CW SIMPLICIAL RESOLUTIONS OF SPACES
WITH AN APPLICATION TO LOOP SPACES

DAVID BLANC

ABsTRACT. We show how a certain type of CW simplicial resolutions of spaces by
wedges of spheres may be constructed, and how such resolutions yield an obstruction
theory for a given space to be a loop space.

1. INTRODUCTION

A simplicial resolution of a space X by wedges of spheres is a simplicial space W,
such that (a) each space W, is homotopy equivalent to a wedge of spheres, and (b)
for each k > 1, the augmented simplicial group 7, W, — m:X is acyclic (see §3.5
below). Such resolutions, first constructed by Chris Stover in [St, §2], are dual to the
“unstable Adams resolutions” of [BK, I, §2], and have a number of applications: see
§3.10 below and [St, DKSS, DKS1, B1, B5, B6, B7].

However, the Stover construction yields very large resolutions, which do not lend
themselves readily to computation, and no other construction was hitherto available.
In particular, it was not clear whether one could find minimal resolutions of this type.
The purpose of this note is to show that any space X has simplicial resolutions by
wedges of spheres, which may be constructed from purely algebraic data, consisting
of an (arbitrary) simplicial resolution of 7.X as a ll-algebra — that is, as a graded
group with an action on the primary homotopy operations on it (see §3.1 below):

Theorem A. FEvery free simplicial 11-algebra resolution of a realizable 11-algebra =, X
is realizable topologically as a simplicial resolution by wedges of spheres.

and in fact such resolutions can be given a convenient “CW structure” (§3.15). There
is an analogous result for maps (Theorem 3.24).

Since no such resolution of a non-realizable Il-algebra can be realized (see §3.16
below), this completely determines which free simplicial II-algebra resolutions are re-
alizable.

The Theorem implies that in the spectral sequences of [St, B1, DKSS] we can work
with minimal resolutions, and allows us to identify the higher homotopy operations of
[B5, B1, B7] as lying in appropriate cohomolgy groups (compare [B6, 4.17] and [BS,
86]). A generalization of Theorem A to other model categories appears in [B9].

As an application of such CW resolutions, we describe an obstruction theory for de-
ciding whether a given space X is a loop space, in terms of higher homotopy operations.
One such theory was given in [B7], but the present approach does not require a given
H-space structure on X, and may be adapted also to the existence of A, -structures
(and thus subsumes [B6]). It is summarized in
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Theorem B. A space X with trivial Whitehead products is homotopy equivalent to a
loop space if and only if the higher homotopy operations of §5.10 below vanish coher-
ently.

1.1. Notation and conventions. Gp will denote the category of groups, 7 that of
topological spaces, and 7, that of pointed topological spaces with base-point preserving
maps. The full subcategory of 0-connected spaces will be denoted by 7. C 7.. The
category of simplical sets will be denoted by & and that of pointed simplicial sets
by S.; we shall use boldface letters: X, S" ... to denote objects in any of these
four categories. If f: X — Y is a map in one of these categories, we denote by
fg X — 1Y the induced map in the homotopy groups.

1.2. Organization. In section 2 we review some background on simplicial objects and
bisimplicial groups, and in section 3 we recall some facts on Il-algebras, and prove our
main results on CW resolutions of spaces by wedges of spheres: Theorem A (=Theorem
3.20) and Theorem 3.24. In section 4 we define a certain cosimplicial simplicial space
up-to-homotopy, which can be rectified if and only if X is a loop space. In section 5 we
construct a certain collection of face-codegeneracy polyhedra, which are used to define
the higher homotopy operations refered to in Theorem B (=Theorem 5.12). We also
show how the theorem may be used in reverse to calculate a certain tertiary operation
in 7.S7.

1.3. Acknowledgements. 1 would like to thank the referee for his or her comments (see
in particular §3.18 below).

2. SIMPLICIAL OBJECTS

We first provide some definitions and facts on simplicial objects:

2.1. Definition. Let A denote the category of ordered sequences n = (0,1,...,n)
(n € N), with order-preserving maps. A simplicial object over a category C is a functor
X : A? — C, usually written X,, which may be described explicitly as a sequence
of objects {X;}:2, in C, equipped with face maps d¥ : X, — X;_; and degeneracies
3? : Xp — Xpy1 (usually written simply d;, s;, for 0 < 4,5 < k), satisfying the
usual simplicial identities ([Ma, §1.1]). If [ = (¢1,¢2,...,7,) is some multi-index, we
write dy for d; od;, 0---0d;, with dy:=1d; and similarly for s;. An augmented
simplicial object is one equipped with an augmentation ¢ : Xo — Y (for Y € C),
with Edo = Edl.

The category of simplicial objects over C is denoted by sC. We write s(,)C for the
category n-simplicial objects over C (that is, objects of the form {X;}7_,, with the
relevant face maps and degeneracies), and denote the truncation functor sC — s;,)C
by 7,.

ir?

For technical convenience in the next two sections we shall be working mainly in the
category of simplicial groups, denoted by G (rather than sGp); objects in G will be
denoted by capital letters X, Y, and so on. A simplicial object X, = (Xo, X1,...)
in sG is thus a bisimplicial group, which has an external simplicial dimension (the n
in X, €G), as well as the internal simplicial dimension k (inside G), which we shall
denote by (X)), if necessary.
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2.2. Simplicial sets and groups. The standard n simplex in § is denoted by A[n],
generated by o, € A[n],. A[n] denotes the sub-object of Aln] generated by

dio, (0 < ¢ <n). The simplicial n-sphere is S™ := A[n]/é[n], and the n-disk is
D" := CS" L.
Let F':8 — G denote the (dimensionwise) free group functor of [Mi2, §2], and

G : S — G be Kan’s simplicial loop functor (cf. [Ma, Def. 26.3]), with W :G — S the
Eilenberg-Mac Lane classifying space functor (cf. [Ma, §21]). Recall thatif S:7 — S

is the singular set functor and || —|: & — 7 the geometric realization functor (see
[Ma, §1,14]), then the adjoint pairs of functors
s @
2. T = =
(2:3) Il & w g

induce isomorphisms of the corresponding homotopy categories (see [Q1, I, §5]), so
that for the purposes of homotopy theory we can work in G rather than 7.

2.4. Definition. In particular, 8" := FS"' € G for n > 1 (and 8°:=GS° for
n =0) will be called the n-dimensional G-sphere, in as much as [8",GX]g = 7, X =
[S",X] for any Kan complex X € &. Similarly, D" := FD"™' will be called the

n-dimensional G-disk.

2.5. Definition. In any complete category C, the matching object functor M : S x
sC — C, written MaX, for a (finite) simplicial set A € & and X, € sC,
is defined by requiring: (a) MapXe := X, and (b) if A = colim; A;, then
MaX, = lim; Ma, X, (see [DKS2, §2.1]). In particular, if A% is the subcomplex of

Aln] generated by the last (n —k+1) faces (dyo,,...,d,0,), we write M*X, for
Max Xo: explicitly,

(2.6) MSX. ={(xp, ..y 2n) € (X)) | diz; = d;_y2; forall k <i<j<n}

and the map &% : X, — MFX, induced by the inclusion A% < A[n] is defined
§8(x) = (dgz,...,d,x). The original matching object of [BK, X,§4.5] was MP°X, =
MA[ ]X., which we shall further abbreviate to M, X,; each face map dj, : X,,11 — X,

factors through 6, := 6%, See also [Hi, XVII, 87.17].

2.7. Remark. Notethat for X € G and A € § we have M X = Homg(FA,X) € Gp
(cf. §2.2), so for X, € sG also (MaX), & Homg(FA,(X,){) in each simplicial

dimension k.

2.8. Definition. X, € sG is called fibrant if each of the maps ¢, : X, — M, X,
(n > 0) is a fibration in G (that is, a surjection onto the identity component — see
[Q1, II, 3.8]). This is just the condition for fibrancy in the Reedy model category, (see
[R]), as well as in that of [DKS1], but we shall not make explicit use of either.

By analogy with Moore’s normalized chains (cf. [Ma, 17.3]) we have:

2.9. Definition. Given X, € sG, we define the n-cycles object of X,, written 7, X,,
to be the fiber of ¢, : X, — M, X,, so Z,X,={x€ X, | diz =0fori=0,...,n}
(cf. [Q1, 1,§2]). Of course, this definition really makes sense only when X, is fibrant
(§2.8). Similarly, the n-chains object of X,, written C,X,, is defined to be the
fiber of &!: X, — M!X,.
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If X, € sG is fibrant, the map dj = dolc,x,: CnXe — Z,_1Xs is the pullback of
0, X, = M, X, along the inclusion ¢: Z,_1 X, — M, X, (where «(z) = (2,0,...,0)),

so dy is a fibration (in G), fitting into a fibration sequence

(2.10) Z.X, 20X, B 7,0 X,,

2.11. Proposition. For any fibrant X, € sC, the inclusion ¢:C, X, — X,, induces
an isomorphism , 1 T.Cp, Xy = Cy (7. X)) for each n > 0.

Proof. (a) First note that if j : A — B is a trivial cofibration in &, then j* :
MpX, — MaX, has a natural section r: MaX, — MpX, (with j*or =1id) for
any X, € sG: This is because by remark 2.7, (MaX,)r = Homg(F A, (X,)i"") for
A € S; since FA is fibrant in G, we can choose a left inverse p: FFB — FA for
Fj:FA — FB, so j*: (MpX,)i" — (MaX,){™ has a right inverse p*, which is
natural in (X,){"; so these maps p* fit together to yield the required map r.

This need not be true in general if j is not a weak equivalence, as the example of

M; X, — MPX, shows.
(b) Given 5 € C,7,Xe represented by h: 8" — X,, with dyh ~0 (1 <k <n),

consider the diagram:

in which j* is a fibration by (a) if & > 1, so the lower left-hand square is in fact a
homotopy pullback square (see [Mat, §1]). By descending inductionon 1 <k <n-—1,
(starting with 8" = d,,), we may assume 6**loh : 8™ — M*!X, is nullhomotopic in
C,asis djoh, sotheinduced pullback map 6% oh : §™ — MFX,. is also nullhomotopic
by the universal property. We conclude that ¢! oh ~ 0, and since §!: X, — M!'X,
is a fibration by (a), we can choose h:8™ — X, so that 6 h =0. Thus & lifts to
C. X, = Fib(8}), and ¢, is surjective.

(c) Finally, the long exact sequence in homotopy for the fibration sequence

O X S X, 25 MUX,

implies that ¢y : 7.0, Xe — 7. X,, is monic, so ¢ : m.Cp Xy — Cp(m.X,) is, too. O
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2.12. Definition. The dual construction to that of §2.5 yields the colimit
LXei= J[ Xaoa/~,

0<i<n—1
where for any = € X,_, and 0<:<j3<n—1 weset s;z in the ¢-th copy of
X,—1 equivalent under ~ to s;x in the (j+1)-st copy of X,—1. L,X, has sometimes
been called the “n-th latching object” of X,. The map o, : L, X, — X, is defined

0,7 () = six, where x(; isin the i-th copy of X, _;.
3. II-ALGEBRAS AND RESOLUTIONS

In this section we recall some definitions and prove our main results on Il-algebras
and resolutions:

3.1. Definition. A Il-algebra is a graded group G. = {G;};2, (abelian in degrees
> 1), together with an action on G, of the primary homotopy operations (i.e.,
compositions and Whitehead products, including the “mi-action” of Gy on the higher
G's, as in [W, X, §7]), satisfying the usual universal identities. See [B3, §2.1] for a
more explicit description. These are algebraic models of the homotopy groups 7.X
of a space (or Kan complex) X, in the same way that an algebra over the Steenrod
algebra models its cohomology ring. The category of Il-algebras is denoted by II-Alg.
We say that a space (or Kan complex, or simplicial group) X realizes an (abstract)
[I-algebra G, if there is an isomorphism of Il-algebras G, = 7.X. (There may
be non-homotopy equivalent spaces realizing the same Il-algebra — cf. [B5, §7.18]).
Similarly, an abstract morphism of Il-algebras ¢ : 7. X — 7.Y (between realizable
[I-algebras) is realizable if there is a map f: X — Y such that 7.f = ¢.

3.2. Definition. The free ll-algebra generated by a graded set T, = {Tx}72, is 7. W,
where W =\/[2 \/ SfT) (and we identify 7 € Ty with the generator of =W
representing the inclusion SF, — W).

It we let F C II-Alg denote the full subcategory of free Il-algebras, and Il the
homotopy category of wedges of spheres (inside hoZ. or hoS. — or equivalently, the
homotopy category of coproducts of G-spheres in hoG), then the functor =, : 1l — F
is an equivalence of categories. Thus any Il-algebra morphism ¢ : G. — H. 1is
realizable (uniquely, up to homotopy), if G. and H,. are free ll-algebras (actually,
only G need be free).

3.3. Definition. Let T :II-Alg — II-Alg be the “free ll-algebra” comonad (cf. [Mc,
VI, §1]), defined TG, = [[;Z [1,eq, W*ng). The counit ¢ = eq, : TG, — G,
is defined by Lfg) — ¢ (where Lfg) is the canonical generator of W*ng)), and the
comultiplication ¥ = dg, : TG, — T?G, is induced by the natural transformation
¥ idr — T\ defined by xj — Lf )

Tk

3.4. Definition. An abelian Il-algebra is one for which all Whitehead products vanish.

These are indeed the abelian objects of II-Alg — see [B3, §2]. In particular, if X
is an H-space, then 7.X is an abelian Il-algebra (cf. [W, X, (7.8)]).

3.5. Definition. A simplicial [I-algebra A, is called free if for each n > 0 there is
a graded set T C A, such that A, is the free [I-algebra generated by T (§3.2),
and each degeneracy map s;: A, — A,11 takes T" to T/ Tt
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A free simplicial resolution of a Il-algebra G, is defined to be an augmented
simplicial II-algebra A, — G, such that
(i) As is a free simplicial Il-algebra,
(ii) in each degree k > 1, the homotopy groups of the simplicial group (As)x
vanish in dimensions n > 1, and the augmentation induces an isomorphism

FO(A.)k = Gk

Such resolutions always exist, for any l-algebra G. — see [Q1, 11, §4], or the explicit
construction in [B1, §4.3].

3.6. Definition. For any X € G, a simplical object W, € sG equipped with an
augmentation ¢ : Wy — X s called a resolution of X by spheres if each W, s
homotopy equivalent to a wedge of G-spheres, and 7, W, — 7.X 1is a free simplicial
resolution of Il-algebras.

3.7. Example. One example of such a resolution by spheres is provided by Stover’s
construction; we shall need a variant in G (as in [B7, §5]), rather than the original
version of [St, §2], in 7.. (The argument from this point on would actually work
equally well in 7,; but we have already chosen to work in G, in order to facilitate the

proof of Proposition 2.11).
Define a comonad V :G — G for G € G by

(3.8) ve=1] I s U ]_[ 1T D

k=0 ¢$eHomg(8*,G) k=0 ®cHomg(D*+1,G)

where @g"l, the G-disc indexed by ® : D*' — (¢ is attached to 8%, the G-sphere
indexed by ¢ = ®|5pr41, by identifying 9D := FOD* with §F (see §2.4 above).
The coproduct here is just the (dimensionwise) free product of groups; the counit
¢ : VG — G of the comonad V is “evaluation of indices”, and the comultiplication
Y :VGE — V2GE is as in §3.3.

Now given X € G, define Q, € sG by setting Q, = V"X, with face and
degeneracy maps induced by the counit and comultiplication respectively (cf. [Go,
App., §3]). The counit also induces an augmentation & : @, — X; and this is in fact
a resolution of X by spheres (see [St, Prop. 2.6]).

3.9. Remark. Note that we need not use the G-sphere and disk 8% and D* of §2.4
in this construction; we can replace it by any other homotopy equivalent cofibrant pair
of simplicial groups, so in particular by (Ff)k, Fsk_l) for any pair of simplicial sets
(]f)k7 Sk—l) ~ (Dk, Sk_l).

3.10. The Quillen spectral sequence. A resolution by spheres W, — X 1is in fact
a resolution (i.e., cofibrant replacement) for the constant simplicial object ¢X, € sG
(ie., ¢(X), = X, d; = s; = tdx) in an appropriate model category structure on
sG — see [DKS1] and [BY]. However, we shall not need this fact; for our purposes it
suffices to recall that for any bisimplicial group W, € sG, there is a first quadrant
spectral sequence with

(3.11) Eit = 7s(m W) = T4 diag W,
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converging to the diagonal diag W, € G, defined (diag W,)r = (Wy)i" (see [Q2]).
Thus if W, — X is a resolution by spheres, the spectral sequence collapses, and
the natural map Wy — diag W, induces an isomorphism 7.X = 7.(diag W,).
Combined with the fact that 7.W, is a resolution (in sll-Alg) of #.X, this simple
result has many applications — see for example [B1], [DKSS], and [St].

3.12. Definition. A CW complex over a pointed category C is a simplicial object
R, € sC, together with a sequence of objects R, (n =0,1,...) such that R, =
R, L,R, (§2.5), and d’|r,=0 for 1 <:<n. The objects (R,)%, are called a
CW basis for Re, and dj :=do|p, is called the n-th attaching map for R..

One may then describe R, explicitly in terms of its CW basis by

(3.13) R.= I I Re-»

0<A<n I€dy,

where J,, 1is the set of sequences I of A non-negative integers o, < 13 < ... < 2,
(< n), with sy = s, 0o---0s;, the corresponding A-fold degeneracy (if A = 0,
sy =1d). See [B2, 5.2.1] and [Ma, p. 95(i)].

Such CW bases are convenient to work with in many situations; but they are most
useful when each basis object is free, in an appropriate sense. In particular, it C =
[I-Alg, we have the following

3.14. Definition. A CW resolution of a Il-algebra G, is a CW complex A, €
sll-Alg, with CW basis (A,)%, and attaching maps d3 : A, — Z,_1A,, such that
each A, is a free II-algebra, and each attaching map d|c, 4, is onto Z,_1As (for
n > 0, where we let Jg denote the augmentation ¢: A, — G, and Z_1A, := G.).

Compare [B2, §5].

Every Il-algebra has a CW resolution (§3.14), as was shown in [B1, 4.4]: for example,
one could take the graded set of generators 1" for A, to be equal to the graded set
W*Zn_l A..

3.15. Definition. (), € sG is called a CW resolution by spheres of X € G if
Qe — X is a resolution by spheres (Def. 3.6), and (), is a CW complex with CW

basis (Q,)0,), such that each @, € F (i.e., @), is homotopy equivalent to a wedge
of spheres). The concept is defined analogously for X € § or X € 7.

3.16. Remark. Closely related to the problem of realizing abstract Il-algebras (§3.1)
is that of realizing a free simplicial II-algebra A, € sll-Alg: this is because, as noted
in §3.5, every G. € II-Alg has a free simplicial resolution A, — G,; if it can be
realized by a simplicial space W, € s7. — or equivalently, via (2.3), by a bisimplicial
space or group — then the spectral sequence (3.11) implies that 7. diag W, = G..
However, not every ll-algebra is realizable (see [B5, §8] or [B4, Prop. 4.3.6]).

It would nevertheless be very useful to know the converse: namely, that any free
resolution of a realizable 1l-algebra is itself realizable. This was mistakenly quoted as a
theorem in [B5, §6], where it was needed to make the obstruction theory for realizing
[I-algebras described there of any practical use — and appeared as a conjecture in [B6,
84], in the context of an obstruction theory for a space to be an H-space.

In order to show that this conjecture is in fact true, we need several preliminary
results:
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3.17. Proposition. Every CW resolution A, — 7.X of a realizable 11-algebra em-
beds in 7.(Q)e for some resolution by spheres Qg — X.

Proof. To simplify the notation, we work here with topological spaces, rather than
simplicial groups, changing back to G if necessary via the adjoint pairs of §2.2.

Given a free simplicial II-algebra resolution A, — J. with CW basis (A,)22,, where
J, = 1.X forsome X € 7., and A, is the free Il-algebra generated by the graded set
Ty, let i denote the cardinality of 2, [[,—, 7}, and set X' :=XV\/ 2,V , D"
Define new “spheres” and “disks” of the form S := 8"V Voo Ve, D" and D" =

S v D" (This is to ensure that there will be at least p different representatives for
each homotopy class in 7,.X" or W*S”)

By remark §3.9 above, if we use the construction of §3.7 in 7. (or in G, mutatis
mutandis) with these “spheres” and “disks”, and apply it to the space X', rather
than to X, we obtain a resolution by spheres @, — X'.

We define ¢ : A, — 7.()s by induction on the simplicial dimension; it suffices to
produce for each n > 0 an embedding bt Ap — Com Q. commuting with dy. If we
denote &4 : Ag — 7. X = 1.X' by Jg cCoAy — Z_1 Ay =: A_1 and set ¢_; = id,,x,
then we may assume by induction we have a monomorphism ¢,_1 : A, 1 — 7.Q_1
(taking generators to generators, and commuting with face and degeneracy maps).

For each Il-algebra generator ¢, in (A,)r, if do(te) # 0 then ¢, 1(do(ta)) €
Zn_171Q, 1s represented by some ¢ : Sk (Qn-1, and we can choose distinct (though
perhaps homotopic) maps ¢ for different generators ¢, by our choice of S¥. Then
by (3.8) there is a wedge summand S’; in @, =VQ,-1 (with no disks attached),

and the corresponding free Il-algebra coproduct summand F*S]; in 7.(Q),, generated
by ¢y, has do(ty) = [g] € 7Qn-1 and di(ty) = tg,_,y =0 € mpQpq for 1 <7 <n
by §3.7, since [g] = ¢n-1(do(ta)) € Zu_17tQe and thus d;lg] = [dig] = 0, and
spheres indexed by nullhomotopic maps have disks attached to them. We see that
ty € Com1Q,, so we may define é,(i,) = .

If do(eo) =0, then all we need are enough distinct II-algebra generators in 7, m.Q.:
we cannot simply take ¢, for nullhomotopic ¢ :S* — @Q,_;, because of the attached
disks; but we can proceed as follows:

Since D* = CS* vV D* and X' =XV Vizo Ve D¢, we have u distinct nonzero
maps F\ : DF — X’ with F\|pgr= *. Define Hy = F\, H_ = x; then S} :=
f)é?_ﬁ Ugk—1 IA)%_ is, up to homotopy, a sphere wedge summand in )y, and thus
i, € Qo is a Il-algebra generator mapping to 0 under the augmentation. Similalry,
define SgA = IA)’C“;Jr Ugk—1 f)g_ in Q; by Gt =x, G_ = x—* where // isa
homoeomorphism onto the summand D* in IA);“,_I_ Then G\ ~ % and G # % but

H oG =x*; thus (g, is a Il-algebra generator in Z17kQe. By thus alternating the
+ and — we produce g distinct Il-algebra generators in Z,7.(), for each n. O

3.18. Remark. The referee has suggested an alternative proof of this Proposition, which
may be easier to follow: rather than “fattening” the spheres and disks, we can modity
the Stover construction of (3.8) by using p copies of each sphere or disk for each
¢ € Homg (8%, ) or @ € Homg(D*!, ), respectively. The proof of [St, Prop. 2.6]

still goes through, and so does the argument for embedding A, in 7.()s above.

3.19. Proposition. Any free simplicial -algebra A, has a (free) CW basis (A,)°%,.
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Proof. Start with Ay = Ag. For n > 1, assume A, = Hzozo HTGT; 8% By
Definition 3.5, 77 = T" U Jyere,, Ures, Tr=* (as in §3.13), so we can set
Y i = k. o 7 i )

A, =112 HreTg 8" ]out di| . need not vanish for ¢ > 1.

However, given 7 € 17, we may define 7; € (A,) inductively, starting with
To =T, by Tiy1 = TiSn_i_ldn_iTZ»_l (face and degeneracy maps taken in the external
direction); we find that 7:=7, isin C,A,. If we define ¢ : Tr — A, by o(r) =7,
by the universal property of free Il-algebras this extends to a map ¢ : A, — Ay,
which together with the inclusion o, : L,A, — A, yields amap ¢ : A, — A, which
is an isomorphism by the Hurewicz Theorem (cf. [B7, Lemma 2.5]). Thus we may set

A

A, = p(A,), that is, the free II-algebra generated by {7} cin. Compare [K, §3]. O

3.20. Theorem. FEvery free simplicial I1-algebra resolution Ay — 7. X of a realizable
M-algebra w.X s itself realizable by a CW resolution R, — X in sgG.

Proof. By Propositions 3.17 and 3.19 we may assume A, has a (free) CW basis
(A,)2%,, and that there is a resolution by spheres @Q, — X (in sG) and an
embedding of simplicial [I-algebras ¢ : A, — (). We may also assume that @), is
fibrant (§2.8), with &9 : Qo — X a fibration. We shall actually realize ¢ by a map
of bisimplicial groups f: Ry — Q.

Note that once R, has been defined through simplicial dimension n, for any &> 0
we have a commutative diagram

d iy d iy
N L. S S €D R G S S

~ ~
Ly l: Pn—1 Ly l =
nc.

Cn—Zﬂ—kRo

0

~

Ly l = Pn—2
inc. dr!

Cpo1miRe = Z,_371 Ry

Cnﬂ'kR.

Zn—l ﬂ—kRo

(obtained by fitting together three of the long exact sequences of the fibrations (2.10)).
The vertical maps are induced by the inclusions C,R, — R,, and so on — see
Proposition 2.11.

The only difficulty in constructing R, 1is that Proposition 2.11 does not hold for
Z, — 1.e., the maps p, in the above diagram in general need not be isomorphisms
—~ so we may have an element in 7, A, represented by « € C,7.R, = 7.(, Ry with
(dy)#(a) # 0 (but of course (Ju—1)#(df)x(a) = 0). In this case we could not have
BEmCryiRe = Crpi Ay with (7,)a(di™)a(8) = @, so m.R, would not be acyclic.

It is in order to avoid this difficulty that we need the embedding ¢, since by definition
this cannot happen for @Q,: we know that dj : C,,m.Qe — Z,_17.Qs 1is surjective
for each n >0, so p,_1: 7 Z_1Qe — Z,_17.0Qs 1is, too, which implies that for each
n > 0:

(3.21) Im{(dg+1)# T Crp1Qe — TuZn Qo N Ker{(Jn)g : TZnQe — m.CrQe} =0

which we shall call Property (3.21) for Z,Q,.. (This impliesin particular that Z,7.Q, =
Ker{(d§)g : 7.0, Qu — 701 Qu})

Note that given any fibrant K, € sG having Property (3.21) for 7, K, for each
0 < m < n, if we consider the long exact sequence of the fibration di' : C,, K, —
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e (d(r)n)# - amTl - (jm—l)# -
(3.22) .. T CnKe —5 w121 Ko —— i Zp Ko —— 713,Cpia K« . .,
we may deduce that
(3.23) 0" |tm(sm-1y is one-to-one, and surjects onto Im(9™)

for

0<m<n.

We now construct R, by induction on the simplicial dimension:

(i)

(i)

(iii)

First, choose a fibration &f: Ry — X realizing % : Ay — 7,X. By §3.2, there
is amap f}: Ry — Qo realizing ¢y, so 9o fi ~cft; since 9 is a fibration,

we can change fi to fo: Ry — Qo with 9o f) =%,

Let ZyR, denote the fiber of ef. Since 51; = ¢ is a surjection, we have
7 loRe = Ker(eﬁ) = ZyA,, and d} maps C1A, onto ZyA,, so dif : A} — Ag
factors through 7,7y R,, and we can thus realize it by a map dff : Ry — ZyR,.
Set R := R IILiR, (so m.R| = Ay), with & : R, — MR, = Ry x Ry equal
to (dF,0)—A, and change & to a fibration & : Ry — M;R,. Again we can
realize ¢1: Ay — 7m.Q1 by fi: Ry — ()1 with 5? o fi = foodék, since 5? is

a fibration; so we have defined 71 f: 7Ry — 11()s realizing 7¢.

Now assume we have 7,f : 7,Re — 7,Q, realizing 7,¢, with Property (3.21)
holding for 7, R, for 0 <m < n.

For each Il-algebra generator o € A, (in degree k, say), (3.21) implies that
dit (o) € Ker(dl) = Ker((di")4) C (CrA)x = 7xCrR,, so by the exactness of
(3.22) we can choose 3 € n,Z, R, such that (j,)xf8 = dn"'l(oz). This allows us to
define d¥ : R, 41 — Z, R, sothat (j,)x(dl)s realizes (inc.)odd : A, — C,A,,
as well as fn_|_1 :Rn_|_1 — C,0Q, realizing ¢n+1|An+1 Because An-l—l = F*Rn+1 is
a free Il-algebra, this implies the homotopy-commutativity of the outer rectangle
in 3

Rn—l—l ﬂ» Cn—l—l Qo

dy’ dg
Ly
ZnR. .......... f»ZnQ.
Jn 7
C.f
C R, Crlde

(as well as the lower square, by the induction hypothesis). Thus 52 o Z, f ods ~
320 dg o fuyrs so (G)g o (Zuf)g o (df)g = (GD)g © (d5)y o (far1)p By
(321) this implies (7, o (A} = (0)s o (Furn)g. 5o (since . Foun s o
free Il-algebra) also Z,f o dlf ~ d 0 for1 — which means that we can choose
fos1 sothat Z,fodf = d o fui1 (since dQ is a fibration). Thus if we set
5f+ : Ryyr — M, Ry tobe (df,0,...,0), we have Mn+1fo5n+1 = 5§+lofn+1.
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It Wl = 6% ool (in the notation of §2.5 & 2.12) we set R/, :=
Rup1 L Lyyy R, and define 6], 0 By — My Rey and f) 0 R — Qi
respecyively by 6/, := (88, —vF ) and [l = (fus1—Lat1f). We see that
(fli1)g = bppa and Moy fodl | = (5&_1 o fi.y, and this will still hold if we

n

change ¢/, into a fibration, and extend f) , to fii1: Rup1 — Qnqq. This
defines 7,41 f : Thy1 Re — Thy1Qe realizing 7,41 9.

(iv) It remains to verify that 7,41 Re so defined satisfies (3.21). However, (3.23)
implies that we have a map of short exact sequences:

0 — Im(9!) — > 7,7 R, (7)) & Z, A 0
nc.
0 —’Im(ag_l) Tu 20 (e Im((jg)#) ~ 770 0

in which the left vertical map is an isomorphism and the right map is one-to-one,
so (Z,f)s is one-to-one, too. Therefore, Ker((j7)4) = Ker((75)4) N 7.7, R,

n

which implies that Property (3.21) holds for Z,R,, too.

This completes the inductive construction of R,. U

We also have an analogous result for maps:

EI\’ EL . ..
3.24. Theorem. If K, — . X and L, — 7.Y are two free simplicial ll-algebra
resolutions, g: X —Y isamapinG, and ¢ : Ky — L, is a morphism of simplicial
I-algebras such that & o @y = m.g 0™, then ¢ is realizable by a map f: Ay — B,

i sG.

Proof. Choose free CW bases for K, and [L,, and realize the resulting CW resolutions
by A. and B, respectively, where (as in the proof of Theorem 3.20) we may assume
do: C,Be — Z,_1B, 1s a fibration for each n >0. f,: A, — B, will be defined by
induction on n: ¢g: Ko — Lo may be realized by a map f}: Ao — By (§3.2), and
since ¢? is a fibration and &P o f) ~ goe?, we can choose a realization f, for (g
such that P o fy = goe?.

In general, ¢, = ¢,.|g,: K, — C,L, may be realized by a map f, : A, — C,B,
(Proposition 2.11), and since dy : C,, By — Z,_1B, is a fibration, we may choose f,
so doo fn = Zu_1fody: A, — Z,_1B,. By induction this vields a map f, = L,f—fn :
A, =L, A 1T A, — L,B,11 B, = B, such that 55 of,=M,fo 5;;‘ : A, — M, B,,

so f is indeed a simplicial morphism (realizing ¢). O
4. THE SIMPLICIAL BAR CONSTRUCTION

As an application of Theorem 3.20, we describe an obstruction theory for determining
whether a given space X is, up to homotopy, a loop space (and thus a topological group
— see [Mil, §3]). In the next two sections we no longer need to work with simplicial
groups, so we revert to the more familiar category of topological spaces; we can still
utilize the results of the previous section via the adjoint pairs of (2.3).

4.1. Definition. A A-cosimplicial object FEY over a category C is a sequence of
objects E° E',..., together with coface maps d* : E" — E"" for 1 <1 <n



12 DAVID BLANC

satisfying d’d'’ = d'd’=' for i < j (cf. [RS]). Given an ordinary cosimplicial
object E* (cf. [BK, X, 2.1]), welet EX denote the underlying A-cosimplicial object
(obtained by forgetting the codegeneracies).

4.2. The cosimplicial James construction. Given a space X € 7., we define a
A-cosimplicial space U% = U(X)% by setting U" = X"*! (the Cartesian product),
and d(zg,...,7,) = (Toy. .., Ti_1,%, T4y ..,T,). Note that colimU(X)% = JX (the

James reduced product construction), and

4.3. Fact. If (X,m) is a (strictly) associative H-space, we can extend U% to a full
cosimplicial space U* by setting s/(xo,...,2,) = (2oy...,m(xj, 1), ..., ).

4.4. Definition. Let A, be a CW-resolution of the Il-algebra =, X = 7,U° asin

§3.14. We construct a A-cosimplicial augmented simplicial Il-algebra ()% — 7.U},
such that each EZ is a C'W-resolution of 7, U" = 7 (X"t!), with CW-basis {FE"}>2,.

We start by setting E° = C° = A, for all » >0, and then define E” by a double
induction (on r >0 and then on n > 0) as

(4.5) =11 I €

0<A<n I€9, ,

where J,, isasin (3.13) and CJ'=0=C? for all m,r > 0.

The coface maps d' : E""' — E" are determined by the cosimplicial identities
and the requirement that di|[éﬁ_x](i1 be an isomorphism onto [C’f‘A](i17...7in7i) if
> 1,

The only summand in (4.5) which is not defined is thus [C"]s, which we denote
simply by C7. We require that it be an n-th cross-term in the sense that CZ0|C<;L
does not factor through the image of any coface map d' : E'"! — E” |. Other than
that, C™ may be any free Il-algebra which ensures that (4.5) defines a C'W-basis
for a CW-resolution E? — 7. U". We shall call the double sequence ((C7)° )%, a
cross-term basis for (F,)%.

Note that A, is a retract of FE? in two different ways (under the two coface maps
d®, d'), corresponding to the fact that X is a retract of X x X in two different ways;
the presence of the cross-terms C’f indicates that A, x A, is a resolution of X2,
but not a free one, while A,II A, is a free simplicial [T-algebra, but not a resolution.

Similarly, X x X embeds in X? in three different ways, and so on.

pt+q—1
(x,y) ’

with Jo|s(p+q)—1 = [ts,4y] (in the notation of §3.3). The higher cross-terms C7 = 0

4.6. Example. For any A, — 7,X we may set (2 = HSP‘__}A(O) qur_%u) S
x 0 y 0

for n >3, since any k-th order cross-term element z in H?:o Aéj) (k> 3) is asum

T2

of elements of the form z = (¥#[... [t(ys ton))s ey )s -+ tny)s and then
2= do(C*... [0@222)_17 506@3)]7 R SOL@k)])-

4.7. Definition. Let "(W,)% — U% be the A-cosimplicial augmented simplicial

space up-to-homotopy which corresponds to (F,)% — 7. U% via §3.2. Thus the
various (co)simplicial morphisms exist, and satisfy the (co)simplicial identities, only in
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the homotopy category (we may choose representatives in 7., but then the identities
are satisfied only up to homotopy). Each W/ is homotopy equivalent to a wedge
of spheres, and has a wedge summand W7 «— W’ corresponding to the C'W-basis
free Il-algebra summand E” — E?. Welet C" denote the wedge summand of W7
corresponding to C7 — 7.

4.8. Definition. An simplicial space V, € s7, is called a rectification of a simplicial
space up-to-homotopy "W, if V, ~ W, for each n > 0, and the face and
degeneracy maps of V, are homotopic to the corresponding maps of "W,. See
[DKS, §2.2], e.g., for a more precise definition; for our purposes all we require is that
7.V.e beisomorphic (as a simplicial [I-algebra) to m(hW.). Similarly for rectification
of (A-)cosimplicial objects, and so on.

By considering the proof of Theorem 3.20, we see that we can make the following

4.9. Assumption. (F,)% maps monomorphically into 7. V,(UX), and "(W,)% —
U9 can be rectified so as to yield a strict A-cosimplicial augmented simplicial space

(W,)% — U realizing (F.)% — 7.U%.

4.10. Definition. Now assume that 7.X is an abelian Il-algebra (Def. 3.4) — this
is the necessary Il-algebra condition in order for X to be an H-space — and let
g mX X mX — 7. X be the morphism of Il-algebras defined levelwise by the
group operation (see [B6, §2]). This p is of course associative, in the sense that
po(p,id) = po (id,p) : 7(X?) — 7.X, so it allows one to extend the A-cosimplicial
[I-algebra FX := 7.(U%) to a full cosimplicial II-algebra F'®, defined as in §4.3.
Since E} — F" =7, U" is a free resolution of Il-algebras, the codegeneracy maps
s! F" — F"! induce maps of simplicial Il-algebras s : £* — E*~', unique up to
simplicial homotopy, by the universal property of resolutions (cf. [Q1, I, p. 1.14 & 11, §2,
Prop. 5]). Note, however, that the individual maps s/ : E” — E"~! are not unique,
in general; in fact, different choices may correspond to different H-multiplications on

X.

These maps s/ make (F,)% — F2 into a full cosimplicial augmented simplicial

[l-algebra E?f — F*, and thus "W? — U% into a cosimplicial augmented simplicial
space up-to-homotopy (for which we may assume by 4.9 that all simplicial identities,
and all the cosimplicial identities involving only the coface maps, hold precisely).

4.11. Proposition. The cosimplicial simplicial space up-to-homotopy "W of §4.10
may be rectified if and only if X is homotopy equivalent to a loop space.

Proof. 1If X is a loop space, it has a strictly associative H-multiplication m : X x X —
X which induces g on m.(—) (cf. [Gr, Prop. 9.9]), so UL extends to a cosimplicial
space U* by Fact 4.3. Applying the functorial construction of [St, §2] to U* yields a
(strict) cosimplicial augmented simplicial space (V,4)% — U®, and since we assumed
W embedsin 7, V7 for each n, "W? may also be rectified.

Conversely, if W7 is a (strict) cosimplicial simplicial space realizing FEJ, then we
may apply the realization functor for simplicial spaces in each cosimplicial dimension
n >0 toobtain |[W7%| ~ U" = X"t (by §3.10). The realization of the codegeneracy
map ||s°) : WL — [|[WY| induces p : 7. (X?) — 7.X, so it corresponds to an
H-space multiplication m : X* — X (see [B6, Prop. 2.7]).
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The fact that ||[Wg|| is a (strict) cosimplicial space means that all composite code-

generacy maps |[s®0 s/t o+ sin-t]| L [[WE|| — ||[WY|| are equal, and thus all possible
composite multiplications X"*' — X (i.e., all possible bracketings in (2.6)) are
homotopic, with homotopies between the homotopies, and so on — in other words,

the H-space (X,m) is an A, space (see [St3, Def. 11.2]) — so that X is homotopy
equivalent to loop space by [St3, Theorem 11.4]. Note that we only required that the
codegeneracies of "W? be rectified; after the fact this ensures that the full cosimplicial
simplicial space is rectifiable. O

In summary, the question of whether X is a loop space reduces to the question
of whether a certain diagram in the homotopy category, corresponding to a diagram
of free Il-algebras, may be rectified — or equivalently, may be made co-homotopy
commutative.

5. POLYHEDRA AND HIGHER HOMOTOPY OPERATIONS

As in [B5, §4], there is a sequence of higher homotopy operations which serve as
obstructions to such a rectification, and these may be described combinatorially in
terms of certain polyhedra, as follows:

5.1. Definition. The N-permutohedron PV is defined to be the convex hull in RY of
the points p, = (0(1),0(2),...,0(N)), where o ranges over all permutations o € Yy
(cf. [Z, 89]). It is (N — 1)-dimensional.

For any two integers 0 < n < N, the corresponding (N,n)-face-codegeneracy
polyhedron PY is a quotient of the N-permutohedron P obtained by identifying
two vertices p, and p, to asingle vertex p, = p,r of P whenever o = (i,i+1)0,
where (¢,7 4 1) is an adjacent transposition and o(z),0(i + 1) > n.

Since each facet A of P¥ is uniquely determined by its vertices (see below), the
facets in the quotient P are obtained by collapsing those of P accordingly.

Note that P¥_, is the N-permutohedron P¥, and in fact the quotient map
q : PY — PY is homotopic to a homeomorphism (though not a combinatorial iso-
morphism, of course) for n > 1. On the other hand, PJ is a single point. For
non-trivial examples of face-codegeneracy polyhedra, see Figures 1 & 2 below.

5.2. Fact. From the description of the facets of the permutohedron given in [GG], we
see that PnN has an edge connecting a vertex p, to any vertex of the form p(;it1)o
(unless o(7),0(¢ 4+ 1) > n, in which case the edge is degenerate).

More generally, let p, be any vertex of PY. The facets of PY containing p,
are determined as follows:

Let P = <1,2,...,€1 |€1—|—1,...,€2 | |€i_1—|—1,...,€i | |€T_1—|—1,...,N>
be a partition of 1,..., N into r consecutive blocs, subject to the condition that for
each 1 <j <r at least one of o((;), o(;+1) is < n. Denote by n; the number of
7’s in the i-th bloc (i.e., ¢;_; +1 < j < {;) such that o(j) <n. Then PY will have
a subpolyhedron Q(P) (containing p,) which is isomorphic to the product

{1 lo—4y . £i—4i 1 . N—ly_4
Pl xXP2™ X x P X x P, .

This follows from the description of the facets of the N-permutohedron in [B5, §4.3].
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We denote by (PM)*) the union of all facets of PY of dimension < k. In
particular, for n > 1 we have dPY := (PNM)(V=2) = §N=2_ gince the homeomorphism
G: PN — PY preserves 9PV,

5.3. Factorizations. Given a cosimplicial simplicial object FE? as in §4.10, any com-

posite face-codegeneracy map v : E;‘:f; — EF has a (unique) canonical factorization
of the form ¢ = ¢of, where 6 : E;‘:fz — Efn-l—ﬁ may be written § = s/ 0s20...s for

0< 1 <j2<...<j,<n+k and ¢: Ef;_l_g — Eé“ may be written ¢ = d;, od;,0---d;,
for 0< <, <... <, <m+L.

Let D(v) denote the set of all possible (not necessarily canonical) factorizations
of ¥ as a composite of face and codegeneracy maps: ¥ = A,y 0---0 X, We
define recursively a bijective correspondence between D(i)) and the vertices of an
(n + m)-permutohedron P™"*™_ as follows (compare [B5, Lemma 4.7]):

The canonical factorization @ = d; od;,0---d; o s10s”0-.. g/ corresponds to the
vertex p;q. Next, assume that the factorization @ = A,;,, 0...0 Ay corresponds to
po. Then the factorization corresponding to p,s, for o = (¢,1+1)0’, is obtained from
) = A 0---0N4, byswitching \; and A, using the identity s’ o s’ = s'"'o0s’
for ¢+ >y if A\; and A;4; are both codegeneracies, and the identity d;od; = d;_ od;
for ¢ < j if they are both face maps.

Passing to the quotient face-codegeneracy polyhedron, we see that the vertices of
Pt are now identified with factorizations of ¢ of the form

(5.4)
s k i1 o s ro 2

n+ s n+k—1 ng+1l nt t nt ny S n+l $ n 0 n

B, — BT B — BN, — BB — BT — B — B

where 6; is a composite of face maps (i.e., we do not distinguish the different ways

of decomposing 6; as dy, o...dy ). The collection of such factorizations of ¢ will be
denoted by D(v)/ ~, where ~ is the obvious equivalence relation on D(v). We
shall denote the face-codegeneracy polyhedron Pt with its vertices so labelled by
Pt (5). An example for ¢ = dod;s"s' appears in Figure 1.

5.5. Notation. For ¢ : E;‘:fz — EF as above, we denote by C(v) the collection

of all composite face-codegeneracy maps p : E:L((pp ))—:_Z((i )) — Ef((pp)) such that p is of the
form p=¢&o---0& (1 <s<t<w) for some decomposition » = ¢, 0---0§ =
0,0 §im0 0 -0 im0 0,000,080 008/ of (5.4). That is, we allow only those
subsequences A, ..., A, of a factorization ¢ = A,4,, 0---0X; in D(¥) which are
compatible with the equivalence relation ~ in the sense that X,;; and A, are not

both face maps, and similarly for A,_; and A,. Such a p will be called allowable.

5.6. Higher homotopy operations. Given a cosimplicial simplicial space up-to-
homotopy *W? as in §4.2, we now define a certain sequence of higher homotopy
operations. First recall that the half-smash of two spaces X, Y € 7, is X XY :=
(X XxY)/(X x{x}); if X isa suspension, there is a (non-canonical) homotopy equiv-
alence X x Y ~XAYVX.

5.7. Definition. Given a composite face-codegeneracy map 1 : W;"_’I_’} — W/} as

above, a compatible collection for C(x») and "W} is a set {¢”},ec(yy of maps
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FIGURE 1. The face-codegeneracy polyhedron Pj(dod;s%s')

g’ P;((Pp))-l-m(p)(p) X W?n((pp)):];((pp)) — Wj((pp)) for each p € C(v), satisfying the following
condition:

Assume that for such a p € C(¢) we have some decomposition

p:fl,o---oflz(%osjgoo...osjgl 0(910---0(9tosjfo---osj’tlt
in D(p)/~, asin (5.4), and let
P:<1,...,€1|...|€i_1—|—1,...,€i|...|€T_1—|—1,...,l/>

be a partition of (1,...,v) as in §5.2, yielding a sequence of composite face-
codegeneracy maps p; € C(p) CC(¢p) for ¢e=1,...,r

Let Q(P) = Pl (p1) x -+ X Pﬁii_gi_l(pi) X -+ x Pv==1(p,) be the corresponding
sub-polyhedron of P;((pp))—'_m(p)(p). Then we require that g”|Q(P)KWn(p)+k(p) be the

m(p)+4(p)
composite of the corresponding maps ¢”* in the sense that

(5.8) g (21, xm,w) = ¢P (21,9 (2, .o g7 (2, w) L))

for z; € Pg —hi- "(p;) and w EWm((p)) ().

We further require that if p = \; 1s of length 1, then ¢” must be in the prescribed
homotopy class of the face or codegeneracy map A;. Thus in particular, for each
vertex p, of P (1), indexed by a factorization ¢ = ¢, 0---0¢; in D)/ ~,

the map g”|{ﬁc}xw$fk represents the class [£, 0+ 0¢].

5.9. Fact. Any compatible collection of maps {¢°},ec(y) for C(¢) induces a map
f=f¥:oPrm W;"_’I_]} — W/ (since all the facets of IP™™ are products of

face-codegeneracy polyhedra of the form Pzgig+m(0)(p) for p € C(v), and condition

(5.8) guarantees that the maps ¢” agree on intersections).
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5.10. Definition. Given "W? asin §4.10, for each k > 2 and each composite face-
codegeneracy map @ : W;‘:_’} — WY/, the k-th order homotopy operation associated
to "W? and ¢ is a subset (i) of the track group [t 2WtE W defined as

m+4
follows:

Let S C [0P"™ an"_'l_]}, W] be the set of homotopy classes of maps f = f¥ :

OPH™ i« W;"_’I_]} — W/ which are induced as above by some compatible collection
19" ey for C().

Now choose a splitting

(5.11) P () x Witk o2 §m=2 , Witk o~ (S =2 A W) V W

and let (1) C [S"Fm=2WIHE W] be the image of the subset S under the resulting
projection.

It is clearly a necessary condition in order for the subset (1)) to be non-empty that all
the lower order operations (p) vanish (i.e.,contain the null class) for all p € C(¥))\{v}

— because otherwise the various maps ¢° : P;((pp))—l_m(p)(p) X W?n((pp)):];((’;)) — Wj((pp))

cannot even extend over the interior of P;((pp))—'_m(p)(p). A sufficent condition is that
the operations (p) vanish coherently, in the sense that the choices of compatible
collections for the various p be consistent on common subpolyhedra (see [B5, §5.7] for
the precise definition, and [B5, §5.9] for the obstructions to coherence).

On the other hand, if *W? is the cosimplicial simplicial space up-to-homotopy of
§4.4 (corresponding to the cosimplicial simplicial [I-algebra (F,)% with the C'W-basis
{E" T=0), then the vanishing of the homotopy operation (t|en) — with 1 restricted

to the (n,r)-cross-term — implies the vanishing of (¢), for any % : W;"_'I_]} — W§
(assuming lower order vanishing). This is because outside of the wedge summand
C", the map 1 is determined by the maps p € C()) and the coface and degeneracy
maps of "W, which we may assume to co-homotopy commute by induction and 4.9
respectively.

We may thus sum up the results of this section, combined with Proposition 4.11, in:

5.12. Theorem. A space X € 7., for which =X s an abelian 1l-algebra, s
homotopy equivalent to a loop space if and only if all the higher homotopy operations
(W|en) defined above vanish coherently.

5.13. Remark. Asobserved in §4.2; for any X € 7, the space JX is the colimit of the
A-cosimplicial space U(X)%, and in fact the n-th stage of the James construction,
J, X, is the (homotopy) colimit of the (n — 1)-coskeleton of U$%. Thus if we
think of the sequence of higher homotopy operations “in the simplicial direction” as
obstructions to the validity of the identity [B7, Thm. 5.7(%)] (up to oco-homotopy
commutativity), then the n-th cosimplicial dimension corresponds to verifying this

identity for fois: A — FB of James filtration n+1 (cf. [J2, §2]).

In particular, if we fix £k =¢ =0, n =1 and proceed by induction on m, we are
computing the obstructions for the existence of an H-multiplication on X, as in [B6].
(Thus if X is endowed with an H-space structure to begin with, they must all vanish.)
Observe that the face-codegeneracy polyhedron P7 is an (n — 1)-cube, as in Figure
2, rather than the (n — 1)-simplex we had in [B6, §4] — so the homotopy operations
we obtain here are more complicated. This is because they take value in the homotopy
groups of spheres, rather than those of the space X.
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FIGURE 2. The face-codegeneracy polyhedron Pj(dod;dys®)

As a corollary to Theorem 5.12 we may deduce the following result of Hilton (cf. [H,
Theorem C]):

5.14. Corollary. If (X,m) isa (p—1)-connected H-space with 7;X =0 for ¢ > 3p,
then X is a loop space, up to homotopy.

Proof. Choose a C'W-resolution of 7.X which is (p — 1)-connected in each simplicial
dimension, and let FE; be as in §4.4. By definition of the cross-term Il-algebras C7'
in §4.4, they must involve Whitehead products of elements from all lower order cross-
terms; but since X is an H-space by assumption, all obstructions of the form (v|c1)
vanish (see §5.13). Thus, the lowest dimensional obstruction possible is a third-order
operation (i|z2) (r > 2), which involves a triple Whitehead product and thus takes
value in ;W4 for i > 3p. If we apply the (3p—1)-Postnikov approximation functor
to "W?¢ in each dimension, to obtain "Z?, all obstructions to rectification vanish, and
from the spectral sequence of §3.10 we see that the obvious map X = ||[W}|| — [|Z||
induces an isomorphism in 7; for ¢ < 3p. Since ||Zl|| is a loop space by Theorem
5.12, so is its (3p — 1)-Postnikov approximation, namely X. O

5.15. Example. The T-sphere is an H-space (under the Cayley multiplication, for
example), but none of the 120 possible H-multiplications on S7 are homotopy-
associative; the first obstruction to homotopy-associativity is a certain “separation
element” in 7, S” (cf. [J1, Theorem 1.4 and Corollary 2.5]).

Since 7,.S7 is a free Il-algebra, it has a very simple C'W-resolution A, — 7,S7,
with Ay = 7.S7 (generated by (7), and A, =0 for r > 1. A cross-term basis (§4.4)
for the cosimplicial simplicial [I-algebra F{ of §4.10 is then given in dimensions < 24

by:

o !~ 7x,8 with doi*® = [d°",d"./"];

o (22 x,8Y with doi'® = [d%?, sod?d" "] — [d '3, sod?d® 7] + [d?i13, sod*d®.7];
e (" is at least 24-connected for all other n, r.

We set Sﬂ@«ﬁ =0 for all n < 2; this determines FE;

T in degrees < 21 and
cosimplicial dimensions < 2.
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By Remark 5.13, the two secondary operations <d050|511> and (d; 50|511> must vanish;
on the other hand, by Corollary 5.14 all obstructions to S” being a loop space are in
degrees > 21, so the only relevant cross-term is C2, with three possible third-order
operations (i]gz), for 1 = dodys°st, dodys®s', or didyss'. The corresponding
face-codegeneracy polyhedra Py (1)) is as in Figure 2.

It is straightforward to verify that the operations (|cz) ave trivial for ¢ = dodys®st
or dydys’s' (in fact, many of the maps ¢°, for p € C'(¢)), may be chosen to be null).
On may also show that there is a compatible collection {¢”},cc(p) for ¢ = dodys°s’,
in the sense of §5.7, so that the corresponding subset <<,o|gg> C 7187 is non-empty; in
fact, it contains the only possible obstruction to the 21-Postnikov approximation for
S” to be a loop space.

The existence of the tertiary operation <<,o|gg> corresponds to the fact that the
element [[/7, 7], "] — [[¢7, 7], ") + [[(7,(7],¢7] € mnST is trivial “for three different
reasons”: because of the Jacobi identity, because all Whitehead products vanish in
7.S7, and because of the linearity of the Whitehead product - i.e., [0,a] = 0.

On the other hand, we know that there ¢s a 3-primary obstruction to the homotopy-

associativity of any H-multiplication on S7, namely the element O'fiT7 € ™ S” (see
[J1, Theorem 2.6]). We deduce that 0 ¢ (¢|ez), and in fact (modulo 3) this tertiary

operation consists exactly of the elements :l:afiﬁ.
For a detailed calculation of such higher order operations using simplicial resolutions

of Il-algebras, see [B6, §4.13].

5.16. Remark. Our approach to the question of whether X is a loop space is clearly
based on, and closely related to, the classical approaches of Sugawara and Stasheff (cf.
[St1, St2, Su]. One might wonder why Stasheff’s associahedra K; (cf. [St1, §2,6]) do
not show up among the face-codegeneracy polyhedra we describe above. Apparently
this is because we do not work directly with the space X, but rather with its simplicial
resolution, which may be thought of as a “decomposition” of X into wedges of spheres.
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