
HOMOTOPY OPERATIONS AND THE OBSTRUCTIONS TOBEING AN H-SPACEDAVID BLANCAbstract. We describe an obstruction theory for a given topological space X tobe an H-space, in terms of higher homotopy operations, and show how this theorycan be used to calculate such operations in certain cases.1. introductionAn H-space is a topological space X equipped with a multiplication map m :X �X ! X and an identity element � 2 X. The question of whether a givenspace X possesses such an H-space structure has been studied from a variety ofviewpoints { cf. [C, SW, St1, Su1, Su2, W1]. Here we address this question fromthe aspect of homotopy operations.As is well known, the homotopy groups ��X of any space X have Whiteheadproducts and composition operations de�ned on them, satisfying certain identities;we summarize this by saying they constitute a �-algebra { see x2.1 below. Inaddition, there are various higher order operations on ��X, such as Toda brackets;and the totality of these actually determine the (weak) homotopy type ofX (cf. [Bl5,x7.17]): therefore, they should enable us { in theory { to answer any homotopy-theoretic question about X, including that of possessing an H-space structure. Itis the purpose of this note to explain in what sense this can actually be done, usingthe obstruction theory for realizing �-algebra morphisms described in [Bl5, x7]. Theapproach presented here generalizes a result of Andrews and Arkowitz in rationalhomotopy theory (see [AA, Prop. 6.9]).1.1. notation and conventions. T� will denote the category of pointed connectedCW complexes with base-point preserving maps, and by a space we shall always meanan object in T�, which will be denoted by a boldface letter: X, Sn, and so on.The basepoint will be written � 2 X. �[n] is the standard topological n-simplexin Rn+1. The homotopy category of T� is denoted by hoT�, and [X;Y ] meansthe set of pointed homotopy classes of maps X ! Y . The constant pointed mapwill be written c�, or simply �.Ab denotes the category of abelian groups, and grAb the category of gradedabelian groups.De�nition 1.2. A strict H-space structure for a space X 2 T� is a choice of amultiplication map m :X �X !X, making the following diagram commute:Date: September 13, 1995.1991 Mathematics Subject Classi�cation. Primary 55P45; Secondary 55Q35.Key words and phrases. H-space, �-algebra, higher homotopy operations, Toda bracket.1



2 DAVID BLANCX _X H H H H H H Hjr?iX �X p p p p p p p p p p p p p p p-m Xwhere i = hi1; i2i :X_X !X�X is the inclusion of the wedge in the product andr :X _X !X is the fold map (induced by the identity on each wedge summand).If X may be equipped with such an m, we say that it is a strict H-space.We say X is an H-space if there is a map m : X �X ! X making the abovediagram commute up to homotopy. SinceX is assumed to be well-pointed, it is thenhomotopy equivalent to a strict H-space (cf. [St2, x1]), so the two de�nitions coincidein the homotopy category.1.3. organization: In section 2 we review some background on �-algebras, and re-formulate the question of the existence of an H-space structure on X in terms of�-algebras (Proposition 2.7). In section 3 we give some more background on sim-plicial �-algebras and spaces, together with a computational example. In section4 we describe the higher order homotopy operations which serve as obstructions torealizing �-algebra morphisms, and thus to obtaining an H-space structure on X,and formulate our main result, namely:Theorem 4.18: A space X has an H-space structure if and only if(a) ��X is an abelian �-algebra (Def. 2.4); and(b) The sequence of higher homotopy operations fhhniig1n=2 � f�jXg1j=n associ-ated to the �-algebra morphism � : ��X ���X ! ��X (de�ned in x4.11 and 4.16)vanishes coherently.We then use this theorem to make a sample calculation for CP2 (x4.19). In section5 we describe the torsion Whitehead product , which may be thought of as \the �rsthigher order obstruction" to being an H-space, and give another example (x5.10).2. �-algebrasIn this section we recall some known facts on the primary homotopy operationsand their relation to the H-space question. First, some de�nitions and notation:De�nition 2.1. A �-algebra is a graded group G� = fGkg1k=1 (abelian in degrees> 1), together with an action on G� of the primary homotopy operations (i.e.,compositions and Whitehead products, including the \�1-action" of G1 on the higherGn's, as in [W, X, x7]), satisfying the usual universal identities. See [Bl3, x3] or [Bl1,x2.1] for a more explicit description. A morphism of �-algebras is a homomorphismof graded groups � : G� ! G0� which commutes with all the operations. �-algebrasform a category, which will be denoted �-Alg.De�nition 2.2. We say that a spaceX realizes an (abstract) �-algebra G� if thereis an isomorphism of �-algebras G� �= ��X. (There may be non-homotopy equiv-alent spaces realizing the same �-algebra { cf. [Bl5, x7.18]). Similarly, an abstractmorphism of �-algebras � : ��X ! ��Y (between realizable �-algebras) is realizableif there is a map f :X ! Y such that ��f = �.



OBSTRUCTIONS TO BEING AN H-SPACE 3De�nition 2.3. The free �-algebras are those isomorphic to ��W , for some (pos-sibly in�nite) wedge of spheres W : More precisely, let T be a graded set fTkg1k=1,and let W = W1k=1 Wx2Tk Skx, where each Skx is a k-sphere. Then we say that ��Wis the free �-algebra generated by T . We shall consider each element x 2 Tk to bean element of ��W , by identifying it with that generator of �kW which representsthe inclusion Skx ,!W .De�nition 2.4. An abelian �-algebra is one for which all Whitehead products van-ish; these are indeed the abelian objects of �-Alg { see [Bl1, x2].Remark 2.5. If we let � denote the homotopy category of wedges of spheres, andF � �-Alg the full subcategory of free �-algebras, then the functor �� : �! F isan equivalence of categories. Thus any �-algebra morphism � : G� ! G0� is uniquelyrealizable, if G� and G0� are free �-algebras { and in fact only G� need be free.2.6. the primary obstruction. The primary condition for X to be an H-space {that is, the condition in terms of the �-algebra ��X { is simply that this �-algebrabe abelian:Indeed, if X is an H-space, then all Whitehead products vanish in ��X, by [W,X, (7.8)]. On the other hand, any product map m :X �X !X induces the groupoperation �k(m) : �k(X �X) = �kX � �kX ! �kXfor each k � 1 (cf. [G, Prop 9.9]). Thus if the map of spaces m exists, the morphismof graded groups � : ��X � ��X ! ��X (which is de�ned levelwise by the groupoperation) must be a morphism of �-algebras; but then for any � 2 �pX and� 2 �qX we have0 = �([(�; 0); (0; �)]) = [�(�; 0); �(0; �)] = [�; �] 2 �p+q�1Xby [W, X, (7.7)], so ��X is abelian. Thus we may summarize the \primary" answerto our question inProposition 2.7. A space X has an H-space structure if and only if(a) ��X is an abelian �-algebra; and(b) The �-algebra morphism � : ��X � ��X ! ��X, de�ned by the groupoperation, is realizable (Def. 2.2).Proof. If � is realizable by m :X�X !X, then in particular the maps f1 = m�i1 :X !X and f2 = m�i2 :X !X realize ��(ij)# = id : ��X ! ��X (j = 1; 2), sof1, f2, are self-homotopy equivalences ofX, and �m = m�(f�11 �f�12 ) :X�X !Xsatis�es �m � i ' r and thus X is an H-space by de�nition 1.2.It should be pointed out that ��X being abelian is a necessary condition forX to be an H-space, but it is certainly not su�cient, as there are examples ofspaces whose Whitehead products all vanish, but which can be shown (usually bymeans of their homology) to support no H-space structure { see, for example,[Ag, BJS, BG, C, IKM, P2].3. Simplicial �-algebras and spacesWe now recall the background on simplicial �-algebras and spaces needed to descibeour obstruction theory for the realization of �-algebra morphism in the next section:



4 DAVID BLANCDe�nition 3.1. We let� denote the category of ordered sequences n = h0; 1; : : : ; ni(n 2 N), with order-preserving maps, and �op is the opposite category.A simplicial object over any category C is a functor X : �op ! C { i.e., asequence of objects fXng1n=0 in C, equipped with face maps di : Xn ! Xn�1 anddegeneracies sj : Xn ! Xn+1, satisfying the simplicial identities ([M, x1.1]):(i) di � dj = dj�1 � di for i < j(ii) di � sj = 8><>: sj�1 � di if i < jid if i = j; j + 1sj � di�1 if i > j + 1(3.2) (iii) sj � si = si � sj�1 for j > iWe let sC denote the category of simplicial objects over C.An augmented simplical object X� ! A over C is a simplicial object X� 2 sC,together with an augmentation " : X0 ! A in C such that(iv) " � d0 = " � d1Next, we must consider resolutions of a given �-algebra; for more details, see [Q1,II, x4] or [BS, x2]:De�nition 3.3. A simplicial �-algebra A� is called free if for each n � 0 there isa graded set T n � An such that An is the free �-algebra generated by T n, andeach degeneracy map sj : An ! An+1 takes T n to T n+1.De�nition 3.4. A free simplicial resolution of a �-algebra G� is de�ned to be anaugmented simplicial �-algebra A�! G�, such that:(a) A� is a free simplicial �-algebra;(b) the homotopy groups of the simplicial group (A�)k vanish in dimensions n � 1;(c) the augmentation induces an isomorphism �0((A�)k) �= Gk.Here f(An)kg1k=1 denotes the underlying graded group of An.Such resolutions always exist, for any �-algebra G� { see [Q1, II, x4], or theexplicit construction in [Bl3, x4.3].Example 3.5. Write Skx �= ��Sk for the free �-algebra generated by a graded sethaving a single element x in degree k (x2.3), and let �#r denote the compositionwith the suspended Hopf map �r 2 �r+1Sr. We may then describe certain freesimplicial �-algebras { namely, those with a CW basis, in the sense of [Bl3, x4.1]{ by specifying �An � An, which consists of the non-degenerate Sk's in simplicialdimension n, and the face map d0j �An setting dij �An = 0 for i > 0. An is thenobtained from �An by adding degeneracies of the free �-algebras �Ak (k < n), asexplained in [Bl3, x4.5.1].For example, let G� be a �-algebra with G2 �= Z and Gi = 0 otherwise. Inthis setup a free simplicial resolution A� ! G� �G� is given in degrees � 5 by:� �A0 = S2�1 q S2�2, with " : ( �A0)2 �= G2 �G2 = Z � Z.� �A1 = S3�1 q S3�2 q S3� , with d0jS3�i = �#2 �i for i = 1; 2 and d0jS3� = [�1; �2].



OBSTRUCTIONS TO BEING AN H-SPACE 5� �A2 = S3
1 q S3
2 q S4� q S4�, with d0jS3
i = [�i; s0�i] (i = 1; 2),d0jS4� = [�; s0�1] + [�1; s0�2] + �#3 �;d0jS4� = [�; s0�2] + [�2; s0�1] + �#3 �:� �A3 = S5�1 q S5�2 q S5� q S5� q S5� , withd0jS5�i = [
i; s1s0�1] + [s0�i; s1�i] + �#4 
i (i = 1; 2),d0jS5� = [�; s1s0�1] + [
1; s1s0�2] + [s1�; s0�1]� [s0�; s1�1];d0jS5� = [�; s1s0�2] + [
2; s1s0�1] + [s1�; s0�2]� [s0�; s1�2] andd0jS5� = [�; s1s0�1] + [�; s1s0�2] + [s1�; s0�] + �#4 � + �#4 �+ [s0�2; s1�1]� [s1�2; s0�1]:� �An = 0 for n � 4 (in degrees � 3).The only non-trivial �-algebra identity needed to check this is:[�#2 �; �] = �#q+1[�; �] � [[�; �]; �](3.6)for � 2 �2X, � 2 �qX { which follows from [Ba3, II, (2.4) & (3.4)] and [W, X,(7.14) & (8.1)].Remark 3.7. Note that if we rationalize the category of simply-connected �-algebrasto obtain the category of graded Lie algebras over Q (cf. [Q3]), we have a similardescription for the resolution of the abelian Lie algebra K(Q; 2) in degrees � 5 {all we have to do is replace �#2 x by 1=2[x; x], and omit the torsion terms �#r x forr � 3.De�nition 3.8. For any �-algebra G�, let I(G�) � G� denote the sub-�-algebragenerated by all non-trivial primary homotopy operation (i.e., compositions andWhitehead products). The graded abelian group Q(G�) = G�=I(G�) is calledthe module of indecomposables of G� (cf. [Bl3, x2]).If A� ! G� is any free simplicial resolution of �-algebras, and T : �-Alg ! Abis any functor into the category of abelian groups, then the n-th left derived functorof T applied to G�, written (LnT )G�, is de�ned to be the n-th homotopy groupof the simplicial abelian group TA� (see [Q1, I,x4] or [BS, x2.2.4] for more details).If � : G� ! G0� is any morphism of �-algebras, one has an induced morphism(�)� : A� ! B� between their respective resolutions, which allows one to de�ne therelative n-th derived functor of T applied to � : G� ! G0�, written (LnT )� (cf.[Bl2, x4.1]).De�nition 3.9. In particular, the n-th derived functor of the indecomposables func-tor Q : �-Alg ! grAb of G� is called the n-th (graded) homology module ofG�, written Hn(G�) (see [DK, x5.1] for a more general de�nition). Similarly, if� : G� � G0� is an morphism of �-algebras, we denote (LnQ)� by Hn(�) (orsimply Hn(G0�; G�) if � is evident from the context), and call it the n-th relativehomology module for � : G� ! G0�.3.10. simplicial spaces. Let W� 2 sT� be a simplicial space: its realization (orhomotopy colimit) is a space X = kW�k constructed by making identi�cations in`1n=0Wn ��[n] according to the face and degeneracy maps of W� (cf. [Se, x1]).



6 DAVID BLANCFor any simplicial space W�, there is a �rst quadrant spectral sequence withE2s;t = �s(�tW�)) �s+tkW�k(3.11)(see [BF, Thm B.5] or [Q2]).In particular, if W� !X is an augmented simplical space such that ��W� ! ��Xis a free simplicial resolution of �-algebras (Def. 3.4), we see that the natural mapW0 ! kW�k (cf. [BK, XII, 2.3]) induces an isomorphism ��X �= ��kW�k, sokW�k 'X.We shall assume all our simplicial spaces { i.e., objects in sT� { are proper , inthe sense that the degeneracy maps are inclusions of subcomplexes (so in particularco�brations).Example 3.12. Let X be any space with �2X �= Z and �1X = �3X = 0 (e.g.,X = K(Z; 2)).Let �X1; �X2 : X ! X �X denote the two inclusions, respectively, and assumethat we have chosen once and for all �xed representatives � : S2 ! X for agenerator of �2X (so that �i = �Xi � � (i = 1; 2) represent the two generatorsfor �2(X �X)); similarly, representatives �2 : S3 ! S2 for the Hopf map, (with�3 : S4 ! S3 its suspension), and w = [�1; �2] : S3 ! S2 _ S2 for the Whiteheadproduct map.In addition, choose nullhomotopies H : e3 !X of � � �2 and G : e4 !X �Xof [�1; �2] in X �X (see [W, X, (7.7)]). If �2a; �2b respectively denote the twoinclusions S2 ,! S2a _ S2b, we may de�ne a map k : S3 ! S2a _ S2b byk = [�2b; �2a] � �3 + [�2a � �2; �2b ] + [[�2b; �2a]; �2a];and let K : e4! S2a _ S2b be some nullhomotopy of k (which exists by (3.6)).Now set V = S2a _ S2b _ e4c _ e4d, and let �2a : S2b ,! V , �2b : S2b ,! V ,�3c : @e4c ,! V , and �3d : @e4d ,! V be the inclusions. Then we may de�ne` : S4 ! V by ` = �3c � �3 + [�3d; �2b ] + [�3c ; �2a], and let L : e5 ! V denote anullhomotopy of `, which exists by [W, X (7.2)].We now de�ne an augmented simplicial space W� ! X � X (see [Bl4, x4.2]for an explanation of the notation, and compare Example 3.5 above): we adopt theconvention that �f : Sr ! Srf ,!Wn denotes a homeomorphism of the r-sphere ontothe wedge summand Srf in Wn (n � 0), �F : er ,! erF ,!Wn a homeomorphismonto the (r + 1)-disc er+1F , and �F : Sr ,! er+1F ,!Wn a �xed embedding into the(r + 1)-disc er+1F . Then W� is de�ned by:� W0 = S2�1 _S2�2 _ e4H1 _ e4G _ e5K1 [S4' e5L1, where e5 [S4 e5 denotes the pushoutof e5 - S4 ,! e5 (homeomorphic to S5).The augmentation " :W0 !X�X is de�ned by "jS2�i = �i = �Xi�� for i = 1; 2;"je4H1 = �X1 �H, "je4G = G, "jS4' = ' = (�1 _ �2) � k, "je5K1 = K1 = (�1 _ �2) �K,and "je5L1 = L1 = (�1 _ �2 _H1 _ G) � L.Note that (�1 _�2 _H1 _G) � ` = (�1 _�2) � k, so " is well-de�ned on e5K1 [S4'1e5L1 �= S5 . Moreover, it is not hard to see (by considering each factor of X �X



OBSTRUCTIONS TO BEING AN H-SPACE 7separately) that  = "jS5 is nullhomotopic, so that in fact we could further embedS5 ,! e6	 ,!W0 and extend "jS5 to a nullhomotopy 	 : e6	 !X �X.� W1 = s0W0_S3�1 _S3� _e5K _e5L, where s0W0 is a copy of W0, and s0 :W0!W1is a homeomorphism onto this copy (so d0js0W0 = d1js0W0 are both equal to theinverse homeomorphism, by (3.2)(ii)). The face maps on the rest of W0 are givenby:� d0jS3�1 = ��1 � �2 and d1jS3�1 = �H1.� d0jS3� : S3� ! S2�1 _ S2�2 is [��2; ��1] and d1jS3� : S3� �= @e4G;� d0je5K is the nullhomotopy (��1 _ ��2) � K of [��2; ��1] � �3 + [��1 � �2; ��2] +[[��2; ��1]; ��1], and d1je5K = �K1 ;� d0je5L is the nullhomotopy (��1_��2_�H1_�G)�L of �G��3+[�H1; ��2]+[�G; ��1],and d1je5L = �L1 .� W2 = S4� _ sW1, where sW1 = s0W1 [s1s0W0 s1W1 is the \degenerate part" ofW2, the union of the images of s0 : W1 ! W2 and s1 : W1 ! W2 (with theidenti�cations forced by the identity (3.2)(iii)), so that dijsW1 for i = 0; 1; 2 isdetermined by (3.2)(ii).d0jS4� = �� � �3 + [��1; �s0�2] + [��; �s0�1], d1jS4� = �K , and d2jS4� = �L.� For n � 3 Wn = sWn�1 is de�ned as above by (3.2)(iii), and the face maps onWn are thus determined by (3.2)(ii) { see [Bl3, x4.5.1] or [M, p. 95(i)].4. Obstructions to realizing �-algebra morphismsWe now recall the obstruction theory for the realization of �-algebra morphismsde�ned in [Bl5, x7].4.1. realizing �-algebra morphisms. Given two spaces Y , X and a �-algebramorphism � : ��Y ! ��X which we wish to realize { in our case Y = X �Xand � = � { we proceed as follows:(a) Choose any augmented simplicial space V� ! Y such that ��V� ! ��Y is afree simplicial resolution of �-algebras. This may be called a simplicial resolu-tion of Y by wedges of spheres; in particular, each space Vn ' W1k=1Wx2Tn;k Skx(cf. x2.3).See [Stv1, x1] for a functorial construction of such resolutions. According to[Stv2], any free simplicial �-algebra resolution A� ! ��Y may be realizedtopologically by such a simplical space V�, in the sense that ��V� �= A�.(b) By 3.2(i)&(iv), all the compositions " � di1 � : : : din : n ! �1 (0 � ij � j,j = 1; : : : ; n) are equal in �op [ f�1g (i.e., for any augmented simplicialobject). Thus we get a unique �-algebra morphism n = � � ("#) � (di1)#) � : : : (din)# : ��Vn ! ��Xfor each n � 0 (where (dij )# : ��Vj ! Vj�1 is just the ij-th face map of thesimplicial �-algebra ��V�).



8 DAVID BLANC(c) Since by assumption ��Vn is a free �-algebra, each  n : ��Vn ! ��X isrealizable by a map gn : Vn ! X, unique up to homotopy (see Remark 2.5).Since  n�1 � (di)# =  n : ��Vn ! ��X, we havegn�1 � di � gn : Vn !X for all 0 � i � n:(4.1) and in fact we may set gn = gn�1 � d0 inductively for all n � 1, say.(d) If we had equality gn�1 � di = gn in (4.1) for all n; i, then fgng1n=0 wouldinduce a map of simplicial spaces ĝ� : V� ! c(X)� (where c(X)� is theconstant simplicial space which has X in each simplicial dimension, and all faceand degeneracy maps equal to the identity).But since by construction kV�k ' Y , from the spectral sequence of (3.11)we would see that kĝ�k : kV�k �! kc(X)�k �= Xrealizes � : ��Y ! ��X.Remark 4.2. We thus have a homotopy-commutative diagram consisting of the strictsimplicial space V� and the space X together with the maps gn : Vn ! X satis-fying (4.1) { in other words, an augmented simplicial object V� ! X in hoT�{ and we see that the question of realizing � is reduced to that of rectifying thishomotopy-commutative diagram: that is, replacing it by a strictly commutative one,or equivalently, by an1-homotopy commutative diagram (cf. [BV, Cor. 4.21 & Thm.4.49] and [DKS, x4]).As shown in [Bl5, x7], there is a sequence of higher homotopy operations whichserve as obstructions to such a recti�cation, which may be described in simplicialterms, as follows:De�nition 4.3. For each pair of integers k; n (0 < k � n), letD(k; n) Def= f0; 1; : : : ; kg � f0; 1; : : : ; k; k + 1g � : : :� f0; 1; : : : ; ngwhere we think of (ik; : : : ; in) as corresponding to the composition of face mapsdik � : : : � din : n! k�1 in �op:We set D(n+1; n) = f;g (where ;, the empty sequence, corresponds to id : n! n).There is an equivalence relation � on D(k; n), generated by(ik; : : : ; ij; ij+1; : : : ; in) � (ik; : : : ; ij+1 � 1; ij; : : : ; in) if ij < ij+1(4.4)(that is, (ik; : : : ; in) � (jk; : : : ; jn) if the corresponding morphisms in �op areequal: dikdik+1 : : : din = djkdjk+1 : : : djn { cf. (3.2).We call an equivalence class 
 2 D(j; n)=� a subclass of � 2 D(k; n)=�, written
 � �, if j � k � n and 
 has some representative (ij; : : : ; ik; : : : in) such that� = [(ik; : : : ; im)] (so in particular 
 � ; for every 
). This representative is notunique, but the identities (3.2) imply that the correspondence (ij; : : : ; ik; : : : in) 7!(ij; : : : ik�1) induces, for each � 2 D(k; n)=� and j � k a well-de�ned function��j : f
 2 D(j; n)=� j 
 � �g ! D(j; k � 1)=�(4.5)



OBSTRUCTIONS TO BEING AN H-SPACE 9which is readily seen to be a bijection.De�nition 4.6. Let us de�ne an abstract polyhedron D(n) having a k-dimensionalfacet D(k)
 for each equivalence class 
 2 D(k + 1; n)=� (0 � k � n), wherethe j-facet D(j)
 corresponding to 
 2 D(j; n)=� belongs to the k-facet D(k)�corresponding to � 2 D(k; n)=� if and only if 
 � �.The bijections ��j of (4.5) imply (by induction on n � 0) that D(n) is justan n-simplex, with a speci�ed labeling of its sub-simplices, and provide canonicalidenti�cations '� : D(k)� �=�! D(k)(4.7)(In particular, D(n) has n + 1 vertices, corresponding to the n + 1 possiblecomposite face maps di1 � : : : � din : n! 0 in �op.)We choose a geometric realization �= �[n] for each D(n), which by abuse ofnotation we also denote by D(n); its boundary @D(n) is homeomorphic to Sn�1.Example 4.8. If we represent each vertex of D(3) by a cluster of the six sequences oflength 3 representing its equivalence class in D(1; 3)=�, and each side in D(2; 3)=�by the pair of sequences representing it, we may depict D(3) as in Figure 1. (Fromthis depiction one sees that D(3) can be thought of as a collapsed 3-dimensionalpermutohedron { compare [Bl5, x4]. See Figure 2 below for a depiction of D(2)).right face 0 left face 1
back face 2 bottom face 3
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001=00 01r @ @ @ @ @ @R011 r012 @ @ @ @ @ @R= 1211r102 r 110r022 -r023 -=2223r103 r 120 r 112r111 r 122r 123r 113r121r@@@@@@I 003 =r@@@@@I 020=03 20 r100 r101 r � � � � ��021 r � � � � � ��013 = 1322Figure 1. Depiction of D(3)Remark 4.9. By comparing the descriptions of D(n) and the \face-map polyhedra"(or permutohedra) Pn(�) of [Bl5, x4.1-4.3], we see that the two constructions aredual to each other in an appropriate sense.Note also that the \n-lattice polyhedra" Ln(A;B) of [Bl5, x7.5], used to de�ne theobstructions to realizing a �-algebra morphism, are simply barycentric subdivisionsof our n-simplex D(n), and the comment in [Bl5, x4.10] applies here, too { so infact the description of [Bl5, x7] was needlessly complicated.



10 DAVID BLANCAs with other sequences of convex polyhedra (cf., e.g. [Bl5, xx4,7], [St2, x11]), wecan associate to fD(n)g1n=0 a sequence of higher homotopy operations:De�nition 4.10. First recall that the half-smash of two spaces X;Y isX n Y Def= (X � Y )=(X � f�g):If Y is a suspension, there is a homotopy equivalence X n Y 'X ^ Y _ Y .Now assume given a simplicial space V� which extends to an augmented simplicialobject [g] : V� ! X in hoT� (as in x4.2). For each n 2 N, we de�ne a @D(n)-compatible sequence (for V� ! X) to be a set of maps hk : D(k) n Vk ! X, onefor each 0 � k < n, subject to the following requirements:(a) h0 : D(0) n V0 ! X is in the prescribed homotopy class of the augmentation[g] 2 [V0;X] { and in fact we may assume without loss of generality that h0 = g,for any representative g : V0!X (cf. [Bl5, x5.8]).(b) Given 
 2 D(j; n)=� and � 2 D(k; n)=� such that 
 � �, let i
� : D(j)!D(k) denote the composite ofD(j) ('
)�1�! D(j)
 i�! D(k)� '��! D(k)(where '
 is the isomorphism of (4.7) and i is the inclusion).Then we require thathk � (i
� n idVn) = hj � (idD(j) n d�k
 ) : D(j) n Vk !X:Note that it su�ces that this hold for k = j+1 { that is, if 
 = [(ij; ij+1; : : : ; in)]and � = [(ij+1; : : : ; in)], then we require that the following diagram commute (inT�): D(j) n Vj+1 -i
� n id D(j + 1) n Vj+1? hj+1X?id n dij+1D(j) n Vj -hj+1A sequence of maps fhk : D(k) n Vk ! Xg1k=0 satisfying conditions (a) and (b)above for all k � 0 is called a @D(1)-compatible sequence for V� !X.Given such a @D(n)-compatible sequence hk : D(k) n Vk ! X for V� ! X,there is an induced map �h : @D(n)nVn !X de�ned on the \faces" D(n�1)� nVnof @D(n) n Vn ! X by: �hjD(n�1)� Vn = hn�1 � (id n di) (where � = (i) 2D(n � 1; n)=�= D(n; n � 1)).The compatibility condition (b) above guarantees that �h is well-de�ned.De�nition 4.11. Given a �-simplicial space V� augmented V� !X in hoT� asabove, the n-th order homotopy operation associated to V� ! X is a subset hhniiof the track group [�n�1Vn;X], de�ned (for n � 2) as follows:Let Tn � [@D(n) n Vn;X] be the set of homotopy classes of maps h = �h :@D(n) n Vn !X induced as above by some compatible collection fhkgn�1k=0.Since each Vn is a suspension (up to homotopy), we have a splitting@D(n) n Vn �= Sn�1 n Vn ' Sn�1 ^ Vn _ Vn;(4.12)



OBSTRUCTIONS TO BEING AN H-SPACE 11now let hhnii � [�n�1Vn;X] be the image under the resulting projection of the subsetTn � [@D(n) n Vn;X].Note that the projection of a class [�h] 2 Tn on the other summand [Vn;X]coming from the splitting (4.12) is of no interest, since it is just the homotopy classof the map gn of 4.1(c).On the other hand, since by assumption 4.1(a) each Vn ' W1k=1 Wx2Tn;k Skx ishomotopy equivalent to a wedge of spheres, so is �n�1Vn, so hhnii is in facta collection of subsets of L1j=n �jX, and as such deserves the name of a higherhomotopy operation.Example 4.13. Let W� ! X �X be the augmented simplicial space of Example3.12; then the part of the secondary operation hh2ii in �5X corresponding toS4� � V2 is obtained from maps �h : @D(2) n S4� !X, de�ned as follows:� De�ne g = g0 : W0 = S2�1 _ S2�2 _ e4H1 _ e4G _ e5K1 [S4' e5L1 ! X by lettinggjS2�i = � for i = 1; 2, and gje4H1_e4G_e5K1[S4'e5L1 = �.� We can thus set h1 : g � d0jW1 � g � d1jW1 (cf. x4.10) equal to� the constant homotopy on D(1) n s0W0 { since d0 = d1 on s0W0 �W1.� h1jD(1) S3�1 is the homotopy H between g�d0jS3�1 = ���2 and g�d1jS3�1 = �.� h1jD(1) S3� is a homotopy G0 between g � d0jS3� = [�;�] and g � d1jS3� = �(which exists because ��X is abelian).� h1jD(1) @e5K is just the homotopy K between g � d0j@e5K = [��2; ��1] � �3+ [��1 ��2; ��2] + [[��2; ��1]; ��1] and g � d1j@e5K = �� Similarly, h1jD(1) @e5L is the nullhomotopy L : g � d0j@e5L = �G � �3+ [�H1; ��2] +[�G; ��1] � �.� Now on S4� � V2 we have� g � d0 � d1 = g � d0 � d0 = [�;�] � �3 + [� � �2; �] + [[�;�]; �];� g � d0 � d2 = g � d1 � d0 = � � �3 + [�; �] + [�; �];� g � d1 � d1 = g � d1 � d2 = �,while from the description of h0 we see that on the three copies of D(1) n S4� in@D(2) n S4�:� h1 � d1 : g � d0 � d1 � g � d1 � d1 is K,� h1 � d2 : g � d0 � d2 � g � d1 � d2 is L, and� h1 � d0 : g � d0 � d0 � g � d1 � d0 is G0 � �3 + [H;�] + [G0; �].Thus we have obtained a map �h : @D(2) n S4� �= S5 !X , representing the partof hh2ii corresponding to S4�, depicted in Figure 2:(Other choices of H;G0;K;L may yield other classes [�h] 2 �5X; for a discussionof the indeterminacy see [Bl5, x5.10]).In more familiar terms, we can say that this \Toda bracket" exists because[�;�] � �3 + [� � �2; �] + [[�;�]; �]



12 DAVID BLANCg � d1 � d0 g � d0 � d2r� � �3 + [�; �] + [�; �] = �����	G0 � �3 + [H;�] + [G0; �] = h1 � d0g � d0 � d0 = g � d0 � d1r[�;�] � �3 + [� � �2; �] + [[�;�]; �]-h1 � d2=L g � d1 � d1g � d1 � d2= �r@ @ @ @ @Rh1 � d1 =KFigure 2. The operation hh2ii on S4�vanishes in �4X for two di�erent reasons: the vanishing of � � �2, as well asall Whitehead products, in ��X, combined with the bilinearity of the Whiteheadproduct; and the identity (3.6) (which we have specialized here to the case � = �only for simplicity of the presentation).In general, each secondary operation corresponds to one or more relations in thecategory �-Alg, with higher order operations corresponding to relations among therelations, etc. (see [Ha2] and [Bl4, x2]).Remark 4.14. It should be observed that E.C. Zeeman and K.A. Hardie have alsoconsidered a secondary homotopy operation associated to a triple Whitehead product,and Hardie has established various properties it has (including vanishing forH-spaces){ see [Ha1, x5]. In [P1], G.J. Porter de�ned higher Whitehead products of all orders(see also [Ba1, Ba2] for some properties and examples).As noted in x3.7, there is an analogous rational operation, corresponding to the case[[�;�]; �] = �2[[�; �]; �] of the Jacobi identity for � 2 �2mX
Q and � 2 �qX
Q.The rational higher Whitehead products have been studied by various authors (e.g.[Al1, Al2, AA]).De�nition 4.15. It is clearly a necessary and su�cient condition for the subset hhniito be non-empty that all the lower order operations hhkii (2 � k < n) vanish {i.e., contain the null class { because that means that some �h : @D(n) n Vn ! Xobtained from a @D(n)-compatible sequence fhkgn�1k=0 extends over all of D(n)nVn,yielding a @D(n + 1)-compatible sequence fhkgnk=0. We say that the higher orderoperations fhhniig1n=2 vanish coherently if there is a @D(1)-compatible sequence forV� !X.Remark 4.16. If we choose a functorial construction of the simplicial resolution bywedges of spheres V�! Y =X�X in x4.1(a) above (as in [Stv1]), and let W� !Xbe the corresponding resolution ofX, then by functorality m :X�X !X inducesa map of simplicial spaces m� : V� ! W�, which composes with the augmentationW0 ! X to yield a recti�cation of the homotopy-commutative diagram V� ! Xof x4.2.Thus the coherent vanishing of the operations fhhniig1n=2, which is equivalent tothe recti�ability of this diagram (cf. [DKS, Cor. 4.5]), is not only su�cient but alsonecessary in order for m :X �X !X to exist.



OBSTRUCTIONS TO BEING AN H-SPACE 13Note further that sinceX is a retract of X �X (in two di�erent ways), by func-toriality of the resolution there are two disjoint retracts W (1)�, W (2)� (isomorphic toW�) in V�. If we now restrict the map g : V0 !X to W (1)0_W (2)0 � V0, we geta strict augmentation to X (namely, two copies of the augmentation " :W ! X,followed by the fold map X(1)_X (2)!X) { so the corresponding higher homotopyoperations must vanish.Thus in calculating hhnii � [�n�1Vn;X] (which may clearly be done on eachsphere summand Skx in Vn ' W1k=1Wx2Tn;k Skx separately), it su�ces to considerthose spheres Skx which are in the cross-term Vn nW (1)n _W (2)n { in fact, onlythose which map non-trivially into both sub-simplicial spaces W (1)� and W (2)�.Moreover, we may disregard those sphere wedge summands Skx ,! Vn which are inthe image of some degeneracy map sj :Wn�1 !Wn (see Example 3.12), since theface maps on them, and thus all the homotopies between these, are determined bythose of W0; : : : ;Wn�1.Note however that it while the higher operations may be calculated separately oneach (nondegenerate cross-term) sphere Skx ,! Vn, and their non-vanishing on onesuch Skx is an obstruction to realizing �, their independent vanishing on the di�erentspheres does not su�ce for realizing �, since they must vanish coherently { that is,for a consistent choice of the maps hk on D(k)n (Wk)x, where (W�)x is that partof the simplicial space V� through which the face maps on Skx factor.One could in fact set up a further obstruction theory for such coherence, as in [Bl5,x5.9], but we shall not do so here.In fact, it seems reasonable to suppose that one can further restrict the set ofspheres Skx ,! Vn for which we must check the obstructions, as follows:Conjecture 4.17. The n-th order higher homotopy operations which must vanishcoherently in order for � : ��X � ��X ! ��X to be realizable are in one-to-one correspondence with the elements of the relative homology group Hn(��(X �X); ��X q ��X) (Def. 3.9).This conjecture would follow from Remark 4.16 above, combined with the realizabilityof arbitrary free simplicial �-algebra resolutions A� ! ��(X�X) (see x4.1(a) aboveand [Stv2]), since one could then choose V� ! X �X so as to realize a minimalresolution, in which the non-degenerate cross-term spheres Skx ,! Vn are (almost) ina bijective correspondence with the elements of Hn(��(X �X); ��X q ��X) (seealso Example 5.10 below).In light of Remark 4.2, we may summarize the results of this section in the followingTheorem 4.18. A space X has an H-space structure if and only if(a) ��X is an abelian �-algebra; and(b) The sequence of higher homotopy operations fhhnii � ��Xg1n=2 associated tothe �-algebra morphism � : ��X � ��X ! ��X (as de�ned in x4.11 and 4.16)vanish coherently.Example 4.19. Let X be the 5-th stage in a Postnikov tower for the 4-dimensionalcomplex projective space CP2, so �iX �= Z for i = 2; 5, and �iX = 0 otherwise.The �-algebra ��X is abelian (in fact, trivial { all compositions and Whitehead



14 DAVID BLANCproducts vanish), but of courseX can have no H-space structure since it is rationallyequivalent to CP2 (this is the example of [BG, x3.10]).Now we can use the simplicial space W� of Example 3.12 to de�ne a simplicialresolution by wedges of spheres V�!X �X as follows:� First, we must add two 5-spheres, say S5
i (i = 1; 2), to W0, with "jS5
irepresenting the respective generators of �5(X �X).� Next, we must \symmetrize" W� by adding spheres corresponding to S4� � �A2in x3.5, (and its \faces"), so that� V0 =W0 _ S5
1 _ S5
2 _ e4H2 _ e5K2 [S4'2 e5L2 , where "je4H2 = �X2 �H, "jS4'2 =(�2 _ �1) � k, "je5K2 = (�2 _ �1) �K, and "je5L2 = (�2 _ �1 _H2 _G) � L.� Similarly, V1 = s0V0 _S3�1 _S3� _e5K1 _e5L1 _S3�2 _e5K2 _e5L2 , where e5K1 _e5L1are the e5K _ e5L of W1, and e5K1 _ e5L1 are obtained from them by replacing�1 by �2, and so on, throughout the de�nitions, and likewise for the facemaps.� V2 = sV1 _ S4� _ S4�, with the obvious face maps, and� Vn = sVn�1 for n � 3.Now we can add spheres in dimensions � 6 as necessary to obtain a full resolutionby wedges of spheres for X �X (e.g., using the functorial approach of [Stv1, x2]).However, in fact we need not worry about these higher dimensional spheres, since wesee from the spectral sequence of (3.11) that, regardless of what they are, the mapkV�k ! X �X induces an isomorphism in �i(�) for i � 5, so if we �nd anobstruction to realizing � in dimension � 5, it cannot in fact be realized for X itself.Conversely, we know that X cannot be given an H-space structure, so by The-orem 4.18 we know there is some non-vanishing secondary obstruction, which mustnecessarily lie in �5X, and thus correspond to a non-degenerate crossterm sphereS4x ,! V2 (by x4.16). But there are only two such, namely, S4� and S4�, andsince they both de�ne the same secondary operation, (namely, that of Example 4.13),we can deduce that it does not vanish in �5X { so that rationally it contains agenerator of �5X. Of course this holds in ��CP2, too, and in fact G.J. Porter hascalculated the higher Whitehead products in ��CPn for all n (by other methods {see [P3]).In fact, the rational secondary operation of x4.14 is the only obstruction to therational space CP2 being an H-space. In [AA, Prop. 6.9], Andrews and Arkowitzhave shown that a spaceX is rationally homotopy equivalent to a product of EilenbergMac Lane space (equivalantly: to a rational H-space) if and only if all Whiteheadproducts of all orders vanish in ��X. See also [R, x4].5. The torsion Whitehead productThe obstructions to having an H-space structure described in the previous sectionare not ordered linearly, so there is no \�rst obstruction". From the point of view ofrational homotopy theory (x3.7), perhaps the secondary operation of x4.14 deservesthis name; but from the \periodic" point of view the �rst case of interest is thefollowing operation:



OBSTRUCTIONS TO BEING AN H-SPACE 15De�nition 5.1. Assume given a space X with elements � 2 �qX, � 2 �rX suchthat k� = 0 = k� for some integer k. Then k[�; �] 2 �q+r�1X vanishes \for twodi�erent reasons", because� � [�; �] � [�; k�] � k[�; �] � [k�; �] � [�; �] � �(5.2)and the choice of two corresponding nullhomotopies G;H : k[�; �] � � yields anelement of �q+rX as in [Sp, x3], which we call the torsion Whitehead product of �and �, and denote by [[�; �]]. One may verify that k[[�; �]] = 0, and that it hasindeterminacyf[�0; �] j �0 2 �q+1Xg + f[�; � 0] j � 0 2 �r+1Xg � �p+qX(5.3)(see x5.6 or 5.8 below).From the description of the torsion Whitehead product in simplicial terms in x5.8below it is evident that this will be part of the obstruction hh2ii to realizing � for anabelian �-algebra ��X with torsion. We may call it the \�rst torsion obstruction"because of the following alternative description:5.4. M -�-algebras. Note that at least part of the above discussion could have beencarried out in a more general context, with spheres replaced by some other modelspace: LetM be some space (replacing S0), and write �t(X;M) for [�tM ;X](t � 1).De�nition 5.5. A primaryM -homotopy operation is a natural transformation # :�n1(�;M) � : : :� �nk(�;M)! �r(�;M), and these are in one to one correspon-dence with homotopy classes �# 2 �r(�n1M _ : : : _ �nkM ;M ), with the universalrelations among such operations corresponding to the relations in the composites ofmaps among wedges of copies of Mn.AnM -�-algebra is then a graded group fXig1i=1, together with an action of theprimaryM -homotopy operations on them, satisfying the universal relations (cf. [BT,x9].In [Ar, 2.2], Arkowitz de�ned a generalized Whitehead product[�;�]0 : [�pM ;X]� [�qM ;X]! [�p+q�1M ^M ;X] (for p; q � 1),which satis�es many of the properties of the ordinary Whitehead product (includinganti-commutativity and bilinearity). In particular, all such products vanish when Xis an H-space (cf. [Ar, Prop. 5.4]). Thus we could generalize the discussion of section2, and in particular Proposition 2.7, to require that ��(X;M) be an abelianM -�-algebra as a necessary condition for X to have an H-space structure, for all possible\coe�cients" M . However, this is not our apporach here (and in any case this willnot be a su�cient condition, as Example 4.19 shows - cf. [BG, x3] and [Ar, pp. 18-19]).One could of course try to develop an obstruction theory for realizing the appropriatemap ofM -�-algebras, as in section 4; but the simplicial spaces corresponding to theV� !X �X of x4.1(a) do not always exist for arbitraryM { see [Bl6, x4].



16 DAVID BLANCRemark 5.6. Note that the Hilton-Milnor Theorem (cf. [W, XI, Thm. 6.7]) allows usto express any M -homotopy operation as a sum of iterated generalized Whiteheadproducts, precomposed with a map � : �rM ! Vki=1 �niM . This is not in generalas satisfactory as Hilton's original theorem (cf. [Hi2, Thm. A]), because in general�pM ^ �qM is not a suspension of M .However, if M p(k) = Sp�1 [k ep is the p-dimensional mod k Moore space, and kis odd or 4jk, thenMp(k) ^M q(k) 'Mp+q�1(k) _Mp+q(k) for p; q � 3(5.7)(cf. [N, Cor. 6.6]). In particular, the generalized Whitehead product map wp;q :�M p(k) ^M q(k) ! M p+1(k) _ �M q(k) splits up to homotopy as the sum ofw0 :Mp+q(k)!Mp+1(k) _M q+1(k) and w00 :Mp+q+1(k)!Mp+1(k) _M q+1(k).If we let �j : Sj ,!M j+1(k) denote the inclusion of the bottom cell, it is evidentfrom the description in [N, x6] that w0 � �p+q�1 : Sp+q�1 ! M p+1(k) _M q+1(k)represents the ordinary Whitehead product [�p; �q], while (�p _ �q) � w00 � �p+q�1 :Sp+q !Mp(k) _M q(k) represents the torsion Whitehead product [[�p; �q]]. (See[Hi1, x6-7] for the justi�cation of this last statement.)Clearly k � w00 � �, and the indeterminacy of [[�; �]] in (5.3) now follows from[N, Prop. 1.4].Thus from the point of view of the mod k homotopy groups ��(�;M(k)), thevanishing of all torsion Whitehead products is part of the primary condition to beingan H-space { in fact, the only new requirement, in addition to ��X being abelian.Therefore, if we consider Moore spaces to be the simplest spaces after the sphere, thisperhaps justi�es considering the torsion Whitehead product as the �rst secondaryobstruction.5.8. a simplicial description. Let X is any space with torsion in its homotopygroups, one can de�ne the torsion Whitehead product as a secondary homotopy op-eration, as in x4.11. For concreteness we exemplify this by a special case, as follows:Example 5.9. Assume �2X �= Z=2 (generated by �), and �iX = 0 for i = 1; 3.In the notation of Example 3.5, a free simplicial �-algebra resolution A�! ��(X �X) is given in degrees � 3 by:(i) �A0 = S2�1 q S2�2, with the obvious augmentation onto �2(X �X).(ii) �A1 = S2�1 q S2�2 q S3
1 q S3
2 q S3� , with d0jS2�i = 2�i and d0jS3
i = �#2 �i fori = 1; 2, and d0jS3� = [�1; �2].(iii) �A2 = S3�1qS3�2qS3�1qS3�2qS3�, with d0jS3�i = 4
i��#2 �i, d0jS3�i = �#2 �i�[s0�i; �i]for i = 1; 2, and d0jS3� = [s0�1; �2]� [s0�2; �1].(iv) �A3 = S3�1 q S3�2 q S3�, with d0jS3�i = [s0�i; s1�i] � 2�#2 s0�i for i = 1; 2 andd0jS3� = 2� + ([s0�1; s1�2]� [s1�1; s0�2].(v) �An = 0 for n � 4.



OBSTRUCTIONS TO BEING AN H-SPACE 17As in Example 3.12, one can realize A� ! ��(X �X) in simplicial dimensions� 3 by an augmented simplicial space V�!X �X, once we make choices of:� a map � : S2 !X representing the generator of �2X, with A : 2� � �;� a nullhomotopy B : e4! S2a _ S2b for [2�b; �a]� [2�a; �b]; and� a nullhomotopy C : e4! S2a _ S2b _ e3c _ e3d for [�d; �a]� [�b; �c].(Additional choices are needed to de�ne the simplicial space, but not to describe[[�;�]]).As in Example 4.13 we then de�ne g : V0 ! X by gjS2�i = �, and g = �elsewhere, and see that the part of the secondary homotopy operation hh2ii associatedto S3� � V2 is de�ned on @D(2) n S3� by g � d0 � d1jS3� = [2�;�]� [�; 2�], withg �d0 �d2jS3� = g �d1 �d2jS3� = �, and the two nullhomotopies are h1 �d0 = ��r�Band h1 � d0 = (A _ �) �r �C. The map h : �S3!X so obtained represents thetorsion Whitehead product [[�;�]] 2 �4X, by de�nition.One may similarly de�ne the torsion Whitehead product [[�; �]] in general; it isevident that no special role is played in this description by the prime 2 (aside from theinapplicability of Remark 5.6), or by the fact that we specialized to � = � 2 �2X.That the indeterminacy for this secondary operation is as in (5.3) now follows from[Bl5, Lemma 5.12].Example 5.10. Now let X be a space with �2X �= Z=2 �= �4X and �iX = 0 fori 6= 2; 4. By inspecting the possible k-invariants k2 : K(Z=2; 2)! K(Z=2; 5) we seethat there are eight such spaces, all with the same (trivial, and in particular abelian)�-algebra ��X.Precisely as in the beginning of Example 4.19, one may extend the simplicial spacedescribed (implcitly) in Example 5.9 to a resolution of X �X by wedges of spheres(at least in degrees � 4). This will require adding a non-degenerate crossterm sphereS3� � V3 (corresponding to S3� � �A3), for which we need additional choices ofnullhomotopies { namely:� a nullhomotopy D : e4 ! S2a _S2b _S2c _S2d for 2([�d; �a]� [�b; �c])+ ([�d; 2�a]�[2�b; �c]);� a nullhomotopy E : e4 ! S2a _ S2b _ e4c for 2�c + ([�b; �a]� [�b; �a]; and� a nullhomotopy H : e4 ! S2a _ S2b _ S2c _ S2d _ e4e for 2�e + [�d; �a]� [�b; �c].It might appear that we have another (third order) homotopy operation de�ned inthis situation, corresponding to S3�, in hh3ii. However, this operation is associatedto the �-algebra identity2([2�; �]� [2�; �]) + ([2�; 2�]� [2�; 2�]) = 0;and as such can be shown to vanish in �4X if [[�; �]] does (essentially, because inaddition to (5.2) it involves only the group operation).Thus we end up with a single obstruction to X being an H-space { namely, thetorsion Whitehead product [[�;�]] 2 �4X. For the four possible spaces X havingprimitive k-invariant k2, this must vanish (since they are H-spaces, by [C, Thm. 6]);on the other hand, in the four other cases we can deduce from the fact that X is notan H-space that �4X is generated by [[�;�]].
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