HOMOTOPY OPERATIONS AND THE OBSTRUCTIONS TO
BEING AN H-SPACE

DAVID BLANC

ABSTRACT. We describe an obstruction theory for a given topological space X to
be an H-space, in terms of higher homotopy operations, and show how this theory
can be used to calculate such operations in certain cases.

1. INTRODUCTION

An H-space is a topological space X equipped with a multiplication map m :
X x X — X and an identity element * € X. The question of whether a given
space X possesses such an H-space structure has been studied from a variety of
viewpoints — cf. [C, SW, St1, Sul, Su2, W1]. Here we address this question from
the aspect of homotopy operations.

As is well known, the homotopy groups 7.X of any space X have Whitehead
products and composition operations defined on them, satisfying certain identities;
we summarize this by saying they constitute a Il-algebra — see §2.1 below. In
addition, there are various higher order operations on 7,X, such as Toda brackets;
and the totality of these actually determine the (weak) homotopy type of X (cf. [BI5,
§7.17]): therefore, they should enable us — in theory — to answer any homotopy-
theoretic question about X, including that of possessing an H-space structure. It
is the purpose of this note to explain in what sense this can actually be done, using
the obstruction theory for realizing II-algebra morphisms described in [BI5, §7]. The
approach presented here generalizes a result of Andrews and Arkowitz in rational
homotopy theory (see [AA, Prop. 6.9]).

1.1. notation and conventions. 7, will denote the category of pointed connected
CW complexes with base-point preserving maps, and by a space we shall always mean
an object in 7,, which will be denoted by a boldface letter: X, S", and so on.
The basepoint will be written * € X. Al[n| is the standard topological n-simplex
in R"*'. The homotopy category of 7. is denoted by ho7., and [X,Y] means
the set of pointed homotopy classes of maps X — Y. The constant pointed map
will be written ¢,, or simply .

Ab denotes the category of abelian groups, and ¢rAb the category of graded
abelian groups.

Definition 1.2. A strict H-space structure for a space X € 7, 1is a choice of a
multiplication map m : X x X — X, making the following diagram commute:
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where ¢ = (11,72) : X VX — X x X is the inclusion of the wedge in the product and
V:XVX — X is the fold map (induced by the identity on each wedge summand).
If X may be equipped with such an m, we say that it is a strict H-space.

We say X is an H-space if there is a map m : X x X — X making the above
diagram commute up to homotopy. Since X is assumed to be well-pointed, it is then
homotopy equivalent to a strict H-space (cf. [St2, §1]), so the two definitions coincide
in the homotopy category.

1.3. organization: In section 2 we review some background on Il-algebras, and re-
formulate the question of the existence of an H-space structure on X in terms of
[I-algebras (Proposition 2.7). In section 3 we give some more background on sim-
plicial Il-algebras and spaces, together with a computational example. In section
4 we describe the higher order homotopy operations which serve as obstructions to
realizing Il-algebra morphisms, and thus to obtaining an H-space structure on X,
and formulate our main result, namely:

Theorem 4.18: A space X has an H-space structure if and only if

(a) 7. X s an abelian Il-algebra (Def. 2.4); and

(b) The sequence of higher homotopy operations {{(n)}rz, C {m; X}, associ-
ated to the -algebra morphism p: 7. X X 7. X — 7. X (defined in §4.11 and 4.16)

vanishes coherently.

We then use this theorem to make a sample calculation for CP? (§4.19). In section
5 we describe the torsion Whitehead product, which may be thought of as “the first
higher order obstruction” to being an H-space, and give another example (§5.10).

2. II-ALGEBRAS

In this section we recall some known facts on the primary homotopy operations
and their relation to the H-space question. First, some definitions and notation:

Definition 2.1. A Il-algebra is a graded group G. = {Gi}2, (abelian in degrees
> 1), together with an action on G, of the primary homotopy operations (i.e.,
compositions and Whitehead products, including the “zi-action” of (7 on the higher
Gh's, asin [W, X, §7]), satisfying the usual universal identities. See [BI13, §3] or [BIL,
§2.1] for a more explicit description. A morphism of ll-algebras is a homomorphism
of graded groups ¢ : G\ — G which commutes with all the operations. Il-algebras
form a category, which will be denoted 1I-Alg.

Definition 2.2. We say that a space X realizes an (abstract) Il-algebra G if there
is an isomorphism of Il-algebras G. = 7.X. (There may be non-homotopy equiv-
alent spaces realizing the same Il-algebra — cf. [Bl5, §7.18]). Similarly, an abstract
morphism of [I-algebras ¢ : 7. X — 7.Y (between realizable II-algebras) is realizable

if thereis amap f: X — Y such that 7.f = ¢.
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Definition 2.3. The free Il-algebras are those isomorphic to 7. W, for some (pos-
sibly infinite) wedge of spheres W:  More precisely, let T' be a graded set {T;}72,,
and let W = V72, V,er, S% . where each S* is a k-sphere. Then we say that =, W
is the free Il-algebra generated by T'.  We shall consider each element x= € T} to be
an element of 7, W, by identifying it with that generator of 7 W which represents

the inclusion Si — W.

Definition 2.4. An abelian ll-algebra is one for which all Whitehead products van-
ish; these are indeed the abelian objects of II-Alg — see [BI1, §2].

Remark 2.5. If we let II denote the homotopy category of wedges of spheres, and
F C II-Alg the full subcategory of free Il-algebras, then the functor =, : Il — F 1is
an equivalence of categories. Thus any Il-algebra morphism ¢ : G, — G’ is uniquely
realizable, if G, and G’ are free Il-algebras — and in fact only G. need be free.

2.6. the primary obstruction. The primary condition for X to be an H-space —
that is, the condition in terms of the [I-algebra 7, X — is simply that this [I-algebra
be abelian:

Indeed, if X is an H-space, then all Whitehead products vanish in 7, X, by [W,
X, (7.8)]. On the other hand, any product map m: X x X — X induces the group
operation

mr(m) : mp(X X X) =mp X X 1. X — 1 X
for each k >1 (cf. [G, Prop 9.9]). Thus if the map of spaces m exists, the morphism
of graded groups p : 7. X X m.X — 7. X (which is defined levelwise by the group
operation) must be a morphism of Il-algebras; but then for any o € 7,X and
B € m, X we have

0 = p([(a,0),(0,8)]) = (e, 0), (0, 3)] = [, B] € Tpyq1 X
by [W, X, (7.7)], so m.X isabelian. Thus we may summarize the “primary” answer
to our question in

Proposition 2.7. A space X has an H-space structure if and only if

(a) 7. X s an abelian 11-algebra; and

(b) The U-algebra morphism u : 7.X x m.X — 7.X, defined by the group
operation, is realizable (Def. 2.2).

Proof. If pis realizable by m : X x X — X, then in particular the maps f; = moz; :
X — X and f; =moiy: X — X realize po(i)g =id: 7. X - 7. X (j =1,2), so
fi, f2, are self-homotopy equivalences of X, and m =mo(fi'xf;'): X x X — X
satisfies mo1 ~V and thus X is an H-space by definition 1.2. O

It should be pointed out that =,.X being abelian is a necessary condition for
X to be an H-space, but it is certainly not sufficient, as there are examples of
spaces whose Whitehead products all vanish, but which can be shown (usually by
means of their homology) to support no H-space structure — see, for example,

[Ag, BJS, BG, C, IKM, P2].
3. SIMPLICIAL I[-ALGEBRAS AND SPACES

We now recall the background on simplicial [I-algebras and spaces needed to descibe
our obstruction theory for the realization of II-algebra morphism in the next section:
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Definition 3.1. Welet A denote the category of ordered sequences n = (0,1,... ,n)
(n € N), with order-preserving maps, and A is the opposite category.
A simplicial object over any category C is a functor X : A”? — C - ie, a

sequence of objects {X,}>, in C, equipped with face maps d; : X,, — X,,_; and
degeneracies s;: X, — X,41, satisfying the simplicial identities ([M, §1.1]):

(1) d;od; = di_10d; for 7 <y
sj_104d; if 1<y
(3.2) (41) d;osj= id if 1=74,7+1
sjodi_q if e>5+41
(417) 508 = 8; 0 8j_1 for j >

We let sC denote the category of simplicial objects over C.
An augmented simplical object X, — A over C is a simplicial object X, € sC,
together with an augmentation ¢: Xo — A in C such that

(1v) cody = god

Next, we must consider resolutions of a given Il-algebra; for more details, see [Q1,

I1, §4] or [BS, §2]:

Definition 3.3. A simplicial II-algebra A, is called free if for each n >0 there is
a graded set T™ C A, such that A, is the free Il-algebra generated by T™, and
each degeneracy map s;: A, — A,y takes T" to 1™t

Definition 3.4. A free simplicial resolution of a ll-algebra G, is defined to be an
augmented simplicial II-algebra A, — G, such that:

(a) A. is a free simplicial II-algebra;
(b) the homotopy groups of the simplicial group (A,); vanish in dimensions n > 1;
(c¢) the augmentation induces an isomorphism 7o((As)x) = Gy.

Here {(A.)r}2, denotes the underlying graded group of A,.

Such resolutions always exist, for any l-algebra G, - see [Q1l, I, §4], or the
explicit construction in [BI3, §4.3].

Example 3.5. Write S* = 7,.8% for the free II-algebra generated by a graded set
having a single element z in degree k (§2.3), and let n# denote the composition
with the suspended Hopf map 7, € 7,41S8". We may then describe certain free
simplicial [I-algebras — namely, those with a C'W basis, in the sense of [BI3, §4.1]
— by specifying A, C A,, which consists of the non-degenerate S*’s in simplicial
dimension n, and the face map do|z, setting di|z, =0 for « > 0. A, is then
obtained from A, by adding degeneracies of the free Il-algebras Aj, (k < n), as
explained in [BI3, §4.5.1].

For example, let . be a ll-algebra with G5 27 and G; =0 otherwise. In
this setup a free simplicial resolution A, — G, x G, is given in degrees < 5 by:
.AOZSSAHSO%% with €§(A0)22G2XG2:Z@Z.

o Ay = S3 I1S3, 152, with dolge =nia’ for 1 =1,2 and d0|52 = [a!, ]
ﬁl
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L AQ = 531 a 532 a S;l a S:, with d0|53i = [6i7800éi] (Z = 1,2),
¥
d0|53 = [C? Soal] + [617 30@2] + 77??&_57

d0|5f§ = [C? 30@2] + [627 30@1] + 77#5
o Ay= 53183 ITS3 IS5 ITS3, with

dol s, [y, s1s0a’] + [s03', 18] + i (r=1,2),

dols; = [k, s1s0a' ]+ [7'; 515007 + [51€, s08'] — [s0¢, 5158'],

d0|53 = [0, s1500%] + [v%, 51800t ] + [51C, 508%] — [s0(, 513%] and

dols; = [0:51500"] + [, s1500%] + [1C, s0C] + 15 0+ 0 & + [s05%, 518" = [518, 505"].

e A, =0 for n>4 (in degrees < 3).

The only non-trivial II-algebra identity needed to check this is:
(36) [77#0475] = Uf+1[0475] - [[oz,ﬂ],oz]

for a € 7 X, B € 7,X — which follows from [Ba3, II, (2.4) & (3.4)] and [W, X,
(7.14) & (8.1)].

Remark 3.7. Note that if we rationalize the category of simply-connected II-algebras
to obtain the category of graded Lie algebras over @ (cf. [Q3]), we have a similar
description for the resolution of the abelian Lie algebra K(Q,2) in degrees <5 —

all we have to do is replace 77#:1; by 1/2[z,z], and omit the torsion terms n#*z for
r > 3.

Definition 3.8. For any Il-algebra G., let [(G.) C G. denote the sub-Il-algebra
generated by all non-trivial primary homotopy operation (i.e., compositions and
Whitehead products). The graded abelian group Q(G.) = G./I(G.) is called
the module of indecomposables of G. (cf. [BI3, §2]).

If Ay — G, is any free simplicial resolution of Il-algebras, and T : II-Alg — Ab
is any functor into the category of abelian groups, then the n-th left derived functor
of T applied to G, written (L,T)G., is defined to be the n-th homotopy group
of the simplicial abelian group T A, (see [Q1, 1,§4] or [BS, §2.2.4] for more details).
If ¢: G, — G is any morphism of Il-algebras, one has an induced morphism
(¢)e : Ae — Be between their respective resolutions, which allows one to define the
relative n-th derived functor of T" applied to ¢ : G — G, written (L,T)¢ (cf.
[B12, §4.1]).

Definition 3.9. In particular, the n-th derived functor of the indecomposables func-
tor @ : II-Alg — grAb of G. is called the n-th (graded) homology module of
G, written H,(G.) (see [DK, §5.1] for a more general definition). Similarly, if
¢ : G C G is an morphism of Il-algebras, we denote (L,Q)¢ by H,(¢) (or
simply H,(G.,G.) if ¢ is evident from the context), and call it the n-th relative
homology module for ¢ : G. — G'.

3.10. simplicial spaces. Let W, € s7,. be a simplicial space: its realization (or
homotopy colimit) is a space X = ||W,|| constructed by making identifications in
< oW, x A[n] according to the face and degeneracy maps of W, (cf. [Se, §1]).
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For any simplicial space W,, there is a first quadrant spectral sequence with
(3.11) B2, = m(m W) = ol WG
(see [BF, Thm B.5] or [Q2]).

In particular, it W, — X is an augmented simplical space such that 7=.W, — 7. X
is a free simplicial resolution of Il-algebras (Def. 3.4), we see that the natural map
Wo — |IWL|| (cf. [BK, XII, 2.3]) induces an isomorphism 7. X = 7.||W.||, so
Wil ~ X

We shall assume all our simplicial spaces — 1i.e., objects in s7, — are proper, in
the sense that the degeneracy maps are inclusions of subcomplexes (so in particular
cofibrations).

Example 3.12. Let X be any space with 73X =7 and mX =#3X =0 (eg.,
X = K(z,2)).

Let tx1,tx2 : X — X x X denote the two inclusions, respectively, and assume
that we have chosen once and for all fixed representatives a : §* — X for a
generator of 7, X (so that o' = ixioa (i = 1,2) represent the two generators
for 7(X x X)); similarly, representatives 7, : §° — S§* for the Hopf map, (with
n3 : S* — 87 its suspension), and w = [i1,10] : 8 — S*V S? for the Whitehead
product map.

In addition, choose nullhomotopies H : e> — X of aony and G:e?* — X x X
of [a',a?] in X x X (see [W, X, (7.7)]). If 2,7 respectively denote the two

a?

inclusions S*? < S2V S}, we may define a map k:S°> — S2V S by
b=l elons + (i oma, g] + [l o], 2],

and let K :e*— 82V S? be some nullhomotopy of & (which exists by (3.6)).
Now set V. = SV S;Vvetvel and let 2:8 — V, Z:8 — V,

2 der — V. and ) : del — V' be the inclusions. Then we may define

(:8" =V by =20+ [i3,3]+ [, andlet L :e®> — V denote a

nullhomotopy of ¢, which exists by [W, X (7.2)].
We now define an augmented simplicial space W, — X x X (see [Bl4, §4.2]

for an explanation of the notation, and compare Example 3.5 above): we adopt the
convention that ¢y : §" — 8% — W, denotes a homeomorphism of the r-sphere onto
the wedge summand S; in W, (n>0), ép:e" — e — W, a homeomorphism
onto the (r + 1)-disc e}', and (p: 8" — e}f' — W, a fixed embedding into the
(r + 1)-disc eTF‘H. Then W, is defined by:

e Wo=S2 VS Vel VelVer Usi e?,, where €° Uge e® denotes the pushout
of ® «+> §* < e (homeomorphic to S°).

The augmentation ¢ : Wy — X x X is defined by €|S2' =a' =yioa for 1 =1,2;
€|621 =ix10H, elegr =G, €|Si =¢=(a'Va?) ok, €|e§\,,1 =K'=(a'Va?) oK,
and clg: = L' =(a'Va?VvH'VG)olL.

L

Note that (a'Va?*VH'VG)ol = (a'Va?)ok, soeis well-defined on €3 Uge,

©

e, Si. Moreover, it is not hard to see (by considering each factor of X x X
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separately) that ¢ = 5|S5 is nullhomotopic, so that in fact we could further embed
v
Sfp — ef — W, and extend €|Si to a nullhomotopy ¥ :e§ — X x X.

o W, = 5,W,V S, \/S:Cg\/e%r\/ei, where soW, is a copy of W, and s : Wi — W

is a homeomorphism onto this copy (so d0|50m = d1|50m are both equal to the

inverse homeomorphism, by (3.2)(ii)). The face maps on the rest of W are given

by:

— d0|53;31 = (1 07y and d1|521 = 1.

_ d0|52 : 80— 82,V 5% s [ta2,t01] and d1|52 : §¢ = dely;

— doles_ is the nullhomotopy (141 V te2) 0 K of [ia2,t01] 003 + [ta1 0 12, t02] +
[[taz, ta1], tar], and d1|e§\,, = {x1;

— d0|esi is the nullhomotopy (141 Va2 VE VEG)o L of tgons—+igr, taz] +[ta, tar],
and d1|65i = €L1.

o W, = 53 V sW, where sW = soW; Usso W, s1W, is the “degenerate part” of
W5, the union of the images of so : W] — Wy and s; : Wi — W, (with the
identifications forced by the identity (3.2)(iii)), so that di|sVV1 for ¢+ =0,1,2 is
determined by (3.2)(ii).

d0|S: =10 0m3 + [tp1, tsga2] + [tes tsyat]s d1|S§ = 1x, and d2|S: = (.

e For n >3 W, = sW,_; is defined as above by (3.2)(iii), and the face maps on
W, are thus determined by (3.2)(ii) — see [BI3, §4.5.1] or [M, p. 95(i)].

4. OBSTRUCTIONS TO REALIZING I[-ALGEBRA MORPHISMS

We now recall the obstruction theory for the realization of II-algebra morphisms

defined in [BI5, §7].

4.1. realizing Il-algebra morphisms. Given two spaces Y, X and a Il-algebra
morphism ¢ : 7, Y — 7, X which we wish to realize — in our case ¥ = X x X
and ¢ = p — we proceed as follows:

(a) Choose any augmented simplicial space V, — Y such that 7.V, = .Y isa
free simplicial resolution of Il-algebras. This may be called a simplicial resolu-
tion of Y by wedges of spheres; in particular, each space V, ~ Vi, Vier, , Si
(cf. §2.3).

See [Stvl, §1] for a functorial construction of such resolutions. According to
[Stv2], any free simplicial Il-algebra resolution A, — #.Y may be realized
topologically by such a simplical space V,, in the sense that 7.V, = A,.

(b) By 3.2(i)&(iv), all the compositions cod;; o...d;, : m — —1 (0 < ¢; < 7,
J =1,...,n) are equal in A% U {-1} (i.e., for any augmented simplicial
object). Thus we get a unique Il-algebra morphism

¢n = gb o] (5#) ] (dn)#) Oo... (dzn)# : 7'('*% — 7T*X
for each n >0 (where (d;;)s : 7.V, = Vi1 is just the 7;-th face map of the

simplicial II-algebra 7. V;).
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(c) Since by assumption .V, is a free Il-algebra, each ¢, : 7.V, — 7. X s
realizable by a map ¢, : V, — X, unique up to homotopy (see Remark 2.5).
Since 10 (d;)g =, : 7.V, — 7.X, we have

(4.1) goo10d; ~ g, V, =5 X forall 0 <7 <n.

and in fact we may set ¢, = ¢,_1 0 dp inductively for all n > 1, say.

(d) If we had equality ¢g,-10d; =g, in (4.1) for all n,i, then {g,}°>, would
induce a map of simplicial spaces ¢, : Vo — ¢(X)s (where ¢(X), 1is the
constant simplicial space which has X in each simplicial dimension, and all face
and degeneracy maps equal to the identity).

But since by construction ||[Vi|| ~ Y, from the spectral sequence of (3.11)
we would see that

Goll + VAl — fle(X )] = X

realizes ¢ : 7Y — 7. X.
Remark 4.2. We thus have a homotopy-commutative diagram consisting of the strict
simplicial space V, and the space X together with the maps g¢, : V,, — X satis-
fying (4.1) — in other words, an augmented simplicial object V, — X in ho7,
— and we see that the question of realizing ¢ is reduced to that of rectifying this
homotopy-commutative diagram: that is, replacing it by a strictly commutative one,

or equivalently, by an co-homotopy commutative diagram (cf. [BV, Cor. 4.21 & Thm.
4.49] and [DKS, §4]).

As shown in [BI5, §7], there is a sequence of higher homotopy operations which
serve as obstructions to such a rectification, which may be described in simplicial
terms, as follows:

Definition 4.3. For each pair of integers k,n (0 < k < n), let
D(k,n) {01, By x {0,1, .. k k1) x ... x {0,1,... ,n}
where we think of (ig,...,%,) as corresponding to the composition of face maps
di,o...od;,:n— k-1 i A%,

We set D(n+1,n) = {0} (where 0, the empty sequence, corresponds to id : n — n).
There is an equivalence relation ~ on D(k,n), generated by

(4.4)
(ik,...,ij,ij+1,...,in)N(ik,...,ij+1—1,ij,...,in) if ij<ij_|_1

(that is, (iky...,%n) ~ (Jky.--,Jn) if the corresponding morphisms in A% are
equal: dlk dik+1 ce dzn == d]kd]k+1 ce d]‘n — cf. (32)

We call an equivalence class v € D(j,n)/~ a subclass of 6 € D(k,n)/~, written
v =6, if j <k <n and vy has some representative (¢j,...,%x,...%,) such that
6 = [(%ky.-- ,im)] (so in particular v <0 for every ). This representative is not
unique, but the identities (3.2) imply that the correspondence (;,... 05, ...10,) —

(¢j,...15—1) induces, for each 6 € D(k,n)/~ and j <k a well-defined function
(1.5) B0 {7 € D{jn)/~ | 1 =8} = Dk — 1)/~
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which is readily seen to be a bijection.

Definition 4.6. Let us define an abstract polyhedron D(n) having a k-dimensional
facet D(k)" for each equivalence class v € D(k + 1,n)/ ~ (0 < k < n), where
the j-facet D(j)” corresponding to v € D(j,n)/ ~ belongs to the k-facet D(k)°
corresponding to 6 € D(k,n)/~ if and only if v <.

The bijections CI)‘; of (4.5) imply (by induction on n > 0) that D(n) is just
an n-simplex, with a specified labeling of its sub-simplices, and provide canonical
identifications

(4.7) o D(k) =5 D(k)

(In particular, D(n) has n + 1 vertices, corresponding to the n + 1 possible
composite face maps d;; 0...0d;, :m — 0 in A7)

We choose a geometric realization = Aln] for each D(n), which by abuse of
notation we also denote by D(n); its boundary dD(n) is homeomorphicto S~

Example 4.8. If we represent each vertex of D(3) by a cluster of the six sequences of
length 3 representing its equivalence class in D(1,3)/~, and each sidein D(2,3)/~
by the pair of sequences representing it, we may depict D(3) as in Figure 1. (From
this depiction one sees that D(3) can be thought of as a collapsed 3-dimensional
permutohedron — compare [BI5, §4]. See Figure 2 below for a depiction of D(2)).

right face 0 «002 — 012e left face 1
v «010 011e
Yoy 000 001
02, 7 N 12
v v 10 11
A A
10207, " 00| = |01 o112
¢110 111e
022-—--------——2_—2 —————— S o122
0230 - —————-—— - —— -—- ————————————1—2—1————>0123
1030 *120 23 113
v A
A
0= 20 22y :,13
1o 101 7T
«020 _ 021
back face 2 «003 013e" bottom face 3

FIGURE 1. Depiction of D(3)

Remark 4.9. By comparing the descriptions of D(n) and the “face-map polyhedra”
(or permutohedra) P,(é) of [Bl5, §4.1-4.3], we see that the two constructions are
dual to each other in an appropriate sense.

Note also that the “n-lattice polyhedra” L"(A, B) of [BI5, §7.5], used to define the
obstructions to realizing a Il-algebra morphism, are simply barycentric subdivisions
of our n-simplex D(n), and the comment in [Bl5, §4.10] applies here, too — so in
fact the description of [Bl5, §7] was needlessly complicated.
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As with other sequences of convex polyhedra (cf., e.g. [BI5, §§4,7], [St2, §11]), we

can associate to {D(n)}>2, a sequence of higher homotopy operations:

n=0

Definition 4.10. First recall that the half-smash of two spaces X,Y is

XxY 2 (X xY)/(X x {*}).

If Y is a suspension, there is a homotopy equivalence X xY ~ X AY VY.

Now assume given a simplicial space V, which extends to an augmented simplicial
object [g] : Vo = X in ho7. (as in §4.2). For each n € N, we define a 9dD(n)-
compatible sequence (for V, — X) to be a set of maps h*: D(k)x V; — X, one
for each 0 < k < n, subject to the following requirements:

(a) RY:D(0)x Vp — X is in the prescribed homotopy class of the augmentation
[¢] € [0, X] — and in fact we may assume without loss of generality that ko = g,
for any representative ¢: Vo — X (cf. [Bl5, §5.8]).

(b) Given v € D(j,n)/~ and 6 € D(k,n)/~ such that v Cé, let ¢} : D(j) —
D(k) denote the composite of
LT e 5 o
D(j) = D) — D(k)” — D(k)
(where ¢ is the isomorphism of (4.7) and ¢ is the inclusion).
Then we require that

hko(igxidvn):hjo(idp(j)lxdq)@) : D(j)x Vi — X.

Note that it suffices that this hold for k= j+1 — that is,if v = [(¢;, 241, ,n)]

and 6 = [(¢j41,-.. ,tn)], then we require that the following diagram commute (in
T.): o
. ts X2 .
D(j) x Vi D(G+1)x Vig
id x d;, hitt
D(j) % V; X

R+

A sequence of maps {h* : D(k) x Vi — X}, satisfying conditions (a) and (b)
above for all k£ >0 is called a 9D(o0)-compatible sequence for V, — X.

Given such a dD(n)-compatible sequence h* : D(k) x V;, — X for V, — X,
there is an induced map h: dD(n)xV, — X defined on the “faces” D(n—1)’x 'V,
of dD(n)x V, — X by: E|D(n_1)5 vV, = "' o (id x d;) (where & = (i) €
D(n—1,n)/~= D(n,n —1)).

The compatibility condition (b) above guarantees that h is well-defined.

Definition 4.11. Given a A-simplicial space V, augmented V, — X in ho7, as
above, the n-th order homotopy operation associated to V, — X is a subset ((n))
of the track group [X"7'V,, X], defined (for n > 2) as follows:

Let T, C [0D(n) x V,,X] be the set of homotopy classes of maps h = h :
dD(n) x V, — X induced as above by some compatible collection {h*}7Z}.

Since each 'V, is a suspension (up to homotopy), we have a splitting

(4.12) dD(n) x V,, = SV, ~ 8" AV, VV,;
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now let {(n)) C [¥"7'V,, X] be the image under the resulting projection of the subset
T, C[0D(n)x V,, X].

Note that the projection of a class [h] € T, on the other summand [V, X]
coming from the splitting (4.12) is of no interest, since it is just the homotopy class
of the map ¢, of 4.1(¢c).

On the other hand, since by assumption 4.1(a) each V, =~ Vi, Veer, St s
homotopy equivalent to a wedge of spheres, so is X" 7'V, so (n)) is in fact
a collection of subsets of @2, 7;X, and as such deserves the name of a higher

homotopy operation.

Example 4.13. Let W, — X x X be the augmented simplicial space of Example
3.12; then the part of the secondary operation ((2)) in 75X corresponding to
S, C V, is obtained from maps h:9D(2) x S; — X, defined as follows:

e Define g = g0 : Wy = 531 V Siz V 6}1;[1 V e‘é V 6?(1 Usi eil — X Dby letting

g|52i =a for 1 =1,2, and 9|e;1vegve§(1u (e, =

S@
o We can thus set A':go d0|VV1 ~ ¢ o d1|VV1 (cf. §4.10) equal to
— the constant homotopy on D(1) x sWy — since dy =d; on soW, C W4.
1 - _ _
_ h1|D(1) S, is the homotopy H between god0|se;31 = «aony and gOd1|Sf31 = *.
: , B B
— h |D(1) 5 isa homotopy G’ between g¢ od0|52 = [a,a] and go d1|52 = %
(which exists because 7.X is abelian).
- hpg pes 1s just the homotopy K between godo|ses = [taz, tar] 0 3+ [tar
N2, Loz2] + [[Loz27 Lozl]v Lozl] and go d1|865}\, =
—  Similarly, A'|pq pes 1s the nullhomotopy L : godolses = tGons+ [t to2] +
[Lg, La1] ~ %k,
e Nowon Sj; CV; we have
— godyody =godyody=|a,a]lons+ [aony,al+[[a,a],al;
— godyody=godiody=x%o0n;+ [*,a]+ [*,ql;
— gOd10d1:gOd10d2:>|<7
while from the description of A° we see that on the three copies of D(1) x Sj in
OD(2) x Sy
htod, :godyod, ~godiod, is K,
— hlody:godyody~godiody, is L, and
— hlody:godyody~godiody is G'ons+[H,a]+[G,al

Thus we have obtained a map h: 9D(2) x S5 = §° — X, representing the part
of {(2)) corresponding to Sj, depicted in Figure 2:
(Other choices of H,G’, K,L may yield other classes [h] € 75X ; for a discussion
of the indeterminacy see [BI5, §5.10]).

In more familiar terms, we can say that this “Toda bracket” exists because

[a,a] 0 N3 + [a o 7727a] + [[ava]va]
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[Oé,Oé] 0773+ [040772704] + [[Oé,Oé],Oé]
godoodO.:godoodl

A\

G'ons + [H,a] +[G',a] = hlodo” htodi =K
v
1
godiodo o h” ods e godiod
= godoods = godiodx=
% 013 + [*, a] + [*,q] L *

FIGURE 2. The operation ((2)) on Sj

vanishes in 74, X for two different reasons: the vanishing of « o ny, as well as
all Whitehead products, in #,X, combined with the bilinearity of the Whitehead
product; and the identity (3.6) (which we have specialized here to the case o = f3
only for simplicity of the presentation).

In general, each secondary operation corresponds to one or more relations in the

category II-Alg, with higher order operations corresponding to relations among the
relations, etc. (see [Ha2] and [Bl4, §2]).

Remark 4.14. 1t should be observed that E.C. Zeeman and K.A. Hardie have also
considered a secondary homotopy operation associated to a triple Whitehead product,
and Hardie has established various properties it has (including vanishing for H-spaces)
— see [Hal, §5]. In [P1], G.J. Porter defined higher Whitehead products of all orders
(see also [Bal, Ba2] for some properties and examples).

As noted in §3.7, there is an analogous rational operation, corresponding to the case
[[a, o, ] = =2[[3, ], ] of the Jacobi identity for o € 72, X ®Q and € 7, X 2Q.
The rational higher Whitehead products have been studied by various authors (e.g.
[All, Al2, AA]).

Definition 4.15. It is clearly a necessary and sufficient condition for the subset ((n))
to be non-empty that all the lower order operations (k) (2 < k < n) wvanish -
i.e., contain the null class — because that means that some A :dD(n)xV, — X
obtained from a dD(n)-compatible sequence {h*}7Z} extends over all of D(n)x V,,
yielding a dD(n + 1)-compatible sequence {h*}7_,. We say that the higher order
operations {{(n))}22, wanish coherently if there is a dD(o0)-compatible sequence for

V. — X.

Remark 4.16. If we choose a functorial construction of the simplicial resolution by
wedges of spheres V, = Y = X xX in §4.1(a) above (asin [Stvl]), and let W, — X
be the corresponding resolution of X', then by functorality m : X x X — X induces
a map of simplicial spaces m, : V, — W,, which composes with the augmentation
W, — X to yield a rectification of the homotopy-commutative diagram V, — X
of §4.2.

Thus the coherent vanishing of the operations {{(n))}>2,, which is equivalent to
the rectifiability of this diagram (cf. [DKS, Cor. 4.5]), is not only sufficient but also
necessary in order for m : X x X — X to exist.
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Note further that since X is a retract of X x X (in two different ways), by func-
toriality of the resolution there are two disjoint retracts W),, W), (isomorphic to
W,) in V,. If we now restrict the map ¢: Vo — X to W(l)o\/ W(2)0 C V,, we get
a strict augmentation to X (namely, two copies of the augmentation ¢: W — X,
followed by the fold map XMvX® — X) — so the corresponding higher homotopy
operations must vanish.

Thus in calculating {(n)) C [¥"'V,, X] (which may clearly be done on each
k

those spheres S* which are in the cross-term V, \ wo vw® — in fact, only
those which map non-trivially into both sub-simplicial spaces W, and W®),.
Moreover, we may disregard those sphere wedge summands S* < V, which are in
the image of some degeneracy map s; : W,y — W, (see Example 3.12), since the
face maps on them, and thus all the homotopies between these, are determined by
those of Wy, ..., W, _4.

Note however that it while the higher operations may be calculated separately on
each (nondegenerate cross-term) sphere Si — V,,, and their non-vanishing on one

sphere summand S* in V, ~ V2, Veer, , S separately), it suffices to consider

such S* is an obstruction to realizing p, their independent vanishing on the different
spheres does not suffice for realizing p, since they must vanish coherently — that is,
for a consistent choice of the maps A* on D(k)x (W;),, where (W;), is that part
of the simplicial space V; through which the face maps on S* factor.

One could in fact set up a further obstruction theory for such coherence, as in [Bl5,
§5.9], but we shall not do so here.

In fact, it seems reasonable to suppose that one can further restrict the set of
spheres S* < V, for which we must check the obstructions, as follows:

Conjecture 4.17. The n-th order higher homotopy operations which must vanish
coherently in order for u : m. X X 71, X — 7. X to be realizable are in one-to-
one correspondence with the elements of the relative homology group H,(7m.(X X

X),m X Ir.X) (Def. 3.9).

This conjecture would follow from Remark 4.16 above, combined with the realizability
of arbitrary free simplicial Il-algebra resolutions A, — 7.(X x X) (see §4.1(a) above
and [Stv2]), since one could then choose V, — X x X so as to realize a minimal
resolution, in which the non-degenerate cross-term spheres S* < V., are (almost) in
a bijective correspondence with the elements of H,(7.(X x X), 7. X U 7. X) (see
also Example 5.10 below).

In light of Remark 4.2, we may summarize the results of this section in the following

Theorem 4.18. A space X has an H-space structure if and only if

(a) 7. X s an abelian 11-algebra; and

(b) The sequence of higher homotopy operations {{(n)) C 7. X}>2, associated to
the 1-algebra morphism p @ 7. X X 7. X — 7. X (as defined in §4.11 and 4.16)

vanish coherently.

Example 4.19. Let X be the 5-th stage in a Postnikov tower for the 4-dimensional
complex projective space CP?, so 7, X =27 for 1 =2,5, and ;X = 0 otherwise.
The I-algebra 7.X is abelian (in fact, trivial — all compositions and Whitehead
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products vanish), but of course X can have no H-space structure since it is rationally
equivalent to CP? (this is the example of [BG, §3.10]).

Now we can use the simplicial space W, of Example 3.12 to define a simplicial
resolution by wedges of spheres V, — X x X as follows:

e First, we must add two 5-spheres, say Sii (1 = 1,2), to W, with €|S5'
,Y'L
representing the respective generators of 75(X x X).

e Next, we must “symmetrize” W, by adding spheres corresponding to S* C A,

in §3.5, (and its “faces”), so that

— Vo=WoV5,VS,Vel. Vel USiz e3,, where €|622 =x20 H, €|Si2 =
(a*Val)ok, 5|es}(2 = (a*Va')o K, and €|65£2 =(a?*Va'VH*VGE)o L.

—  Similarly, Vi = 50V VS5 VSiVeli Vel VS Vel Ve, where ef. Vel
are the e} Vej of Wi, and e%, Ve?, areobtained from them by replacing
al by o?, and so on, throughout the definitions, and likewise for the face
maps.

— VWV, =5V, VS;V 8% with the obvious face maps, and

— V,=sV,_ | for n>3.

Now we can add spheres in dimensions > 6 as necessary to obtain a full resolution
by wedges of spheres for X x X (e.g., using the functorial approach of [Stvl, §2]).
However, in fact we need not worry about these higher dimensional spheres, since we
see from the spectral sequence of (3.11) that, regardless of what they are, the map
IVe]] = X x X induces an isomorphism in m;(—) for ¢ < 5, so if we find an
obstruction to realizing p in dimension < 5, it cannot in fact be realized for X itself.

Conversely, we know that X cannot be given an H-space structure, so by The-
orem 4.18 we know there is some non-vanishing secondary obstruction, which must
necessarily lie in 75X, and thus correspond to a non-degenerate crossterm sphere
S < V, (by §4.16). But there are only two such, namely, S; and S! and
since they both define the same secondary operation, (namely, that of Example 4.13),
we can deduce that it does not vanish in 75X — so that rationally it contains a
generator of 75X . Of course this holds in 7,CP?, too, and in fact G.J. Porter has
calculated the higher Whitehead products in 7.CP" for all n (by other methods —
see [P3]).

In fact, the rational secondary operation of §4.14 is the only obstruction to the
rational space CP? being an H-space. In [AA, Prop. 6.9], Andrews and Arkowitz
have shown that a space X is rationally homotopy equivalent to a product of Eilenberg
Mac Lane space (equivalantly: to a rational H-space) if and only if all Whitehead
products of all orders vanish in 7, X. See also [R, §4].

5. THE TORSION WHITEHEAD PRODUCT

The obstructions to having an H-space structure described in the previous section
are not ordered linearly, so there is no “first obstruction”. From the point of view of
rational homotopy theory (§3.7), perhaps the secondary operation of §4.14 deserves
this name; but from the “periodic” point of view the first case of interest is the
following operation:
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Definition 5.1. Assume given a space X with elements « € 7, X, € 7, X such
that ka =0 = k3 for some integer k. Then Fk[o, 3] € my4,—1 X vanishes “for two
different reasons”, because

(5.2) o~ fag o] ~ [ k) ~ Kl B] ~ [ka 8] ~ [, 8] ~ %

and the choice of two corresponding nullhomotopies G, H : k[a, ] ~ % yields an
element of 7,4, X asin [Sp, §3], which we call the torsion Whitehead product of «
and 3, and denote by [[a, #]]. One may verify that k[[«, 8]] = 0, and that it has
indeterminacy

(5.3) {[/,8]] & € w1 X} + {[e, B | ' € 111 X} C mppe X

(see §5.6 or 5.8 below).

From the description of the torsion Whitehead product in simplicial terms in §5.8
below it is evident that this will be part of the obstruction ((2)) to realizing p for an
abelian Il-algebra =, X with torsion. We may call it the “first torsion obstruction”
because of the following alternative description:

5.4. M-II-algebras. Note that at least part of the above discussion could have been
carried out in a more general context, with spheres replaced by some other model
space: Let M be some space (replacing S°), and write 7(X; M) for [S'M, X]
(t>1).

Definition 5.5. A primary M -homotopy operation is a natural transformation o :
T (— M) X ... X7, (= M) — 7.(—; M), and these are in one to one correspon-
dence with homotopy classes ay € m (X" M V...V X" M; M), with the universal
relations among such operations corresponding to the relations in the composites of
maps among wedges of copies of M".

An M -1l-algebra is then a graded group {X;}2,, together with an action of the
primary M -homotopy operations on them, satisfying the universal relations (cf. [BT,

§9].
In [Ar, 2.2], Arkowitz defined a generalized Whitehead product
[—, =) [2"M, X x [¥'M, X]| — [T M A M, X] (for p,q¢ > 1),

which satisfies many of the properties of the ordinary Whitehead product (including
anti-commutativity and bilinearity). In particular, all such products vanish when X
is an H-space (cf. [Ar, Prop. 5.4]). Thus we could generalize the discussion of section
2, and in particular Proposition 2.7, to require that #.(X; M) be an abelian M-II-
algebra as a necessary condition for X to have an H-space structure, for all possible
“coefficients” M. However, this is not our apporach here (and in any case this will
not be a sufficient condition, as Example 4.19 shows - cf. [BG, §3] and [Ar, pp. 18-19]).
One could of course try to develop an obstruction theory for realizing the appropriate
map of M -1l-algebras, as in section 4; but the simplicial spaces corresponding to the

V. = X x X of §4.1(a) do not always exist for arbitrary M — see [BI6, §4].
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Remark 5.6. Note that the Hilton-Milnor Theorem (cf. [W, XI, Thm. 6.7]) allows us
to express any M -homotopy operation as a sum of iterated generalized Whitehead
products, precomposed with a map a: "M — A", ¥ M. This is not in general
as satisfactory as Hilton’s original theorem (cf. [Hi2, Thm. A]), because in general
YPM AXIM is not a suspension of M.

However, if M?(k) = S”~' U, e is the p-dimensional mod & Moore space, and k
is odd or 4|k, then

(5.7)  MP(k) A MO(k) = M= (k) v MP+(k) for p,q>3

(cf. [N, Cor. 6.6]). In particular, the generalized Whitehead product map w,, :
YMP(k) A MY(k) — MP"'(k)v SM%(k) splits up to homotopy as the sum of
w': MPYU(E) — MPT (k) v MY (k) and w” : MPTUN (k) — MPTH(E) v MOT(E).

If welet ¢ : S s Mj"'l(k) denote the inclusion of the bottom cell, it is evident
from the description in [N, §6] that w' o tpry_y : SPT71 — MPT (k) v M (k)
represents the ordinary Whitehead product [, ¢,], while (¢, V ¢,) o w” 0 t,q4-1 ¢
SP* 5 MP(k)V M?(k) represents the torsion Whitehead product [[¢,,¢,]]. (See
[Hil, §6-7] for the justification of this last statement.)

Clearly k-w"” ~ x, and the indeterminacy of [[a, ]] in (5.3) now follows from

[N, Prop. 1.4].

Thus from the point of view of the mod k homotopy groups wn.(—; M(k)), the
vanishing of all torsion Whitehead products is part of the primary condition to being
an H-space — in fact, the only new requirement, in addition to 7,.X being abelian.
Therefore, if we consider Moore spaces to be the simplest spaces after the sphere, this
perhaps justifies considering the torsion Whitehead product as the first secondary
obstruction.

5.8. a simplicial description. Let X is any space with torsion in its homotopy
groups, one can define the torsion Whitehead product as a secondary homotopy op-
eration, as in §4.11. For concreteness we exemplify this by a special case, as follows:

Example 5.9. Assume 72X = 7/2 (generated by «), and =X =0 for ¢ =1,3.

In the notation of Example 3.5, a free simplicial II-algebra resolution A, — 7.(X X

X)) is given in degrees <3 by:

(1) Ag = 521 I 522, with the obvious augmentation onto m(X x X).

(i) Ay = SR ITS% IS I S% 1S3, with dolse = 20 and dolg= = pfa’ for
/B'L ;Y'L

1 =1,2, and d0|5§ = [a!, a?].

(i11) Ay = SHILSLITSG TSR TISY, with d0|52i = dyi—p¥ i, d0|52i = ¥ g~ [s0a’, A7)

for i =1,2, and do|sz = [sea’, %] — [s0a?, B'].

(1v) Az = SH I S%. 1 S5, with d0|5iz‘ = [s03°, 513'] — ¥ s for i =1,2 and

dolsy = 2 + ([s08", 518°] — [13", 507

(v) A, =0 for n>4.
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As in Example 3.12, one can realize A, — 7.(X x X)) in simplicial dimensions
<3 by an augmented simplicial space V;, — X x X, once we make choices of:

— amap a:8* — X representing the generator of 7, X, with A:2a ~ *;
— a nullhomotopy B :e*— S*V S for [2u,ta] — [2ta,s); and
— a nullhomotopy C :e*— S?V SiVelVel for [u,ta] — [ty 1]

(Additional choices are needed to define the simplicial space, but not to describe

[[ev, a]).
As in Example 4.13 we then define ¢ : Vj — X by g|52‘ = q«, and ¢ = %
elsewhere, and see that the part of the secondary homotopy operation ((2)) associated

to S§2 C V; is defined on 9D(2) x S by godyo dilg» = [2a,0] — [a,20], with
god00d2|53 =god, od2|53 = %, and the two nullhomotopies are hlody = aoVoB

and hlody=(AVa)oVoC. Themap h:XS® — X so obtained represents the
torsion Whitehead product [[a,a]] € 74X, by definition.

One may similarly define the torsion Whitehead product [[«, 5]] in general; it is
evident that no special role is played in this description by the prime 2 (aside from the
inapplicability of Remark 5.6), or by the fact that we specialized to a = € 7 X.
That the indeterminacy for this secondary operation is as in (5.3) now follows from

[BI5, Lemma 5.12].

Example 5.10. Now let X be a space with 7 X 27/2 21, X and mX =0 for
i # 2,4. By inspecting the possible k-invariants ke : K(2/2,2) — K(2/2,5) we see
that there are eight such spaces, all with the same (trivial, and in particular abelian)
[T-algebra 7. X.

Precisely as in the beginning of Example 4.19, one may extend the simplicial space
described (implcitly) in Example 5.9 to a resolution of X x X by wedges of spheres
(at least in degrees < 4). This will require adding a non-degenerate crossterm sphere
Si C V3 (corresponding to Si C As), for which we need additional choices of
nullhomotopies — namely:

— anullhomotopy D :e*— S2VS;VS?V S, for 2([ta,ta] — [tr,te]) + ([tas 2ta] —
20, 1.]);

— a nullhomotopy F:e* — S*V S} Ve for 2.+ ([th,ta] — [t6,1a); and

— a nullhomotopy H :e* — S2V SV S?V S2Ve! for i+ [ta,ta] — o, ).

It might appear that we have another (third order) homotopy operation defined in
this situation, corresponding to Si, in ((3). However, this operation is associated
to the Il-algebra identity

2([28, o] = [2, B]) + ([20, 28] — 201, 253]) = 0,

and as such can be shown to vanish in 7,X if [[o, B]] does (essentially, because in
addition to (5.2) it involves only the group operation).

Thus we end up with a single obstruction to X being an H-space — namely, the
torsion Whitehead product [[a,a]] € 74X . For the four possible spaces X having
primitive k-invariant kg, this must vanish (since they are H-spaces, by [C, Thm. 6]);
on the other hand, in the four other cases we can deduce from the fact that X is not
an H-space that 7,X is generated by [[a,a]].
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