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Abstract

A number of spectral sequences arising in homotopy theory have
the derived functors of a graded algebraic functor as their E

2-term.
We here describe conditions for the vanishing of such derived functors,
yielding vanishing lines for the spectral sequences. We also show
that under these conditions the n-th derived functor, for large n,
depends only on low-dimensional information. The applications
we have in mind include certain cases of the Bousfield-Kan spectral
sequence of [3], the Quillen homology of a graded algebra (with
applications to the “Grothendieck spectral sequence” of [14]), and
the wedge, smash, and homology spectral sequences of [St] and [1].

1 Introduction

In [1], we described a spectral sequence converging to the homology of a
space (see §1.1.3 below), and show that its E2-term has a lower vanishing
line of slope 1/2. In this paper we show that the methods of [1] apply in a
more general context, yielding comparable vanishing lines for other spectral
sequences. Furthermore, an extension of these methods makes the E2-terms
just above these vanishing lines more accessible to computation.

1.1 vanishing lines for spectral sequences

In each case, the E2-term the spectral sequence is isomorphic to the left
derived functors of a functor T : C → A, where C is a suitable category of
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graded algebras with additional structure, and A is Abelian; the vanishing
lines follow from a general fact about the vanishing of such derived functors
(Theorem 3.1 below). In particular, we have the following results:

1.1.1 the Bousfield-Kan spectral sequence

Bousfield and Kan defined, for any prime p and suitable pointed spaces X
and Y, a spectral sequence abutting to the p-primary part of the homotopy
groups of the pointed mapping space, map⋆(X,Y) (see [3, §11,12] and
[4, ch. X, §6]).

We show that if X and Y have locally finite Z/p-homology, Y is (r−1)-
connected, and Hi(X;Z/p) = 0 for i ≥ s, then E2

n,k = 0 for n > k+s−r
(see §3.2.1 below).

1.1.2 Quillen homology of algebras

In [14, §4], H. Miller describes a “Grothendieck” spectral sequence con-
verging to the E2-term of the Bousfield-Kan spectral sequence. The main
ingredient needed to calculate its E2-term is the (graded) Quillen homology
HQ

⋆ X (cf. [16, §2]) of a suitable graded Fp-algebra X. We show that if X is
(r−1)-connected, then (HQ

n X)k = 0 for n > (k− r)/r (see §3.2.3 below).
Of course, the Quillen homology of an algebra also has independent interest.

1.1.3 the homology spectral sequence

In [1, §2], we described, for any pointed connected CW -complex X, a
spectral sequence converging to H̃⋆(X; G) for any coefficients G (see §3.2.4
below). We showed there that if X is (r − 1)-connected (r ≥ 3), then
E2

n,k = 0 for n > 2(k − r) ([1, Thm. 4.1]). This is in fact a special case
of Proposition 3.1.2 below.

1.1.4 the wedge and smash spectral sequences

Let X and Y be pointed CW -complexes, with X (r − 1)-connected
and Y (s − 1)-connected (r, s ≥ 3); in [St, §2], C. Stover describes a
spectral sequence converging to π⋆(X ∨ Y). We show that E2

n,k = 0 for
n > 2(k − (r + s)) + 3 (see §3.3.4(I) below).

Similarly, in the smash spectral sequence of [St, §7], for X and Y as
above we have E2

n,k = 0 for n > 2(k − (r + s)) + 1 (see §3.3.4(II) below).
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Both these vanishing lines are best possible, by Propositions 4.5.1 and
4.5.2 respectively.

1.2 dependence results

Using a similar result (Theorem 4.3) for relative derived functors (cf. §4.1),
we obtain “bands of dependence” for these spectral sequences, showing that,
for large n, E2

n,k depends only on low-dimensional information, in the
following sense:

1.2.1 the Bousfield-Kan spectral sequence

For X, Y and s as in §1.1.1 above, Theorem 4.3 implies that E2
n,k of the

Bousfield-Kan spectral sequence depends only on H⋆(Y;Z/p) in degrees
≤ k + s − n.

1.2.2 the homology spectral sequence

For any 2-connected space X, let X[t] denote the t-th stage in a Postnikov
tower for X; then E2

n,k of the homology spectral sequence for X (§1.1.3)

depends only on X[t] for n ≥ 2(k − t) + 1, by the same theorem.

1.2.3 the wedge and smash spectral sequences

In the wedge spectral sequence for X ∨ Y (§1.1.4), we show that if X and
Y are as in §1.1.4, then for any t > r + s, E2

n,k depends only on X[t−s]

and Y[t−r] for n ≥ 2(k − t) + 4, by Proposition 4.3.3 below.
Similarly, in the smash spectral sequence for X∧Y, E2

n,k depends only

on X[t−s] and Y[t−r] for n ≥ 2(k − t) + 2, by the same proposition.

1.3 outline

The paper is organized as follows:

In section 2 we define CRGA’s, which are essentially categories of graded
algebras, possibly with additional structure; we then define the degree of a
functor T : C → A from a CRGA into an Abelian category, and recall the
definition of derived functors in this context.
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This allows us to state the Theorem 3.1 (and its variants) in section 3,
and apply them to obtain the vanishing lines of §1.1.

In section 4 we then define relative derived functors (LnT )f for any
morphism f : X → Y in C, and state the relative vanishing theorem 4.3
for such derived functors; this yields the dependence results of §1.2.

In section 5 we review some facts about free simplical resolutions in
CRGA’s, and show how a resolution with certain connectivity properties
can be constructed for any RGA (Proposition 5.1.4 ), and how this can be
used to prove Theorem 3.1.

In section 6 we refine the construction of section 5 by introducing a certain
filtration on the resolution, and show how this can be used to prove Theorem
4.3.

In section 7 we make a sample computation, based on section 6, showing
that the vanishing lines of §1.1.4 are best possible

I wish to thank my advisor, Dan Kan, for his help and advice in writing
this paper; also Phil Hirschhorn and Haynes Miller for many useful conver-
sations.

2 Categories of regular graded algebras

In this section we describe the setting needed to state the basic vanishing
theorem 3.1. In §2.1 we define CRGA’s – essentially, categories of graded
algebras with additional structure – and give some examples in §2.2. In
§2.3 we define the degree of a functor T : C → A from such a category into
an Abelian category. In §2.4 we recall the definition of the derived functors
of T .

2.1 CRGA’s

We first define the categories to which our vanishing theorems apply:

2.1.1 definition

A category C is called a category of regular graded algebras, or CRGA, over
a ring R iff the following hold:
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(i) C is a variety of graded algebras in the sense of [11, V, §6] (or graded
universal algebras in the sense of [9]): that is, its objects, which we
shall call RGA’s , are positively graded sets X = {Xk}

∞
k=1, together

with an action of a fixed set of operators W , satisfying a set of identities
E.

(ii) Each RGA has the structure of a positively graded left R-module.

(iii) The ring R has finite left global dimension: l.g.d.(R-Mod) = d < ∞
([12, VII, §1]). In the applications we have in mind, R = Fp is a
finite field, or else R ⊆ Q – so that d = 0 or 1.

(iv) The operators W of C may include a graded product Xi ×Xj → Xi+j ;
all others (aside from the R-module operators) are required to be
unary and dimension-raising, of the form ω : Xj → Xk with k > j.

2.1.2 remark on the operators

We could in fact allow more general n-ary operators in §2.1.1(iv) – that is,
any operator ω : Xj1 × . . . × Xjn

→ Xk is permissible, as long as we have
∑n

i=1 ji ≤ k, and strict inequality if n = 1.

2.1.3 notation

For each k ≥ 1 we have the k-th degree functor Gk : C →R-Mod , which
assigns to X = {Xk}

∞
k=1 the R-module GkX = Xk. (We adopt this

somewhat cumbersome notation so that subscripts may later be reserved for
simplicial dimensions). For each X, we let : X : denote the least k ≤ ∞
such that GkX 6= 0, and say that that X is (k − 1)-connected .

2.1.4 free RGA’s

The forgetful functor C → grSet into the category of positively-graded sets
has a left adjoint F : grSet → C, which assigns to a graded set T = {Ti}

∞
i=1

the free RGA FT generated by T under the operators W , subject to the
identities E. We shall consider each element x ∈ Ti to be in Gi(FT ).

Let F denote the full subcategory of free RGA’s in C – that is, the
image of the functor F .
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2.2 examples of CRGA’s

The following are the basic examples of CRGA’s to keep in mind:

(I) For any ring R with l.g.d.(R-Mod) < ∞, the category grR-Mod of
positively graded R-modules is a CRGA.

(II) For the following graded categories C, the full subcategory of 0-connected
objects constitutes a CRGA:

1. for any prime p, the categories of (stable or unstable) modules, or
algebras, over the mod-p Steenrod algebra;

2. for R ⊂ Q, or R a field, the categories of graded (associative
or commutative) algebras over R, or

3. the category of graded Lie algebras over R, (restricted or not).

(III) The category of simply-connected Π-algebras:

Recall (cf. [1, §3] or [St, §4]) that a Π-algebra is a graded group X =
{Xk}

∞
k=1 together with an action of the primary homotopy operations

(cf. [17, ch. X]) which satisfies all the universal relations on such
operations.

In our case, in order to have a graded Abelian group, we must restrict
to the subcategory Π-Alg0 ⊂ Π-Alg of simply-connected Π-algebras
– i.e., those objects X = {Xk}

∞
k=1 for which X1 = 0.

Note that the Whitehead product does not quite satisfy the usual
graded product rule : a · b :=: a : + : b :. Thus, in order for Π-
Alg0 to satisfy condition 2.1.1(iv) of the definition we must re-index,
setting GkX = Xk−1.

2.3 cross-effects

Let C be a CRGA (or any pointed category), and T : C → A a functor into
an Abelian category. Since in C the inclusions of X or Y into the coproduct
X∐Y have retractions, in A the objects TX and TY are split summands
of T (X∐Y ). The remainder term, denoted T2(X, Y ), is called the second
cross-effect of T applied to the coproduct X∐Y . We thus have a canonical
decomposition: T (X ∐ Y ) ∼= TX ⊕ TY ⊕ T2(X, Y ).
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More generally, set T1(X) = TX, and let X = X1 ∐ X2 ∐ . . . , Xn, be
any n-fold coproduct in C. We recursively define the n-th cross-effect of
T on this coproduct, denoted Tn(X1, X2, . . . , Xn), to be the remainder
summand in T ( X1∐X2∐ . . .Xn ) after splitting off the q-fold cross-effects
(q < n) for each proper sub-coproduct Xi1 ∐ Xi2 ∐ . . .Xiq of X (cf. [5,
§4.18]).

2.3.1 cross-effect decomposition

Thus, for T : C → A as above and X =
∐n

i=1 Xi a finite coproduct in C,
we have a direct-sum cross-effect decomposition for TX:

T (
n

∐

i=1

Xi ) ∼= [
n

⊕

i=1

T1(Xi) ] ⊕ [
n

⊕

i6=j

T2(Xi, Xj) ] ⊕ . . .⊕ Tn(X1, . . .Xn)

2.3.2 degree of a functor

If C is a CRGA, and A is Abelian, we say that a functor T : C → A has
degree≤ t iff for any q ≥ 1, and any set of q objects X1, X2, . . . , Xq

in C such that
∑q

i=1 : Xi :> t, we have Tq(X1, X2, . . .Xq) = 0. (In
particular, TX = 0 if : X :> t.)

2.3.3 examples

(I) If C is a CRGA and T : C → A is a functor which preserves finite
coproducts and vanishes on t-connected objects, then T has degree t.

(II) For C as above, the t-th degree functor (§2.1.3), restricted to the
subcategory of free objects (§2.1.4) – that is, the functor Gt :F :
F →R-Mod – has degree t (by condition 2.1.1(iv) and §2.1.2).

2.4 non-Abelian derived functors

We now recall Quillen’s definition of derived functors in the context of CRGA’s
– see [15, II, §4] and [16, §2] :
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2.4.1 free simplical RGA’s

A simplicial RGA A• is called free iff for each n ≥ 0 there is a graded
set T n ⊆ An such that An is the free RGA generated by T n (§2.1.4), and
each degeneracy map sj : An → An+1 takes T n into T n+1. The sequence
T 0, T 1, . . . will be called a set of generators for A•.

2.4.2 free simplical resolutions

We define a free simplical resolution of an RGA X to be a free simplical
RGA A•, together with an augmentation d0 : A0 → X, such that for each
k ≥ 1

(a) the homotopy groups of the simplicial R-module GkA• vanish in
dimensions n ≥ 1;

(b) the augmentation induces an isomorphism π0( GkA• ) ∼= GkX.

2.4.3 definition of derived functors

Let C be a CRGA, and T : C → A a functor into an Abelian category. The
n-th left derived functor of T is the functor (LnT ) : C → A, which assigns
to the RGA X ∈ C the object (LnT )X ∼= πn( TA• ) ∈ A, where A• → X
is any free simplical resolution of X. (As usual, different resolutions yield
equivalent derived functors.)

2.4.4 remark on the domain and range of T

It is clear from definition 2.4.3 that the functor T need only be defined on
F ⊂ C to determine the derived functors LnT on all of C. Assuming that
A is an exact subcategory of the category Abgp of Abelian groups, we shall
therefore restrict attention to functors of the form T : F → Abgp.

3 Vanishing of derived functors

In this section we state our basic vanishing theorem for functors of finite
degree defined on a CRGA, and use it to obtain the vanishing lines of §1.1.

Theorem 3.1, and its variants 3.1.2 and 3.1.4, deal with (covariant)
functors T : C → Abgp; applications are given in §3.2. Bifunctors
T : C × C → Abgp are treated in §3.3.
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3.1 Theorem. Let C be a CRGA over a ring R, with l.g.d.(R-
Mod) = d, and T : F → Abgp a functor of degree k; let r > d
and N = (d + 1)(k − r) + d. Then for any (r − 1)-connected X ∈ C,
(LnT )X = 0 for n > N .

In certain cases, the vanishing point can be improved by one; for this we
need the following definition:

3.1.1 k-monomorphisms

A morphism f : X → Y of free RGA’s (§2.1.4) will be called a k-
monomorphism iff

(a) X is (k − 1)-connected;

(b) Y ∼= Z∐Z ′, where Z and Z ′ are free RGA’s and Z is (k−1)-connected,
and f factors through a map g : X → Z – i.e., f = i ◦ g, where

Z
i
→֒ Y is the inclusion;

(c) Gkg is a monomorphism.

3.1.2 Proposition. If the assumptions of Theorem 3.1 hold, and
in addition T takes k-monomorphisms in C to monomorphisms of Abelian
groups, then (LnT )X = 0 for n ≥ N .

3.1.3 improved vanishing

If a given CRGA has no unary operaors ω : Xj → Xj+1 (§2.1.1(iv)) raising
degree by exactly one, these vanishing results can be improved. We exem-
plify this principle by the category AF of connected graded algebras over a
field F (having no unary operators at all):

3.1.4 Proposition. Let C = AF , let T : F → Abgp be a functor of
degree k, and let X ∈ AF be (r − 1)-connected. Then (LnT )X = 0 for
n > (k − r)/r.
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3.1.5 connectivity of X

As we shall see in the proof (§5.4.3), one obtains analogous vanishing of
derived functors also for d ≥ r ≥ 1. For instance, if d = r = 1 and T is
of degree k, then (LnT )X = 0 for n > 2k (and (L2T )X = 0 if k = 1).
We omit the details.

3.2 applications to spectral sequences

As noted in §1.1, these results about derived functors yield vanishing lines
for the E2-terms of a number of spectral sequences:

3.2.1 the Bousfield-Kan spectral sequence

Recall that the E2-term of the Bousfield-Kan spectral sequence, converging
to the homotopy groups of the mapping space map⋆(X, Y) (§1.1.1), is
isomorphic to certain right derived functors ([3, §11,12]):

E2
n,k

∼= (Rn(HomCA(H⋆(S
kX;Z/p), −))) H⋆(Y;Z/p)

Here CA denotes the category of unstable coalgebras over the mod-p Steen-
rod algebra – which is not a CRGA. Thus Theorem 3.1 is not directly
applicable here.

However, if H⋆(X;Z/p) and H⋆(Y;Z/p) are locally finite, then (as
in [14, §5]) one can take vector space duals to replace the coalgebras by
algebras and right derived functors by left derived functors. The theorem
may then be applied to the CRGA K of algebras over the Steenrod algebra
(§2.2(II)1. ), and the functors T k = HomK(−, H⋆(SkX;Z/p) ), with
E2

n,k
∼= (LnT

k)H⋆(Y;Z/p).
In particular, if H⋆(X;Z/p) = 0 vanishes in dimensions ≥ s, then the

functor T k, which takes finite coproducts to direct sums, has degree s+k.
Thus if Y is (r − 1)-connected, Theorem 3.1 implies that E2

n,k = 0 for
n > (s + k) − r.

3.2.2 right derived functors

Alternatively, it is possible to develop a dual version of section 2, with suit-
able categories of “graded coalgebras” over R replacing our CRGA’s (§2.1.1),
a dual notion of degree (§2.3), and the usual “triple-derived” functors (cf.
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[2, §7]) replacing the left derived functors of §2.4, using injective, rather
than free, resolutions.

It should be noted that the analogue of Theorem 3.1 exists only when
R is a field, and with certain restrictions on the triple used to define the
injectives.

3.2.3 Quillen homology

Let A denote the category of connected graded algebras over Fp, and Q
the functor which takes an algebra X to the graded Fp-vector space of its
indecomposables : QX = {QkX}∞k=1 (cf. [14, §4]). Each functor Qk

clearly has degree k (§2.3.3(I)), so that if X is (r − 1)-connected, then
(LnQk)X = 0 for n > (k − r)/r, by Proposition 3.1.4.

This gives a vanishing line of slope r for the Quillen homology of X, (cf.
[16, §2], where (HQ

n X)k
∼= (LnQk)X. For an application of this fact to a

calculation in the Bousfield-Kan spectral sequence, see [10, §6].

3.2.4 Π-algebra indecomposables

For the category Π-Alg0, one also has an indecomposables functor, which
takes a Π-algebra X to the graded Abelian group QX = {QkX}∞k=1, de-
fined to be the quotient of X by the subgroup of elements which are in the
image of a “non-trivial” primary homotopy operation (see [1, §2.2.1]). The
Hurewicz spectral sequence of [1], which converges to the reduced homology
of a pointed CW -complex X, has E2

n,k
∼= (LnQk)(π⋆X).

Each functor Qk again has degree k, and also takes k-monomorphisms
to monomorphisms (definition 3.1.1). Thus if : X := r, by Proposition
3.1.2 we have (LnQk)X = 0 for n > 2(k − r). This is the vanishing line
for the Hurewicz spectral sequence of [1, Thm. 4.1].

3.3 bifunctors

There are analogous vanishing results for (covariant) bifunctors. If C is a
CRGA and (X, Y ) ∈ C × C, we write : (X, Y ) :=: X : + : Y :. With this
notation, §2.3.2 also defines the degree of T for a bifunctor F : C × C → A,
and we have:

3.3.1 Proposition. Let C be a CRGA over R, with l.g.d.(R-Mod) = d,
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and T : F × F → Abgp a functor of degree t such that T (X, 0) =
T (0, X) = 0 for all X ∈ C. Then for (X, Y ) ∈ C ×C such that : X := r
and : Y := s (r, s > d), we have (LnT )(X, Y ) = 0 for n > N =
(d + 1)(t − (r + s)) + 2d.

3.3.2 t- bimonomorphisms

If C is CRGA, we say that a morphism (f, g) : (X, Y ) → (U, V ) in F ×
F is an t-bimonomorphism iff f is an p-monomorphism and g is a q-
monomorphism (definition 3.1.1) with p + q = t.

Then we by analogy with Proposition 3.1.4 we have the following

3.3.3 Proposition. If the hypotheses of Proposition 3.3.1 hold with
d ≥ 1, and in addition T is takes t-bimonomorphisms in F×F to monomor-
phisms of Abelian groups, then (LnT )(X, Y ) = 0 for n ≥ N .

3.3.4 applications

We illustrate the results for bifunctors in the category of Π-algebras:

(I) Let pri : F×F → F be the projections on the two factors, (i = 1, 2),
and COP : F×F → F the coproduct functor: COP (X, Y ) = X∐Y .
There is then a cross-term functor CRT : F × F → Π-Alg0, and for
each k ≥ 1 there is a natural isomorphism of functors

φt : Gt◦COP →̃ (Gt◦pr1) ⊕ (Gt◦pr2) ⊕ (Gt◦CRT ) : F×F → Abgp

(This is just the canonical 2-fold cross-effect decomposition of §2.3).

Let T = Gt ◦CRT ; then T has degree t by Hilton’s theorem [7, Thm.
A], and T (X, 0) = T (0, X) = 0 for every X ∈ F by definition of
the functor CRT . Also, T takes t-bimonomorphisms in F × F to
monomorphisms of Abelian groups. Thus Proposition 3.3.3 applies to
T .

Moreover, if we set T̄ = Gt ◦ COP , then φt induces a natural
isomorphism LnT̄ ∼= LnT : Π-Alg0 × Π-Alg0 → Abgp for n ≥ 1.

This gives the vanishing line of §1.1.4 for the wedge spectral sequence,
since it has E2

n,k
∼= (LnGkCOP )(π⋆X, π⋆Y) (cf. [St, §2]).
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(II) Simliarly, the smash functor in the homotopy category of pointed spaces
∧ : hoT⋆ × hoT⋆ → hoT⋆ allows us to define a functor of Π-algebras
S : F × F → F (cf. [St, §7] and [1, §7.1.2]). Let T = Gt ◦ S :
F ×F → Abgp; then T has degree t− 1 (by Hilton’s theorem), and
Proposition 3.3.3 applies here, too. Again, this yields the vanishing
line of §1.1.4 for the smash spectral sequence.

4 Vanishing of relative derived functors

In this section we extend the results of section 3 to the relative derived
functors (LnT )f of morphisms f : X → Y , and then use these to deduce
the dependence results of §1.2.

In §4.1 we define relative derived functors (in the the general situation
of [15]), and the algebraic k-skeleton in §4.2. We then state the relative
vanishing theorem 4.3, and the version for bifunctors 4.3.3. In §4.4 we list
some applications.

4.1 relative derived functors

Let C be a category with finite limits and enough projectives, A an Abelian
category, and T : C → A any functor. We let sC denote the category
of simplicial objects over C, giving it the closed model category structure
of [15, II, §4]. As in the Abelian case, one has a relative version of the
non-Abelian derived functors defined in §2.4:

4.1.1 definition

Given a morphism f : X → Y in C, the relative derived functors (LnT )f ∈
Obj(A) are defined as follows:

For any projective resolutions A• → X, B• → Y (e.g., the free resolu-
tions of §2.4.2), there is a morphism f̂ : A• → B• in sC, unique up to
weak equivalence.

Applying the functor T gives T f̂ : TA• → TB• in sA. This factors
into

TA•
i

−→ C•
p

−→ TB• ,

with i a cofibration and p a weak equivalence fibration in sA; the
factorization is unique up to weak equivalence. We define (LnT )f to be
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πncok(i), where cok(i) is the cokernel of i in A.

4.1.2 the long exact sequence

Since cofibrations in sA are monomorphisms when A is Abelian (see [15,
ibid.]), the long exact sequence of the pair TA• →֒ C• gives rise to a natural
long exact sequence of derived functors:

(LES) . . . (LnT )X
f⋆
−→ (LnT )Y −→ (LnT )f

∂⋆−→ (Ln−1T )X . . .

4.1.3 an equivalent definition

Equivalently, one choose a factorization T f̂ = p ◦ i, with i a weak equiva-
lence cofibration and p a fibration in sA, and set (LnT )f = πn−1ker(p).
Note that when A is not Abelian, the two definitions differ!

4.1.4 a special case

Assume now that we can choose f̂ : A• → B• so that for each n ≥ 0,
the morphism f̂n : An → Bn has a retraction rn : Bn → An. Then we
know that T f̂n : TAn → TBn is a (split) monomorphism, so that f̂ is a
cofibration and thus

(LnT )f ∼= πn(TB•, TA•) = πn( TB•/TA• ) .

4.2 the algebraic k-skeleton

For any CRGA C, we have the following

4.2.1 definition

For each k ≥ 1, we can construct a new CRGA C(k) out of C by disregarding
degrees > k. There is an obvious truncation functor τk : C → C(k); if we
restrict τk to the free subcategory: τk :F : F → F (k), it has a left adjoint
λk : F (k) → F . We then define the k-skeleton functor to be the composition:
ρk = λk ◦ (τk :F) : F → F . This is equipped with a natural transformation
θk : ρk → idF , which is an isomorphism in degrees ≤ k.
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4.2.2 ρkX

Note that if we apply the 0-th derived functor L0ρk to X, the resulting
graded R-module actually has the structure of an RGA; in fact, it is just
the RGA freely generated by the elements (and satisfying the relations) of
X in degrees ≤ k.

As usual, we denote (L0ρk)X by ρkX, too, and call it the algebraic
k-skeleton of X.

We can now state the relative version of Theorem 3.1:

4.3 Theorem. Let C be a CRGA over a ring R, such that:

(a) every projective R-module is free;

(b) l.g.d.(R-Mod) = d ≤ 1.

Let T : F → Abgp be a functor of degree t. Then for any RGA X
with : X :> d, the morphism θk : ρkX → X induces an isomorphism
(LnT )( ρkX ) ∼= (LnT )X for n ≥ (d+1)(t−k)+d, and a monomorphism
for n = (d + 1)(t − k) + d − 1.

4.3.1 Corollary. For C and T as above, let X and Y be d-connected
RGA’s such that τkX ∼= τkY – that is, X and Y agree in degrees≤ k.
Then (LnT )X ∼= (LnT )Y for n ≥ (d + 1)(t − k) + d.

4.3.2 remark

In fact, the theorem has more content than the corollary, since it implies
that, for sufficiently large n, (LnT )X can be calculated using a certain
free simplicial resolution A[k]• → ρkX defined below, which is generally
more accessible than the full resolution A• → X. Once more one could
obtain better results for specific categories, such as AF (as in §3.1.3).

We have a similar result for bifunctors:

4.3.3 Proposition. Let C be a CRGA over R, with l.g.d.(R-Mod) = d,
and T : F × F → Abgp a functor of degree t, such that T (X, 0) =
T (0, X) = 0 for any X ∈ C. Then for (X, Y ) ∈ C × C such that
: X := r and : Y := s, and k ≥ r+s, (θk−s, θk−r) induces an isomorphism
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(LnT )( ρk−sX, ρk−rY ) ∼= (LnT )(X, Y ) for n ≥ (d+1)(t−k)+2d, and
a monomorphism for n = (d + 1)(t − k) + 2d − 1.

4.4 applications of relative vanishing

These results apply respectively to most of the examples of section 3 – that
is, to the HomK(−, H⋆) functor of §3.2.1, the Π-algebra indecomposables
functor of §3.2.4, and the coproduct and smash functors of §3.3.4. The
resulting “bands of dependence” for the corresponding spectral sequences
are given in §1.2. A suitable modification also applies to the graded Quillen
homology of §3.2.3.

In §7 below we show how they can be used to make specific computations
of derived functors – showing, in particular, that the vanishing lines given
above for the wedge and smash spectral sequences (§1.1.4) are best possible:

4.4.1 Proposition. If X and Y are Π-algebras such that : X := r and :
Y := s (r, s ≥ 3), and GrX ∼= GsY ∼= Z/2, then LN (GkCOP )(X, Y ) 6=
0 for N = 2(k − (r + s)) + 1 ≥ 0.

4.4.2 Proposition. For X and Y as above, and S the smash functor of
§3.3.4(II), also LN(GkS)(X, Y ) 6= 0 for N = 2(k − (r + s)) − 1 ≥ 0.

5 Resolutions of RGA’s

In this section we prove Theorem 3.1 and its variants, by constructing a
suitable free resolution A• → X for any X ∈ C. This is essentially the
construction of [1, §4].

In §5.1 we present the two basic propositions needed in the proof of the
theorem: Proposition 5.1.3 describes a general property of functors applied
to free simplical RGA’s, and Proposition 5.1.4 describes the free simplical
resolution A• → X needed for 3.1. The first is proved in §5.2, and after
some remarks on constructing resolutions in §5.3, the proof of the second is
given in §5.4.
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5.1 functors of free simplical resolutions

In order to calculate the derived functors of T : C → A evaluated on X,
any free simplical resolution A• → X may be used; we wish to describe a
particular one, for which we recall the following definitions from [1, §4.2-3]:

5.1.1 basic algebras

Given a free simplical RGA A• and a set of generators T 0, T 1, . . . as in
§2.4.1, we define the n-th basic algebra for A•, denoted Ān, to be the
sub-free RGA of An generated by the non-degenerate elements in T n.

A sequence Ā0, Ā1, . . . , Ān, . . . of basic algebras for a free simplical RGA
A• is called a CW-basis for A• (cf. [8, §5.1]) iff for each n ≥ 0 we have
dj :Ān

= 0 for 1 ≤ j ≤ n. We call the morphism d̄0 = d0 :Ān+1
: Ān+1 → An

the attaching map for Ān+1.

5.1.2 normalized chains

Recall also that for a simplicial Abelian group B•, we have the associated
normalized chain-complex {N⋆B•, ∂}, where for each n ≥ 0 we let

NnB• =
⋂

1≤j≤n

ker{dj : Bn → Bn−1} ⊂ Bn, and ∂n = d0 :NnB•
.

The homotopy groups of B• may then be computed as the homology of this
chain-complex: πnB•

∼= Hn(N⋆B•, ∂) (cf. [13, §17]).
Moreover, if DBn denotes the subgroup of Bn generated by the degen-

erate elements, we have NnB• ∩ DBn = 0 (cf. [13, Cor. 22.2]).

Using these facts, Theorem 3.1 follows immediately from the following two
propositions:

5.1.3 Proposition. Let C be a CRGA and T : F → Abgp a functor of
degree k. Given integers a, b ≥ 0, let A• be a free simplical RGA with a
CW -basis Ā0, Ā1, . . . such that for each n ≥ 0, n ≤ a : Ān : −b. Then
NnTA• ⊆ TĀn for n > ak − 2b.

5.1.4 Proposition. Let C be a CRGA over R, with l.g.d.(R-Mod) = d;
then any X ∈ C with : X := r > d has a free simplical resolution A• → X,
with a CW -basis Ā0, Ā1, . . ., such that
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(a) for each n ≥ 0 we have n ≤ (d + 1)(: Ān : −r) + d;

(b) for n = (d + 1)(k − r) + d, the attaching map d̄0 : Ān → An−1 is a
k-monomorphism (definition 3.1.1).

5.2 proof of Proposition 5.1.3

This proposition generalizes [1, Lemma 4.4.3]. In analogy with [13, p.
95(i)], any free simplicial object has the following

5.2.1 explicit description of An

If A• is a free simplical RGA with CW -basis Ā0, Ā1, . . ., then each An

may be described as a coproduct of the basic algebras:
For each n ≥ 0 and 0 ≤ λ ≤ n, let Iλ,n denote the set of all

sequences I of λ non-negative integers i1 < i2 < . . . < iλ (iλ < n), with
sI = siλ ◦ . . . si2 ◦si1 the corresponding λ-fold degeneracy . (We allow λ = 0,
with the corresponding sI = id). Then

An
∼=

∐

0≤λ≤n

∐

I∈Iλ,n

Ān−λ (1)

where for each I ∈ Iλ,n, the copy of Ān−λ indexed by I is in the image of
the λ-fold degeneracy sI , in the obvious sense.

Thus, given A• as above, for each n ≥ 0 we can write: An
∼=

∐

α∈Kn
Xα,

where each Xα is in the image of some λα-fold degeneracy (λα ≥ 0). In
this situation we have the following (cf. [1, Lemma 4.5.2]):

5.2.2 Lemma. Assume that
∐q

i=1 Xαi
is a sub-coproduct of the above

An
∼=

∐

α∈Kn
Xα, satisfying

q
∑

i=1

(n − λαi
) < n. (2)

Then for some 0 ≤ j ≤ n − 1, each Xαi
(for 1 ≤ i ≤ q) is in the image

of sj.
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5.2.3 proof of lemma

Let M be the q × n matrix with entries mij = 1 if Xαi
is in the image of

sj, and mij = 0 otherwise. Then each Xαi
is in the image of (at least)

λαi
of the n possible degeneracy maps sj : An−1 → An, so there are at

most (n−λαi
) entries of 0 in the i-th row of M . Condition (2) then implies

that there is some column of 1’s in M . �

5.2.4 completion of proof of proposition

Using the cross-effects decomposition (§2.3.1) of TAn with respect to
the coproduct (1), any γ ∈ NTAn ⊂ TAn can be written as a sum
γ =

∑

γk, with each 0 6= γk ∈ Tq(Ān−λα1
, . . . , Ān−λαq

) an element of some
q-th cross-effect summand of T . Moreover, since T has degree k, we have
∑q

i=1 : Ān−λαi
: ≤ k by definition 2.3.2.

Since n − λαi
≤ a : Ān−λαi

: −b by hypothesis, if q ≥ 2 we have
∑q

i=1 (n−λαi
) ≤ ak−2b < n. Then Lemma 5.2.2 shows that all coproduct

summands Ān−λαi
for such a γk must be in the image of some si, so γk

is degenerate. Thus any nondegenerate γk – for which necessarily q = 1
– is in TĀn, and so is itself an n-chain (by the definition of a CW -basis
in §5.1.1). Then the sum of the degenerate γk’s is also an n-chain, and so
must vanish by §5.1.2. We conclude that γ ∈ TĀn, as required. �

5.3 constructing free simplical resolutions

To prove Proposition 5.1.4, we wish to construct a suitable free simplical
resolution A• → X. First, some definitions:

5.3.1 normalized cycles

For any simplicial object A• over a CRGA C, one can define the normalized
cycles and chains RGA’s of A• in the usual way; in particular, the n-cycles
algebra of A• is the sub-RGA of An defined

ZnA• =
⋂

0≤j≤n

ker{dj : An → An−1}
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5.3.2 CW -construction

As with CW -complexes, one can construct free simplical RGA’s by an in-
ductive process, in which, given a free simplical RGA A•, one obtains a new
free simplical RGA A′

• by “attaching” a free RGA Ā in dimension n, using
an attaching map d̄0 : Ā → ZnA• ⊂ An.

In the cases we shall be interested in, the given A• will have a CW -
basis Ā0, Ā1, . . . , Ān, 0, . . .; a CW -basis for the new A′

• is then obtained
by adding Ān+1 = Ā to this as the (n + 1)-st basic algebra, and using
definition 5.1.1 and the description of §5.2.1 above.

Note that a free simplical RGA A•, with a CW -basis Ā0, Ā1, . . . and an
augmentation A0 → X, is a free simplical resolution of X (definition 2.4.2)
iff for all n ≥ −1, the attaching map d̄0 : Ān+1 → An factors through an
epimorphism d̄0 : Ān+1 →→ ZnA• (where we set Z−1A• = A−1 = X).

5.3.3 N-resolutions

If the attaching map satisfies this condition only for 0 ≤ n < N , we call
A• → X an N-resolution. Equivalently (cf. §2.4.2), for each k ≥ 1, we
have πj(GkA•) = 0 for 1 ≤ j < N , and the augmentation induces an
isomorphism π0(GkA•) ∼= GkX.

5.3.4 n-skeleta

Given a free simplical RGA A• with CW -basis Ā0, Ā1, . . ., we define
the n-skeleton of A•, denoted sknA•, to be the free simplical RGA with
CW -basis Ā0, Ā1, . . . , Ān, 0, 0, . . . (with the same ataching maps as A• in
dimensions ≤ n). For any m ≤ n, we identify (sknA•)m with Am,
and Zm(sknA•) with ZmA•. Note that the n-skeleton of a free simplical
resolution A• → X is an n-resolution.

5.4 proof of Proposition 5.1.4

The construction of the resolution A• → X of 5.1.4 is essentially the same
as that of [1, §4.4], by induction on skeleta:
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5.4.1 an inductive construction

The free simplical Π-algebra A• is constructed by induction on n ≥ −1. At
the n-th stage we assume we have an augmented free simplical RGA which
we shall denote (by a slight abuse of notation) by sknA• → X, together
with a given CW -basis Ā0, Ā1, . . . , Ān, 0, . . . such that:

(i) sknA• → X is an n-resolution of X (cf. §5.3.3);

(ii) for each m ≥ 0, we have : Ām : ≥ [m/(d + 1)] + r, (where [x]
denotes the integral part of x).

(iii) for m = (d + 1)(k − r) + d > 0, the attaching map d̄0 : Ām → Am−1

is a k-monomorphism (definition 3.1.1);

(iv) for each 0 ≤ m ≤ n, we have : ZmA• : ≥ [(m + 1)/(d + 1)] + r.

Conditions (iv) and (ii) are related by the following

5.4.2 Lemma. For any free simplical RGA A• satisfying 5.4.1(ii), we
have GtZnA• ⊂ GtĀn for n ≥ (d + 1)(t − r).

Proof: As in §2.3.3(II), the functor Gk : F →R-Mod has degree k, while
5.4.1(ii) implies that m ≤ (d+1)(: Ām : −r)+d for all m ≥ 0. Thus the
free simplical RGA A• satisfies the basic-algebras hypothesis of Proposition
5.1.3 with a = d + 1, b = r(d + 1) − d (using the fact that r > d). �

5.4.3 the case r ≤ d

For 1 ≤ r ≤ d, the lemma does not hold as stated, but one still obtains a
slope of 1/(d + 1) for the connectivities of the Ān’s, so that Proposition
5.1.3 may be applied to derived functors (see §3.1.5).

5.4.4 the inductive step

In the (n + 1)-st step, we choose the basic algebra Ān+1 as follows:

Let k = [(n+1)/(d+1)]+ r, and denote ZnA• by Z, so that : Z :≥ k
by hypothesis 5.4.1(iv).
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We choose a free R-module Pn+1 with an epimorphism Pn+1 →→ GkZ;
if GkZ is itself free, let Pn+1 = GkZ. We also make a special choice of
Pn+1 when n ≡ d − 1 modulo (d + 1) – see §5.4.6 below.

We can then choose a (k−1)-connected free RGA Bn+1 with GkBn+1
∼=

Pn+1, and a morphism Bn+1 → Z which is surjective in degree k; if
Pn+1 = 0, let Bn+1 = 0.

Let Z ′ denote the k-connected RGA obtained from Z by setting
GkZ equal to 0, and choose a k-connected free RGA Cn+1 which has an
epimorphism Cn+1 →→ Z ′. Setting Ān+1 = Bn+1 ∐ Cn+1, we obtain an
epimorphism d̄0 : Ān+1 →→ Z, yielding the required attaching map.

5.4.5 conditions 5.4.1 for n + 1

By construction we have : Ān+1 :≥: ZnA• :, so 5.4.1(ii) for n + 1 follows
from 5.4.1(iv) for n. 5.4.1(i) for (n + 1) is also clear, by §5.3.3. It
remains to verify that hypotheses 5.4.1(iii) and (iv) hold when n + 1 =
(d + 1)(k− r) + d, (since otherwise (iv) follows from (ii) by Lemma 5.4.2,
while (iii) is vacuous).

First, we show that : Zn+1A• :≥ [(n + 2)/(d + 1)] + r = k + 1:
By Lemma 5.4.2 and hypothesis 5.4.1(i), we have an exact sequence of

R-modules:

0 → GkZnA• →֒ GkĀn
Gk d̄0

−→ GkĀn−1
Gkd̄0

−→ . . .

. . . → GkĀn+1−d → GkZn−dA• → 0 . (3)

However, since l.g.d.(R-Mod) = d, and each of GkĀn+1−d, . . . , GkĀn

is a projective R-module – so is P = GkZnA•.

5.4.6 remark on projectives

In fact, by revising the last two steps in the construction, we can actually
assume that P = GkZnA• is a free R-module. For d = 0 this is obvious,
while for d > 0, we can use the following “Eilenberg trick”:

For some R-module Q, P ⊕ Q = F is a free R-module, so that the
R-module F ′ = (Q ⊕ P ) ⊕ (Q ⊕ P ) ⊕ . . . is also free, and thus

P ⊕ F ′ ∼= (P ⊕ Q) ⊕ (P ⊕ Q) ⊕ . . . ∼= F ⊕ F ⊕ . . .

is free, too.
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Therefore, retracing our steps to the n-th stage in the induction, we now
replace our previous choice of the free R-module Pn →→ GkZn−1A• in §5.4.4
above by P ′

n = Pn ⊕F ′, with d0 :F ′= 0, and extend to a suitable free RGA
B′, and so on, to yield the “revised” n-th basic algebra Ā′

n and n-skeleton
sknA

′
•.

All requirements of §5.4.1 are still satisfied – but now GkĀ
′
n
∼= Pn ⊕F ′,

so that the “revised” n-cycles object ZnA′
•, in degree k, is

GkZnA′
•
∼= ker{Gkd̄

′
0 : GkĀ

′
n → GkAn−1}

∼= ker(Gkd̄0 :Pn
) ⊕ ker(Gkd̄0 :F ′) ∼= GkZnA• ⊕ F ′ ∼= P ⊕ F ′

which is a free R-module. Thus in the (n + 1)-st inductive step of §5.4.4,
we choose the revised P ′

n+1 = P ⊕ F ′, so that Gkd̄0 : GkĀ
′
n+1 → GkA

′
n is

a monomorphism.

5.4.7 completion of proof

Assuming that skn+1A• has in fact been constructed as in §5.4.6, we now
find that : Zn+1A• : ≥ k + 1, and that d̄0 : Ān+1 → An is a (k + 1)-
monomorphism, so that 5.4.1(iii) and (iv) hold for (n+1). This completes
the proof of Proposition 5.1.4. �

5.4.8 proof of Proposition 3.1.2

Proposition 3.1.2 follows essentially from from Proposition 5.1.4(b), by
§5.1.2, since this implies that for n = (d + 1)(k − r) + 1, the relevant
part of the attaching map d̄0 : Ān → An−1, (i.e., its restriction to B, in the
notation of §5.4.4), is a k-monomorphism.

5.4.9 remark on the CRGA

In general, one can only improve the connectivity of the Ān’s by one in each
set of (d+1) induction steps. However, some particular CRGA’s, we may
have no non-trivial operations in a certain range on any sufficiently connected
object. In this situation, the choice of B in §5.4.4 does not interfere with
an “efficient” choice for C.

For example, the category of graded algebras over a field (§3.1.3) has the
property that any (k − 1)-connected object is just a graded vector space in
degrees < 2k. Therefore, in §5.4.4, if : Ān := k, we can choose Ān+1 = B∐
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C so that the attaching map d̄0 : Ān+1 →→ ZnA• is in fact a monomorphism
in degrees < 2k (rather than just in degree k). This is the only modification
needed to prove Proposition 3.1.4.

6 a filtered resolution

In this section we prove Theorem 4.3 by showing that the simplicial resolution
A• → X of section 5 can be filtered by resolutions of the algebraic k-skeleta
(cf. §4.2) of X.

In §6.1 we state an analogue of Proposition 5.1.4 describing this resolu-
tion; the construction is given in §6.2.

6.1 free inclusions

If C is a CRGA, a morphism f : A → B is is called a free inclusion, written
A →֒ B, iff A and B are free RGA’s and there is a morphism g : C → B
which, together with f , induces an isomorphism A ∐ C ∼= B. We call C
a coproduct complement of A →֒ B.

If A• and B• are free simplical RGA’s, with CW -bases Ā0, Ā1, . . .
and B̄0, B̄1, . . . , respectively, we call a morphism f : A• → B• a free
inclusion iff f is induced by a sequence of free inclusions f̄n : Ān →֒ B̄n

for n ≥ 0.

With this definition, and a slight additional assumption on the ring R,
we have the following refinement of Proposition 5.1.4:

6.1.1 Proposition. Let C be a CRGA over a ring R such that every
projective R-module is free, and l.g.d.(R-Mod) = d ≤ 1. Then every
X ∈ C with : X := r > d has a free simplical resolution A• → X, filtered
by a sequence of free inclusions

0 = A[0]• →֒ A[1]• →֒ A[2]• →֒ . . . A[k]• →֒ . . . A•

together with a compatible sequence of augmentation maps A[k]0 → ρkX,
satisfying the following assumptions:

(i) A[k]• → ρkX is a free simplicial resolution;

(ii) for each n ≥ 0, we have : Ān :≥ [n/(d + 1)] + r (as in §5.4.1(ii));
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(iii) for each k ≥ r, A[k]• has a CW -basis Ā[k]0, Ā[k]1, . . ., such
that for each n ≥ 0, the free inclusion Ā[k]n →֒ Ān induces an
isomorphism GtĀ[k]n ∼= GtĀn for n ≥ (d + 1)(t − k) + d.

We also need a relative version of Proposition 5.1.3, as follows:

6.1.2 Proposition. Let C be a CRGA and T : F → Abgp a functor of
degree t. Given integers a, b ≥ 0, let A• →֒ B• be a free inclusion of free
simplical RGA’s with CW -bases Ā0, Ā1, . . . and B̄0, B̄1, . . . , respectively,
such that for each m ≥ 0 we have B̄m

∼= Ām ∐ C̄m, m ≤ a : Ām :, and
m ≤ a : C̄m : −b. Then NnTB• ⊆ TAn for n > ak − b.

Proof: As in §5.2.1, write Bn
∼=

∐

0≤λ≤n

∐

I∈Iλ,n
(Ān−λ ∐ C̄n−λ); then

use Lemma 5.2.2 and the argument of §5.2.4. �

Theorem 4.3 now follows directly from Propostion 6.1.1, using Proposition
6.1.2 (and §4.1.4) with a = d + 1 and b = (d + 1)k − d + 1 to deduce
vanishing of the relative derived functors of ρkX → X, and then using the
(LES) of §4.1.2. Similarly for Proposition 4.3.3.

6.2 constructing the filtered resolution

The construction of the filtered resolution is similar to that of §5.4, but here
we proceed by double induction:

For each n, we want to construct sknA[k]• for all k’s, by induction on
n ≥ 0. This is done in turn by induction on k ≥ 0, where for each k it
suffices to choose the n-th basic algebra Ā[k]n, together with its attaching
map d̄0 : Ā[k]n → A[k]n−1 (cf. §5.1.1).

6.2.1 n-induction hypotheses

In the n-th stage of the induction, we shall assume that for each j ≥ 0 we
have chosen the CW -basis Ā[j]0, Ā[j]1, . . . , Ā[j]n, with suitable attaching
maps, and have thus constructed the n-skeleton sknA[j]• so that the
following induction hypotheses are satisfied for all 0 ≤ m ≤ n and j ≥ 1:
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P (m, j)















(a) skmA[j]• → ρjX is an m-resolution;
(b) GtĀ[j]m = GtĀ[j − 1]m if t ≤ [(m − 1)/(d + 1)] + j − d
(c) GtZmA[j]• ⊆ GtĀ[j − 1]m if t ≤ [m/(d + 1)] + j − d
(d) : Ām :≥ [m/(d + 1)] + r, as in §5.4.1(ii).

(using the conventions of §5.3.4).

6.2.2 the case n ≤ 1

We begin the induction at n = −1 with A−1 = X as before, and
A[k]−1 = ρkX for all k ≥ 0. Note that if X is an RGA and A• → X is
any free resolution, then by definition 4.2.2 we have:

ρkX = (L0ρk)X ∼= ρkA0/im(d0 :N(ρkA1)) = ρkĀ0/im(d̄0 :ρkĀ1
).

Thus, for P (1, k)(a) to be satisfied it suffices to choose Ā[k]n (n = 0, 1)
so that Ā[k]n ∼= ρkĀ[k]n and the following sequence of graded R-modules is
exact in degrees ≤ k:

0 → ker(d̄0) → Ā[k]1
d̄0−→ Ā[k]0 → X → 0.

Now assume that d = 0. In this case, if we let ηk : ρkX → ρk+1X be
the obvious natural morphism, we can write

Gk+1X = Gk+1ρk+1X ∼= Gk+1 im(ηk) ⊕ F,

where F is necessarily free. We can then ensure that GkĀ[k]1 ⊆ GkĀ[k − 1]1
– i.e., that P (1, k)(b) holds.

6.2.3 the n, k stage

In the n-th stage, we choose Ā[k]n+1 by induction on k ≥ 0, (starting
with Ā[0]n+1 = 0):

We assume that we already have Ā[j]n+1 satisfying the hypotheses P (n+
1, j) for 0 ≤ j ≤ k; we now wish to choose Ā[k + 1]n+1 so that hypotheses
P (n + 1, k + 1) are satisfied, too. First, we need the following
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6.2.4 notation for skeleta

Let A be the free RGA generated by the graded set {Ti}
∞
i=1 (cf. §2.1.4); then

its algebraic k-skeleton ρkA (definition §4.2.1) is isomorphic to the free RGA
generated by {Ti}

k
i=1. Moreover, there is a free inclusion θk : ρkA →֒ A,

with A ∼= ρkA∐A′ and A′ ∼= cok(θk) the free RGA generated by {Ti}
∞
i=k+1.

Now, the main ingredients needed in the construction of Ā[k + 1]n+1 are
the following two lemmas:

6.2.5 Lemma. Given t ≥ k ≥ r, let n = (d + 1)(t − k) − 1, and
assume P (m, j) holds for all j ≥ 1 and m ≤ n; then Gt(ZnA[k + 1]•) ∼=
Gt(Znρt−1A[k]•) ⊕ F , where F is a free R-module.

Proof: Let us denote sknρt−1A[k]• by B•, and sknA[k + 1]• by C•, with
CW -bases B̄0, . . . , B̄n and C̄0, . . . , C̄n respectively. We want GtZnC•

∼=
GtZnB• ⊕F . Since B• →֒ C• is an inclusion of simplicial RGA’s, ZnB• →
ZnC• is a monomorphism, and the lemma is thus trivial for d = 0 (including
the case n = −1, by §6.2.2). Assume therefore that d = 1 and n =
2(t − k) − 1.

For each 0 ≤ m ≤ n, let B̄′
m = cok{θt−1 : B̄m →֒ Ā[k]m}, so that

Ā[k]m ∼= B̄m ∐ B̄′
m and : B̄′

m :≥ t. Similarly, we have free RGA’s D̄m such
that C̄m

∼= Ā[k]m ∐ D̄m.
As in §5.2.1, we have

Cn
∼=

∐

0≤λ≤n

∐

I∈Iλ,n

(B̄n−λ ∐ B̄′
n−λ ∐ D̄n−λ). (4)

But P (n, k)(b) implies that : D̄n :≥ t, so if we consider the sub-coproduct

C ′ = D̄n ∐
∐

0≤λ≤n

∐

I∈Iλ,n

B̄′
n−λ,

we see : C ′ :≥ t. Thus the R-module GtCn has a free summand H ∼= GtC
′.

Let i : GtZnC• → GtCn denote the inclusion, and π : GtCn → H
the projection. Since H is a free R-module, F = im(π ◦ i) ⊂ H is free,
too (by the assumptions on R in Proposition 6.1.1). Therefore, if we let
K = ker(π ◦ i), we have a split short exact sequence:

0 → K → GtZnC•
π◦i
−→ F → 0,
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and so GtZnC•
∼= K ⊕ F . Since GtBn ⊆ GtCn ∩ ker(π), we have

GtZnB• ⊆ K = GtZnC• ∩ ker(π). We now show the converse inclusion
also holds:

Take the cross-effect decomposition (§2.3.1) of GtCn with respect to the
coproduct (4); then we can write any γ ∈ GtZnC• as a sum γ =

∑

γj ,
with each γj an element of some cross-effect summand.

If γ 6∈ GtBn, the same is true of some non-degenerate summand γj .
Note that by P (m, k)(d) we have 2 : B̄m :≥ m + 2r− 1, while P (m, k)(b)
implies 2 : D̄m :≥ m + 2k, and by construction : B̄′

m :≥ t for all m. A
counting argument as in §5.2.4 then shows that either γj ∈ GtD̄n, or else
γj ∈ GtB̄

′
n−λ for some λ, so that in any case π(γj) 6= 0 and thus π(γ) 6= 0.

This shows K ⊆ GtZnB•, which completes the proof of the lemma. �

6.2.6 Corollary. In this situation we can choose D̄n+1 and the attaching
map d̄0 : Ā[k + 1]n+1 → A[k + 1]n so that d̄0 :D̄n+1

is a t-monomorphism
(definition 3.1.1). �

Note that hypothesis P (n, j)(c) holding for all j ≥ 0 allows us to
choose all Ā[j]n+1 so that hypotheses (a) and (b) are satisfied. Thus the
following analogue of Lemma 5.4.2 completes the proof of Proposition 6.1.1:

6.2.7 Lemma. Assume that the induction hypotheses of §6.2.1 are
satisfied for n, and that Corollary 6.2.6 has been applied wherever relevant.
If we choose Ā[k + 1]n+1 so that P (n + 1, k + 1)(a) and (b) are satisfied,
then P (n + 1, k + 1)(c) holds, too.

Proof: Similar to the proof of Proposition 6.1.2. �

6.2.8 an additional property

In fact, the proof of Lemma 6.2.7 allows us to construct A[k]• → ρkX so as
to satisfy also the following requirement:

For t ≥ k ≥ r and n = (d+1)(t−k)−1 ≥ 0, GtZnA[k]• ⊆ Gtρt−1A[k]n.

This will be useful in the construction of the following section.
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6.2.9 a spectral sequence

The filtration on the resolution gives rise to a natural spectral sequence
converging to the derived functors of any functor T : F → Abgp into a
category of Abelian groups; its E1-term consists of the relative derived
functors of the natural transformations ηk : ρk → ρk+1 of §6.2.2. It is not
clear if this is of any use, though we have vanishing results for this spectral
sequence, too.

7 A calculation

In this section we restrict attention to the category Π-Alg0 of simply-
connected Π-algebras (see §2.2(III)), and apply the relative vanishing results
of section 4 to make a calculation related to the derived functors of the
coproduct COP (cf. §3.3.4(II)), proving Propositions 4.4.1 and 4.4.2.

7.1 constructing a resolution

We first describe the first filtration on a certain free simplical resolution:

7.1.1 remark on notation

Using the obvious equvalence of categories (cf. [1, §7.1.2]), we may describe
free Π-algebras and morphisms between them in terms of (wedges of) spheres
and homotopy classes of maps between them:

If Sk is the k-sphere, we shall write S[k − 1] = π⋆(S
k) for the

corresponding free Π-algebra. (We call attention once more to the shift in
indexing of §2.2(III): thus Gk−1S[k−1] = πkS

k.) For k > 2 we denote the
morphism corresponding to the suspended Hopf map by ηk : S[k] → S[k−1];
likewise the corresponding element in GkS[k − 1] ∼= πk+1S

k. Similarly,
[a, b] ∈ Gp+qX will denote the Whitehead product of a ∈ GpX, b ∈ GqX.

We now have the following

7.1.2 Lemma. Let X be a Π-algebra with : X := r ≥ 2 and GrX ∼= Z/2.
Then there is a free simplical resolution A[r]• → ρrX, with CW -basis
Ā[r]0, Ā[r]1, . . . such that for t ≥ r and n = 2(t − r) we have:
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(a) : Ā[r]n := t, and there is a single “(t + 1)-sphere” in Ā[r]n, which
we denote S[t]n;

(b) : Ā[r]n+1 := t, with a single S[t]n+1 in Ā[r]n+1;

(c) the attaching map d̄0 : Ā[r]n+1 → A[r]n, restricted to S[t]n+1, is a
degree 2 map S[t]n+1 → S[t]n →֒ A[r]n.

(d) the attaching map d̄0 : Ā[r]n+2 → A[r]n+1, restricted to S[t + 1]n+2,
is a suspended Hopf map ηt : S[t + 1]n+2 → S[t]n+1 →֒ A[r]n+1.

Proof: This is a straightforward calculation based on Proposition 6.1.1,
using remark 6.2.8 (compare [1, Prop. 5.2.1]). �

7.2 non-vanishing of LnCOP

We now use Lemma 7.1.2 to show that the derived functors of COP are
non-zero just above the vanishing line provided by Proposition 3.3.3 (see
§1.1.4), by proving Proposition 4.4.1, which we state again:

7.2.1 Proposition. Let X and Y be Π-algebras with : X := r and
: Y := s (r, s ≥ 3) and GrX ∼= GsY ∼= Z/2; let k > r + s. Then
(LνGkCOP )(X, Y ) 6= 0 for ν = 2(k − r − s) + 1.

Proof: Fix k ≥ r + s, and let ν = 2(k − (r + s)) + 1 as above.

I. By Proposition 4.3.3, it suffices to show (LνGkCOP )(ρrX, ρsY ) 6= 0.
Let Â• = A[r]• and B̂• = B[s]• be the resolutions of Lemma 7.1.2
for ρrX and ρsY respectively, and C• = Â• ∐ B̂• the free
simplical Π-algebra which is their dimensionwise coproduct. We must
show that πν(GkC•) 6= 0.

II. For any simplicial Abelian group F•, let N⋆F• denote as usual the
normalized chain-complex (§5.1.2); then for each r ≤ i ≤ k − s, the
shuffle map of [6, §5] provides a chain homomorphism

N⋆GiÂ• ⊗ N⋆Gk−iB̂•
∇

−→ N⋆( GiÂ• ⊗ Gk−iB̂• )

Also, since Â• and B̂• are simplicial Π-algebras, their face maps
commute with the operations, and so the Whitehead product maps

GiÂn ⊗ Gk−iB̂n
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for each n ≥ 0, induce a chain map

W : N⋆( GiÂ• ⊗ Gk−iB̂• ) → N⋆GkC•

III. Now for each m ≥ 0, let i = [m/2] + r and choose αm ∈ GiÂm to
be a generator of GiS[i]m ∼= Z (in the notation of Lemma 7.1.2), with
d0α2p+1 = 2α2p for all p. Similarly, for n ≥ 0 let j = [n/2]+ s and

let βn ∈ GjB̂n be a generator of GjS[j]n, again with d0β2p+1 = 2β2p.

Then in the chain complex
⊕k−s

i=r+1 N⋆GiÂ• ⊗ N⋆Gk−iB̂•, let

e =

k−s
∑

i=r+1

( α2(i−r) ⊗ β2(k−i−s)+1 − α2(i−r)+1 ⊗ β2(k−i−s) ).

This is clearly a normalized chain, so we may define γ = (W ◦∇)(e) in
NNGkC•. Moreover, one may verify that d0γ = 0, by using Lemma
7.1.2(c)&(d), the fact that 2ηj = 0, and the identity (cf. [17, ch. X,
Thm 8.18]):

[a ◦ ηi, b] = [a, b ◦ ηk−i] = [a, b] ◦ ηk

(for : a := i, : b := k − i both ≥ 3). Thus γ is an ν-cycle.

IV. We now show that γ does not bound:

Lemma 5.2.2 implies that any non-degenerate element in Nν+1(GkC•)
is a sum of Whitehead products of the form w = [sIα2q+1, sJβν−2q],
where I = (iν−2q, . . . , i0) and J = (j2q, . . . , j0) are as in §5.2.1.
In fact, the argument of §5.2.4 implies that the pair (I, J) forms a
(ν − 2q, 2q + 1)-shuffle on (0, 1, . . . , ν).

Thus w.l.o.g. we may assume j0 = 0, and so d0w = 2[sĪα2q, sJ̄βν−2q]
(for suitable multi-indices (Ī , J̄)). On the other hand, for l ≥ 1 we
see that dlw, if non-zero, is of the form [sI′α2q+1, sJ ′βν−2q], where
(I ′, J ′) is now a certain (ν − 2q − 1, 2q)-shuffle on (0, 1, . . . , ν − 2).

We conclude that all iterated face maps of w are sums of elements of
one of two possible forms: either 2[a, b], for some a, b; or else
[sIα2p+1, sJβ2q+1] – where both α and β have odd index. Since γ
cannot be expressed as a sum of (degeneracies of) elements of these
forms, we have shown that γ does not bound in N⋆GkC•. �
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7.2.2 the smash product

An identical argument works for the smash product of §3.3.4(II), proving
Proposition 4.4.2.
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