
COHOMOLOGY AND HIGHER HOMOTOPY OPERATIONS

DAVID BLANC

Abstract. We provide a description of higher homotopy operations as defined in [BM],
in cohomological terms.

1. Introduction

In [BM], a “geometric” definition of higher homotopy operations based on the W -
construction of Boardman and Vogt, was given in terms of an obstruction theory for
rectifying diagrams. On the other hand, in [DKSm2] Dwyer, Kan and Smith gave an
obstruction theory for rectifying diagrams in the homotopy category, framed in standard
cohomological form. The purpose of the present note is to explain how the geometrical
definition can be re-stated in terms of an appropriate cohomology theory.

1.1. Notation. The category of compactly generated topological spaces is denoted by
T , and that of pointed connected compactly generated spaces by T∗; their homotopy
categories are denoted by ho T and ho T∗ respectively. The category of simplical sets
will be denoted by S, and that of pointed simplicial sets by S∗. Cat denotes the
category of all small categories.

1.2. Spanier’s approach to higher operations. In [Sp2], Spanier gave a general the-
ory of higher order operations (extending the definition of secondary operations given
in [Sp1]), somewhat similar in spirit to the approach we propose here: an (n + 1)-st
order operation is defined as a set of cohomology classes On ⊂ Hn(K; Γn), where K is
a simplicial complex (corresponding essentially to our bP – see §2.4 below), and the
coefficients Γn are a stack (“cosheaf of groups”) on K, defined

Γn(σ) := πnΦ(σ) for σ ∈ K,

where Φ(σ) is the topological space assigned to the simplex σ ∈ K by a given carrier
(“cosheaf of spaces”), and πn is as usual its n-th homotopy group.

2. Lattices and higher homotopy operations

First, we recall the definition of the higher homotopy operations originally given in
[BM]:

2.1. Definition. A lattice is a finite directed non-unital category Γ (that is, we omit the
identity maps), equipped with two objects vinit = vinit(Γ) and vfin = vfin(Γ) with a
unique map φmax : vinit → vfin, and for every w ∈ V := Obj Γ, there is at least one map
from vinit to w, and at least one from w to vfin. A composable sequence of k arrows in
Γ will be called a k-chain.
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2.2. The W -construction. Given a lattice Γ, one can define a new category WΓ en-
riched over cubical sets, with the same set of objects V , called the bar construction on Γ
by Boardman and Vogt (cf. [BV, III, §1]):

2.3. Definition. For u, v ∈ V , let Γn+1(u, v) be the set of (n + 1)-chains from u to
v in Γ, and WΓ(u, v) :=

⊔

n≥0 Γn+1(u, v) × In/ ∼, where I is the unit interval. Write

f1 ◦t1 f2 · · · fn ◦tn fn+1 for 〈u
fn+1
−−→ vn · · · → v1

f1−→ v〉 × (tn, . . . , t1) in Γn+1(u, v) × In;
then the relation ∼ is generated by

f1 ◦t1 f2 · · · fn ◦tn fn+1 ∼ f1 ◦t1 · · · ◦ti−1
(fifi+1) ◦ti+1

· · · ◦tn ◦fn+1 if ti = 0

for 1 ≤ i ≤ n, where (fifi+1) denotes fi composed with fi+1.
The categorial composition in WΓ is given by the concatenation:

(f1 ◦t1 · · · ◦tl fl+1) ◦ (g1 ◦u1 · · · ◦uk
gk+1) := (f1 ◦t1 · · · ◦tl fl+1 ◦1 g1 ◦u1 · · · ◦uk

gk+1).

We write P := WΓ(vinit, vf) .

2.4. Definition. The basis category bWΓ for a lattice Γ is defined to be the cubical
subcategory of WΓ with the same objects, and with morphisms given by bWΓ(u, v) :=
WΓ(u, v) if (u, v) 6= (vinit, vfin), while

bWΓ(vinit, vfin) :=
⋃

{α ◦ β | β ∈ WΓ(vinit, w), α ∈ WΓ(w, vfin), vinit 6= w 6= vfin} ,

so that bP := bWΓ(vinit, vfin) consists of all decomposable morphisms.

2.5. Fact ([BM, Proposition 2.15]). For any lattice Γ, WΓ(vinit, vfin) is combinatori-
ally isomorphic to the cone CbWΓ(vinit, vfin) on its basis, with the vertex of the cone

corresponding to the unique maximal 1-chain 〈vinit
φmax
−−−→ vfin〉.

2.6. Higher homotopy operations. We can use the W -construction to define a higher
homotopy operations, as follows:

2.7. Definition. Initial data for a higher homotopy operation is a lattice Γ, together with
a functor A : Γ → hoT∗. A rectification of the initial data A : Γ → hoT∗ is then a
strict Γ-diagram realizing A – i.e., a functor F : Γ → T∗ such that π ◦ F is naturally
isomorphic to A, where π : T∗ → hoT∗ is the obvious projection functor.

Recall that the (right) half-smash X ⋊ K of topological spaces X and K, where X is
pointed, is defined to be (X ×K)/({∗}×K) = X ∧K+, where K+ is K with a disjoint
basepoint added. X ⋊ K is again a pointed space, with the class of {∗} × K as the
distinguished point.

2.8. Definition. Given initial data A : Γ → ho T∗, complete data for the corresponding
higher homotopy operation consists of a continuous functor CA : bWΓ → T∗ such that
π ◦ CA = A ◦ (ε|bWΓ).

The corresponding higher order homotopy operation is the subset

〈〈A〉〉 ⊂ [A(vinit) ⋊ bP, A(vfin)]ho T∗

consisting of the homotopy equivalence classes of maps

CA|bWΓ(vinit,vfin) : bWΓ(vinit, vfin) = bP −→ T∗(A(vinit), A(vfin))

induced by all possible complete data CA for A.
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2.9. Definition. The higher operation 〈〈A〉〉 is said to vanish if it contains the homotopy
class of a constant map bP −→ T∗(A(vinit), A(vfin)).

2.10. Fact ([BM, Theorem 3.8]). The homotopy operation 〈〈A〉〉 vanishes (and in partic-
ular, is defined) if and only if A has a rectification, so it is precisely the last obstruction
to rectifying A.

3. Simplicial model categories

Even though the cubical mapping spaces of WΓ are more economical, for our purposes
it will be more convient to work with simplicial sets, since certain facts about them that
we shall need are readily available in the literature.

3.1. A simplicial version of WΓ. In [CP, §2], Cordier and Porter described a version
of WΓ which is enriched over simplicial, rather than cubical, sets:

Given a lattice Γ as above, the category WsΓ has the same objects as Γ, and for each
pair of nodes (u, v) of Γ, WsΓ(u, v) ∈ S is a simplicial set with one r-simplex σ(U ,Φ) for

each chain Φ = 〈u = vn+1
fn+1
−−→ vn

fn
−→ · · ·

f2
−→ v1

f1
−→ v0 = v〉 = f1f2 · · · fnfn+1 and each

partition U = (U1, . . . , Ur) of a subset U ⊂ {v1, . . . , vn} of the set of internal nodes of
Φ, with each of the sets Ui nonempty. The faces of σ are defined by:

(i) d0(σ) := σ(U(0),Φ′), where Φ′ is obtained from Φ by carrying out the compositions

at each node vi ∈ U1, and U (0) := (U2, . . . , Ur).
(ii) dj(σ) := σ(U(j),Φ), where U (j) := (U1, . . . , Uj−1, Uj ∪ Uj+1, Uj+2, . . . , Ur) for 0 <

j < r.
(iii) dr(σ) := σ(U(r),Φ), where U (r) := (U1, . . . , Ur−1).

The degenerate simplices are obtained by allowing partitions with Uj = ∅, and the
simplicial composition map is defined by concatentation of chains in the obvious way.

3.2. Remark. Note that WsΓ(u, v) provides a canonical triangulation of the cubical
set WΓ(u, v); moreover, because of the way products of simplicial sets are defined, the
simplicial composition map ◦ : WsΓ(u, v) × WsΓ(v, w) → WsΓ(u, w) defines levelwise
maps

◦ : WsΓ(u, v)n × WsΓ(v, w)n → WsΓ(u, w)n for each n ≥ 0,

so we can think of WsΓ as a simplicial category – that is, a simplicial object over Cat
– with (dimensionwise) fixed objects. On the other hand, WΓ is not a cubical category
in this sense.

3.3. Example. If the lattice Γ is the linearly ordered chain 0 < 1 < 2 < 3, then
WsΓ = WsΓ(0, 3) is a triangulated square:

Here the notation 〈0 < 1 < 2 < 3〉, for example, means that we have partitioned
the internal nodes {1, 2} of the (maximal) chain 0 < 1 < 2 < 3 with U1 = {2} (the
unbroken box), and U2 = {1} (the dashed box).

3.4. Definition. For a lattice Γ as above, with V = Obj Γ, let V = (V,≺) denote
the partially ordered set with u ≺ v ⇔ HomΓ(u, v) 6= ∅, and V -Cat the category of
all small non-unital (directed pointed) categories C with Obj C = V , and HomC(u, v) 6=
{∗} Rightarrow u ≺ v in V. Let sV -Cat (cf. [DK1, §1.4]) be the catgegory of simplicial
objects over V -Cat.
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Thus each M• ∈ sV -Cat is a simplicial category with fixed object set V in each
dimension, and all face and degeneracy functors are the identity on objects. Equivalently
(see §3.2), one can think of M = M• as a category enriched over S∗, with Obj M = V
(i.e, for each ordered pair u ≺ v of V we have a pointed simplicial set M(u, v) ∈ S∗,
and to each ordered triple u ≺ v ≺ w a map ◦ : M(u, v)×M(v, w) → M(u, w), which
is associative in the obvious sense.

3.5. Fact. If C is the category of non-unital small directed categories, there is a forgetful
functor U : C → DiG to the category of directed graphs, whose left adjoint F : DiG → C
is the “free category” of [Ha] (see also [DK1, §2.4]).

This pair of adjoint functors defines a comonad FU : C → C, and thus an augmented
simplicial category E• → C with En := (FU)n+1C, as in [Go, App., §3]. If C ∈ V -Cat,
then E• ∈ sV -Cat.

3.6. Example. Both Γ and WsΓ can be thought of as being in sV -Cat (the first being
trivial). However, if we think of Γ as a (non-unital small directed) category, and of WsΓ
as a simplicial category , then the above comonad construction, when applied to Γ, yields
E• = WsΓ.

The augmentation morphism ε : WsΓ → Γ is defined by dn+1
0 : WsΓn(u, v) → Γ(u, v)

(where d0 : WsΓ0(u, v) → Γ(u, v) is the iterated composition on any chain).

3.7. Definition. A simplicial category E• ∈ sV -Cat is free if each category En, and each
degeneracy functor sj : En → En+1, is in the image of the functor F : V -Cat → V -Cat.

In particular, the “spheres” in sV -Cat are objects the form M• := Sn
(u,v) for n ≥ 1

and u ≺ v in V, defined by:

M(u′, v′) =

{

Sn for u′ = u and v′ = v

∗ otherwise,

and evidently each Sn
(u,v) is free, and in fact the free objects are just arbitrary coproducts

(in sV -Cat) of spheres.
A map Φ : M• → N• in sV -Cat is free if for each n ≥ 0, there is

a) a coproduct of spheres En ∈ V -Cat,
b) a map ϕn : Wn → Yn in C which induces an isomorphism

(Mn ∐LnM•
LnN•) ∐ En → Nn.
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The “latching objects” for a simplicial category M• are LnM• :=
∐

0≤i≤n−1 Mn−1/ ∼,
where for any x ∈ Mn−2 and 0 ≤ i ≤ j ≤ n − 1 we set sjx in the i-th copy of Mn−1

equivalent to six in the (j + 1)-st copy of Mn−1.

3.8. The model category structure on sV -Cat. For V = (V,≺) as above, sV -Cat
has a simplicial E2-model category (in the sense of [DKSt, §5]), in which the simplicial
function complexes Hom(M•,N•) is the limit (under the composition maps) of the
diagram 〈HomS∗

(M(u, v), N(u, v))〉u≺v, and M• ⊗ K and MK
• (for K ∈ S) are

defined as in [Q, Ch. II, §1-2]).
A map (simplicial functor) Φ : M• → N• is

(i) a weak equivalence if Φ(u, v) : M(u, v) → N(u, v) is a weak equivalence of
simplicial sets for each u ≺ v;

(ii) a fibration if each Φ(u, v) is a fibration of simplicial sets;
(iii) a cofibration if it is a retract of a free map.

(Compare [DK1, Proposition 7.2]).

3.9. Fact ([CP, §1]). The augmentation ε : WsΓ → Γ induces a weak equivalence of
simplicial sets ε(u,v) : WsΓ(u, v) → K(Γ(u, v), 0) for each u ≺ v, where K(A, 0) is the
constant simplicial set on A ∈ Set.

3.10. Definition. For any X• ∈ sV -Cat, let Y• be a fibrant replacement for X•, and
let

π(u,v)
n (X•) := [Sn

(u,v), Y•] := π0Hom(Sn
(u,v), Y•)

for each u ≺ v in V.

3.11. Remark. Note that πnX• := 〈π(u,v)
n (X•)〉u≺v constitutes a ΓX•

-diagram of groups
(abelian, if n ≥ 2), where ΓX•

:= π0X• is the lattice of components of the mapping
spaces of X•. Moreover, a map Φ : M• → N• in sV -Cat is a weak equivalence if an
only if it induces an isomorphism in πnX• for all n ≥ 0.

4. Cohomology for sV -Cat

In [DKSm1, §2.1], Dwyer, Kan, and Smith defined the cohomology with local coefficients
for a small category D, in which lie the obstructions to rectifying a homotopy commutative
D-diagram constructed in [DKSm2, §3.5]. We now show how these cohomology groups
can be reinterpreted in more familiar terms. First, note that Postnikov towers may be
defined for Y• ∈ sV -Cat as in [DK2, §1.2]:

4.1. Definition. For each n ≥ 0 define Y
(n)
• by setting Y

(n)
k := Mk for k ≤ n+1 and

Y
(n)
k := Mk(Y

(n)
• ) for k ≥ n + 2, where the n-th “matching object” for Y• is defined

for u ≺ v in V and n ≥ 1 by MnY•(u, v) := {(x0, . . . , xn) ∈ (Yn−1(u, v))n+1 | dixj =
dj−1xi for all k ≤ i < j ≤ n}. For any X• ∈ sV -Cat, choose some fibrant replacement

Y• for X•, and set P nX• := Y
(n)
• .
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