3.9, and define a morphism of IT-algebras ¢ : 7,.XW — G, by setting
C(ﬂ(“;“;) = a € Gy41, where Zf:r)l generates the summand ﬂ*ESé“a) in 7,YW.

More explicitly, any f € mEW is given as 8 = % ({(ay),--- , l(an)) Where ¢ is

some n-ary homotopy operation and 7, = Z?;jj;rl is as above; then

(8:1)  C(B) =v*({(tan):- -+ LIan)) = V#(0n, .. o) = U x (o1, .-, ).

In fact, ¢ may be identified with Z, : 72/ (JW) — 78X = G, (using §3.7), where
2: JW — X is the H-map moJ(z) of §3.1. Thus ((3)= G+, where { denotes
the homotopy class of z: W — X.

Note that 5 X W =G, is also surjective, since for every v € m,X there is an
w € m,S* such that v = w#(z*afa)) for some Sé“a) — W (w is unary since X is an
H-space), and then

Y = wh(epify) = (Sw) * (2pf,)) = (Sw)zgf,) = (Sw)*a = C(Sw)*i))
by Fact 3.4 and Corollary 3.9.

(3) Set Ay = 1. EW € II-Alg, and foreach n>1 let A, =T"A,. Define face maps
di =d} : Ay — A,y by d =T'(ern-i), and degeneracies s; =57 : A, — A,y by
sl = T/ (Ypn1-5) for 0<i,5<n—1 (compare [Go, App., §3]), with s* =T"9 for
¥ : Ay — T Ag as in Definition 2.5.

(4) We define a morphism of Tl-algebras d : A, — Ay by letting J(Lfﬂ)) = Z?ﬁ*() for
each 3 € DAy —thatis, if 8 =U%({ay),--- +l(an)) as above, then by (8.1) we have

Tk oy k&
(8:2) (1)) = Uaae) = Lgw(ar,san))’
We then set d": A, — A, | tobe T"7'd forall n>1.

Lemma 8.3. A, = ((A4,)5Z, (d}), (7)) 5 G, is an augmented simplicial II-algebra.
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Proof. All the simplicial identities, except for those involving d7!, follow as usual from
the identities for the comonad (7T, z,9) (cf. [Go, App., §3] or [BoK, I, §4.1]).
Now let La) be a generator for a coproduct summand W*Sa) in Ay =TA;, where

v € DyA;. Then (TSAO)L%) = LéCEAOOV)’ and thus (do T€A0>L€7) = L?(EAOOV)*C) € DAy,
where (g4, 07)*x( isin DiG,.

Write v = w#(14,,... ,15,) for some m-ary homotopy operation w# and 5 = Lé
a generator of a summand ﬂ*Sf;i in Ay =TAy, where ;€ DAy (i=1,...,m).
Then 4,07 =W (B1,..., )

Therefore, if we write each 3 (i = 1,...,m) as ﬂ, = w ((a ) -y lay)) (for
I(a;) asin (2)), then eq, 0y = (W# (i, ... ,w N (Tar)s - -+ Tan)):

(SAO o ’y) *C = ((w#(z/)l, .. ,wn))#(Z(al) V...V _(an))) *C
= (WH(1, o)) * (s ey a) =Wk (U1, 00)) % (ag, )

by (8.2), and thus

7 k k
(8.4) (d 0 Teao)t(y) = U1, abn)x(ar, o)) € DiAo
On the other hand (TJ)LE“V) = Lfcm by definition of T', and
dy = d(w# (15, 1 5,,) = W (diisyys - 2 dip))) = OF (Lgracys - -+ s LBmre))
since d is a morphism of II-algebras.
T Tk — _k -
Thus (doTd)if,) = d(L(w#(L(ﬁl*C)""’L(ﬁm*c)))> = (w15, ity acy))C) DRI by (8.2).

Since ﬁi:wl#(z(al),... Uany) for i=1,... m, wehave [ix(=1v;i*(ay, ..., o),
SO

(w#(L(ﬁl*C),... Bax)) * (= Wy (g, an), e U x (g, )
= w*((¢1v---vwm>*(@la--- 70471))

by Proposition 3.8, so by (8.4) we see that doTd =doTe: Ay — Ay.

Since (oey, =Cod and dod = ids, (by Fact 3.4), the remaining simplicial
identities follow from the fact that € and ¢ are natural transformations. [

Lemma 8.5. The augmented simplicial 11-algebra A, N G, 18 acyclic.

Proof. For any n > 0 we may represent any x € m,D;A, by a normalized cycle
f € DyA, with &;f =0 for 0 <i <n (cf. [Mal, §17]), and consider Lfﬁ) €
DkAn+1 D, TA,:

dot(gy = B, while ditfy) = T'za, 1) = T(T"'en, )i(s) = Urivic,_p) = Ui 10) =
w = 0 (see Definition 2.5) for 1 < ¢ < n. If n > 1 then also d"“L?ﬂ) -
T(T"‘l)deﬁ) — L?Tn—lgg) = Lécdnﬂ) =1 =0, so 3 is a normalized boundary and thus

r =0 in WnDkA.. N N
For n =0 by (2) we know (: Ay — G, is surjective. Given [ € DyKer(() C
Dy Ay, we may assume 3 = w¥(la,, ... ,la,), and thus

0= f(ﬁ) = (~(w#(la1, ceinlay)) = w#(é(lal), o C(tey) =W (ag, ) = BxC
by (8.2).
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Thus again doLfﬁ) = f, vifhile dlLfﬁ) = Jaé“ﬂ) = Lé“ﬁ*o =% =0 so [f]=0 in

moDrA., which shows that (¢ indeed induces an isomorphism 7wgA, = G,. O
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