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ABSTRACT. We study the configuration space C of a parallel polygonal mecha-
nism, and give necessary conditions for the existence of singularities; this shows
that generically C is a smooth manifold. In the planar case, we construct an explicit
Morse function on C, and show how geometric information about the mechanism
can be used to identify the critical points.

1. INTRODUCTION

The mathematical theory of robotics is based on the notion of a mechanism, con-
sisting of links, joints, and rigid parts known as platforms. The type of a mecha-
nism is defined by a q-dimensional simplicial (or polyhedral) complex, where the
parts of dimension ≥ 2 correspond to the platforms, and the complementary one-
dimensional graph corresponds to the links and joints. There may be restrictions
as to the kind of motion allowed at the joints. In this paper the lengths of all links
are fixed.

A specific embedding of this complex in the ambient Euclidean space R
d is called

a configuration of the mechanism. The collection of all such embeddings forms a
topological space, called the configuration space of the mechanism (see [Hal]). These
spaces have been studied intensively, mostly for simple closed or open chains (cf.
[FTY, G, HK, JS, KM, MT, OH]; but see [Ho, KTs, SSB]).

FIGURE 1. A pentagonal planar mechanism

The goal of this note is to study the configuration space of a mechanism compris-
ing a moving planar polygonal platform, having a flexible leg consisting of con-
catenated links (i.e., rigid rods) attached to each vertex, with the other end fixed in
R
d (see Figure 1). We may think of these fixed ends as forming the fixed polygon
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of the mechanism, “parallel” to the moving polygon inside. The spatial version of
such a mechanism, consisting of a two-dimensional platform free to move in three
dimensions, has been studied extensively, but even the planar version, to which
we later specialize, has practical applications – for example, in micro-electro-
mechanical systems (MEMS). See [BSW].

Our main results are:

(a) The configuration space of a parallel polygonal mechanism is generically a
smooth manifold; when it is not, the possible singular points are explicitly
described (Theorem 2.2 and Corollary 2.9).

(b) The topology of this manifold can be described for a triangular planar mech-
anism by means of an explicit Morse function (Theorem 3.1), whose critical
points can be identified geometrically (see §3.2).

We start with some terminology and notation:

1.1. Definition. A branch (of multiplicity n) is a sequence L = (ℓ1, . . . , ℓn) of n
positive numbers, which we think of as the lengths of n concatenated links, having
(d − 1)-dimensional spherical joints at the consecutive meeting points (if d = 2,
the joints are rotational).

1.2. Definition. A configuration in R
d for a branch L = (ℓ1, . . . , ℓn) consists of n

vectors V = (v1, . . . ,vn) in R
d with lengths ‖vi‖ = ℓi (i = 1, . . . n). A branch

configuration V = (v1, . . . ,vn) is aligned, with a direction vector ~w ∈ R
d, if all the

vectors vi are scalar multiples of ~w.

The configuration space C = C(L) of a branch L is the product of n (d − 1)-
dimensional spheres Sd−1 of radii (Ri = ℓi)

n
i=1. Up to homeomorphism, C is

independent of the order on L, so we can assume ℓ1, . . . , ℓn to be in descending
order.

1.3. Definition. A polygonal mechanism (L,X ,P) in R
d consists of:

(a) k branches L = {L(i)}ki=1 of multiplicity {n(i)}ki=1, respectively;
(b) k distinct base points X = {x(i)}ki=1 in R

d, to which the initial points of the
corresponding branches are attached.

(c) An abstract planar k-polygon P in R
d.

Think of this mechanism as a linkage of k branches, starting at the base points
(which form a not necessarily planar polygon in R

d, called the fixed platform), and
ending at the vertices of a rigid planar polygon congruent to P (called the moving
platform of the mechanism). There are spherical joints at either end of each branch,
too.

We use parenthesized superscripts to indicate the branch number, and plain sub-

scripts to indicate the link number – e.g., ℓ
(i)
j denotes the length of the j-th link

of the i-th branch.

1.4. Remark. Let P be a convex polyhedron in R
d. It need not be d-dimensional

– e.g., we can think of a planar polygon as a degenerate polyhedron in R
3. If

p(1), . . . ,p(k) (k > d) are its vertices (extremal points), P is determined up to
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isometry by the lengths g(i,j) := ‖p(i) − p(j)‖ for (i, j) ∈ I, where the index set I
consists of the following ordered pairs:

(1) I := {(1, 2), . . . , (1, m); (2, 3), . . . , (2, m); . . . , (m− 1, m); (1, m+ 1), . . . , (d, k)}

for m := min{d, k}. We first include in I all ordered pairs (i, j) with 1 ≤ i <
j ≤ m, which span a “basic” (d − 1)-simplex ∆ (possibly degenerate!) if d ≤ k.
Note that for each i ≥ d + 1, the d edges with second index i, together with ∆,
span a d-simplex, and we add to the list I just enough such d-simplices to rigidly
determine P ⊂ R

d.
Thus we have:

(2) |I| =

{(
k
2

)
if k ≤ d(

d
2

)
+ d(k − d) if k ≥ d+ 1

If P is not convex, the only additional data needed is the discrete information in
which half-space the new vertex is to be placed.

1.5. Definition. A configuration for a polygonal mechanism (L,X ,P) in R
d con-

sists of a set V = (V (1), . . . , V (k)) of k branch configurations for L (Definition 1.2),

satisfying the condition that the endpoints p(i) := x(i) +
∑n(i)

j=1 v
(i)
j (i = 1, . . . , k) of

the corresponding branch configurations (attached to the given basepoints) form a
planar polygon congruent to P in R

d. If the branch configuration V (i) is aligned,

with direction vector ~wi (Definition 1.2), then the line Line(i) := {x(i)+t~wi | t ∈ R}

is called the direction line for V (i) (with p(i) ∈ Line(i)).
The set of all configurations for the given mechanism Γ = (L,X ,P) (as a sub-

space of the product of the appropriate branch configuration spaces) is its configu-
ration space C = C(Γ).

1.6. Definition. Note that the moving platform P can be translated and rotated in
R
d (subject to the constraints imposed by the branches and the locations of the

fixed vertices). The space of all allowable positions for P , denoted by W = W(Γ),
is called the work space for Γ = (L,X ,P). The work map Φ : C → W assigns to
each configuration V the resulting position of P .

1.7. Organization. In Section 2 we identify the potential singular points of the
configuration spaces C we consider here, in any ambient dimension, and show
that, generically, C is a manifold. In Section 3 we describe a Morse function for
the configuration space of a generic planar mechanism, analyze its critical points
geometrically, and give a simple example showing how this analysis may be used
to recover C.

1.8. Acknowledgements. We would like to thank the referee for his or her comments.

2. SINGULARITIES FOR POLYGONAL MECHANISMS

We now show that, generically, the configuration space of a polygonal mechanism
is a manifold, and give necessary geometric conditions for a configuration to be
singular. We note that such “topological” singularities can in fact occur (cf. [FS]
and [KTe]), and their analysis is of interest in relation to the kinematic singularities.

2.1. Definition. A configuration V = (V (1), . . . , V (k)) of a polygonal mechanism
Γ = (L,X ,P) is called hyper-aligned if:
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(a) Two of its branch configurations V (i1) and V (i2) are aligned, with coincid-

ing direction lines: Line(i1) = Line(i2) (see Figure 2).

FIGURE 2. Singular configuration of type (a)

(b) Three of its branch configurations are aligned, with direction lines in the
same plane meeting in a single point (see Figure 3).

P

ω
1

ω
3

ω
2

FIGURE 3. Singular configuration of type (b)

(c) Four of its branch configurations are aligned, with direction vectors all lying
in the same plane, if d > 2.

Compare [Hau].

2.2. Theorem. The configuration space C = C(Γ) of a polygonal mechanism in R
d is

smooth at each configuration V , unless it is hyper-aligned.

2.3. Remark. Note that we do not claim that any hyper-aligned configuration is
necessarily a singular point of C. It is in fact not easy to directly determine all sin-
gularities of a configuration space, except for the simple case of a closed chain (i.e.,
a polygonal linkage), where all hyper-aligned configurations (necessarily of type
(a)) are in fact singular (cone points). See [KM, Theorem 2.6]. For a more general
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analysis, with an explicit description of the form of the singularities occurring, see
[BS] .

Proof of Theorem. For any n, define a map fn : (Rd)n → R
n by:

(3) fn(~v1, . . . , ~vn) := (|~v1|
2, . . . , |~vn|

2) .

Let N :=
∑k

i=1 n
(i) (the total number of links in the mechanism), and consider

the constraint map F : R
dN → R

N+|I|, defined:

(4) F (V) := (fn(1)(V (1)), . . . , fn(k)(V (k)), ‖a(1, 2)‖2, . . . , ‖a(k − 1, k)‖2) .

Here V = (V (1), . . . , V (i)) is the ordered set of branch configurations, which poten-

tially constitute a configuration of our mechanism, p(i) := x(i) +
∑n(i)

t=1 v
(i)
t is the

endpoint of the i-th branch for the configuration V (i) = (v
(i)
1 , . . . ,v

(i)

n(i)) attached to

the basepoint x(i) ∈ R
d, and a(i, j) := p(i) −p(j) is the (i, j)-diagonal of the poly-

gon spanned by these endpoints. Recall that the polygonal platform P determines
(and is determined by) the set of diagonals G = (g(i,j))(i,j)∈I (see §1.4).

Let

Z(L,G) := ((ℓ
(1)
1 )2, . . . , (ℓ

(1)

n(1))
2, . . . ((ℓ

(k)
1 )2, . . . , (ℓ

(k)

n(k))
2, (g(1,2))2, . . . , (g(k−1,k))2)

be the pre-determined value of F at any configuration belonging to the mecha-
nism. That is, the configuration space C = C(Γ) is precisely the pre-image of
Z(L,G) ∈ R

N+|I| under the constraint map F .
Note that this pre-image generally has various connected components, corre-

sponding to different “assembly modes” of the mechanism, in those cases where
geometric constraints prevent a continuous motion between certain configurations.
A simple example is a (scalene) triangle and its reflection in the plane.

Recall that a sufficient condition for a subset C of a Euclidean space R
N to be a

smooth submanifold is for C to be the preimage of a regular value Z of a smooth
function F : R

N → R
m (N ≥ m) – that is, if the Jacobian matrix dFV has maximal

rank (i.e., m) at each point V ∈ F−1(Z) (see [Hi, I, Theorem 3.2]). We calculate the
Jacobian matrix explicitly:

(5) dFV = 2




A(1) 0 0 0 . . . 0
0 A(2) 0 0 . . . 0
0 0 A(3) . . . 0
0 0 0 A(4) . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . A(k)

~b(1,2) ~b(2,1) 0 0 . . . 0
~b(1,3) 0 ~b(3,1) 0 . . . 0

0 ~b(2,3) ~b(3,2) 0 . . . 0
...

...
...

...
. . .

...

0 0 . . . 0 ~b(k−1,k) ~b(k,k−1)




,
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Here A(i) is the n(i) × dn(i) matrix:

(6)




v
(i)
1 . . . 0
...

. . .
...

0 . . . v
(i)

n(i)


 .

The last |I| rows of D are:

(7) ~z(i,j) := ( 0, . . . , 0︸ ︷︷ ︸
d(n(1)+...+n(i−1))

, ~b(i,j), 0, . . . , 0︸ ︷︷ ︸
d(n(i+1)+...+n(j−1))

, ~b(j,i), 0, . . . , 0︸ ︷︷ ︸
d(n(j+1)+...+n(k))

)

(for (i, j) ∈ I – see §1.4), where each edge a(i, j) ∈ R
d appears n(i) times in the

sub-vector:

(8) ~b(i,j) := (a(i, j), a(i, j), . . . , a(i, j))︸ ︷︷ ︸
n(i)

∈ R
dn(i)

.

Thus we may write the last |I| rows of D in terms of k matrices B1, . . . , Bk of size
|I| × d, where the matrix Bi is repeated n(i) times:

(9) (B1, B1, . . . , B1︸ ︷︷ ︸
n(1)

, B2, B2, . . . , B2︸ ︷︷ ︸
n(2)

, . . . , Bk, Bk, . . . , Bk︸ ︷︷ ︸
n(k)

) .

Since a(i, j) = −a(j, i) for any i 6= j, we see from (7) that:

(10)
k∑

i=1

Bi = 0 ,

(the |I| × d zero matrix).

In our case, V will be a smooth point of C if D := 1
2
dFV is of rank N + |I|

whenever F (V) = Z(L,G). Let us assume by way of contradiction that D is not of
maximal rank. This means that there is some non-trivial vanishing linear combi-
nation of the rows of D:

(11)
k∑

i=1




n(i)∑

j=1

λ
(i)
j ~u

(i)
j


 +

∑

(i,j)∈I

γ(i,j)~z(i,j) = 0 ,

where ~u
(i)
1 , . . . , ~u

(i)

n(i) denote the rows of A(i).
For each 1 ≤ i ≤ k, let:

~wi :=
∑

(s,i)∈I
s<i

γ(s,i) · a(s, i) −
∑

(i,t)∈I
i<t

γ(i,t) · a(i, t) ∈ R
d .

Note that ~wi 6= 0 if and only if λ
(i)
j′ 6= 0 for some 1 ≤ j′ ≤ n(i), since ~wi consists

of the total contribution of the last |I| rows to the sum (11) in each of the columns
corresponding to the submatrix A(i). But because of the repeated blocks Bi, . . . , Bi

in (9), we see that λ
(i)
j = λ

(i)
j′ for all 1 ≤ j, j′ ≤ n(i). If we denote this common

value by λ(i), we deduce that:

v
(i)
j =

1

λ(i)
· ~wi ,

so that the i-th branch is aligned, with direction vector ~wi.



THE CONFIGURATION SPACE OF A PARALLEL POLYGONAL MECHANISM 7

By (10),
∑k

i=1 ~wi = 0, so if ~wi = 0 for i 6= i0, i1, then ~wi0 + ~wi1 = 0, and thus
branches i0 and i1 are co-aligned with direction vector a(i0, i1). In other words,
V is hyper-aligned (see §2.1(a)). To complete the proof of the Theorem we need the
following:

2.4. Proposition. Any singular configuration V0 ∈ C having at least three aligned
branches is hyper-aligned.

Proof. The proof is by induction on k, the number of branches in Γ. The initial step
of the induction, k = 3, will be dealt with below.

Without loss of generality we may assume that the three branches 1, 2 and k are
aligned, with direction vectors ~w1, ~w2, and ~wk, respectively. We assume no two
of the branches are hyper-aligned (§2.1(a)). Branch 3 may also be aligned, with
direction vector ~w3, but in this case we may assume that ~w1, ~w2, ~w3 and ~wk

are not coplanar (§2.1(c)).

Step I: Let Ĉ denote the configuration space of the “reduced” mechanism Γ̂, ob-
tained from Γ = (L,X ,P) by omitting the last branch, and C(k) the configuration
space for this branch Γ(k) (attached to x(k) ∈ R

d, with free end p(k)).

FIGURE 4. The “reduced” mechanism

The work space of both mechanisms (i.e., the set of possible locations for the k-th

vertex p(k) of P) is contained in R
d, and we have work maps ψ : Ĉ → R

d and
φ : C(k) → R

d which associate to each configuration the location of this vertex
p(k).

The main idea of the proof is that the configuration space C = C(Γ) is the pullback
of the two maps φ and ψ – that is, a configuration for the full mechanism Γ =

(L,X ,P) is (uniquely determined by) a pair (V̂ , V (k)) such that ψ(V̂) = p(k) =

φ(V (k)), where V̂ ∈ Ĉ and V (k) ∈ C(k):

(12) V = (V̂, V (k)) ∈ C

��

// C(k)

φ

��

∋ V (k)

V̂ ∈ Ĉ

ψ //
R
d ∋ p(k)

In other words, these are compatible configurations for the reduced mechanism

Γ̂ and the last branch, in the sense that the locations of their two end vertices
(which were the same in the original mechanism) coincide. In particular, the spe-
cific aligned configuration V0 whose singularity is in question is determined by

the pair (V̂0, V
(k)
0 ).
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2.5. Remark. It is convenient to have one of the two configuration spaces Ĉ and C(k)

– say, Ĉ – be a submanifold of a large ambient manifold Y , in such a way that
ψ turns into an embedding. In this case we can guarantee that the pullback C is a

manifold if we can show that the other map φ is transversal to Ĉ.
Note that the manifold C(k) (an n-torus for n = n(k)) is the preimage of Zℓ(k)

under the map f = fn : R
nd → R

n of (3), and we write i : C(k) → R
nd for the

inclusion. Similarly, Ĉ is determined by a smooth constraint map:

F̂ : R̃M → R
N−n+|I|

for M = (N − n)d, where R̃M is a fiber bundle over R
M with fiber S, where S

is a point if k ≥ 4, and S = Sd−2 if k = 3. The index set I is defined as in (1).
The constraint map is defined as in (4) by:

F̂ (V̂) = F̂ (V (1), . . . , V (k−1), ~ω)

:= (fn(1)(V (1)), . . . , fn(k−1)(V (k−1)), ‖a(1, 2)‖2, . . . , ‖a(i, j)‖2)
(13)

(with the functions ‖a(i, j)‖2 indexed by (i, j) ∈ I). There is no constraint on ~ω.

2.6. Remark. The vector ~ω ∈ S = Sd−2 is needed if k = 3 (so the moving platform
P is a triangle) and d > 2, since in this case the location of the two vertices p(1)

and p(2) of the triangle determines the position of P only up to rotation around
the given edge a(1, 2). The rotation is about a(1, 2) in the hyperplane a(1, 2)⊥,
and is thus uniquely determined by a rotation vector ~ω in the unit sphere Sd−2 in
a(1, 2)⊥.

In a neighborhood U of any given configuration V̂0, for which a(1, 2) has the
value a0(1, 2), say, we may choose a fixed copy S of Sd−2 in a0(1, 2)

⊥ ∼= R
d−1. If

we move from V̂0 to a neighboring configuration V̂ ∈ U , the associated vector
a(1, 2) will still be linearly independent of any ~ω ∈ S, so by the Gram-Schmidt
process (~ω, a(1, 2)) determines a unique orthogonal pair (ω̂, a(1, 2)) (still span-
ning the plane of the moving platform P). This is the reason we have a locally

trivial fiber bundle S →֒ R̃M → R
M , rather than a (global) product R̃M ∼= R

M ×S.

Again, we may identify Ĉ with F̂−1(Z(L̂,Ĝ)) for the obvious value (L̂, Ĝ). More-

over, we may assume by our induction hypothesis on k that (L̂, Ĝ) is a regular

value of F̂ , since the branches of Γ̂ are not hyper-aligned at V̂0. Thus Ĉ is smooth,

at least in a neighborhood of V̂0. We denote the inclusion by ı̂ : Ĉ → R
M .

Let X := C(k) × R̃M and Y := R
d × R̃M . We define h : X → Y to be the

product map φ× Idg
RM and g : Ĉ → Y to be (ψ, ı̂), so that g is an embedding of

Ĉ as a submanifold in Y . Since C = C(Γ) is simply the pullback (12), it may be

identified with the preimage of the submanifold Ĉ ⊆ Y under h.

Now let V̂0 ∈ Ĉ be a configuration where the first two branches are aligned
(but not hyper-aligned), and V (k) ∈ C(k) an aligned configuration with direction

vector v(k), such that ψ(V̂0) = φ(V (k)). Let x ∈ X denote the pair (V (k), ı̂(V̂0))

in the pullback (so that h(x) = g(V̂0)).
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x ∈ X

h

��

= C(k) ∋ V (k)

φ

��

× R̃M ∋ ı̂(V̂)

Id
��

h(x) ∈ Y = R
d ∋ φ(V (k)) × R̃M ∋ ı̂(V̂)

V̂ ∈ Ĉ

g

OO
ψ

55
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j

ı̂

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Step II: We must show that if the corresponding configuration V0 = (V (k), V̂0) is
not smooth in C, then it is hyper-aligned. By [Hi, I, Theorem 3.3]), V0 is smooth if

h ⋔ Ĉ there – that is, h is locally transverse to Ĉ at the points x ∈ X and V̂0 ∈ Ĉ,
which means that:

(14) Im dhx + TV̂0
(Ĉ) = TV̂0

(Y ) = R
d × R

M+∆ ,

where ∆ = dim(S) is 0 unless k = 3, in which case ∆ = d− 2.
First note that since C(k) = f−1(Zℓ(k)) ⊆ R

nd, the tangent space TV (k)(C(k)) may
be identified with the kernel of dfV (k) : R

nd → R
n, which is the null space of the

matrix A(k) of (6). Since V (k) is aligned, by assumption, with direction vector
~wk, we see that:

TV (k)(C(k)) ∼= {(y
(k)
1 , . . . ,y(k)

n ) ∈ R
nd | y

(k)
1 · ~wk = 0, . . . ,y(k)

n · ~wk = 0}

= ~w⊥
k × . . .× ~w⊥

k︸ ︷︷ ︸
n

Furthermore, φ : C(k) → R
d extends to φ̂ : R

nd → R
d (so that φ̂ ◦ i = φ), with

φ̂(v1, . . . ,vn) = x(k) + v1 + · · ·+ vn .

Since φ̂ is linear, its differential dφ̂ is represented by the d × nd matrix
(Id, Id, . . . , Id) (n blocks). Thus:

Im dhx = ~w⊥
k × R

M+∆ .

We may disregard the factor R
M+∆, which was only needed in order to change ψ

into the embedding g, as explained above. Essentially, we are using the fact that
for an aligned open chain, as for a single rigid link, an infinitesimal movement in
the work space is orthogonal to its direction vector ~wk.

Therefore, in order for (14) to hold it is necessary and sufficient to have:

(15) ~wk is not orthogonal to TV̂0
(Ĉ) .

Step III: The tangent space TV̂0
(Ĉ) may be identified with the kernel of:

dF̂V̂0
: R

M+∆ → R
N−n+|I| ,

for F̂ defined in (13). Thus dF̂V̂0
is described as in (5) by the (N−n+|I|)×(M+∆)

matrix:
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(16) dF̂V̂0
= 2




A(1) 0 . . . 0 0 . . . 0
...

...
. . .

...
...

0 0 . . . A(k) 0 . . . 0

~b(1,2) ~b(2,1) . . . 0 0 . . . 0
...

...
. . .

... 0 . . . 0

0 0 . . . ~b(i,j) 0 . . . 0




where the zero columns on the right show the lack of constraint on ~ω ∈ S.

Since the first two branches are aligned with direction vectors ~w1, ~w2, TV̂0
(Ĉ)

may be identified with the set of N − n d-dimensional vectors

(17) y
(1)
1 , . . . ,y

(1)

n(1);y
(2)
1 , . . . ,y

(2)

n(2) ; . . . ;y
(k−1)
1 , . . . ,y

(k−1)

n(k−1) ,

together with z ∈ R
∆, where the first n(1) vectors are all in ~w⊥

1 , the next n(2) are
all in ~w⊥

2 , and the remainder are in individual orthogonal complements:

(18) y
(3)
1 ⊥ v

(3)
1 , . . . ,y

(3)

n(3) ⊥ v
(3)

n(3) , . . . , y
(k−1)
1 ⊥ v

(k−1)
1 , . . . ,y

(k−1)

n(k−1) ⊥ v
(k−1)

n(k−1) .

Furthermore, the last |I| rows of d F̂V̂ , as described in (7) and (8), impose

additional conditions on (17) – namely, if we let ~y(i) :=
∑n(i)

t=1 y
(i)
t (i = 1, . . . , k−1),

we must have:

(19) a(i, j) · (~y(i) − ~y(j)) = 0

for each (i, j) ∈ I, as well as

(20) ~w1 · ~y
(1) = 0 and ~w2 · ~y

(2) = 0 .

Of course, if branch 3 is aligned, too, we have likewise ~w3 · ~y
(3) = 0, and so on if

there are additional aligned branches.
Thus in practice we can simply replace each aligned branch i (i = 1, 2, and possi-

bly 3) by a “virtual” branch with a single link (i.e., n(i) = 1), with corresponding
directions ~wi and tangent vectors ~y(i) ∈ ~w⊥

i .

Step IV: We must now distinguish several cases:

Case 1: k > 3 and d > 2:

Because the moving platform P is planar, and we assumed all vertices are ex-
tremal, there are fixed (non-zero) scalars α and β such that a(1, k) = αa(1, 2) +
βa(1, 3), and the position vector for the k-th vertex is

p(k) = p(1) + α a(1, 2) + β a(1, 3) .

Thus the work function ψ : Ĉ → R
d for the vertex p(k) in the reduced mechanism

Γ̂ = (L̂, X̂ ,P) extends to a smooth function ψ̂ : R
M → R

d of the form:

ψ̂(V (1), . . . , V (k−1)) = x(1) + v
(1)
1 + · · ·+ v

(1)

n(1) + α a(1, 2) + β a(1, 3) ,
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where

a(1, j) := p(j) − p(1) = (x(j) + v
(j)
1 + · · ·+ v

(j)

n(j)) − (x(1) + v
(1)
1 + · · ·+ v

(1)

n(1))

for j = 2, 3, k. We see that dψ̂ is represented by the d×M matrix:

((1 − α− β)Id, . . . , (1 − α− β)Id︸ ︷︷ ︸
n(1)d

, αId, . . . , αId︸ ︷︷ ︸
n(2)d

, βId, . . . , βId︸ ︷︷ ︸
n(3)d

, 0, . . . , 0) .

However, the composite of the inclusion of TV̂(Ĉ) into R
M×R

d with the projection

onto R
d is just dψ = dψ̂|T

V̂
(Ĉ). Combining this with the description of TV̂(Ĉ) in

(18), (19), and (20), we see that the image of dψ in R
d consists of all vectors v of

the form

(21) ~z = ~y(1) + α~u + β ~v

for ~y(1), ~u := ~y(2) − ~y(1), and ~v := ~y(3) − ~y(1) satisfying:

(22) ~w1 · ~y
(1) = 0, a(1, 2) · ~u = 0, a(1, 3) · ~v = 0, and ~w2 · (~u + ~y(1)) = 0 .

If branch 3 is aligned, too, we have ~w3 · (~v+ ~y(1)) = 0 (otherwise (18) imposes no
constraint on ~y(3) := ~v+~y(1); and in any case additional aligned branches play no

role in ψ̂).
Assume that ~wk is orthogonal to any ~z as in (21). If E := Span(a(1, 2), ~w2) in

R
d, by setting ~y(1) = ~v = 0 we see that for any ~u ⊥ E we must have ~wk ⊥ ~u, so
~wk ∈ E . Proceeding in this way, we deduce that a necessary condition for Im(dψ)
to be orthogonal to ~wk is that ~w1, ~w2, ~wk, a(1, 2), a(1, 3) all lie in the plane of
P . This is equivalent to a reduction to Case 3 below (d = 2).

Case 2: k = 3 and d > 2:

In this case S = Sd−2, R̃M is (M + d − 2)-dimensional, and the work function

ψ : Ĉ → R
d for the vertex p(k) in Γ̂ extends to a smooth function ψ̃ : U → R

d of
the form:

ψ̃(v
(1)
1 , . . . ,v

(1)

n(1),v
(2)
1 , . . . ,v

(2)

n(2), ~ω) = x(1)+v
(1)
1 +· · ·+v

(1)

n(1) + α a(1, 2)+β G(~ω, a(1, 2))

in some open neighborhood U of the given aligned configuration V̂0 ∈ Ĉ in R̃M ,
where a(1, 3) = α a(1, 2) + β v for fixed scalars α and β, and v is the unit normal
to a(1, 2) in the plane of P . As before,

a(1, 2) := p(2) − p(1) = x(2) − x(1) +
n(2)∑

i=1

v
(2)
i −

n(1)∑

j=1

v
(1)
j ,

Here G(~ω, a) is result of applying the Gram-Schmidt process to the pair (~ω, a),
so:

G(~ω, a) =
ℓ2~ω − (~ω · a)a

ℓ
√
ℓ2 − (~ω · a)2

where ℓ := ‖a‖ is the constant g(1,2) and ~ω ∈ S ⊆ R
d is the rotation vector for

the plane of P about the edge a = a(1, 2) as in Remark 2.6 above.
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Thus dψ̃V̂ is represented for V̂ = (V (1), V (2),w) by the d × d(n(1) + n(2) + 1)
matrix:

[ (1 − α) Id + β
∂G(~ω, a)

∂v
(1)
1

, . . . , (1 − α) Id + β
∂G(~ω, a)

∂v
(1)

n(1)

,

α Id + β
∂G(~ω, a)

∂v
(2)
1

, . . . , α Id + β
∂G(~ω, a)

∂v
(2)

n(2)

, β
∂G(~ω, a)

∂~ω
]

(23)

Now calculate:

∂G(~ω, a)i
∂wj

= ℓ ·

∂wi

∂wj
(ℓ2 − (~ω · a)2) + (wi(~ω · a) − aj) aj

[ℓ2 − (~ω · a)2]3/2
.

Since we assumed ~ω · a = 0 at V̂0 for a := a0(1, 2) and any ~ω ∈ S, we have:

Q :=

(
∂G(~ω, a)

∂~ω

)

V̂0

= Id −
aT a

‖a‖2
,

where aT a is the d × d matrix with (p, q)-th entry ap · aq. - that is, Q is simply
the projection onto a⊥ = a0(1, 2)

⊥. Since T~ω(S) = ~ω⊥∩a0(1, 2)
⊥ ⊆ R

d, we deduce
that the image of Q applied to x ∈ Tŵ(S) is the orthogonal complement to the
plane of P in R

d.
Similarly, we have:

(
∂G(~ω, a)

∂V (1)

)

V̂0

= −
~ωT a

ℓ
and

(
∂G(~ω, a)

∂V (2)

)

V̂0

=
~ωT a

ℓ
,

(both projections onto a = a0(1, 2)), so when applied to the vector (17), subject

to condition (19), we see that ∂G(~ω,a)

∂V (i) contributes 0 to Im(dψ̃V̂).
In summary, Im(dψ) consist of all vectors of the form

~z = ~y(1) + α~u + ~v

for ~y(1) ⊥ ~w1, ~u ⊥ a(1, 2) (since ~u := ~y(2)−~y(1)), and ~v ∈ P⊥ with ~w2·(~u+~y(1)) =
0

We see again that ~w3 is in the image of dψ, obtained by applying (23) to

TV̂(Ĉ) ⊆ R
M+d−2, except possibly if ~ω, ~w1, ~w2, ~w3, and a(1, 2) (and thus also

a(1, 3)) all to lie in the plane of P – again reducing to the following:

Case 3: d = 2:

Writing A = g(1,k)

g(1,2)

(
cos θ sin θ

− sin θ cos θ

)
for the rotation-dilitation matrix taking a(1, 2) to

a(1, k), we see that ψ̂ : R
M → R

2, for M := n(1) + n(2), is now given by:

ψ̂(V (1), V (2)) = x(1) + A(x(2) − x(1)) +

n(1)∑

i=1

(v
(1)
i −Av

(1)
i ) +

n(2)∑

j=1

Av
(2)
j ,

and thus dψV̂ is represented by the 2 × 2M matrix

I2 − A, . . . , I2 − A︸ ︷︷ ︸

2n(1)

, A, . . . , A︸ ︷︷ ︸
2n(2)


 .
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Applying dψV̂ to a vector of the form (17), and noting that from (20) we have
~y(1) = s ~w⊥

1 and ~y(2) = t ~w⊥
2 for some s, t ∈ R, we see that Im(dψV̂) consists of

sums of the form:

v = s ~w⊥
1 − sA~w⊥

1 + t A~w⊥
2 = s ~w⊥

1 + A(t ~w⊥
2 − s ~w⊥

1 ) .

Moreover, by (19) we know that ~y(2) −~y(1) = t ~w⊥
2 − s ~w⊥

1 is orthogonal to a(1, 2)
– so that t ~w⊥

2 − s ~w⊥
1 = u a(1, 2)⊥ for some u ∈ R, and thus:

(24) v = uAa(1, 2)⊥ + s ~w⊥
1 ,

subject to the condition that

(25) u a(1, 2)⊥ + s ~w⊥
1 is a multiple of ~w⊥

2 .

Now for any three vectors x, y, and z in R
2 we have:

(26) (x · y⊥) z + (y · z⊥)x + (z · x⊥)y = 0 .

Therefore, setting x := a(1, 2)⊥, z := ~w⊥
1 , and y = ~w⊥

2 , we see that ~w⊥
2 is a

multiple of (a(1, 2)⊥ · (−~w2)) ~w
⊥
1 + (~w⊥

2 · (−~w1)) a(1, 2)⊥, and so (25) holds for
s = −a(1, 2)⊥ · ~w2 = a(1, 2) · ~w⊥

2 and u = −~w⊥
2 · ~w1 = ~w2 · ~w

⊥
1 . Therefore, by (24),

Im(dψV̂) is spanned by:

v0 := (~w2 · ~w
⊥
1 )Aa(1, 2)⊥ + (a(1, 2) · ~w⊥

2 ) ~w⊥
1

where Aa(1, 2) = a(1, k), so Aa(1, 2)⊥ = a(1, k)⊥.
Thus (15) fails only if ~wk is perpendicular to v0 – in other words, if ~wk is

proportional to:

(~w2 · ~w
⊥
1 ) a(1, k) + (a(1, 2) · ~w⊥

2 ) ~w1 ,

or equivalently, if ~wk is proportional to:

e :=
a(1, 2)⊥ · ~w2

~w⊥
1 · ~w2

~w1 − a(1, k) ,

which by (26) is precisely the vector connecting the meeting point

P := p(1) +
a(1, 2)⊥ · ~w2

~w⊥
1 · ~w2

~w1

of Line(1) and Line(2) with the end point p(k) = p(1) + a(1, k) of V (k), so that

~wk is proportional to e if and only if the direction line Line(k) passes through P –
i.e., the configuration V is hyper-aligned (see Figure 3 and Definition 2.1(b)).

This completes the proof of Proposition 2.4, and thus of Theorem 2.2. �

2.7. Definition. A mechanism Γ = (L,X ,P) is called generic if none of its config-
urations are hyper-aligned (cf. Definition 2.1).

2.8. Remark. The moduli space M of all possible mechanisms of a given combina-
torial type – i.e., feasible choices of the parameters Γ = (L,X ,P) – is a semi-

algebraic subspace of R

Pk
i=1 n

(i)+dk+|I| determined by a set of linear inequalities.
The “generic” mechanisms will indeed be generic in the sense of (real) algebraic
geometry, since mechanisms which can have singular configurations form a sub-
space of M of positive codimension.
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2.9. Corollary. The configuration space C = C(Γ) of a generic polygonal mechanism
Γ = (L,X ,P) in R

d is a smooth closed orientable manifold of dimension N(d−1)−|I|,

where k is the number of vertices of P , N :=
∑k

i=1 n
(i), and |I| is given by (2).

3. MORSE FUNCTIONS FOR PLANAR MECHANISMS

From now on we shall concentrate on the simplest type of polygonal mechanism
– namely, planar mechanisms (d = 2) having triangular platforms (k = 3) and
exactly two links per branch (n(1) = n(2) = n(3) = 2). These mechanism are known
in the robotics literature as 3-RRR (rotational) mechanisms.

Recall that a smooth real-valued function on a manifold is called a Morse function
if all its critical points are non-degenerate (cf. [M, I, §2]). Such functions may be
used to deduce the cellular structure of the manifold, and thus recover its homo-
topy type (see [M, I, §3]). Our goal is to describe a Morse function for the configu-
ration space of a 3-RRR mechanism.

3.1. Theorem. The function f(V) :=
∑3

j=1 ‖v(j)‖2 is generically a Morse function on

C(Γ), where v(j) := v
(j)
1 + v

(j)
2 = p(j) − x(j).

Proof. In order to show that the critical points of f are non-degenerate, we must
choose a local coordinate system near each such point.

(3)

1

2

(3)

FIGURE 5. Local coordinates

Unfortunately, there is no uniform choice of such a system, so we must distin-
guish three cases:

Case I: Let Φ := (φ1, φ2, φ3), where φj denotes the angle between the vectors

−v
(j)
1 and v

(j)
2 for j = 1, 2, 3. Then:

(27) h(j)(φj) := ‖v(j)‖ = ‖v
(j)
1 + v

(j)
2 ‖ =

√
(ℓ

(j)
1 )2 + (ℓ

(j)
2 )2 − 2ℓ

(j)
1 ℓ

(j)
2 cos φ1

and thus f(Φ) =
∑3

j=1 h
(j)(φj)

2, so that:

∇f = ∇Φ f = 2
(
ℓ
(1)
1 ℓ

(1)
2 sin(φ1), ℓ

(2)
1 ℓ

(2)
2 sin(φ2), ℓ

(3)
1 ℓ

(3)
2 sin(φ3)

)

= 2 ((v
(1)
1 )⊥ · v

(1)
2 , (v

(2)
1 )⊥ · v

(2)
2 , (v

(3)
1 )⊥ · v

(3)
2 )

(28)
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where ~w⊥ := (b,−a) for ~w = (a, b).
Thus Φ is a critical point if and only if:

(29) Φ =
π

2
(1 + σ1, 1 + σ2, 1 + σ3) for σ1, σ2, σ3 ∈ {±1} .

Computing the Hessian at a critical point Φ yields:

HΦ =



σ1 ℓ

(1)
1 ℓ

(1)
2 0 0

0 σ2 ℓ
(2)
1 ℓ

(2)
2 0

0 0 σ3 ℓ
(3)
1 ℓ

(3)
2


 ,

which is non-degenerate, with index IndΦ equal to the number of negative values
in {σ1, σ2, σ3}. Such critical points will be refered to as Type I.

FIGURE 6. Type I critical point

Case II: As we saw, critical points of f appear when all three branches are aligned.
However, for some mechanisms this will never happen, because one or two bran-
ches can never fully stretch or fold – that is, φ3 (say) takes values in a proper
subset [a1, a2] ∪ [−a2,−a1] of [−π, π] (see Example 3.3). Clearly, φ3 cannot then
serve as a local coordinate at a point (φ1, φ2,±ak).

However, if the first two branches can both be aligned, then in the vicinity of

doubly aligned configurations we take Φ̂ := (φ1, φ2, θ1), where φj (j = 1, 2) as

in Case I, and θj is the angle between v(j) := v
(j)
1 + v

(j)
2 and the vector x(2) (we

assume for simplicity that x(1) is at the origin).
Since

(30) v(j) = h(j)(cos θj , sin θj) ,

using (27) we have:

(31) (∂φj
v(j), ∂φj′

v(j), ∂θj
v(j)) = (

(v
(j)
1 )⊥ · v

(j)
2

h(j)(φj)2
v(j), 0, −(v(j))⊥)) ,

for {j, j′} = {1, 2}.
However, since θ2 is a dependent variable, we may differentiate the norms in:

(32) v(1) + a(1, 2) − v(2) = x(2)
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implicitly and deduce that:

(33) ∂θ1 v(2) = −∂θ1 θ2 (v(2))⊥ = −
a(1, 2) · (v(1))⊥

a(1, 2) · (v(2))⊥
(v(2))⊥ .

Differentiating (32) itself and using (31), (33), and (26) yields:
(34)

∇Φ̂a(1, 2) = (−
(v

(1)
1 )⊥ · v

(1)
2

h(1)(φ1)2
v(1), −

(v
(2)
1 )⊥ · v

(2)
2

h(2)(φ2)2
v(2),

v(1) · (v(2))⊥

a(1, 2) · (v(2))⊥
(a(1, 2))⊥ )

Since x(1) = 0, we see v(3) = v(1) + a(1, 3) − x(3), so:

(35)





∂φ1 f = 2 (v
(1)
1 )⊥ · v

(1)
2

2h(1)(φ1)2+v
(1)·(a(1,3)−x

(3))+(x(3)−v
(1))·(Bαv

(1))

h(1)(φ1)2

∂φ2 f = 2 (v
(2)
1 )⊥ · v

(2)
2

h(2)(φ2)2 +(x(3)−v
(1))·(Bαv

(2))

h(2)(φ2)2

∂θ1 f = 2 (x(3) − a(1, 3)) · (v(1))⊥ + 2 [v(1)·(v(2))⊥] [(v(1)−x
(3))·(a(1,3))⊥]

a(1,2)·(v(2))⊥

where Bα is the rotation-and-dilitation matrix taking a(1, 2) to a(1, 3).

Note that we use the coordinates Φ̂ only at points where the first two branches

are aligned, so that v
(j)
2 · (v

(j)
1 )⊥ = 0 for j = 1, 2, and thus the first two entries of

∇Φ̂(f) vanish at these points. The vanishing of ∂f
∂θ1

is equivalent to the condition:

[x(3) · (v(1))⊥] [a(1, 2) · (v(2))⊥] − [a(1, 3)) · (v(1))⊥] [a(1, 2) · (v(2))⊥]

+ [v(1) · (v(2))⊥] [v(1) · (a(1, 3))⊥] − [v(1) · (v(2))⊥] [x(3) · (a(1, 3))⊥] = 0
(36)

Note that by (26) again, the intersection of Line(1) with Line(2) is at the point:

P := x(3) + v(1) +
a(1, 2) · (v(2))⊥

v(1) · (v(2))⊥
v(1) ,

and (36) is equivalent to the colinearity of x(3), P , and v(1) +a(1, 3). Such critical
points will be refered to as Type II.

FIGURE 7. Type II critical point
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Calculating the Hessian matrix Hf of f at a critical point, we find that it is diag-
onal, with:

∂φ1φ1 f = − 2v
(1)
1 · v

(1)
2

2h(1)(φ1)
2 + v(1) · (a(1, 3) − x(3)) + (x(3) − v(1)) · (Bαv

(1))

h(1)(φ1)2

∂φ2φ2 f = − 2v
(2)
1 · v

(2)
2

h(2)(φ2)
2 + (x(3) − v(1)) · (Bαv

(2))

h(2)(φ2)2

∂θ1θ1 f =
2

[a(1, 2) · (v(2))⊥]2
( − 2 [v(1) · (v(2))⊥] [a(1, 3) · v(1)] [a(1, 2) · (v(2))⊥]

+ [(x(3) − a(1, 3)) · v(1)] [a(1, 2) · (v(2))⊥]2

+ [v(1) · v(2)] [a(1, 2) · (v(1) − v(2))⊥] [(v(1) − x(3)) · (a(1, 3))⊥]

+ [v(1) · (v(2))⊥]2 [(v(1) − x(3)) · (a(1, 3))]

+ [a(1, 2) · v(2)] [(v(2) − a(1, 2)) · (v(1))⊥] [(x(3) − a(1, 3)) · (v(1))⊥] )

If we solve (35) to find explicitly the critical points of f in the coordinates Φ̂,
and then substitute into the expression we have found for Hf at these points, we
obtain a polynomial expression of degree 6 in the parameters Γ = (L,X ,G) for
the mechanism. Thus the critical point we identified is degenerate only when this
polynomial vanishes, so generically f is indeed a Morse function.

Case III: Note that the work space W for each vertex of P is the intersection
of three annuli (so it is compact), and thus the boundary of W must intersect at
least one of the bounding circles of the annuli. Therefore, at least one of the three
branches (say, the first) can be aligned.

Thus, at critical points of f where neither Φ nor Φ̂ can be used as local coordinates,
the first branch is aligned, and we take Ψ := (θ1, φ1, ψ) as our local coordinates,
where θ1 and φ1 are as in Case II above, and ψ denotes the angle between a(1, 2)
and x(2) (see Figure 5). Note that this will not work when the second branch is also
aligned, since these coordinates only determine the length of v(2), and not “elbow
up/down” near φ2 = π

2
(1 + σ2).

Here:

f(Ψ) = ‖v
(1)
1 + v

(1)
2 ‖2 + ‖v(1) + a(1, 2) − x(2)‖2 + ‖v(1) + a(1, 3) − x(3)‖2 .

and since a(1, 2) = g(1,2)(cosψ, sinψ), we have ∇Ψ(v(1)) = (−(v(1))⊥,
(v

(1)
1 )⊥·v

(1)
2

h(1)(φ1)2
v(1), 0)

and ∇Ψ(a(1, j)) = (0, 0, −a(1, j)⊥ for j = 2, 3, so:

∂θ1 f = 2(v(1))⊥ · ((x(2) + x(3)) − (a(1, 2) + a(1, 3)))

∂φ1 f = − (v
(1)
1 )⊥ · v

(1)
2

v(1) · (4v(1) + a(1, 2) + a(1, 3) − x(2) − x(3))

‖v(1)‖2

∂ψ f = a(1, 2)⊥ · (x(2) − v(1)) + a(1, 3)⊥ · (x(3) − v(1))

(37)

We are using the coordinates Ψ because the first leg is aligned, so indeed ∂φ1 f =
0. In order for this to be a critical point, we have two additional geometric con-
ditions: the vanishing of ∂θ1 f implies that the vector connecting the midpoints
of sides of the fixed and moving platforms opposite the first vertex – that is,
A := (x(2) + x(3))/2 and B := (a(2) + a(3))/2 – is aligned with v(1) (see Figure
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8). On the other hand, the vanishing (in addition) of ∂ψ f is equivalent to:

(38) (v(2))⊥ · x(2) + (v(3))⊥ · x(3) = 0 ,

which means that the areas of the triangles spanned by v(j) and x(j) (j = 2, 3)
are equal. Such critical points will be refered to as Type III.
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FIGURE 8. Type III critical point

Now, calculating the Hessian of f at the critical points we have:

∂θ1θ1 f = − 2v(1) · ((x(2) + x(3)) − (a(1, 2) + a(1, 3)))

∂φ1θ1 f = ∂φ1ψ f = 0

∂ψθ1 f = 2v(1) · (a(1, 2) + a(1, 3))

∂φ1φ1 f = v
(1)
1 · v

(1)
2

v(1) · (4v(1) + a(1, 2) + a(1, 3) − x(2) − x(3))

‖v(1)‖2

∂ψψ f = a(1, 2) · (x(2) − v(1)) + a(1, 3) · (x(3) − v(1))

Again, generically the critical point is non-degenerate. �

3.2. Identifying the critical points.

Since we usually have no explicit description of the configuration space C as a
manifold, it is hard to calculate the Morse function f : C → R directly. However,
in the course of proving Theorem 2.2 we gave a geometric description of each of the
possible critical points of f – which are the main ingredient needed for analyzing
the topology of C – in terms of the work space W . We can use this geometric
information in order to identify all possible candidates for critical points, and then
we need only calculate df in local coordinates at these points (also provided in the
proof above) to check if they are indeed critical, and find their indices.

Recall that W (Definition 1.6) is the space of all possible locations of the moving
platform P , whose vertices must be situated in the respective work spaces Wi

(i = 1, 2, 3) of (the end points of) the three branches. Each Wi is an annulus
centered at the i-the vertex x(i) of the fixed triangle.

Also recall the concept of the coupler curve γ of a planar four-bar linkage - that is,
a degenerate polygonal mechanism with k = 2 linear branches (n(1) = n(2) = 1),
but having a triangular platform P : the coupler curve is the work space for the
third (unattached) vertex of P . See [Hal, Ch. 4]. We consider the coupler curves
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for two vertices x(i) (say i = 1, 2) of a triangular mechanism Γ = (L,X ,P) as
above, in which the two corresponding branches are aligned, so that each can be

replaced by a single linear branch of length ℓ(i) := ℓ
(i)
1 + ℓ

(i)
2 or ℓ

(i)
1 − ℓ

(i)
2 , as the

case may be.

(1) The critical points of Type I (all three branches aligned) correspond to place-
ments of P with all three vertices on the (inner or outer) boundary circles
of these annuli. Determining these is a straightforward geometric problem,
which can be described as intersecting the coupler curve for the first two
vertices, say, with the two boundary circles of W3.

(2) For critical points of Type II, we need also a line field V along the coupler
curve γ, where V (γ(t)) is the line from γ(t) to the intersection point

P (t) of Line(1) with Line(2). This line field is readily calculated from γ.
The critical points are then those configurations for which V (γ(t)) passes
through x(3).

(3) For critical points of Type III, the first vertex v(1) of P must lie on one
of the two boundary circles of W1. Given v(1), the possible positions
of P are determined by its rotation angle θ around its first vertex, and at
most two values θ′, θ′′ of θ satisfy condition (38). Thus we can define
on ∂W1 two line fields V ′, V ′′ which associate to v(1) the line between
the midpoints of the (2, 3)-side of the fixed and moving triangles in the
positions corresponding to θ′, θ′′ respectively. The critical points are those
for which the vector v(1) lies on one of these two lines.

3.3. Example. In general, the critical points of a Morse function on a manifold do
not determine its topology, though together with their indices they impose cer-
tain restrictions on its homology, via the Morse inequalities. However, in the sim-
plest cases the geometric considerations described above limit the possible critical
points so severely that the configuration space C can be recovered in full. Note
that there are two connected components in C, determined by the orientation of
the moving platform.

For example, consider a triangular mechanism with one branch (say, k = 3) hav-
ing one very large link, so that the work space for the vertex p(3) contains those for
all points of the moving platform, and thus imposes no restriction on the allowed
configurations. We assume the moving platform is a small triangle, and that the
work space for (the vertex of) the first branch is a small annulus, intersecting that
of the second branch in a crescent-shaped lune, which is the approximate “work
space” for the moving platform (i.e., for its barycenter). Finally, assume that the
fixed vertex x(3) is far to the left (see Figure 9).

Now we may analyze the possible critical points as follows:

(1) Since the two small annuli above are wholly contained in the large one, and
the moving platform is small, there are no critical points of Type I.

(2) Note that there are exactly two cases where Line(1) meets Line(2) on the
inner boundary circle of the work space for vertex 2. Since g(23) is very
small, any critical points of Type II must occur nearby, so that the edges
a(12) and a(13) (which nearly coincide) are aligned with v(1) (see Figure
10).



20 NIR SHVALB, MOSHE SHOHAM, AND DAVID BLANC

x
(3)

FIGURE 9. Work spaces for the three moving vertices
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FIGURE 10. A critical point of Type II

By choosing appropriate generic values for the parameters, we can ensure
that there are exactly two critical of Type II in each component of C.

(3) Consider the three dashed lines L(k) in Figure 11, each connecting x(k)

with the midpoint of opposite (fixed) edge (for k = 1, 2, 3). Because the
moving triangle is so small, the vector v(k) must approximate the direction
of L(k) in order to obtain a critical point of Type III – but since these lines
do not pass near the approximate work space for the moving platform, no
such critical points can occur.

x

x
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(2)

p(2)

p
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p
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L

L

L

(1)

(2)
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FIGURE 11. Potential critical points of Type III

Thus each component of the configuration space C(Γ) has exactly two critical
points in this case (both of Type II), so it is homeomorphic to S3.
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