
CW SIMPLICIAL RESOLUTIONS OF SPACESWITH AN APPLICATION TO LOOP SPACESDAVID BLANCAbstract. We show how a certain type of CW simplicial resolutions of spaces bywedges of spheres may be constructed, and how such resolutions yield an obstructiontheory for a given space to be a loop space.1. IntroductionA simplicial resolution of a space X by wedges of spheres is a simplicial space W�such that (a) each space Wn is homotopy equivalent to a wedge of spheres, and (b)for each k � 1, the augmented simplicial group �kW� ! �kX is acyclic (see x3.5below). Such resolutions, �rst constructed by Chris Stover in [St, x2], are dual to the\unstable Adams resolutions" of [BK, I, x2], and have a number of applications: seex3.10 below and [St, DKSS, DKS1, B1, B5, B6, B7].However, the Stover construction yields very large resolutions, which do not lendthemselves readily to computation, and no other construction was hitherto available.In particular, it was not clear whether one could �nd minimal resolutions of this type.The purpose of this note is to show that any space X has simplicial resolutions bywedges of spheres, which may be constructed from purely algebraic data, consistingof an (arbitrary) simplicial resolution of ��X as a �-algebra { that is, as a gradedgroup with an action on the primary homotopy operations on it (see x3.1 below):Theorem A. Every free simplicial �-algebra resolution of a realizable �-algebra ��Xis realizable topologically as a simplicial resolution by wedges of spheres.and in fact such resolutions can be given a convenient \CW structure" (x3.15). Thereis an analogous result for maps (Theorem 3.24).Since no such resolution of a non-realizable �-algebra can be realized (see x3.16below), this completely determines which free simplicial �-algebra resolutions are re-alizable.The Theorem implies that in the spectral sequences of [St, B1, DKSS] we can workwith minimal resolutions, and allows us to identify the higher homotopy operations of[B5, B1, B7] as lying in appropriate cohomolgy groups (compare [B6, 4.17] and [B8,x6]). A generalization of Theorem A to other model categories appears in [B9].As an application of such CW resolutions, we describe an obstruction theory for de-ciding whether a given space X is a loop space, in terms of higher homotopy operations.One such theory was given in [B7], but the present approach does not require a givenH-space structure on X, and may be adapted also to the existence of An-structures(and thus subsumes [B6]). It is summarized inDate: April 23, 1998.1991 Mathematics Subject Classi�cation. Primary 55Q05; Secondary 55P35, 18G55, 55Q35.Key words and phrases. simplicial resolution, CW object, �-algebra, higher homotopy operation,loop space. 1



2 DAVID BLANCTheorem B. A space X with trivial Whitehead products is homotopy equivalent to aloop space if and only if the higher homotopy operations of x5.10 below vanish coher-ently.1.1. Notation and conventions. Gp will denote the category of groups, T that oftopological spaces, and T� that of pointed topological spaces with base-point preservingmaps. The full subcategory of 0-connected spaces will be denoted by Tc � T�. Thecategory of simplical sets will be denoted by S and that of pointed simplicial setsby S�; we shall use boldface letters: X, Sn; : : : to denote objects in any of thesefour categories. If f : X ! Y is a map in one of these categories, we denote byf# : ��X! ��Y the induced map in the homotopy groups.1.2. Organization. In section 2 we review some background on simplicial objects andbisimplicial groups, and in section 3 we recall some facts on �-algebras, and prove ourmain results on CW resolutions of spaces by wedges of spheres: Theorem A (=Theorem3.20) and Theorem 3.24. In section 4 we de�ne a certain cosimplicial simplicial spaceup-to-homotopy, which can be recti�ed if and only if X is a loop space. In section 5 weconstruct a certain collection of face-codegeneracy polyhedra, which are used to de�nethe higher homotopy operations refered to in Theorem B (=Theorem 5.12). We alsoshow how the theorem may be used in reverse to calculate a certain tertiary operationin ��S7.1.3. Acknowledgements. I would like to thank the referee for his or her comments (seein particular x3.18 below). 2. simplicial objectsWe �rst provide some de�nitions and facts on simplicial objects:2.1. De�nition. Let � denote the category of ordered sequences n = h0; 1; : : : ; ni(n 2 N), with order-preserving maps. A simplicial object over a category C is a functorX : �op ! C, usually written X�, which may be described explicitly as a sequenceof objects fXkg1k=0 in C, equipped with face maps dki : Xk ! Xk�1 and degeneraciesskj : Xk ! Xk+1 (usually written simply di, sj , for 0 � i; j � k), satisfying theusual simplicial identities ([Ma, x1.1]). If I = (i1; i2; : : : ; ir) is some multi-index, wewrite dI for di1 � di2 � � � � � dir , with d; := id; and similarly for sI . An augmentedsimplicial object is one equipped with an augmentation " : X0 ! Y (for Y 2 C),with "d0 = "d1.The category of simplicial objects over C is denoted by sC. We write shniC for thecategory n-simplicial objects over C (that is, objects of the form fXkgnk=0, with therelevant face maps and degeneracies), and denote the truncation functor sC ! shniCby �n.For technical convenience in the next two sections we shall be working mainly in thecategory of simplicial groups, denoted by G (rather than sGp); objects in G will bedenoted by capital letters X, Y , and so on. A simplicial object X� = (X0;X1; : : : )in sG is thus a bisimplicial group, which has an external simplicial dimension (the nin Xn 2 G), as well as the internal simplicial dimension k (inside G), which we shalldenote by (Xn)intk , if necessary.



CW RESOLUTIONS OF SPACES 32.2. Simplicial sets and groups. The standard n simplex in S is denoted by �[n],generated by �n 2 �[n]n. ��[n] denotes the sub-object of �[n] generated bydi�n (0 � i � n). The simplicial n-sphere is Sn := �[n]= ��[n], and the n-disk isDn := CSn�1.Let F : S ! G denote the (dimensionwise) free group functor of [Mi2, x2], andG : S ! G be Kan's simplicial loop functor (cf. [Ma, Def. 26.3]), with �W : G ! S theEilenberg-Mac Lane classifying space functor (cf. [Ma, x21]). Recall that if S : T ! Sis the singular set functor and k � k : S ! T the geometric realization functor (see[Ma, x1,14]), then the adjoint pairs of functorsT S
k�k S G
�W G(2.3)induce isomorphisms of the corresponding homotopy categories (see [Q1, I, x5]), sothat for the purposes of homotopy theory we can work in G rather than T .2.4. De�nition. In particular, Sn := FSn�1 2 G for n � 1 (and S0 := GS0 forn = 0) will be called the n-dimensional G-sphere, in as much as [Sn; GX]G �= �nX =[Sn;X] for any Kan complex X 2 S. Similarly, Dn := FDn�1 will be called then-dimensional G-disk.2.5. De�nition. In any complete category C, the matching object functor M : Sop�sC ! C, written MAX� for a (�nite) simplicial set A 2 S and X� 2 sC,is de�ned by requiring: (a) M�[n]X� := Xn, and (b) if A = colimiAi, thenMAX� = limiMAiX� (see [DKS2, x2.1]). In particular, if Akn is the subcomplex of��[n] generated by the last (n� k +1) faces (dk�n; : : : ; dn�n), we write MknX� forMAknX�: explicitly,MknX� = f(xk; : : : ; xn) 2 (Xn�1)n+1 j dixj = dj�1xi for all k � i < j � ng:(2.6)and the map �kn : Xn ! MknX� induced by the inclusion Akn ,! �[n] is de�ned�kn(x) = (dkx; : : : ; dnx). The original matching object of [BK, X,x4.5] was M0nX� =M ��[n]X�, which we shall further abbreviate to MnX�; each face map dk : Xn+1 ! Xnfactors through �n := �0n. See also [Hi, XVII, 87.17].2.7. Remark. Note that for X 2 G and A 2 S we have MAX �= HomG(FA;X) 2 Gp(cf. x2.2), so for X� 2 sG also (MAX)k �= HomG(FA; (X�)intk ) in each simplicialdimension k.2.8. De�nition. X� 2 sG is called �brant if each of the maps �n : Xn ! MnX�(n � 0) is a �bration in G (that is, a surjection onto the identity component { see[Q1, II, 3.8]). This is just the condition for �brancy in the Reedy model category, (see[R]), as well as in that of [DKS1], but we shall not make explicit use of either.By analogy with Moore's normalized chains (cf. [Ma, 17.3]) we have:2.9. De�nition. Given X� 2 sG, we de�ne the n-cycles object of X�, written ZnX�,to be the �ber of �n : Xn ! MnX�, so ZnX� = fx 2 Xn j dix = 0 for i = 0; : : : ; ng(cf. [Q1, I,x2]). Of course, this de�nition really makes sense only when X� is �brant(x2.8). Similarly, the n-chains object of X�, written CnX�, is de�ned to be the�ber of �1n : Xn !M1nX�.



4 DAVID BLANCIf X� 2 sG is �brant, the map dn0 = d0jCnX�: CnX� ! Zn�1X� is the pullback of�n : Xn !MnX� along the inclusion � : Zn�1X� !MnX� (where �(z) = (z; 0; : : : ; 0)),so dn0 is a �bration (in G), �tting into a �bration sequenceZnX� jn�! CnX� dn0�! Zn�1X�:(2.10)2.11. Proposition. For any �brant X� 2 sC, the inclusion � : CnX� ,! Xn inducesan isomorphism �? : ��CnX� �= Cn(��X�) for each n � 0.Proof. (a) First note that if j : A ,! B is a trivial co�bration in S, then j� :MBX� ! MAX� has a natural section r : MAX� ! MBX� (with j� � r = id) forany X� 2 sG: This is because by remark 2.7, (MAX�)k �= HomG(FA; (X�)intk ) forA 2 S; since FA is �brant in G, we can choose a left inverse � : FB ! FA forFj : FA ,! FB, so j� : (MBX�)intk ! (MAX�)intk has a right inverse ��, which isnatural in (X�)intk ; so these maps �� �t together to yield the required map r.This need not be true in general if j is not a weak equivalence, as the example ofM12X� !M01X� shows.(b) Given � 2 Cn�mX� represented by h : Sm ! Xn with dkh � 0 (1 � k � n),consider the diagram:Sm@ @ @ @R hX X X X X X X X X X X X @ @ @ @R� 0C C C C C C C C Z Z Z Z Z Z~� 0 Xn @ @R �knP P P P P P P P P Pq�k+1nA A A A A A A AUdk MknX� - Mk+1n X�?�kXn�1 ? j� = (dk; : : : ; dk)-�kn�1 Mkn�1X�PBin which j� is a �bration by (a) if k � 1, so the lower left-hand square is in fact ahomotopy pullback square (see [Mat, x1]). By descending induction on 1 � k � n�1,(starting with �nn = dn), we may assume �k+1n �h : Sm !Mk+1n X� is nullhomotopic inC, as is dk�h, so the induced pullback map �kn�h : Sm !MknX�, is also nullhomotopicby the universal property. We conclude that �1n � h � 0, and since �1n : Xn !M1nX�is a �bration by (a), we can choose h : Sm ! Xn so that �1nh = 0. Thus h lifts toCnX� = Fib(�1n), and �? is surjective.(c) Finally, the long exact sequence in homotopy for the �bration sequenceCnX� ��!Xn �1n�!M1nX�implies that �# : ��CnX� ! ��Xn is monic, so �? : ��CnX� ! Cn(��X�) is, too.



CW RESOLUTIONS OF SPACES 52.12. De�nition. The dual construction to that of x2.5 yields the colimitLnX� := a0�i�n�1Xn�1=�;where for any x 2 Xn�2 and 0 � i � j � n � 1 we set sjx in the i-th copy ofXn�1 equivalent under � to six in the (j+1)-st copy of Xn�1. LnX� has sometimesbeen called the \n-th latching object" of X�. The map �n : LnX� ! Xn is de�ned�nx(i) = six, where x(i) is in the i-th copy of Xn�1.3. �-algebras and resolutionsIn this section we recall some de�nitions and prove our main results on �-algebrasand resolutions:3.1. De�nition. A �-algebra is a graded group G� = fGkg1k=1 (abelian in degrees> 1), together with an action on G� of the primary homotopy operations (i.e.,compositions and Whitehead products, including the \�1-action" of G1 on the higherGn's, as in [W, X, x7]), satisfying the usual universal identities. See [B3, x2.1] for amore explicit description. These are algebraic models of the homotopy groups ��Xof a space (or Kan complex) X, in the same way that an algebra over the Steenrodalgebra models its cohomology ring. The category of �-algebras is denoted by �-Alg.We say that a space (or Kan complex, or simplicial group) X realizes an (abstract)�-algebra G� if there is an isomorphism of �-algebras G� �= ��X. (There maybe non-homotopy equivalent spaces realizing the same �-algebra { cf. [B5, x7.18]).Similarly, an abstract morphism of �-algebras � : ��X ! ��Y (between realizable�-algebras) is realizable if there is a map f : X! Y such that ��f = �.3.2. De�nition. The free �-algebra generated by a graded set T� = fTkg1k=1 is ��W,where W = W1k=1W�2Tk Sk(�) (and we identify � 2 Tk with the generator of �kWrepresenting the inclusion Sk(�) ,!W).If we let F � �-Alg denote the full subcategory of free �-algebras, and � thehomotopy category of wedges of spheres (inside hoT� or hoS� { or equivalently, thehomotopy category of coproducts of G-spheres in hoG), then the functor �� : �! Fis an equivalence of categories. Thus any �-algebra morphism ' : G� ! H� isrealizable (uniquely, up to homotopy), if G� and H� are free �-algebras (actually,only G� need be free).3.3. De�nition. Let T : �-Alg ! �-Alg be the \free �-algebra" comonad (cf. [Mc,VI, x1]), de�ned TG� = `1k=1`g2Gk ��Sk(g). The counit " = "G� : TG� !! G�is de�ned by �k(g) 7! g (where �k(g) is the canonical generator of ��Sk(g)), and thecomultiplication # = #G� : TG� ,! T 2G� is induced by the natural transformation�# : idF ! T jF de�ned by xk 7! �k(xk).3.4. De�nition. An abelian �-algebra is one for which all Whitehead products vanish.These are indeed the abelian objects of �-Alg { see [B3, x2]. In particular, if Xis an H-space, then ��X is an abelian �-algebra (cf. [W, X, (7.8)]).3.5. De�nition. A simplicial �-algebra A� is called free if for each n � 0 there isa graded set T n� � An such that An is the free �-algebra generated by T n� (x3.2),and each degeneracy map sj : An ! An+1 takes T n� to T n+1� .



6 DAVID BLANCA free simplicial resolution of a �-algebra G� is de�ned to be an augmentedsimplicial �-algebra A� ! G�, such that(i) A� is a free simplicial �-algebra,(ii) in each degree k � 1, the homotopy groups of the simplicial group (A�)kvanish in dimensions n � 1, and the augmentation induces an isomorphism�0(A�)k �= Gk.Such resolutions always exist, for any �-algebra G� { see [Q1, II, x4], or the explicitconstruction in [B1, x4.3].3.6. De�nition. For any X 2 G, a simplical object W� 2 sG equipped with anaugmentation " : W0 ! X is called a resolution of X by spheres if each Wn ishomotopy equivalent to a wedge of G-spheres, and ��W� ! ��X is a free simplicialresolution of �-algebras.3.7. Example. One example of such a resolution by spheres is provided by Stover'sconstruction; we shall need a variant in G (as in [B7, x5]), rather than the originalversion of [St, x2], in T�. (The argument from this point on would actually workequally well in T�; but we have already chosen to work in G, in order to facilitate theproof of Proposition 2.11).De�ne a comonad V : G ! G for G 2 G byV G = 1ak=0 a�2HomG(Sk;G) Sk� [ 1ak=0 a�2HomG(Dk+1 ;G) Dk+1� ;(3.8)where Dk+1� , the G-disc indexed by � : Dk+1 ! G, is attached to Sk�, the G-sphereindexed by � = �j@Dk+1, by identifying @Dk+1 := F@Dk with Sk (see x2.4 above).The coproduct here is just the (dimensionwise) free product of groups; the counit" : V G ! G of the comonad V is \evaluation of indices", and the comultiplication# : V G ,! V 2G is as in x3.3.Now given X 2 G, de�ne Q� 2 sG by setting Qn = V n+1X, with face anddegeneracy maps induced by the counit and comultiplication respectively (cf. [Go,App., x3]). The counit also induces an augmentation " : Q� ! X; and this is in facta resolution of X by spheres (see [St, Prop. 2.6]).3.9. Remark. Note that we need not use the G-sphere and disk Sk and Dk of x2.4in this construction; we can replace it by any other homotopy equivalent co�brant pairof simplicial groups, so in particular by (F D̂k; F Ŝk�1) for any pair of simplicial sets(D̂k; Ŝk�1) ' (Dk;Sk�1).3.10. The Quillen spectral sequence. A resolution by spheres W� ! X is in facta resolution (i.e., co�brant replacement) for the constant simplicial object cX� 2 sG(i.e., c(X)n = X, di = sj = idX) in an appropriate model category structure onsG { see [DKS1] and [B9]. However, we shall not need this fact; for our purposes itsu�ces to recall that for any bisimplicial group W� 2 sG, there is a �rst quadrantspectral sequence with E2s;t = �s(�tW�)) �s+t diagW�(3.11)



CW RESOLUTIONS OF SPACES 7converging to the diagonal diagW� 2 G, de�ned (diagW�)k = (Wk)intk (see [Q2]).Thus if W� ! X is a resolution by spheres, the spectral sequence collapses, andthe natural map W0 ! diagW� induces an isomorphism ��X �= ��(diagW�).Combined with the fact that ��W� is a resolution (in s�-Alg) of ��X, this simpleresult has many applications { see for example [B1], [DKSS], and [St].3.12. De�nition. A CW complex over a pointed category C is a simplicial objectR� 2 sC, together with a sequence of objects �Rn (n = 0; 1; : : : ) such that Rn �=�Rn q LnR� (x2.5), and dni j �Rn= 0 for 1 � i � n. The objects ( �Rn)1n=0 are called aCW basis for R�, and �dn0 := d0j �Rn is called the n-th attaching map for R�.One may then describe R� explicitly in terms of its CW basis byRn �= a0���n aI2I�;n �Rn��(3.13)where I�;n is the set of sequences I of � non-negative integers i1 < i2 < : : : < i�(< n), with sI = si� � � � � � si0 the corresponding �-fold degeneracy (if � = 0,sI = id). See [B2, 5.2.1] and [Ma, p. 95(i)].Such CW bases are convenient to work with in many situations; but they are mostuseful when each basis object is free, in an appropriate sense. In particular, if C =�-Alg, we have the following3.14. De�nition. A CW resolution of a �-algebra G� is a CW complex A� 2s�-Alg, with CW basis ( �An)1n=0 and attaching maps �dn0 : �An ! Zn�1A�, such thateach �An is a free �-algebra, and each attaching map dn0 jCnA� is onto Zn�1A� (forn � 0, where we let �d00 denote the augmentation " : A� ! G� and Z�1A� := G�).Compare [B2, x5].Every �-algebra has a CW resolution (x3.14), as was shown in [B1, 4.4]: for example,one could take the graded set of generators �T n� for �An to be equal to the graded set��Zn�1A�.3.15. De�nition. Q� 2 sG is called a CW resolution by spheres of X 2 G ifQ� ! X is a resolution by spheres (Def. 3.6), and Q� is a CW complex with CWbasis ( �Qn)1n=0), such that each �Qn 2 F (i.e., �Qn is homotopy equivalent to a wedgeof spheres). The concept is de�ned analogously for X 2 S or X 2 T�.3.16. Remark. Closely related to the problem of realizing abstract �-algebras (x3.1)is that of realizing a free simplicial �-algebra A� 2 s�-Alg: this is because, as notedin x3.5, every G� 2 �-Alg has a free simplicial resolution A� ! G�; if it can berealized by a simplicial space W� 2 sTc { or equivalently, via (2.3), by a bisimplicialspace or group { then the spectral sequence (3.11) implies that �� diagW� �= G�.However, not every �-algebra is realizable (see [B5, x8] or [B4, Prop. 4.3.6]).It would nevertheless be very useful to know the converse: namely, that any freeresolution of a realizable �-algebra is itself realizable. This was mistakenly quoted as atheorem in [B5, x6], where it was needed to make the obstruction theory for realizing�-algebras described there of any practical use { and appeared as a conjecture in [B6,x4], in the context of an obstruction theory for a space to be an H-space.In order to show that this conjecture is in fact true, we need several preliminaryresults:



8 DAVID BLANC3.17. Proposition. Every CW resolution A� ! ��X of a realizable �-algebra em-beds in ��Q� for some resolution by spheres Q� ! X.Proof. To simplify the notation, we work here with topological spaces, rather thansimplicial groups, changing back to G if necessary via the adjoint pairs of x2.2.Given a free simplicial�-algebra resolution A� ! J� with CW basis ( �An)1n=0, whereJ� = ��X for some X 2 T�, and �An is the free �-algebra generated by the graded setT n� , let � denote the cardinality of `1n=0`1k=0 T nk , and set X0 := X_W1n=0W�<�Dn.De�ne new \spheres" and \disks" of the form Ŝn := Sn _W1n=0W�<�Dn and D̂n :=Ŝn _Dn. (This is to ensure that there will be at least � di�erent representatives foreach homotopy class in ��X0 or ��Ŝn.)By remark x3.9 above, if we use the construction of x3.7 in T� (or in G, mutatismutandis) with these \spheres" and \disks", and apply it to the space X0, ratherthan to X, we obtain a resolution by spheres Q� ! X0.We de�ne � : A� ,! ��Q� by induction on the simplicial dimension; it su�ces toproduce for each n � 0 an embedding ��n : �An ,! Cn��Q� commuting with d0. If wedenote "A : A0 ! ��X �= ��X0 by �d00 : C0A� ! Z�1A� =: A�1 and set ��1 = id��X ,then we may assume by induction we have a monomorphism �n�1 : An�1 ,! ��Qn�1(taking generators to generators, and commuting with face and degeneracy maps).For each �-algebra generator �� in ( �An)k, if d0(��) 6= 0 then �n�1(d0(��)) 2Zn�1�kQ� is represented by some g : Ŝk ! Qn�1, and we can choose distinct (thoughperhaps homotopic) maps g for di�erent generators �� by our choice of Ŝk. Thenby (3.8) there is a wedge summand Ŝkg in Qn = V Qn�1 (with no disks attached),and the corresponding free �-algebra coproduct summand ��Ŝkg in ��Qn, generatedby �g, has d0(�g) = [g] 2 �kQn�1 and di(�g) = �di�1g = 0 2 �kQn�1 for 1 � i � nby x3.7, since [g] = �n�1(d0(��)) 2 Zn�1�kQ� and thus di[g] = [dig] = 0, andspheres indexed by nullhomotopic maps have disks attached to them. We see that�g 2 Cn�kQ�, so we may de�ne ��n(��) = �g.If d0(��) = 0, then all we need are enough distinct �-algebra generators in Zn��Q�:we cannot simply take �g for nullhomotopic g : Sk ! Qn�1, because of the attacheddisks; but we can proceed as follows:Since D̂k = CŜk _Dk and X0 = X _ W1i=0W�<�Di, we have � distinct nonzeromaps F� : D̂k ! X0 with F�jCŜk= �. De�ne H+ = F�, H� = �; then SkH :=D̂kH+ [Ŝk�1� D̂kH� is, up to homotopy, a sphere wedge summand in Q0, and thus�H� 2 �kQ0 is a �-algebra generator mapping to 0 under the augmentation. Similalry,de�ne SkG� := D̂kG+ [Ŝk�1� D̂kG� in Q1 by G+ = �, G� = �?�k where �k is ahomoeomorphism onto the summand Dk in D̂kH�� . Then G� � � and G� 6= � butH � G = �; thus �H� is a �-algebra generator in Z1�kQ�. By thus alternating the+ and � we produce � distinct �-algebra generators in Zn��Q� for each n.3.18. Remark. The referee has suggested an alternative proof of this Proposition, whichmay be easier to follow: rather than \fattening" the spheres and disks, we can modifythe Stover construction of (3.8) by using � copies of each sphere or disk for each� 2 HomG(Sk; G) or � 2 HomG(Dk+1; G), respectively. The proof of [St, Prop. 2.6]still goes through, and so does the argument for embedding A� in ��Q� above.3.19. Proposition. Any free simplicial �-algebra A� has a (free) CW basis ( �An)1n=0.



CW RESOLUTIONS OF SPACES 9Proof. Start with �A0 = A0. For n � 1, assume An = `1k=0`�2Tnk ��Sk. ByDe�nition 3.5, T n� �= �T n� [ S0���n SI2I�;n T̂ n��� (as in x3.13), so we can setÂn =`1k=0`�2T̂nk ��Sk; but dijÂn need not vanish for i � 1.However, given � 2 T̂ nk , we may de�ne �i 2 (An)intk inductively, starting with�0 = � , by �i+1 = �isn�i�1dn�i��1i (face and degeneracy maps taken in the externaldirection); we �nd that �� := �n is in CnA�. If we de�ne �' : T̂ n� ! An by '(� ) = �� ,by the universal property of free �-algebras this extends to a map ' : Ân ! An,which together with the inclusion �n : LnA� ,! An yields a map  : An ! An whichis an isomorphism by the Hurewicz Theorem (cf. [B7, Lemma 2.5]). Thus we may set�An := '(Ân), that is, the free �-algebra generated by f��g�2T̂n� . Compare [K, x3].3.20. Theorem. Every free simplicial �-algebra resolution A� ! ��X of a realizable�-algebra ��X is itself realizable by a CW resolution R� ! X in sG.Proof. By Propositions 3.17 and 3.19 we may assume A� has a (free) CW basis( �An)1n=0, and that there is a resolution by spheres Q� ! X (in sG) and anembedding of simplicial �-algebras � : A� ! Q�. We may also assume that Q� is�brant (x2.8), with "Q : Q0 ! X a �bration. We shall actually realize � by a mapof bisimplicial groups f : R� ! Q�.Note that once R� has been de�ned through simplicial dimension n, for any k � 0we have a commutative diagram�kCnR� -(d0)# �kZn�1R�?�? �= ?�n�1Cn�kR� -dn0 Zn�1�kR� -(jn�1)# �kCn�1R�?�? �=-inc. Cn�1�kR� -(d0)# �kZn�2R�?�n�2-dn�10 Zn�2�kR� -(jn�2)# �kCn�2R�?�? �=-inc. Cn�2�kR�(obtained by �tting together three of the long exact sequences of the �brations (2.10)).The vertical maps are induced by the inclusions CnR� ,! Rn, and so on { seeProposition 2.11.The only di�culty in constructing R� is that Proposition 2.11 does not hold forZn { i.e., the maps �n in the above diagram in general need not be isomorphisms{ so we may have an element in ZnA� represented by � 2 Cn��R� = ��CnR� with(dn0 )#(�) 6= 0 (but of course (jn�1)#(dn0 )#(�) = 0). In this case we could not have� 2 ��Cn+1R� = Cn+1A� with (jn)#(dn+10 )#(�) = �, so ��R� would not be acyclic.It is in order to avoid this di�culty that we need the embedding �, since by de�nitionthis cannot happen for Q�: we know that dn0 : Cn��Q� ! Zn�1��Q� is surjectivefor each n > 0, so �n�1 : ��Zn�1Q� ! Zn�1��Q� is, too, which implies that for eachn > 0: Imf(dn+10 )# : ��Cn+1Q� ! ��ZnQ�g \ Kerf(jn)# : ��ZnQ� ! ��CnQ�g = 0(3.21)which we shall call Property (3.21) for ZnQ�. (This implies in particular that Zn��Q� =Kerf(dn0)# : ��CnQ� ! Zn�1Q�g.)Note that given any �brant K� 2 sG having Property (3.21) for ZmK� for each0 < m � n, if we consider the long exact sequence of the �bration dm0 : CmK� !



10 DAVID BLANCZm�1K�: : : : �k+1CmK� (dm0 )#���! �k+1Zm�1K� @m�1���! �kZmK� (jm�1)#�����! �kCm�1K� : : : ;(3.22)we may deduce that@mjIm(@m�1) is one-to-one, and surjects onto Im(@m)(3.23)for 0 < m � n.We now construct R� by induction on the simplicial dimension:(i) First, choose a �bration "R : R0 ! X realizing "A : A0 ! ��X. By x3.2, thereis a map f 00 : R00 ! Q0 realizing �0, so "Q � f 00 � "R; since "Q is a �bration,we can change f 00 to f0 : R0 ! Q0 with "Q � f 00 = "R.(ii) Let Z0R� denote the �ber of "R. Since "R# = "A is a surjection, we have��Z0R� = Ker("R#) = Z0A�, and dA0 maps C1A� onto Z0A�, so �dA0 : �A1 ! A0factors through ��Z0R�, and we can thus realize it by a map �dR0 : �R1 ! Z0R�.Set R01 := �R1 q L1R� (so ��R01 �= A1), with �01 : R01 !M1R� = R0�R0 equalto ( �dR0 ; 0)?�, and change �01 to a �bration �1 : R1 ! M1R�. Again we canrealize �1 : A1 ! ��Q1 by f1 : R1 ! Q1 with �Q1 � f1 = f0 � �R1 , since �Q1 isa �bration; so we have de�ned �1f : �1R� ! �1Q� realizing �1�.(iii) Now assume we have �nf : �nR� ! �nQ� realizing �n�, with Property (3.21)holding for ZmR� for 0 < m < n.For each �-algebra generator � 2 �An+1 (in degree k, say), (3.21) implies thatdn+10 (�) 2 Ker(dn0 ) = Ker((dRn0 )#) � (CnA�)k = �kCnR�, so by the exactness of(3.22) we can choose � 2 �kZnR� such that (jn)#� = dn+10 (�). This allows us tode�ne �dR0 : �Rn+1 ! ZnR� so that (jn)#( �dR0 )# realizes (inc.)� �dA0 : �An+1 ! CnA�,as well as �fn+1 : �Rn+1 ! CnQ� realizing �n+1j �An+1 . Because �An+1 = �� �Rn+1 isa free �-algebra, this implies the homotopy-commutativity of the outer rectanglein �Rn+1 -�fn+1 Cn+1Q�?�dR0 ? dQ0ZnR� p p p p p p p p p p p p p p p-Znf ZnQ�?jRn ? jQnCnR� -Cnf CnQ�(as well as the lower square, by the induction hypothesis). Thus jQn �Znf � �dR0 �jQn � dQ0 � �fn+1, so (jQn )# � (Znf)# � ( �dR0 )# = (jQn )# � (dQ0 )# � ( �fn+1)#. By(3.21) this implies (Znf)# � ( �dR0 )# = (dQ0 )# � ( �fn+1)#, so (since �� �Rn+1 is afree �-algebra) also Znf � �dR0 � dQ0 � �fn+1 { which means that we can choose�fn+1 so that Znf � �dR0 = dQ0 � �fn+1 (since dQ0 is a �bration). Thus if we set��Rn+1 : �Rn+1 !Mn+1R� to be ( �dR0 ; 0; : : : ; 0), we have Mn+1f ���Rn+1 = �Qn+1� �fn+1.



CW RESOLUTIONS OF SPACES 11If  Rn+1 := �Rn+1 � �Rn+1 (in the notation of x2.5 & 2.12) we set R0n+1 :=�Rn+1 q Ln+1R�, and de�ne �0n+1 : R0n+1 ! Mn+1R�, and f 0n+1 : R0n+1 ! Qn+1respecyively by �0n+1 := (��Rn+1? Rn+1) and f 0n+1 := ( �fn+1?Ln+1f). We see that(f 0n+1)# = �n+1 and Mn+1f � �0n+1 = �Qn+1 � f 0n+1, and this will still hold if wechange �0n+1 into a �bration, and extend f 0n+1 to fn+1 : Rn+1 ! Qn+1. Thisde�nes �n+1f : �n+1R� ! �n+1Q� realizing �n+1�.(iv) It remains to verify that �n+1R� so de�ned satis�es (3.21). However, (3.23)implies that we have a map of short exact sequences:0 - Im(@n�1R ) -inc. �kZnR�? f� ? (Znf)#0 - Im(@n�1Q ) -inc. �kZnQ� - Im((jRn )#) �= ZnA� - 0- Im((jQn )#) �= Zn�kQ� - 0? Zn�in which the left vertical map is an isomorphism and the right map is one-to-one,so (Znf)# is one-to-one, too. Therefore, Ker((jRn )#) = Ker((jRn )#) \ ��ZnR�,which implies that Property (3.21) holds for ZnR�, too.This completes the inductive construction of R�.We also have an analogous result for maps:3.24. Theorem. If K� "K�! ��X and L� "L�! ��Y are two free simplicial �-algebraresolutions, g : X ! Y is a map in G, and ' : K� ! L� is a morphism of simplicial�-algebras such that "L � '0 = ��g � "K, then ' is realizable by a map f : A� ! B�in sG.Proof. Choose free CW bases for K� and L�, and realize the resulting CW resolutionsby A� and B� respectively, where (as in the proof of Theorem 3.20) we may assumed0 : CnB� ! Zn�1B� is a �bration for each n � 0. fn : An ! Bn will be de�ned byinduction on n: '0 : K0 ! L0 may be realized by a map f 00 : A0 ! B0 (x3.2), andsince "B is a �bration and "B � f 00 � g � "A, we can choose a realization f0 for '0such that "B � f0 = g � "A.In general, �'n = 'nj �Kn: �Kn ! CnL� may be realized by a map �fn : �An ! CnB�(Proposition 2.11), and since d0 : CnB� ! Zn�1B� is a �bration, we may choose �fnso d0� �fn = Zn�1f �d0 : �An ! Zn�1B�. By induction this yields a map fn = Lnf? �fn :An = LnA� q �An ! LnB� q �Bn = Bn such that �Bn � fn = Mnf � �An : An ! MnB�,so f is indeed a simplicial morphism (realizing �).4. The simplicial bar constructionAs an application of Theorem 3.20, we describe an obstruction theory for determiningwhether a given space X is, up to homotopy, a loop space (and thus a topological group{ see [Mi1, x3]). In the next two sections we no longer need to work with simplicialgroups, so we revert to the more familiar category of topological spaces; we can stillutilize the results of the previous section via the adjoint pairs of (2.3).4.1. De�nition. A �-cosimplicial object E�� over a category C is a sequence ofobjects E0; E1; : : : , together with coface maps di : En ! En+1 for 1 � 1 � n



12 DAVID BLANCsatisfying djdi = didj�1 for i < j (cf. [RS]). Given an ordinary cosimplicialobject E� (cf. [BK, X, 2.1]), we let E�� denote the underlying �-cosimplicial object(obtained by forgetting the codegeneracies).4.2. The cosimplicial James construction. Given a space X 2 T�, we de�ne a�-cosimplicial space U�� = U(X)�� by setting Un = Xn+1 (the Cartesian product),and di(x0; : : : ; xn) = (x0; : : : ; xi�1; �; xi; : : : ; xn). Note that colimU(X)�� �= JX (theJames reduced product construction), and4.3. Fact. If hX;mi is a (strictly) associative H-space, we can extend U�� to a fullcosimplicial space U� by setting sj(x0; : : : ; xn) = (x0; : : : ;m(xj; xj�1); : : : ; xn).4.4. De�nition. Let A� be a CW -resolution of the �-algebra ��X = ��U0, as inx3.14. We construct a �-cosimplicial augmented simplicial �-algebra (E�)�� ! ��U��,such that each En� is a CW -resolution of ��Un = ��(Xn+1), with CW -basis f �Enr g1r=0.We start by setting �E0r = �C0r = �Ar for all r � 0, and then de�ne �Enr by a doubleinduction (on r � 0 and then on n � 0) as�Enr = a0���n aI2I�;n [ �Cn��r ]I ;(4.5)where I�;n is as in (3.13) and �Cm0 = 0 = �C0r for all m; r � 0.The coface maps di : En�1r ! Enr are determined by the cosimplicial identitiesand the requirement that dij[ �Cn��r ](i1;:::;in) be an isomorphism onto [ �Cn��r ](i1;:::;in;i) ifi > in.The only summand in (4.5) which is not de�ned is thus [ �Cnr ];, which we denotesimply by �Cnr . We require that it be an n-th cross-term in the sense that �d0j �Cnrdoes not factor through the image of any coface map di : En�1r�1 ! Enr�1. Other thanthat, �Cnr may be any free �-algebra which ensures that (4.5) de�nes a CW -basisfor a CW -resolution En� ! ��Un. We shall call the double sequence (( �Cnr )1n=1)1r=1 across-term basis for (E�)��.Note that A� is a retract of E2� in two di�erent ways (under the two coface mapsd0, d1), corresponding to the fact that X is a retract of X�X in two di�erent ways;the presence of the cross-terms �C2r indicates that A� �A� is a resolution of ��X2,but not a free one, while A�qA� is a free simplicial �-algebra, but not a resolution.Similarly, X�X embeds in X3 in three di�erent ways, and so on.4.6. Example. For any A� ! ��X we may set �C21 = `Spx ,!A(0)0 `Sqy ,!A(1)0 Sp+q�1(x;y) ,with �d0jSp+q�1(x;y) = [�x; �y] (in the notation of x3.3). The higher cross-terms �Cn1 = 0for n � 3, since any k-th order cross-term element z in `nj=0A(j)0 (k � 3) is a sumof elements of the form z = �#[: : : [[�r1(x1); �r2(x2)]; �r3(x3)]; : : : ; �rk(xk)], and thenz = d0(�#[: : : [�r1+r2�1(x1;x2) ; s0�r3(x3)]; : : : ; s0�rk(xk)]):4.7. De�nition. Let h(W�)�� ! U�� be the �-cosimplicial augmented simplicialspace up-to-homotopy which corresponds to (E�)�� ! ��U�� via x3.2. Thus thevarious (co)simplicial morphisms exist, and satisfy the (co)simplicial identities, only in



CW RESOLUTIONS OF SPACES 13the homotopy category (we may choose representatives in T�, but then the identitiesare satis�ed only up to homotopy). Each Wnr is homotopy equivalent to a wedgeof spheres, and has a wedge summand �Wnr ,! Wnr corresponding to the CW -basisfree �-algebra summand �Enr ,! Enr . We let �Cnr denote the wedge summand of �Wnrcorresponding to �Cnr ,! �Enr .4.8. De�nition. An simplicial space V� 2 sT� is called a recti�cation of a simplicialspace up-to-homotopy hW� if Vn ' Wn for each n � 0, and the face anddegeneracy maps of V� are homotopic to the corresponding maps of hW�. See[DKS, x2.2], e.g., for a more precise de�nition; for our purposes all we require is that��V� be isomorphic (as a simplicial �-algebra) to ��(hW�). Similarly for recti�cationof (�-)cosimplicial objects, and so on.By considering the proof of Theorem 3.20, we see that we can make the following4.9. Assumption. (E�)�� maps monomorphically into ��V�(U��), and h(W�)�� !U�� can be recti�ed so as to yield a strict �-cosimplicial augmented simplicial space(W�)�� ! U�� realizing (E�)�� ! ��U��.4.10. De�nition. Now assume that ��X is an abelian �-algebra (Def. 3.4) { thisis the necessary �-algebra condition in order for X to be an H-space { and let� : ��X � ��X ! ��X be the morphism of �-algebras de�ned levelwise by thegroup operation (see [B6, x2]). This � is of course associative, in the sense that� � (�; id) = � � (id; �) : ��(X3)! ��X, so it allows one to extend the �-cosimplicial�-algebra F �� := ��(U��) to a full cosimplicial �-algebra F �, de�ned as in x4.3.Since En� ! F n = ��Un is a free resolution of �-algebras, the codegeneracy mapssj : F n ! F n�1 induce maps of simplicial �-algebras sj� : En� ! En�1� , unique up tosimplicial homotopy, by the universal property of resolutions (cf. [Q1, I, p. 1.14 & II, x2,Prop. 5]). Note, however, that the individual maps sjr : Enr ! En�1r are not unique,in general; in fact, di�erent choices may correspond to di�erent H-multiplications onX.These maps sj make (E�)�� ! F �� into a full cosimplicial augmented simplicial�-algebra E�� ! F �, and thus hW�� ! U�� into a cosimplicial augmented simplicialspace up-to-homotopy (for which we may assume by 4.9 that all simplicial identities,and all the cosimplicial identities involving only the coface maps, hold precisely).4.11. Proposition. The cosimplicial simplicial space up-to-homotopy hW�� of x4.10may be recti�ed if and only if X is homotopy equivalent to a loop space.Proof. If X is a loop space, it has a strictly associative H-multiplication m : X�X!X which induces � on ��(�) (cf. [Gr, Prop. 9.9]), so U�� extends to a cosimplicialspace U� by Fact 4.3. Applying the functorial construction of [St, x2] to U� yields a(strict) cosimplicial augmented simplicial space (V�)�� ! U�, and since we assumed��Wn� embeds in ��Vn� for each n, hW�� may also be recti�ed.Conversely, if W�� is a (strict) cosimplicial simplicial space realizing E�� , then wemay apply the realization functor for simplicial spaces in each cosimplicial dimensionn � 0 to obtain kWn�k ' Un = Xn+1 (by x3.10). The realization of the codegeneracymap ks0k : kW1�k ! kW0�k induces � : ��(X2) ! ��X, so it corresponds to anH-space multiplication m : X2 ! X (see [B6, Prop. 2.7]).



14 DAVID BLANCThe fact that kW��k is a (strict) cosimplicial space means that all composite code-generacy maps ks0 � sj1 � � � � sjn�1k : kWn�k ! kW0�k are equal, and thus all possiblecomposite multiplications Xn+1 ! X (i.e., all possible bracketings in (2.6)) arehomotopic, with homotopies between the homotopies, and so on { in other words,the H-space hX;mi is an A1 space (see [St3, Def. 11.2]) { so that X is homotopyequivalent to loop space by [St3, Theorem 11.4]. Note that we only required that thecodegeneracies of hW�� be recti�ed; after the fact this ensures that the full cosimplicialsimplicial space is recti�able.In summary, the question of whether X is a loop space reduces to the questionof whether a certain diagram in the homotopy category, corresponding to a diagramof free �-algebras, may be recti�ed { or equivalently, may be made 1-homotopycommutative. 5. Polyhedra and higher homotopy operationsAs in [B5, x4], there is a sequence of higher homotopy operations which serve asobstructions to such a recti�cation, and these may be described combinatorially interms of certain polyhedra, as follows:5.1. De�nition. TheN -permutohedron PN is de�ned to be the convex hull in RN ofthe points p� = (�(1); �(2); : : : ; �(N)), where � ranges over all permutations � 2 �N(cf. [Z, x9]). It is (N � 1)-dimensional.For any two integers 0 � n < N , the corresponding (N;n)-face-codegeneracypolyhedron PNn is a quotient of the N -permutohedron PN obtained by identifyingtwo vertices p� and p�0 to a single vertex �p� = �p�0 of PNn whenever � = (i; i+1)�0,where (i; i+ 1) is an adjacent transposition and �(i); �(i+ 1) > n.Since each facet A of PN is uniquely determined by its vertices (see below), thefacets in the quotient PNn are obtained by collapsing those of PN accordingly.Note that PNN�1 is the N -permutohedron PN , and in fact the quotient mapq : PN !! PNn is homotopic to a homeomorphism (though not a combinatorial iso-morphism, of course) for n � 1. On the other hand, PN0 is a single point. Fornon-trivial examples of face-codegeneracy polyhedra, see Figures 1 & 2 below.5.2. Fact. From the description of the facets of the permutohedron given in [GG], wesee that PNn has an edge connecting a vertex p� to any vertex of the form p(i;i+1)�(unless �(i); �(i+ 1) > n, in which case the edge is degenerate).More generally, let �p� be any vertex of PNn . The facets of PNn containing �p�are determined as follows:Let P = h1; 2; : : : ; `1 j `1 + 1; : : : ; `2 j : : : j `i�1 + 1; : : : ; `i j : : : j `r�1 + 1; : : : ; N ibe a partition of 1; : : : ; N into r consecutive blocs, subject to the condition that foreach 1 � j < r at least one of �(`i), �(`i+1) is � n. Denote by ni the number ofj's in the i-th bloc (i.e., `i�1 + 1 � j � `i) such that �(j) � n. Then PNn will havea subpolyhedron Q(P) (containing p�) which is isomorphic to the productP`1n1 �P`2�`1n2 � � � � �P`i�`i�1ni � � � � �PN�`r�1nr :This follows from the description of the facets of the N -permutohedron in [B5, x4.3].



CW RESOLUTIONS OF SPACES 15We denote by (PNn )(k) the union of all facets of PNn of dimension � k. Inparticular, for n � 1 we have @PNn := (PNn )(N�2) = SN�2, since the homeomorphism~q : PN ! PNn preserves @PN .5.3. Factorizations. Given a cosimplicial simplicial object E�� as in x4.10, any com-posite face-codegeneracy map  : En+km+` ! E k̀ has a (unique) canonical factorizationof the form  = ���, where � : En+km+` ! Ekm+` may be written � = sj1 �sj2�: : : sjn for0 � j1 < j2 < : : : < jn < n+k and � : Ekm+` ! E k̀ may be written � = di1�di2�� � � dinfor 0 � i1 < i2 < : : : < in � m+ `.Let D( ) denote the set of all possible (not necessarily canonical) factorizationsof  as a composite of face and codegeneracy maps:  = �n+m � � � � � �1. Wede�ne recursively a bijective correspondence between D( ) and the vertices of an(n+m)-permutohedron Pn+m, as follows (compare [B5, Lemma 4.7]):The canonical factorization  = di1 �di2 � � � � din �sj1 �sj2 � � � � sjn corresponds to thevertex pid. Next, assume that the factorization  = �n+m � : : : � �1 corresponds top�. Then the factorization corresponding to p�0 , for � = (i; i+1)�0, is obtained from = �1 � � � � � �n+m by switching �i and �i+1, using the identity sj � si = si�1 � sjfor i > j if �i and �i+1 are both codegeneracies, and the identity di �dj = dj�1 �difor i < j if they are both face maps.Passing to the quotient face-codegeneracy polyhedron, we see that the vertices ofPn+mn are now identi�ed with factorizations of  of the formEn+km+` sjtnt��! En+k�1m+` : : : Ent+1m+` sjt1�! Entm+` �t�! Entmt : : : En1m1 sj0n1��! : : : En+1m1 sj0n0��! Enm1 �0�! Enm(5.4)where �i is a composite of face maps (i.e., we do not distinguish the di�erent waysof decomposing �i as dk1 � : : : dkr ). The collection of such factorizations of  will bedenoted by D( )=�, where � is the obvious equivalence relation on D( ). Weshall denote the face-codegeneracy polyhedron Pn+mn with its vertices so labelled byPn+mn ( ). An example for  = d0d1s0s1 appears in Figure 1.5.5. Notation. For  : En+km+` ! E k̀ as above, we denote by C( ) the collectionof all composite face-codegeneracy maps � : En(�)+k(�)m(�)+`(�) ! Ek(�)`(�) such that � is of theform � = �t � � � � � �s (1 � s � t � �) for some decomposition  = �� � � � � � �1 =�0 � sj0n0 � � � � � sj0n1 � �1 � � � � � �t � sjt1 � � � � � sjtnt of (5.4). That is, we allow only thosesubsequences �b; : : : ; �a of a factorization  = �n+m � � � � � �1 in D( ) which arecompatible with the equivalence relation � in the sense that �b+1 and �b are notboth face maps, and similarly for �a�1 and �a. Such a � will be called allowable.5.6. Higher homotopy operations. Given a cosimplicial simplicial space up-to-homotopy hW�� as in x4.2, we now de�ne a certain sequence of higher homotopyoperations. First recall that the half-smash of two spaces X;Y 2 T� is X nY :=(X�Y)=(X�f�g); if X is a suspension, there is a (non-canonical) homotopy equiv-alence XnY ' X ^Y _X.5.7. De�nition. Given a composite face-codegeneracy map  : Wn+km+` ! Wk̀ asabove, a compatible collection for C( ) and hW�� is a set fg�g�2C( ) of maps
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td0s0d0s1 H H H H H HCCCCCC t d0s0d0s0������ � � � � � �rd0s0d1s1p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p prd0d1s0s1d0d0s0s1p p p p p p p p p p p p p p p p p p p p p p p rd0d1s0s0d0d0s0s0p p p p p p p p p p p p p p p p p p p p p p p p p p p p rd0s0d1s0ppppppppppppppppppppppppp p p p p p p p p p p p p p p p p p p p p p p p p p p p pp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p ppppppppppppppppppppppppppppp ppppppppppppppppppppppppppppppppppFigure 1. The face-codegeneracy polyhedron P42(d0d1s0s1)g� : Pn(�)+m(�)m(�) (�) nWn(�)+k(�)m(�)+`(�) !Wk(�)`(�) for each � 2 C( ), satisfying the followingcondition:Assume that for such a � 2 C( ) we have some decomposition� = �� � � � � � �1 = �0 � sj0n0 � : : : � sj0n1 � �1 � � � � � �t � sjt1 � � � � � sjtntin D(�)=�, as in (5.4), and letP= h1; : : : ; `1 j : : : j `i�1 + 1; : : : ; `i j : : : j `r�1 + 1; : : : ; � ibe a partition of (1; : : : ; �) as in x5.2, yielding a sequence of composite face-codegeneracy maps �i 2 C(�) � C( ) for i = 1; : : : ; r.Let Q(P) �= P`1n1(�1) � � � � � P`i�`i�1ni (�i) � � � � � P��`r�1nr (�r) be the correspondingsub-polyhedron of Pn(�)+m(�)m(�) (�). Then we require that g�jQ(P)nWn(�)+k(�)m(�)+`(�) be thecomposite of the corresponding maps g�i in the sense thatg�(x1; : : : ; xr; w) = g�1(x1; g�2(x2; : : : ; g�r (xr; w) : : : ))(5.8)for xi 2 P`i�`i�1ni (�i) and w 2Wn(�)+k(�)m(�)+`(�).We further require that if � = �1 is of length 1, then g� must be in the prescribedhomotopy class of the face or codegeneracy map �1. Thus in particular, for eachvertex �p� of Pn+mn ( ), indexed by a factorization  = �� � � � � � �1 in D( )=�,the map g�jf�p�g�Wn+`m+k represents the class [�� � � � � � �1].5.9. Fact. Any compatible collection of maps fg�g�2C( ) for C( ) induces a mapf = f : @Pn+mn nWn+km+` ! Wk̀ (since all the facets of @Pn+mn are products offace-codegeneracy polyhedra of the form Pn(�)+m(�)n(�) (�) for � 2 C( ), and condition(5.8) guarantees that the maps g� agree on intersections).



CW RESOLUTIONS OF SPACES 175.10. De�nition. Given hW�� as in x4.10, for each k � 2 and each composite face-codegeneracy map  : Wn+km+` !Wk̀, the k-th order homotopy operation associatedto hW�� and  is a subset h i of the track group [�n+m�2Wn+km+`;Wk̀], de�ned asfollows:Let S � [@Pn+mn nWn+km+`; Wk̀] be the set of homotopy classes of maps f = f :@Pn+mn nWn+km+` ! Wk̀ which are induced as above by some compatible collectionfg�g�2C( ) for C( ).Now choose a splitting@Pn+mn ( )nWn+km+` �= Sn+m�2 nWn+km+` ' (Sn+m�2 ^Wk̀) _Wk̀(5.11)and let h i � [�n+m�2Wn+km+`;Wk̀] be the image of the subset S under the resultingprojection.It is clearly a necessary condition in order for the subset h i to be non-empty that allthe lower order operations h�i vanish (i.e., contain the null class) for all � 2 C( )nf g{ because otherwise the various maps g� : Pn(�)+m(�)m(�) (�) nWn(�)+k(�)m(�)+`(�) ! Wk(�)`(�)cannot even extend over the interior of Pn(�)+m(�)m(�) (�). A su�cent condition is thatthe operations h�i vanish coherently, in the sense that the choices of compatiblecollections for the various � be consistent on common subpolyhedra (see [B5, x5.7] forthe precise de�nition, and [B5, x5.9] for the obstructions to coherence).On the other hand, if hW�� is the cosimplicial simplicial space up-to-homotopy ofx4.4 (corresponding to the cosimplicial simplicial �-algebra (E�)�� with the CW -basisf �Enr g1r;n=0), then the vanishing of the homotopy operation h j �Cnr i { with  restrictedto the (n; r)-cross-term { implies the vanishing of h i, for any  :Wn+km+` !Wk̀(assuming lower order vanishing). This is because outside of the wedge summand�Cnr , the map  is determined by the maps � 2 C( ) and the coface and degeneracymaps of hW��, which we may assume to 1-homotopy commute by induction and 4.9respectively.We may thus sum up the results of this section, combined with Proposition 4.11, in:5.12. Theorem. A space X 2 T�, for which ��X is an abelian �-algebra, ishomotopy equivalent to a loop space if and only if all the higher homotopy operationsh j �Cnr i de�ned above vanish coherently.5.13. Remark. As observed in x4.2, for any X 2 T� the space JX is the colimit of the�-cosimplicial space U(X)��, and in fact the n-th stage of the James construction,JnX, is the (homotopy) colimit of the (n � 1)-coskeleton of U��. Thus if wethink of the sequence of higher homotopy operations \in the simplicial direction" asobstructions to the validity of the identity [B7, Thm. 5.7(�)] (up to 1-homotopycommutativity), then the n-th cosimplicial dimension corresponds to verifying thisidentity for f � iA : A! FB of James �ltration n+ 1 (cf. [J2, x2]).In particular, if we �x k = ` = 0, n = 1 and proceed by induction on m, we arecomputing the obstructions for the existence of an H-multiplication on X, as in [B6].(Thus if X is endowed with an H-space structure to begin with, they must all vanish.)Observe that the face-codegeneracy polyhedron Pn1 is an (n� 1)-cube, as in Figure2, rather than the (n� 1)-simplex we had in [B6, x4] { so the homotopy operationswe obtain here are more complicated. This is because they take value in the homotopygroups of spheres, rather than those of the space X.
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� � � � � � =d0d1d0s0rd0d0d0s0r d0d0d1s0r d0d1d1s0rd0d1d2s0rd0d0d2s0rppppppppppppppppppppppppppppppp= d0d1s0d0rp p p p p p p p p p p p p p p p p p r d0d0s0d0p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pFigure 2. The face-codegeneracy polyhedron P41(d0d1d2s0)As a corollary to Theorem 5.12 we may deduce the following result of Hilton (cf. [H,Theorem C]):5.14. Corollary. If hX;mi is a (p�1)-connected H-space with �iX = 0 for i � 3p,then X is a loop space, up to homotopy.Proof. Choose a CW -resolution of ��X which is (p� 1)-connected in each simplicialdimension, and let E�� be as in x4.4. By de�nition of the cross-term �-algebras Cnrin x4.4, they must involve Whitehead products of elements from all lower order cross-terms; but since X is an H-space by assumption, all obstructions of the form h j �C1r ivanish (see x5.13). Thus, the lowest dimensional obstruction possible is a third-orderoperation h j �C2r i (r � 2), which involves a triple Whitehead product and thus takesvalue in �iWk̀ for i � 3p. If we apply the (3p�1)-Postnikov approximation functorto hW�� in each dimension, to obtain hZ��, all obstructions to recti�cation vanish, andfrom the spectral sequence of x3.10 we see that the obvious map X = kW1�k ! kZ1�kinduces an isomorphism in �i for i < 3p. Since kZ1�k is a loop space by Theorem5.12, so is its (3p� 1)-Postnikov approximation, namely X.5.15. Example. The 7-sphere is an H-space (under the Cayley multiplication, forexample), but none of the 120 possible H-multiplications on S7 are homotopy-associative; the �rst obstruction to homotopy-associativity is a certain \separationelement" in �21S7 (cf. [J1, Theorem 1.4 and Corollary 2.5]).Since ��S7 is a free �-algebra, it has a very simple CW -resolution A� ! ��S7,with �A0 �= ��S7 (generated by �7), and �Ar = 0 for r � 1. A cross-term basis (x4.4)for the cosimplicial simplicial �-algebra E�� of x4.10 is then given in dimensions < 24by:� �C11 �= ��S13, with �d0�13 = [d0�7; d1�7];� �C22 �= ��S19, with �d0�19 = [d0�13; s0d2d1�7]� [d1�13; s0d2d0�7] + [d2�13; s0d1d0�7];� �Cnr is at least 24-connected for all other n, r.We set sjrj �Cnr = 0 for all n � 2; this determines E�� in degrees � 21 andcosimplicial dimensions � 2.



CW RESOLUTIONS OF SPACES 19By Remark 5.13, the two secondary operations hd0s0j �C11 i and hd1s0j �C11 i must vanish;on the other hand, by Corollary 5.14 all obstructions to S7 being a loop space are indegrees � 21, so the only relevant cross-term is �C22 , with three possible third-orderoperations h j �C22 i, for  = d0d1s0s1, d0d2s0s1, or d1d2s0s1. The correspondingface-codegeneracy polyhedra P 42 ( ) is as in Figure 2.It is straightforward to verify that the operations h j �C22 i are trivial for  = d0d2s0s1or d1d2s0s1 (in fact, many of the maps g�, for � 2 C( ), may be chosen to be null).On may also show that there is a compatible collection fg�g�2C(') for ' = d0d1s0s1,in the sense of x5.7, so that the corresponding subset h'j �C22 i � �21S7 is non-empty; infact, it contains the only possible obstruction to the 21-Postnikov approximation forS7 to be a loop space.The existence of the tertiary operation h'j �C22 i corresponds to the fact that theelement [[�7; �7]; �7] � [[�7; �7]; �7] + [[�7; �7]; �7] 2 �21S7 is trivial \for three di�erentreasons": because of the Jacobi identity, because all Whitehead products vanish in��S7, and because of the linearity of the Whitehead product { i.e., [0; �] = 0.On the other hand, we know that there is a 3-primary obstruction to the homotopy-associativity of any H-multiplication on S7, namely the element �#14�7 2 �21S7 (see[J1, Theorem 2.6]). We deduce that 0 62 h'j �C22 i, and in fact (modulo 3) this tertiaryoperation consists exactly of the elements ��#14�7.For a detailed calculation of such higher order operations using simplicial resolutionsof �-algebras, see [B6, x4.13].5.16. Remark. Our approach to the question of whether X is a loop space is clearlybased on, and closely related to, the classical approaches of Sugawara and Stashe� (cf.[St1, St2, Su]. One might wonder why Stashe�'s associahedra Ki (cf. [St1, x2,6]) donot show up among the face-codegeneracy polyhedra we describe above. Apparentlythis is because we do not work directly with the space X, but rather with its simplicialresolution, which may be thought of as a \decomposition" of X into wedges of spheres.References[B1] D. Blanc, \A Hurewicz spectral sequence for homology", Trans. AMS 318 (1990) No. 1, pp.335-354.[B2] D. Blanc, \Derived functors of graded algebras", J. Pure Appl. Alg. 64 (1990) No. 3, pp.239-262.[B3] D. Blanc, \Abelian �-algebras and their projective dimension", in M.C. Tangora, ed., Alge-braic Topology: Oaxtepec 1991 Contemp. Math. 146, AMS, Providence, RI 1993.[B4] D. Blanc, \Operations on resolutions and the reverse Adams spectral sequence", Trans. AMS,342 (1994), No. 1, pp. 197-213.[B5] D. Blanc, \Higher homotopy operations and the realizability of homotopy groups", Proc.Lond. Math. Soc. (3) 70 (1995), pp. 214-240.[B6] D. Blanc, \Homotopy operations and the obstructions to being an H-space", Manus. Math.88 (1995) No. 4, pp. 497-515.[B7] D. Blanc, \Loop spaces and homotopy operations", Fund. Math. 154 (1997), pp. 75-95.[B8] D. Blanc, \Homotopy operations and rational homotopy type", preprint 1996.[B9] D. Blanc, \Algebraic invariants for homotopy types", preprint 1998.[BS] D. Blanc & C.S. Stover, \A generalized Grothendieck spectral sequence", in N. Ray & G.Walker, eds., Adams Memorial Symposium on Algebraic Topology, Vol. 1, Lond. Math. Soc.Lec. Notes Ser. 175, Cambridge U. Press, Cambridge, 1992, pp. 145-161.
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