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2 BLANC, DWYER, AND GOERSSthese spaes. Up to homotopy TM(A) an be identi�ed (2.1) as adisjoint union ahXi �WAuth(X) ;indexed by homotopy equivalene lasses of CW-omplexes X with��X ' A, where �WAuth(X) is the lassifying spae of the simpliialmonoid of self homotopy equivalenes of X. The �-algebra A an berealized as ��X for some X if and only if TM(A) is nonempty; therealization is unique up to weak equivalene if and only if TM(A) isonneted.In this paper we study TM(A). The �rst step is to onstrut partialmoduli spaes TMn(A), n � 0, whih �t into a tower� � � ! TMn(A)! TMn�1(A)! � � � ! TM1(A)! TM0(A)whose homotopy limit is equivalent to TM(A). We then approah thepartial moduli spaes indutively, and show that TMn(A) is tied toTMn�1(A) by a simple homotopy �bre square (9.6, 9.7). The onlu-sion is that the spaes TMn(A) are relatively aessible, and in fathave a surprisingly ohomologial avor. In analyzing them we aredoing a type of homotopial deformation theory; the obstrutions andhoies at eah level lie in the Quillen ohomology groups of A, whihare the analogues for a �-algebra of the Hohshild ohomology groupsof an assoiative ring or the Andr�e-Quillen ohomology groups of aommutative ring.One of the motivations for this paper is that we expet our studyof the realization spae of a �-algebra to serve as a blueprint for thestudy of other moduli problems of a similar type. For that reason wehave tried to keep our onstrutions and arguments as oneptual aspossible. There are several lessons that might be learned from the pa-per. One is the usefulness of working with moduli spaes as a whole,rather than with their sets of omponents, if only beause the modulispaes tend to �t into �bration sequenes and �bre squares. This is nota new lesson, but it omes through pretty learly in what we do. An-other point is the power and exibility that an be gained by workingwith simpliial resolutions of objets (in our ase simpliial resolutionsof spaes) instead of with the objets themselves. Finally, on a muhmore tehnial level, suppose that F is a funtor from �nite sets tosets or spaes. The reader might be interested in how prolonging Fto the ategory of simpliial sets an be interpreted as taking a homo-topy oend (5.10); this explains to the authors a family of onnetivityformulas (e.g. 5.1) whih otherwise an seem mysterious.We will now disuss our results in more detail.



MODULI PROBLEM 3The partial moduli spaes. We �rst desribe how the partial modulispaes TMn(A) arise. Any spae X has a spherial resolution S(X);this is a simpliial spae whose realization is equivalent to X, and eahof whose simpliial onstituents S(X)[n℄ is equivalent to a wedge ofspheres. In fat there is a model ategory struture on the ategoryof simpliial spaes in whih the o�brant objets are spherial; theresolution S(X) is obtained by treatingX as a onstant simpliial spaeand taking a o�brant model for it. This is analogous to a standardproedure in homologial algebra. There is a model ategory strutureon the ategory of nonnegatively graded hain omplexes in whih theo�brant objets are the hain omplexes of projetive modules. Aprojetive resolution of a moduleM is then obtained by treatingM asa hain omplex onentrated in degree 0 and taking a o�brant modelfor it.Suppose now that A is a �-algebra. Rather than diretly tryingto build a spae X whih realizes A, we try to build the resolutionS(X). This gives some added exibility, beause inside the ategoryof simpliial spaes there are various types of Postnikov stages; weonentrate on one of these types, the horizontal Postnikov stages P̂�,and attempt to onstrut S(X) indutively by building its Postnikovsetions P̂nS(X). It turns out that there is a simple algebrai onditionthat a simpliial spae Y has to satisfy in order to be of the formP̂nS(X) for some spae X realizing A; if Y satis�es this property,we say that it is a potential n-stage for A. The partial moduli spaeTMn(A) is then de�ned to be the moduli spae of all potential n-stagesfor A, i.e., the nerve of the ategory whose objets are the simpliialspaes whih are potential n-stages for A, and whose maps are the weakequivalenes between these simpliial spaes.Analyzing the partial moduli spaes. A module M over the �-algebraA is de�ned to be an abelian �-algebra with a ertain kind of ationby A, or equivalently as an abelian group objet in the ategory of�-algebras over A. Assoiated to suh a module M are ohomologygroups Hn(A;M), n � 0. These ohomology groups an be desribedin terms of the homotopy groups of ertain simpliial sets Hn(A;M)obtained by mapping A into Eilenberg-Ma Lane objets. The groupHn(A;M) is given by �0Hn(A;M), and more generally there are iso-morphisms �iHn(A;M) ' Hn�i(A;M) :By funtoriality the disrete group Aut(A;M) of automorphisms of thepair (A;M) ats on Hn(A;M), and we let Ĥn(A;M) denote the Borelonstrution of this ation. The group Aut(A;M) �xes the basepoint of



4 BLANC, DWYER, AND GOERSSĤn(A;M) (whih orresponds to the zero element of Hn(A;M)), andthis gives a natural map �WAut(A;M) ! Ĥn(A;M). The A-modulesthat are interesting for our purposes are shifted opies 
mA of A itself.Our main result is the following one, whih is a reast version (9.7) ofTheorem 9.6. It provides an indutive approah to understanding thepartial moduli spaes TMn(A).1.1. Theorem. Suppose that A is a �-algebra. Then TM0(A) is equiv-alent to �WAut(A), and for eah n � 1 there is a homotopy �bre squareTMn(A) ���! �WAut(A;
nA)??y ??yTMn�1(A) ���! Ĥn+2(A; 
nA) :It follows immediately from the theorem that the homotopy �breof TMn(A) ! TMn�1(A) over any point of TMn�1(A) is equiva-lent to the generalized Eilenberg-Ma Lane spae 
Hn+2(A; 
nA) �Hn+1(A; 
nA). This spae has nontrivial homotopy groups only in di-mensions 0 through n + 1, and so the tower fT Mn(A)g is a type ofmodi�ed Postnikov system for TM(A). This tower is better than theusual Postnikov system for TM(A) in that the suessive �bres de-pend in an expliit ohomologial way on A. The tower also leads toan obstrution theory for �nding a point in TM(A) � holimTMn(A),i.e., an obstrution theory for �nding a topologial realization of A.1.2. Theorem. Suppose that A is a �-algebra, and that Y is a poten-tial (n � 1)-stage for A. Then there is an assoiated element oY inHn+2(A; 
nA), well-de�ned up to the ation of Aut(A; 
nA) on thisgroup, suh that Y lifts up to weak equivalene to a potential n-stagefor A if and only if oY = 0.This theorem is proved by notiing that �0Ĥn+2(A; 
nA) is the orbitspae of the ation of Aut(A;
nA) on Hn+2(A; 
nA); by 1.1, the pathomponent P of TMn�1(A) orresponding to Y is the image of a om-ponent of TMn(A) if and only if the image of P in Ĥn+2(A; 
nA) liesin the omponent orresponding to the zero element of Hn+2(A;
nA).Interpretation of the partial moduli spaes. It is natural to ask aboutthe oneptual nature of the partial moduli spaes TMn(A). Sine avertex of TMn(A) is just a simpliial spae with is a potential n-stagefor A, this amounts to asking what topologial information relevant tothe problem of realizing A is ontained in suh a Y . To begin with, therealization of Y is a onneted spae Xh0; n+1i with �iXh0; n+1i = Aifor i � n+1 and vanishing homotopy in higher dimensions; this is justthe (n + 1)'st (ordinary) Postnikov stage of a potential realization of



MODULI PROBLEM 5A. But there is more. Suppose that a and b are positive integers withb > a and b�a � n. With some simple manipulation (9.9) it is possibleto extrat from Y spaes Xha; bi with�iXha; bi = (Ai a � i � b0 otherwise :ThisXha; bi is the b'th ordinary Postnikov stage of the (a�1)'st onne-tive over of a potential realization of A. The various Xha; bi obtainedin this way are as ompatible as they an be when a and b vary; forinstane Xha; b � 1i is the (b � 1)'st Postnikov stage of Xha; bi. Weinterpret this to mean that giving a potential n-stage Y for A amountsamong other things to threading the onstituents of A together byk-invariants in suh a way that the threads only reah a depth of n-dimensions. These threads reate genuine spaes whih realize eahblok of groups from A whih is n dimensions or less in extent. Asthe threads grow in length one dimension at time (if possible, sine by1.2 there may be obstrutions) the bloks of homotopy whih ahievegeometri expression also expand. In the limit, we obtain a spae Xwith ��X = A.Organization of the paper. Setion 2 ontains a general disussion ofmoduli spaes, and x3 analyzes Postnikov theory for ordinary topolog-ial spaes in terms of moduli. Setions 4 and 6 treat the Postnikovtheory of simpliial �-algebras; this is what leads to the onstrutionof our algebrai invariants. There is a detour in x5 to prove a generalrelative onnetivity theorem that gives information about homotopypushouts in the ategory of simpliial �-algebras. Setions 7 and 8look at simpliial spaes and their Postnikov theory, and x9 ontainsproofs of the main results.1.3. Notation. We use the language of simpliial model ategories([19℄ [12℄ [15℄ [13℄); if C is a simpliial model ategory and X and Yare objets of C, then Map(X; Y ) denotes the simpliial set of maps inC from X to Y . All of our model ategories have funtorial fatoriza-tions, in that a map X ! Y an be naturally fatored as a o�brationfollowed by an ayli �bration, or as an ayli o�bration followedby a �bration. The notation Maph(X; Y ) denotes the derived mappingomplex obtained by �nding a funtorial o�brant model X 0 ! X forX, a funtorial �brant model Y ! Y 0 for Y , and forming Map(X 0; Y 0);the set �0Maph(X; Y ) of derived homotopy lasses of maps is denoted[X; Y ℄. In the same way, Auth(X) is the simpliial monoid of self ho-motopy equivalenes of some o�brant/�brant objet weakly equivalent



6 BLANC, DWYER, AND GOERSSto X in a funtorial way. Homotopy pushouts and pullbaks are on-struted as usual [12, x10℄; sine the model ategories have funtorialfatorization, we an take the homotopy pushouts and pullbaks to befuntorial.We will make use of Eilenberg-Ma Lane objets in various ate-gories, and we will try to make notational distintions between them.We use �WG for the lassifying simpliial set of a group or simpliialmonoidG [17, x21℄. The notations BG(M;n), K�(M;n), and B�(M;n)speify twisted Eilenberg-Ma Lane objets in, respetively, the ate-gory of pointed spaes (3.1), simpliial �-algebras (6.1), and simpliialspaes (8.1). Here G is a group, � is a �-algebra, M is a module overG or �, and n denotes the dimension in whih M sits as a homotopyobjet. We will also need various oproduts: ` is a generi oprod-ut, t is the oprodut of sets or unpointed spaes, _ the oprodutfor pointed spaes, and � the oprodut for �-algebras.1.4. Simpliial objets. A simpliial objet X in a ategory C is a fun-tor from�op toC, where � is the simpliial ategory [17℄. Equivalently,X is a olletion X[n℄, n � 0 of objets of C, together with fae mapsdi : X[n℄! X[n� 1℄ and degeneray maps si : X[n℄! X[n+1℄ whihsatisfy the standard simpliial identities. Note that we write X[n℄ todistinguish the simpliial grading of X from a possible internal grad-ing assoiated to the individual objets of C. We identify C with theategory of onstant simpliial objets in C, i.e., simpliial objets inwhih the fae and degeneray maps are identities.1.5. Simpliial disks and spheres. Our basi referene for simpliial setsand their model ategory struture is [13℄. It is onvenient to have�xed models for simpliial disks and spheres. The standard simpliialmodel for the n-sphere is Sn = �n=��n (the letter \" stands forombinatorial). It is natural to take as a model for the n-disk theombinatorial simplex �n itself, so that the sphere Sn is obtained fromthe disk by ollapsing out the boundary. This onvention is slightlyawkward, beause the boundary ��n is not ombinatorially isomorphito Sn�1 (although these two omplexes are weakly equivalent). Toavoid this awkwardness we let �0n be the ontratible subomplex of�n obtained by taking the union of all faes of the top-dimensionalsimplex exept the 0'th fae, and we take as our simpliial model forthe n-disk the quotient Dn = �n=�0n. The inlusion of the 0'th faein �n indues a map �n�1 ! Dn whih is onstant on ��n�1 andpasses to an inlusion Sn�1 ! Dn. This gives a o�bration sequeneof pointed simpliial setsSn�1 ! Dn ! Sn :



MODULI PROBLEM 72. Moduli spaesHere we de�ne moduli spaes, and reall some of the properties ofmoduli spaes whih arise from model ategories. For our purposes, amoduli spae is always the nerve [3, XI.2℄ of some ategory. The readermay be worried by the fat that the ategories we onsider in thisonnetion are usually large, in the sense that the olletion of objetsforms a proper lass instead of a set. The nerve of suh a ategory is notstritly speaking a simpliial set. There are two ways to deal with this.One is to notie that the nerves we make use of are homotopially small[5℄ and so determine well-de�ned ordinary homotopy types. Anotheris to restrit in eah ase to a small subategory of the ategory inquestion, a subategory whih is still large enough to have a nerve ofthe orret homotopy type; e.g., in the ase of a model ategory C,restrit to some small model subategory of C ontaining some desiredset of objets. The issues here are routine, and we will suppress themin order to avoid luttering the exposition.2.1. Moduli spaes for objets. A ategory with weak equivalenesis a pair (C;W) onsisting of a ategory C together with a subategoryW whih ontains all of the isomorphisms of C. The morphisms ofWare alled weak equivalenes. The basi examples are model ategories,whih ome equipped with suh subategories of weak equivalenes aspart of the model ategory struture. Two objets X and Y of Care said to be weakly equivalent if they are related by the equivalenerelation generated by the existene of a weak equivalene f : X ! Y .If X is an objet of a ategory with weak equivalenes, the modulispae M(X) is de�ned to be the nerve of the subategory of C on-sisting of all objets weakly equivalent to X together with the weakequivalenes between them. By de�nition M(X) is onneted. Themain general theorem about it is the following.2.2. Theorem. [7, 2.3℄ Suppose that C is a simpliial model ategoryand that X is an objet of C. Then there is a natural weak equivaleneM(X) � �WAuth(X).If fX�g is a set of objets in a ategory with weak equivalenes,then MfX�g denotes the nerve of the ategory onsisting of all ob-jets weakly equivalent to one of the X�'s, together with the weakequivalenes between these objets.2.3. Moduli spaes for diagrams. Suppose thatC is a ategory withweak equivalenes and that D is some small ategory. The funtorategory CD is in a natural way a ategory with weak equivalenes,where a natural transformation between funtors is a weak equivalene



8 BLANC, DWYER, AND GOERSSif for eah objet in D it gives a weak equivalene in C. For instane,if D is a ategory with two objets and one nonidentity map betweenthem, we obtain the ategory of arrows in C. Given a map f : X ! Yin C, we letM(X f�! Y ) =M(f) denote the moduli spae of f insidethe ategory of arrows. More generally,M(X  Y ) denotes the modulispae of all arrows X 0 ! Y 0, where X 0 is weakly equivalent to X andY 0 is weakly equivalent to Y . If C is a model ategory, X is o�brant,and Y is �brant, thenM(X  Y ) is `hfiM(f), where f ranges overweak equivalene lasses of maps X ! Y . The indexing set here is notquite homotopy lasses of maps (see 2.10).If C is a ategory with some spei�ed notion of homotopy groups orhomotopy objets �i, i � 0, then for onveniene we letM(X # Y )denote the moduli spae of arrows f : X 0 ! Y 0, where X 0 is weaklyequivalent to X, Y 0 is weakly equivalent to Y , and f indues isomor-phisms on �i for all i with the property that �iX and �iY are bothnontrivial. Note thatM(X # Y ) is a (possibly empty) union of om-ponents ofM(X  Y ).We use similar notation for moduli spaes of pairs of arrows. Forinstane M(X  Y " Z) denotes the moduli spae of all diagramsU ! V  W in whih U , V andW are weakly equivalent to X, Y andZ respetively, and the map W ! V has the appropriate isomorphismproperty on homotopy.2.4. Funtion spaes as moduli. We also need to express derivedfuntion omplexes as moduli spaes. If X and Y are two objets of amodel ategory C, let MHom(X; Y ) denote the nerve of the ategorywhose objets are diagrams X  U ! V  Y in whih the maps U !X and Y ! V are weak equivalenes. The morphisms are ommutativediagrams(2.5) X � ��� U ���! V � ��� Y=??y �??y ??y� ??y=X � ��� U 0 ���! V 0 � ��� Yin whih the indiated maps are identities or weak equivalenes.2.6. Theorem. [6, 4.7℄ [5, 1.1℄ Suppose that C is a simpliial modelategory and that X and Y are objets of C. ThenMHom(X; Y ) is ina natural way weakly equivalent to the simpliial set Maph(X; Y ).2.7. Remark. One an onsider a similar ategory whose objets arethe smaller diagrams X � � U ! Y ; this is the full subategory of theabove given by diagrams in whih the map Y ! V is required to be theidentity. We denote the nerve of this ategoryMfHom(X; Y ). If Y is a



MODULI PROBLEM 9�brant objet of C, then the inlusionMfHom(X; Y )!MHom(X; Y ) isa weak equivalene. This follows from the arguments of [6, 7.2℄.2.8. Relationships between moduli spaes. Suppose thatX and Yare two objets of a model ategory C. There is a mapMHom(X; Y )!M(X  Y ) given by the funtor whih sends a diagram X  U !V  Y to the diagram U ! V . The omposite of this with theobvious projetionM(X  Y )!M(X)�M(Y ) is again given by afuntor, and this is onneted to the onstant funtor with value (X; Y )by a hain of two natural transformations. This indues a map fromMHom(X; Y ) to the homotopy �bre of the projetion.2.9. Theorem. Suppose that X and Y are two objets of a model at-egory C. The sequeneMHom(X; Y )!M(X  Y ) p�!M(X)�M(Y )is a homotopy �bre sequene, in the sense that the natural map fromMHom(X; Y ) to the homotopy �bre of p is a weak equivalene.Proof. This follows from Quillen's Theorem B [18℄, given the observa-tion, immediate from 2.6, that weak equivalenes X ! X 0 and Y 0 ! Yindue a weak equivaleneMHom(X; Y )!MHom(X 0; Y 0).2.10. Remark. Theorem 2.9 indiates that in the model ategory asethe set whih indexes the omponents of M(X  Y ) is the set ofhomotopy lasses of maps from X to Y , modulo the ation on the onehand of the self homotopy equivalenes of X and on the other of theself homotopy equivalenes of Y .2.11. Remark. The proof of 2.9 gives many other similar results. Forinstane, given three objetsX, Y , Z in an appropriate model ategory,there is a natural homotopy �bre sequeneMHom(X; Y )!M(X  Y " Z)!M(X)�M(Y " Z) :3. Postnikov systems for spaesIn this setion we sketh an approah to the Postnikov theory ofpointed topologial spaes whih is based on the use of moduli spaes.Our objet is to establish some notation and provide a ontext for whatwe do later on. We assume that the spaes are pointed and usually (foronveniene) that they are onneted. The ategory of pointed topo-logial spaes has its usual model ategory struture [19, II.3℄ [12, x8℄in whih weak equivalenes are weak homotopy equivalenes, �brationsare Serre �brations, and o�brations are retrats of relative ell om-plexes.



10 BLANC, DWYER, AND GOERSSPostnikov systems. Attahing an (n + 2)-ell to a spae X by a mapf : Sn+1 ! X has no e�et on the homotopy of X in dimensions � n,and learly kills o� the lass represented by f in �n+1X. Now attahells of dimension (n + 2) and greater to X by all possible attahingmaps to obtain an inlusion X � X1, repeat the proess to obtainX1 � X2, repeat again, et., and let PnX = [kXk. There is a mapX ! PnX whih indues isomorphisms on �i for i � n, and �iPnX ' 0for i > n. The onstrution of PnX is funtorial in X and preservesweak equivalenes, and so it indues a mapM(PnX)!M(Pn�1X).3.1. Eilenberg-Ma Lane objets. If G is a group, we say that a spae Xis of type BG if �1X is isomorphi to G and the higher homotopy of Xvanishes. Suppose that M is a G-module. We say that a map X ! Yis of type BG(M;n), n � 2, if X is of type BG, �1Y ' G, �nY ' M(as a G-module), all other homotopy groups of Y vanish, and the mapX ! Y gives an isomorphism on �1. Sometimes we say for short thatthe target spae Y is of type BG(M;n).The di�erene onstrution. Suppose that f : Y ! X is a map ofspaes. Consider the pushout C of the diagram X 0  Y 0 ! (P1X)0obtained by using some funtorial onstrution to replae Y by a o�-brant spae and the two maps Y ! X and Y ! P1X by o�brations.There is a ommutative diagram(3.2) Y � ��� Y 0 ���! (P1X)0f??y ??y ??y�n(f)X � ��� X 0 ���! Pn+1CWe denote the vertial map on the right by �n(f); its soure is �sn(f)and its target is �tn(f).The following is easy to prove by alulating that, in the above situ-ation, if X ! Y is surjetive on �1 then the universal over of C is thehomotopy o�bre of the map ~X ! ~Y , where ~Y is the universal overof Y and ~X is the pullbak of the over ~Y to X.3.3. Proposition. Suppose that f : Y ! X is a map of spaes whosehomotopy �bre F is (n � 1)-onneted, n � 1. Let M = �nF and ifn = 1 assume that M is abelian. Then M is naturally a G-module forG = �1F , and �n(f) is a map of type BG(M;n + 1). If �iF vanishesexept for i = n, then the right-hand square in 3.2 is a homotopy �bresquare.Existene and uniqueness of Eilenberg-Ma Lane objets. It is easy toonstrut spaes of type BG by hand (take a wedge of irles indexedby a set of generators for G, attah a 2-ell for eah relation between



MODULI PROBLEM 11the generators, and apply the funtor P1) or by taking the geometri re-alization of �WG. A simple argument gives that these spaes are uniqueup to weak equivalene. We let BG denote a generi o�brant spae ofthis type. It follows from obstrution theory or overing spae theorythat Auth(BG) is homotopially disrete and that its group of ompo-nents is Aut(G). Another way to express this is to say that the modulispae of all spaes of type BG is weakly equivalent to �WAut(G). Thenext proposition extends this to higher Eilenberg-Ma Lane objets.If G is a group and M is a G-module, we write Aut(G;M) for thegroup of pairs (�; �), where � is an automorphism of G and � is an�-linear automorphism of M . This is the same as the group of auto-morphisms of the split short exat sequene0 �!M �! GoM  ��! G �! 0 :3.4. Proposition. Let G be a group, M a G-module, and n � 2 andinteger. Then the moduli spae of all maps of type BG(M;n) is weaklyequivalent to �WAut(G;M).3.5. Remark. In partiular the moduli spae is nonempty and on-neted, and so spaes or maps of type BG(M;n) exist and are uniqueup to weak equivalene. We denote a generi spae of this type byBG(M;n).Sketh of proof. LetMn, n � 2, denote the moduli spae of all mapsX ! Y of type BG(M;n). There is a mapMn !Mn+1 indued bythe funtor whih sends X ! Y to �n(X ! P1X). There is also a mapMn+1 !Mn indued by the funtor whih sends X ! Y to the homo-topy pullbak of X ! Y  X. Both omposite funtors are onnetedto the respetive identity funtors by hains of natural transformations,and so these maps of moduli spaes are weak equivalenes. Similaronstrutions give a weak equivalene M2 � M(B(G oM) ��!BG),where this last denotes the moduli spae of maps U ! V with a setionV ! U , suh that U and V have no higher homotopy groups, and suhthat on the level of �1 the map U ! V with its setion gives a diagramof groups isomorphi to GoM ��!G. Now ompute diretly that thislast moduli spae is weakly equivalent to �WAut(G;M). �3.6. Cohomology of spaes. Consider a spae BG(M;n), n � 2. ThenP1 BG(M;n) � BG, and so we write the map from this spae to its�rst Postnikov stage as BG(M;n)! BG. Given another spae X overBG (i.e. with a map X ! BG), we de�ne HnG(X;M) byHnG(X;M) ' [X;BG(M;n)℄BGwhere the symbol on the right denotes derived (1.4) homotopy lassesof maps from X to BG(M;n) in the model ategory of spaes over



12 BLANC, DWYER, AND GOERSSBG [12, 3.11℄. Let HnG(X;M) denote MaphBG(X;BG(M;n)), so thatHnG(X;M) is �0 of this spae. The homotopy �bre squaresBG(M;n� 1) ���! BG??y ??yBG ���! BG(M;n)give natural weak equivalenes 
HnG(X;M) � Hn�1G (X;M), so thatthere are isomorphisms�iHnG(X;M) ' (Hn�iG (X;M) 0 � i � n� 20 i > n :We use this formula to de�ne H iG(X;M) for i = 0; 1; beause we areworking with pointed maps these turn out to be what would normallybe alled redued twisted ohomology groups.Classi�ation of Postnikov stages. Suppose that X is a spae with X �Pn�1X, n � 2, and that M is a module over G = �1X. If Y is a spae,we write Y � X + (M;n) if PnY � Y , Pn�1Y � X, and �nY ' Mas a module over G, where this module isomorphism is realized withrespet to some isomorphism �1Y ' G. We writeM(X + (M;n)) forthe moduli spae of all spaes Y of this type.3.7. Proposition. Suppose that X is a spae with X � Pn�1X, n � 2and that M is a module over G = �1X. Then there is a natural weakequivalene of moduli spaesM(X + (M;n)) �M(X # BG(M;n + 1)" BG) :3.8. Remark. The arrows # on the right indiate maps whih indueisomorphisms on appropriate homotopy groups (2.3); in this ase it isjust isomorphisms on �1.Proof. There is a funtor in one diretion whih given a spae Y �X + (M;n) onstruts the diagram (Pn�1Y )0 ! �tn(f) �sn(f) from3.2, where f is the map Y ! Pn�1Y . There is a funtor in the otherdiretion whih given U ! V  W of type X # BG(M;n+1)" BGonstruts the spae Y � X + (M;n) whih is the homotopy pullbakof U ! V  W . Both omposites are onneted to the orrespondingidentity funtors by hains of natural transformations, and so theyindue weak equivalenes on the moduli spaes. �3.9. Interpretation. Let X, G and M be as above. Aording to 3.7,3.4, and 2.11, there is a �bration sequene(3.10) Maph1(X;BG(M;n+ 1))!M(X + (M;n))!M(X)� �W� :



MODULI PROBLEM 13where � = Aut(G;M) and the objet on the left is the union of theomponents of Maph(X;BG(M;n)) giving maps whih indue isomor-phisms on �1. It is easy to identify this subomplex as t�HGX(n +1;M�), where � runs through the isomorphisms �1X ! G and M�is the module over �1X determined by M and �. Eah spae Y �X + (M;n) determines an element of�0 �t�HGX(n+ 1;M�)� ' t�Hn+1G (X;M�)modulo the ation of �0Auth(X)�Aut(G;M) on this set; this is the k-invariant kn(Y ), in its genuinely invariant form. Correspondingly, eahk-invariant gives rise to a spae Y . Note that 3.7 not only lassi�esspaes of type X + (M;n), but also determines their self-equivalenes.The reader might want to ompare �bration 3.10 with the orre-sponding �brationMaph0(X;B(M;n+ 1))u !Mu(X + (M;n))!Mu(X)from [9℄. Here  = Aut(M), Maph0({; {)u denotes an appropriate set ofomponents of the spae of unpointed maps, andMu is the unpointedmoduli spae. The appearane of the extra fator in the base of the our�bration 3.10 is explained by the fat that for us the target of the k-invariant map is BG(M;n+1), G = �1X, while in [9℄ it is B(M;n+1), = Aut(M); the extra fator allows for potential automorphisms ofM whih are not indued by elements of G.4. �-algebras and their modulesHere we explore �-algebras, simpliial �-algebras, and modules overthem. This is in preparation for a disussion in x6 of their ohomology.4.1. �-algebras. Let � be the full sub-ategory of the homotopy at-egory of pointed spaes losed under isomorphism and ontaining thewedges of spheres Sn1 _ : : : _ Snkwith ni � 1. A �-algebra is a produt-preserving funtor� : �op �! S ;or equivalently a ontravariant funtor � ! S whih takes wedges toproduts. This ondition and the Hilton-Milnor Theorem imply that� is determined by the sets �n = �(Sn), n � 1 and the followingadditional data:(1) a group struture on �n whih is abelian for n > 1;(2) omposition maps �(Sn; Sk)� �k = �n(Sk)� �k ! �n;(3) Whitehead produt maps [ ; ℄ : �n � �k ! �n+k�1;



14 BLANC, DWYER, AND GOERSS(4) a �1-module struture on eah abelian group �n, n > 1.There are relations among these strutures; for example, (4) is redun-dant, sine for x 2 �1 and a 2 �n,ax = [a; x℄ + awhere + is the group operation on �n. The relations are lassial,but are ompliated to write down [4℄. We omit them, as the exatformulas are unneessary for our purposes. But reall that ompositionis not additive: if f!g is a basis for the free Lie algebra over Z on twogenerators, then for x; y 2 �k, k > 1, and � 2 �kSn, we have(4.2) (x + y) Æ � = x Æ � + y Æ � +X! !(x; y) ÆH!(�)where the sum is over elements ! of length greater than 1, we write!(x; y) for the orresponding iterated Whitehead produt, and H! isthe assoiated higher Hopf invariant [22, xXI.8.5℄. We may at timestake � to be the graded group f�ng together with this additional stru-ture; however, we will often stipulate �-algebras by displaying the fun-tor U 7! �(U)from �op to the ategory of sets. In partiular, we will often write Ufor an objet in the ategory �. �-algebras form a ategory, in whihthe morphisms are natural transformations of funtors.4.3. Example. If X is a pointed spae, there is a �-algebra ��X givenby the funtor whih sends U 2 � to the set [U;X℄ of homotopy lassesof pointed maps from U to X. Note that ��(X)n = �nX, and that thisfuntor does not inlude �0X. The �-algebra ��X aptures the homo-topy groups of X and all of the primary operations tying these groupstogether. The onstrution ��({) gives a funtor from the homotopyategory of pointed spaes to the ategory of �-algebras.The ategory of �-algebras is a ategory of universal algebras andhas all limits and olimits. We write 0 for the trivial objet, whihan be desribed as ��X for X a one-point spae. This objet is bothinitial and terminal, and the ategory of �-algebras is pointed in thesense that the unique map from the initial objet to the terminal objetis an isomorphism.4.4. Simpliial �-algebras. As usual, a simpliial �-algebra A is asimpliial objet (1.4) in the ategory of �-algebras. The �-algebraA[n℄ is the portion of A in simpliial degree n, and A[n℄i is the group(abelian if i > 1) whih is the i'th onstituent of the �-algebra A[n℄.We write Ai for the assoiated simpliial group whih in simpliialdimension n ontains the group A[n℄i. Eah simpliial group Ai has



MODULI PROBLEM 15homotopy groups ��Ai, whih an be omputed from the assoiatednormalized (Moore) omplex N(Ai) [17, 17.3, 22.1℄. We let ��A denotethe olletion of all of these homotopy groups.4.5. Model ategory struture. By Quillen [19, xII.4℄, there is a standardsimpliial model ategory struture on the ategory of simpliial �-algebras. In this struture, a map f : A ! B is a weak equivalene ifand only if it is a weak equivalene of graded simpliial groups, i.e., ifand only if ��A! ��B is an isomorphism. Every objet is �brant, anda map A ! B is a �bration if for eah i the indued map N(Ai) !N(Bi) is surjetive in degrees 1 and above. A map is a o�bration ifand only if it is a retrat of a map whih is \free" in the sense of [19,xII.4℄. To de�ne these free maps, note that the forgetful funtor from�-algebras to graded sets has a left adjoint F withF (V�) �= ��(_n _x2Vn Sn) ' �n �x2Vn ��Sn:Then a morphism A ! B of simpliial �-algebras is free if for eahn � 0 there is a graded set Vn � B[n℄, losed under the degeneraymaps in B, suh that B[n℄ �= A[n℄ � F (Vn):Suppose that A is a simpliial �-algebra and K is a simpliial set. Thesimpliial struture on the ategory of simpliial �-algebras is given byletting K 
 A be the simpliial objet with (K 
 A)[n℄ = �s2K[n℄A[n℄.4.6. Cells. Suppose in the above situation that K is a pointed sim-pliial set. In this ase we write K �
A = (K �
A)=(��
A), where thequotient is taken in the ategory of simpliial �-algebras. The pairs(Di+1 �
��Sj; Si �
��Sj), i � 0, j � 1, are alled ells, and a simpliial�-algebra is ellular if it an be onstruted from a trivial simpliial�-algebra by attahing ells, perhaps trans�nitely often. Any ellularsimpliial �-algebra is o�brant, any simpliial �-algebra has a fun-torial ellular approximation, and any o�brant simpliial �-algebra isa retrat of a ellular one.Cells are attahed to A by elements in ��A, in that [Sn �
��Sj; A℄is isomorphi to �nAj. Note that in fat for eah n � 0, �nA is a�-algebra, given as a funtor (4.1) by the formula(4.7) (�nA)(U) = [Sn �
��U;A℄; U 2 �:4.8. Abelian �-algebras; modules. A �-algebra M is abelian if themap M �M ! M given in eah gradation by group multipliationis a map of �-algebras. This is equivalent to saying that M admitsthe struture of an abelian group objet in the ategory of �-algebras,or more onretely to saying that all of the Whitehead produts in



16 BLANC, DWYER, AND GOERSSM vanish [1℄. The full-subategory of �-algebras onsisting of abelian�-algebras is an abelian ategory.As in any ategory of universal algebras, the notion of module is arelativization of this onept.4.9. De�nition. Given a �-algebra �, a �-module is an abelian groupobjet in the ategory of �-algebras over �.More expliitly, a �-module amounts to a split short exat sequeneof �-algebras(4.10) 0 �!M �! EM  ��! � �! 0in whihM is an abelian �-algebra. A morphism of �-modules is a mapof split sequenes whih is the identity on �. We will sometimes identifya �-module with M and leave the short exat sequene understood; inpartiular, we usually write M ! N for a morphism of �-modules.Sine the graded onstituents of a �-algebra are already groups, it iseasy to see that an abelian group objet in the ategory of �-algebrasover � is the same as a group objet in this ategory.Modules via ations. A �-moduleM gives rise to a type of ation of �on M . To see this, observe that the splitting of EM ! � determines,for eah U 2 �, an isomorphism of setsEM(U) �= �(U)�M(U):This means that for eah map f : V ! U in �, the morphism EM(f) :EM(U)! EM (V ) is determined by an ation map(4.11) �f : �(U)�M(U)!M(V )subjet to the onditions(1) �f(0; x) =M(f)(x), and(2) �gÆf (a; x) = �g(�(f)a; �f(a; x)).It is even possible to go in the other diretion. Given maps 4.11 subjetto the indiated onditions, we an form a �-algebra �oM whih liesin a split sequene0 �!M �! �oM  ��! � �! 0and so de�ne a �-module struture on M . If M began life as a �-module, there is an isomorphism of �-algebras EM �= �oM , makingthe evident diagram of split sequenes ommute.4.12. Modules via split o�bration sequenes. A split o�bration se-quene in a pointed model ategory C is a diagramA  ��! B �! C



MODULI PROBLEM 17in C suh that the objets involved are o�brant, A ! B ! C is ao�bration sequene, and the left-hand maps exhibit A as a retratof B. Suppose that there are funtors �;  : � ! C whih take ono�brant values and preserve oproduts up to weak equivalene. Thenthere are �-algebras MX and �X assoiated to any objet X of C andgiven by the formulas�X(U) = [�U;X℄ MX(U) = [ U;X℄ :In order to show that MX is in a natural way a module over �X itis enough to prove that MX is abelian for eah X, and to onstrutobjets  +U whih �t into split o�bration sequenes�U  ��!  +U �!  Uwhih are natural in U . For the split sequenes enoding the modulestruture (4.10) an be onstruted by mapping this split o�brationsequene into objets X of C. Note that in order to show that MX isan abelian �-algebra for eah X, it is enough by Yoneda's lemma toshow that  U is a ogroup objet in the homotopy ategory of C in away whih is natural in U .4.13. Examples. A �-algebra � is not a module over itself, unless � isabelian. However, we may de�ne new �-algebras 
n� by the funtoron �op U 7! �(Sn ^ U):This mimis topology: 
n��X �= ��
nX. For n � 1, 
n� is a �-module. To see this, de�ne a �-algebra 
n+� byU 7! �(Sn+ ^ U)where the ({)+ denotes adding a disjoint basepoint. Then there is asplit sequene 0 �! 
n� �! 
n+�  ��! � �! 0whih gives a anonial �-module struture on 
n�. These modulestrutures are entral to what follows in this paper; they arise from thefat that in the homotopy ategory of pointed spaes, Sn+ for n � 1 is aogroup objet in the ategory of spaes under S0. Note that if X is aspae then 
n+��X is naturally isomorphi to the homotopy �-algebraof the spae of all (not neessarily pointed) maps Sn ! X.If we have a morphism M ! N of �-modules, the ordinary kernelK is a �-module; the neessary total spae EK for the split sequeneis the pull-bak of EM ! EN s � �. If M is a �-module, so is 
+M ;



18 BLANC, DWYER, AND GOERSSthe total spae of the split sequene is de�ned by the pull-bak squareE
+M ���! 
+EM??y ??y� s���! 
+� :Consequently, if M is a �-module, 
M is a � module: it is the kernelof 
n+M !M . It is easy to hek that the �-module struture on 
n�desribed above is the same as that obtained indutively by startingwith the given �-module struture on 
� and making the identi�ation
n� ' 
(
n�1�).4.14. Homotopy group modules. For n � 1, Sn is a ogroup objet inthe homotopy ategory of pointed simpliial sets, and there is a splito�bration sequene(4.15) S0  ��! Sn+ �! Snof pointed simpliial sets, where (�)+ denotes adding a disjoint base-point. Tensoring this with ��U for U 2 � (4.7) gives the strutureneessary (4.12) to show that for any simpliial �-algebra A, �nA isabelian for n � 1 and is naturally a module over �0A.5. Relative onnetivity of pushoutsIn this setion we give a partial alulation of the homotopy typeof the homotopy pushout of a diagram of simpliial �-algebras (5.1).This is along the lines of [21, 1.10, 3.6℄, but we work in more generalityand remove some simple onnetivity hypotheses.To express the result we will introdue a slightly unorthodox notionof onnetivity. If f : A ! B is a map of simpliial sets, the ellu-lar onnetivity of f , denoted �(f) (or �(B;A) if f is understood), isthe greatest integer n suh that f an be obtained up to weak equiv-alene by taking A (or a �brant representative) and attahing ells ofdimension n and above. If f is a weak equivalene, then �(f) = 1.More preisely, �(f) = n if and only if all of the homotopy �bres of fare (n � 2)-onneted, and at least one of the homotopy �bres is not(n � 1)-onneted. The numbers here are potentially onfusing. Onerough way to remember them is to keep in mind that if A and B are1-onneted and A is a subomplex of B, then �(B;A) is the lowestdimension in whih B=A has nontrivial homology (or homotopy).If f : A ! B is a map of simpliial �-algebras or of graded sim-pliial sets, we let �(B;A) denote the minimum value of the numbers�(Bn; An), n � 1. In the statement of the following proposition the



MODULI PROBLEM 19symbol [h denotes homotopy pushout in the ategory of graded sim-pliial sets, while �h is homotopy pushout in the ategory of simpliial�-algebras.5.1. Proposition. Suppose that B  A ! C is a two-soure of sim-pliial �-algebras. Then�(B �hA C;B [hA C) � �(B;A) + �(C;A) :We will dedue 5.1 from some very general observations. A �nitegraded set is a graded set whih is �nite in every gradation and emptyin all but a �nite number of gradations. Consider a funtor F from theategory of �nite graded sets to the ategory of graded simpliial sets.There is a standard way to prolong F to a funtor on the ategory ofall graded sets by setting(5.2) F (T ) = olimS�T F (S) ;where the olimit is taken over the ategory of �nite graded subsets ofT . The funtor F an be further prolonged to a funtor on the ategoryof graded simpliial sets by setting(5.3) F (X) = diag(n 7! F (X[n℄) :Here diag is the diagonal or realization funtor from the ategory ofbisimpliial sets to the ategory of simpliial sets [13, IV.1℄. The argu-ment of diag in the above formula is a graded bisimpliial set, but thediagonal is to be taken gradation by gradation. In eah of the followingstatements the funtor F involved is prolonged like this to a funtoron the ategory of graded simpliial sets.5.4. Proposition. Any funtor F from �nite graded sets to gradedsimpliial sets respets ellular onnetivity, in the sense that for anymap X ! Y of graded simpliial sets there is an inequality�(F (Y ); F (X)) � �(Y;X) :5.5. Proposition. Any funtor F from �nite graded sets to gradedsimpliial sets preserves homotopy pushouts in the stable range, in thesense that for any two-soure Y  X ! Z of graded simpliial setsthere is an inequality� �F (Y [hX Z); F (Y ) [hF (X) F (Z)� � �(Y;X) + �(Z;X) :We also need the following lemma, whih an be proved by the samesort of gluing argument used in the proof of [13, IV.1.7℄.5.6. Lemma. Suppose that X ! Y is a map of bisimpliial sets, andthat n is an integer suh that �(Y [i℄; X[i℄) � n for all i � 0. Then�(diag(Y ); diag(X)) � n.



20 BLANC, DWYER, AND GOERSSProof of 5.1. This is similar to the seond part of the proof of [21, 3.6℄.First, some bakground. Let F denote the free funtor from gradedsets to �-algebras, prolonged degreewise to be a funtor from gradedsimpliial sets to simpliial �-algebras. For any simpliial �-algebraD there is a bar resolution B(D) [21, 3.2℄; this is a bisimpliial �-algebra, i.e. a simpliial objet in the ategory simpliial �-algebras,with B(D)[n℄ = F n+1(D). Let �D = diag(B(D)). By [21, 3.2℄, �Dis a o�brant simpliial �-algebra; more generally, if D ! D0 is amap of simpliial �-algebras whih is an injetion of underlying gradedsimpliial sets, then the maps B(D)[n℄ ! B(D0)[n℄ and the diagonalmap �D! �D0 are both o�brations. There is a natural weak equivalene�D! D.Now for the proof. By adjusting the objets up to weak equivalene,we an assume that the maps A ! B and A ! C are o�brations ofsimpliial �-algebras and hene injetions on underlying graded simpli-ial sets. The simpliial �-algebra �A is o�brant and the indued maps�A! �B and �A! �C are o�brations; hene there are weak equivalenes(5.7) B �hA C � �B � �A �C = diag �B(B) �B(A) B(C)�B [hA C � �B [h�A �C = diag �B(B) [B(A) B(C)� :Let U = B(A), V = B(B), W = B(C). By 5.4 and indution on n,there are inequalities�(V [n℄; U [n℄) = �(F n+1(B); F n+1(A)) � �(B;A)�(W [n℄; U [n℄) = �(F n+1(C); F n+1(A)) � �(C;A)and hene by 5.5 inequalities� ((V �U W )[n℄; (V [U W )[n℄) � �(B;A) + �(C;A) :Note in this onnetion that beause of the fat that F (as a left ad-joint) preserves olimits, there is a natural isomorphism (V �UW )[n℄ 'F ((V [U W )[n� 1℄). The result follows from 5.6 and 5.7. �For the sake of larity we will prove 5.5 and 5.4 in the ungradedase (i.e. with the word \graded" deleted from the statements); themodi�ations neessary to pass to the graded ase are notational.Suppose that D be a small ategory and that F and G are respe-tively ovariant and ontravariant funtors from D to simpliial sets.We denote the oend [16, IX.6℄ of the bifuntor G�F by G�DF . Thisis the oequalizer of a more or less evident pair of mapsad!d0G(d0)� F (d)�ad G(d)� F (d)



MODULI PROBLEM 21where the oprodut in the range is indexed by the objets in D andthe oprodut in the domain by the arrows. This oequalizer diagramis the low degree part of the bisimpliial set B(F;D; G) (f. [14, x3℄)with(5.8) B(F;D; G)[k℄ = ad0!���!dkG(dk)� F (d0) ;where the oprodut is indexed by the k-simplies of the nerve of D.We will denote the diagonal of this bisimpliial set by G�hD F and allit the homotopy oend of the bifuntor G � F . There is an obviousmap(5.9) G�hD F ! G�D F:Let F be the ategory of �nite sets. Suppose that F is a funtor from�nite sets to simpliial sets, prolonged as in 5.2 and 5.3 to a funtor ofsimpliial sets. As remarked in [21, 1.1℄, this prolonged funtor an beexpressed by the formula F (X) = X� �F Fwhere X is a simpliial set and X� is the ontravariant funtor on Fwhih sends S to XS. The observation we begin with is that this oendis atually equivalent to the orresponding homotopy oend.5.10. Proposition. Suppose that F is a funtor from �nite sets tosimpliial sets. Then for any simpliial set X the natural mapX� �hF F ! X� �F F = F (X)is a weak equivalene.Proof. We onsider the map 5.9 for an arbitrary ontravariant funtorG from F to sets or simpliial sets. It is easy to see that the mapis a weak equivalene if G is representable, that is, if G has the formHom({; T ) for some objet T of F ; in this ase both domain and rangeare equivalent to F (T ) [14, 3.1(5)℄. Sine �ltered olimits preserveweak equivalenes [3, XII.3.6℄ and all of the onstrutions in questionommute with �ltered olimits, the map 5.9 is learly an equivalene ifG is a �ltered olimit of representable funtors. It now follows from adiagonal argument that 5.9 is a weak equivalene if eah of the funtorsG({)[n℄ is a �ltered olimit of representable funtor; to obtain this use[13, IV.1.7℄ and the fat that 5.9 is the diagonal of a map of bisimpliialsets whih in degree n ontains the map G({)[n℄�hF F ! G({)[n℄�F F .But observe that any set is the �ltered olimit of its �nite subsets, sothat the funtor on F sending S to X[n℄S = HomS(S;X[n℄) is indeeda �ltered olimit of representable funtors. �



22 BLANC, DWYER, AND GOERSSThe following is an exerise in elementary homotopy theory.5.11. Lemma. Suppose that Y  X ! Z is a two-soure of simpli-ial sets in whih the maps are injetive (so that the homotopy pushoutagrees with the ordinary pushout). Then for any n � 0 there are in-equalities �(Y n; Xn) � �(Y;X)�((Y [X Z)n; Y n [Xn Zn) � �(Y;X) + �(Z;X)Proof of 5.4 (ungraded ase). By 5.10, �(F (Y ); F (X)) is the same asthe ellular onnetivity of the map X� �hF F ! Y � �hF F . This mapan be realized as the diagonal of a map of bisimpliial sets (5.8) whihin degree k is onstruted as a disjoint union of maps of the formXS � F (T ) ! Y S � F (T ). It follows from the �rst inequality of 5.11that �(Y S�F (T ); XS�F (T )) � �(Y;X). Sine taking disjoint unionsdoes not lower ellular onnetivity, the desired result follows from5.6. �Proof of 5.5 (ungraded ase). We an assume that X ! Y and X ! Zare injetions, so that the pushout of the two-soure is the same as thehomotopy pushout. By 5.10, ��F (Y [hX Z); F (Y ) [hF (X) F (Z)� is thesame as the ellular onnetivity of the map(Y � �hF F ) [X��hFF (Z� �hF F )! (Y [X Z)� �hF F :By de�nition (5.8) and inspetion, this map is realized as the diagonalof a map of bisimpliial sets whih in degree k is onstruted as adisjoint union of maps of the form(Y S [XS ZS)� F (T )! (Y [X Z)S � F (T ) :It follows from the seond inequality of 5.11 that the ellular onne-tivity of this last map is at least �(Y;X)+�(Z;X), and as in the proofabove the desired result is now a onsequene of 5.6. �6. Postnikov systems for simpliial �-algebrasIn this setion we study Postnikov systems for simpliial �-algebrasin a way whih is largely parallel to the study of Postnikov systemsfor topologial spaes in x3. In the ourse of this we develop a notionof ohomology for simpliial �-algebras. This di�ers from the notionof ohomology for �-algebras onsidered by the seond author andKan in [8℄ in that more general oeÆients are allowed. In [8℄ theoeÆients are \strongly abelian" �-algebras in whih both Whiteheadproduts and ompositions are trivial; here we aept arbitrary abelian



MODULI PROBLEM 23�-algebras, in whih the Whitehead produts vanish but ompositionsmay be nontrivial.Postnikov systems. Suppose that X is a simpliial �-algebra. Attah-ing an (n+ 2)-ell Dn+2 �
��Sk to X via a map f : Sn+1 �
��Sk ! Xhas no e�et on �iX for i � n, and learly kills of the lass repre-sented by f (4.7) in (�n+1X)k. Now attah ells of dimension (n + 2)and greater to X by all possible attahing maps to obtain an inlusionX � X1, repeat the proess to obtain X1 � X2, repeat again, et., andlet PnX = [jXj. There is a map X ! PnX whih indues isomor-phisms on �i for i � n, and �iPnX ' 0 for i > n. The onstrutionof PnX is funtorial in X, and there is a natural map PnX ! Pn�1Xwhih respets the inlusions of X in these two simpliial �-algebras.6.1. Eilenberg-Ma Lane objets. If � is a �-algebra, we say that a sim-pliial �-algebra X is of type K� if �0X ' � and the higher homotopyof X is trivial. Suppose that M is a �-module. We say that a mapX ! Y is of type B�(M;n) n � 1, if X is of type K�, �0Y ' �,�nY 'M (as a �-module), all other homotopy of Y is trivial, and themap X ! Y gives an isomorphism on �0. Sometimes we will say forshort that the target Y is of type K�(M;n).The di�erene onstrution. Suppose that f : Y ! X is a map ofsimpliial �-algebras. Consider the pushout C of the diagram X 0  Y 0 ! (P0X)0 obtained by using some funtorial onstrution to replaeY by a o�brant objet and the two maps Y ! X and Y ! P0X byo�brations. There is a ommutative diagram(6.2) Y � ��� Y 0 ���! (P0X)0f??y ??y ??y�n(f)X � ��� X 0 ���! Pn+1Cin whih the vertial map on the right is �n(f). The soure (P0X)0 of�n(f) is �sn(f), and the target Pn+1C is �tn(f).6.3. Proposition. Suppose that f : Y ! X is a map of simpliial�-algebras whih is an isomorphism on �0 and whose homotopy �breF is (n � 1)-onneted, n � 1. Let M = �nF . Then M is naturally a�-module for � = �0X and �n(f) is a map of type K�(M;n + 1). If�iF vanishes exept for i = n, then the right-hand square in 6.2 is ahomotopy �bre square.We need a modi�ed form of 3.3. A map f : A ! B of onnetedsimpliial sets is simple if its homotopy �bre is onneted and �1A atstrivially on the homotopy groups of the homotopy �bre.



24 BLANC, DWYER, AND GOERSS6.4. Proposition. Let f : A! B be a simple map of onneted simpli-ial sets with homotopy �bre F . Assume that �iF is trivial for i < n,n � 1, and let M = �nF . Let � be the mapping one of f , and Pn+1�its (n + 1)'st Postnikov stage in the ategory of simpliial sets. ThenPn+1� is a simpliial set of type K(M;n + 1). If the homotopy of Fvanishes exept in dimension n, then the sequene A! B ! Pn+1� isa homotopy �bre sequene.Proof of 6.3. This follows from 5.1 and 6.4. Clearly �((P0X)0; Y 0) � 2and �(X 0; Y 0) � 2. Let � = (P0X)0 [Y 0X 0; this is a homotopy pushoutin the ategory of graded simpliial sets. By 5.1, �(C;�) � 2 (here Cis from 6.2). It is easy to see that up to weak equivalene applyingPn+1 to a simpliial �-algebra ommutes with taking the underlyinggraded simpliial set. But �0� ' �0C ' �, and it follows from 6.4 that�iPn+1C vanishes exept for the fat that it is isomorphi to � if i = 0and to M if i = n + 1. Thus M is naturally a �-module (4.14) andPn+1C is of type K�(M;n+1). (This last dedution involves applying6.4 omponentwise to a map Y 0 ! X 0 of graded disonneted simpliialsets whih is an isomorphism on �0; note that P0X is homotopiallydisrete, so that � is essentially obtained by taking omponentwisemapping ones of Y 0 ! X 0. The map Y 0 ! X 0 is omponentwisesimple beause Y 0 and X 0, as simpliial �-algebras, are atually gradedsimpliial groups.) The �nal statement again follows from 6.4, sinetaking the homotopy pullbak of a two-sink of simpliial �-algebrasommutes up to weak equivalene with passing to underlying gradedsimpliial sets. �Existene and uniqueness of Eilenberg-Ma Lane objets. The �-algebra�, onsidered as a onstant simpliial objet, is of type K�. Moreover,if X is any simpliial �-algebra of type K� then the natural map fromX to its �-algebra of omponents gives a weak equivalene X � �. Itis easy to dedue from this that the moduli spae of all simpliial �-algebra's of type K� is onneted and weakly equivalent to �WAut(�).We will denote a generi simpliial �-algebra of this type by K�.6.5. Proposition. Let � be a �-algebra and M a �-module. Then foreah n � 1 the moduli spae of all maps of type K�(M;n) is weaklyequivalent to �WAut(�;M).6.6. Remark. In partiular, the moduli spae is nonempty and on-neted, so objets or maps of type K�(M;n) are unique up to weakequivalene. We will denote a generi simpliial �-algebra of this typeby K�(M;n).Proof. LetMn be the moduli spae of maps of type K�(M;n). As inthe proof of 3.4, the di�erene onstrution 6.3 gives weak equivalenes



MODULI PROBLEM 25Mn !Mn+1, n � 1. LetM0 be the moduli spaeM(K�oM ��!K�),i.e, the moduli spae of maps U ! V of simpliial �-algebras with asetion V ! U suh that U and V have trivial higher homotopy and on�0 the map with its setion gives a diagram of �-algebras isomorphito � o M ��!�. It is easy to see that M0 is weakly equivalent to�WAut(�;M). The funtor whih assigns to a map U ! V of typeK�(M;n) the homotopy pullbak of U ! V  U gives a mapM1 !M0, but in ontrast to the situation in the proof of 3.4, the di�ereneonstrution does not give an inverse. Instead we proeed as follows.Given U ��!V of type K�oM ��!K�, write �0 = �0V , �0 oM 0 = �0Uand form the map �0 ! �0o �WM 0 of type K�(M; 1). This onstrutionis funtorial and gives a map M0 ! M1. The omposite M0 !M1 ! M0 is learly an equivalene beause the underlying funtoris onneted to the identity by natural transformations. The same istrue of the other omposite; the key observation is this. Suppose thatU ! V is a map of type K�(M; 1), whih we an assume to be a�bration, and let U�V be the simpliial objet whih in simpliial degreen ontains the n-fold �bre power of U over V . The diagonal of thisbisimpliial �-algebra maps to V by a weak equivalene, but it alsomaps to the simpliial �-algebra obtained by applying �0 degreewise;this simpliial �-algebra is exatly �0V o �W�1V . �6.7. Cohomology of �-algebras. We follow 3.6. Consider an Eilenberg-Ma Lane objet K�(M;n), n � 1. Then P0K�(M;n) � K�, andso we write the map from this objet to its zeroth Postnikov stage asK�(M;n) ! K�. Given another simpliial �-algebra X over K�, wede�ne Hn�(X;M) byHn�(X;M) = [X;K�(M;n)℄K�where the symbol on the right denotes derived homotopy lasses ofmaps in the ategory of simpliial �-algebras over K�. Let Hn�(X;M)denote MaphK�(X;K�(M;n)), so that the set of omponents of thisspae is Hn�(X;M). As in 3.6, there are isomorphisms�iHn�(X;M) ' (Hn�i� (X;M) 0 � i � n� 10 i > n :We use this formula to de�ne H0�(X;M).Classi�ation of Postnikov stages. Suppose that X is a simpliial �-algebra with X � Pn�1X, n � 1 and that M is a module over �0X.If Y is a simpliial �-algebra, we write Y � X + (M;n) if PnY � Y ,Pn�1Y � X, and �nY is isomorphi toM as a module over �0Y , wherethe isomorphism is realized by some isomorphism �0X ! �0Y . We



26 BLANC, DWYER, AND GOERSSwriteM(X + (M;n)) for the moduli spae of all simpliial �-algebrasof type X + (M;n).The following result is proved in the same way as 3.7, with 6.3 re-plaing 3.2 in the argument.6.8. Theorem. Suppose that X is a simpliial �-algebra with X �Pn�1X, n � 1. Let � = �0X, and let M be a module over �. Thenthere is an natural weak equivaleneM(X + (M;n)) �M(X # K�(M;n + 1)" K�) :6.9. Remark. The arrows # on the right indiate maps whih indueisomorphisms on appropriate homotopy groups (2.3); in this ase it isjust isomorphisms on �0. The remarks at the beginning of 3.9 an berepeated almost verbatim here.7. Simpliial spaes and the spiral exat sequeneIn [10℄ and [11℄, Kan and Stover and the seond author of this pa-per developed a model ategory struture on the ategory of simpliialpointed topologial spaes whih is adapted to making spherial res-olutions of ordinary spaes that mirror resolutions of their homotopy�-algebras. In this setion we spell out what we need from these pa-pers and extend the theory in some ways (7.13). All of our topologialspaes have basepoints; we sometimes take this for granted and referto \spaes" instead of to \pointed spaes".7.1. The Reedy model struture. To begin with, the ategory ofsimpliial spaes aquires a Reedy model ategory struture [20℄ [10,2.4℄ [15, 5.2.5℄ from the usual model ategory struture (x3) on theategory of pointed spaes. A map X ! Y of simpliial spaes is aReedy weak equivalene if X[n℄ ! Y [n℄ is a weak equivalene for alln � 0, a Reedy �bration if X[0℄! Y [0℄ is a �bration and, for all n � 1,the map X[n℄! Y [n℄�MnY MnXis a �bration. Here MnX is the nth mathing spae:MnX = lim�:[m℄![n℄X[m℄where � runs over injetions in the ordinal number ategory withm < n. Co�brations are de�ned symmetrially: X ! Y is a Reedyo�bration if X[0℄! Y [0℄ is a o�bration and for n � 1,X[n℄ _LnX LnY ! Y [n℄



MODULI PROBLEM 27is a o�bration. Here LnX is the lathing spaeLnX = olim :[n℄![m℄X[m℄where  runs over the surjetions in the ordinal number ategory withm < n. This Reedy model struture has the desirable property thatthe geometri realization funtor X 7! jXj preserves weak equivalenesbetween o�brant objets [11, x4℄.7.2. The E2 model struture. The E2 model ategory struture isbuilt from the Reedy model ategory struture. If X is a simpliialpointed spae, we let ��X denote the simpliial �-algebra obtained byapplying the funtor �� degreewise to X.7.3. De�nition. De�ne a morphism f : X ! Y of simpliial pointedspaes to be(1) an E2-equivalene if ��(f) is a weak equivalene of simpliial�-algebras (4.4);(2) an E2-�bration, if f is a Reedy �bration and ��(f) is a �brationof simpliial �-algebras (4.4); and(3) an E2-o�bration if f is a retrat of an S1-free map; here fis S1-free if there is a CW omplex Zn � Y [n℄ whih has thehomotopy type of a wedge of spheres Sk, k � 1, and(X[n℄ _LnX LnY ) _ Zn ! Y [n℄is an ayli o�bration.The ategory of simpliial spaes has a standard simpliial struturein the sense of Quillen [19, xII.2℄; if K is a simpliial set and X issimpliial spae, then K 
X is the simpliial spae with(K 
X)[n℄ = _x2K[n℄X[n℄ :The Reedy model ategory struture on simpliial spaes does not ex-tend to a simpliial model ategory struture with respet to this sim-pliial struture: if X ! Y is a Reedy o�bration and K ! L is ao�bration of simpliial sets, thenX 
 L _X
K Y 
K ! Y 
 Lis a Reedy o�bration whih is Reedy ayli ifX ! Y is a Reedy weakequivalene, but pretty evidently need not be a Reedy weak equivaleneif K ! L is a weak equivalene of simpliial sets. The main result of[10℄ is:7.4. Proposition. With notions of E2-equivalene, E2-�bration, andE2-o�bration just given, and with the simpliial struture desribed



28 BLANC, DWYER, AND GOERSSabove, the ategory of simpliial spaes beomes a o�brantly generatedsimpliial model ategory.From now on, when we refer to o�brations, �brations, and weakequivalenes between simpliial spaes, we will unless otherwise spei-�ed be referring to the E2-model struture.7.5. Remark. Note that an objet is E2-�brant if and only if it is Reedy�brant. If X is E2-o�brant, it is also Reedy o�brant, although notvie versa (f 7.8).7.6. The funtor �� preserves homotopy pushouts. If f : X ! Y isan E2-o�bration, then ��(f) is a o�bration of simpliial �-algebras.Suppose that X  Y ! Z is a two-soure of simpliial pointed spaesin whih the objets are E2-o�brant and the maps are E2-o�brations,and let C be the pushout of the square. Then ��C is the pushout of��X  ��Y ! ��Z (in eah simpliial degree, the pushout proessjust involves wedging on spheres). It follows that the funtor �� fromsimpliial spaes to simpliial �-algebras preserves homotopy pushouts.7.7. The funtor �� often preserves homotopy �bres. Let f : X ! Ybe an E2-�bration with �bre F . If ��(f) is surjetive, then learly the�bre of ��(f) is exatly ��F . By 4.4 and the de�nition of E2-�bration,��(f) is surjetive if and only if the map �0��X ! �0��Y is surjetive.It follows that for suh maps f , the funtor �� preserves (homotopy)�bres.7.8. Cells. If X is a simpliial spae and K is a simpliial set withbasepoint �, we de�ne K �
X to be the quotient (K 
 X)=(� 
 X).The bigraded spheres Si;j are de�ned by Si;j = Si �
Sj, and the orre-sponding disks by Di;j = Di �
Sj. Say that a simpliial spae is ellularif it is onstruted from the trivial simpliial spae by attahing ells(Di+1;j; Si;j), i � 0, j � 1. Then any ellular simpliial spae is E2-o�brant, any simpliial spae has a funtorial ellular approximation,and any o�brant simpliial spae is a retrat of a ellular one.7.9. Homotopy groups and the spiral exat sequene. If X is aReedy o�brant simpliial spae, there is a �rst quadrant (homology)spetral sequene onverging to ��jXj with E2i;j = �i�jX [2℄ [11, 8.3℄.This explains the term \E2 model ategory struture": a map X ! Yof simpliial spaes is an E2 weak equivalene if and only if it induesan isomorphism on these E2-pages. We will write �̂iX = �i��X forthe i'th olumn of this E2-term. By 4.5 and 4.14, �̂iX is a �-algebrawhih for i � 1 is naturally a module over �̂0X. By de�nition, a mapX ! Y is an E2 weak equivalene if and only if it indues isomorphisms�̂�X ' �̂�Y .



MODULI PROBLEM 29The notion of ellular simpliial spae (7.8) suggests another notionof homotopy; if X is a simpliial spae we de�ne �i;jX, i � 0, j � 1 by�i;jX = �iMaph(Sj; X) ' [Si;j; X℄where the symbol on the right denotes derived homotopy lasses ofmaps in the E2 model ategory. These are the bigraded homotopygroups of X. Let �̂iX = �i;�X. The objets �̂iX (i � 0) have formalproperties very similar to those of �̂iX.7.10. Proposition. Suppose that X is a simpliial spae. Then �̂iXis a �-algebra, whih for i � 1 is a module over �̂0X. A map X !Y of simpliial spaes is a weak equivalene if and only if it induesisomorphisms �̂iX ! �̂iY , i � 0.Proof. It is easy to see that �̂iX is exhibited as a �-algebra by thefuntor whih sends U 2 � to �iMaph(U;X) = [Si �
U;X℄. Themodule struture arises (4.12) from the fat that for i � 1, Si+ is aogroup objet in the homotopy ategory of simpliial sets under S0with Si+= S0 ' Si. The last statement is from [11, 5.3℄. �The objets �̂iX and �̂iX are related by a long exat sequene, alledthe spiral exat sequene.7.11. Proposition. [11, 7.2, 8.1℄ Suppose that X is a simpliial spae.Then there is a natural isomorphism �̂0X ' �̂0X of �-algebras, as wellas a long exat sequene of �-algebras� � � ! �̂n+1X ! 
�̂n�1X ! �̂nX ! �̂nX ! � � � ! �̂1X ! �̂1X ! 0 :7.12. Struture of the spiral exat sequene. All of the on-stituents of the spiral exat sequene are naturally modules over �̂0X:�̂nX by 7.10, 
�̂n�1X by 7.10 and 4.13, and �̂nX by 4.14 and the iso-morphism �̂0X ' �̂0X given by 7.11. In the rest of this setion we willprove the following proposition.7.13. Proposition. With respet to the module strutures desribedabove, the spiral exat sequene 7.11 is an exat sequene of �̂0X-modules.This will be proved in stages.7.14. Proposition. The homomorphisms �̂iX ! �̂iX from 7.11 aremaps of modules over �̂0X.Proof. By de�nition [11℄ these homomorphisms are obtained from theisomorphisms ��(Si �
U) ' Si �
��U , U 2 �; these give maps(�̂iX)(U) = [Si �
U;X℄! [Si �
��U; ��X℄ = (�̂iX)(U) :For i = 0 we obtain the isomorphism �̂0X ' �̂0X. Let Q be thesplit o�bration sequene from 4.15. Then the orresponding maps



30 BLANC, DWYER, AND GOERSS[Q�
U;X℄! [Q�
��U; ��X℄ provide morphisms of split sequenes (4.10)whih show that �̂iX ! �̂iX is a map of �̂0X-modules.To go any further, we need more information about how to repre-sent the onstituents of the spiral exat sequene in the E2 homotopyategory. This information is in [11, 7.4℄, but we have to examine it insome detail beause we need a relative version.IfX is a spae, the pointed ylinder IX is the pushout of the diagram�  ��I ! X�I, where I = [0; 1℄; the one CX is then (IX)=(X�1).There is a natural inlusion X ! CX given by x 7! (x; 0), and thequotient CX=X is the suspension �X.If X is a simpliial spae, we write D̂nX = Dn �
X and �̂nX =Sn �
X. It is easy to see [10, 4.1℄ that D̂nX is always E2-ontratible,in the sense that it is E2 weakly equivalent to a trivial simpliial spaewith one point in eah simpliial degree.The representing objets. Suppose that U 2 �, and that n � 2 is aninteger. We wish to onstrut a simpliial spae ~�n�2�U by onsideringthe following diagram�̂n�2U ���! �̂n�2CU ���! �̂n�2�U=??y �??y �??y�̂n�2U ���! D̂n�1CU ���! ~�n�2�U :The top row is a sequene of simpliial spaes whih in eah simpliialdegree gives a o�bration sequene of spaes, and ~�n�2�U is de�ned sothat the same is true of the bottom row. (These are not E2-o�brationsequenes; for instane, the left hand horizontal maps do not indueinjetions on ��. In spite of the notation, ~�n�2�U is a funtor of U , notof �U .) It is lear that the vertial arrows are Reedy equivalenes, andtherefore E2-equivalenes; in e�et, ~�n�2�U is obtained from �̂n�2�Uby wedging on some number of opies of CU in eah simpliial degree.The following is lear from the de�nitions (4.13).7.15. Proposition. If X is a simpliial spae, the �-algebra 
�̂n�2Xis represented by the funtorU 7! [~�n�2�U;X℄ ' [�̂n�2�U;X℄ :Notie that there is a natural map� : �̂n�1U = D̂n�1U=�̂n�2U ! D̂n�1CU=�̂n�2U = ~�n�2�U :



MODULI PROBLEM 31Now we onstrut a simpliial spae  nU by onsidering the followingdiagram(7.16) �̂n�1U ����! D̂nU ���! �̂nU�??y ??y ??y~�n�2�U ���!  nU ���! �̂nUThe objet  nU is de�ned so that the left hand square is a pushoutsquare. Sine the map � is an E2-o�bration and both of the objetson the left are E2-o�brant, the rows of this diagram are E2-o�bresequenes.7.17. Proposition. [11, 7.5℄ For any simpliial spae X and integern � 2, the �-algebra �̂nX is given by the funtorU 7! [ nU;X℄ :7.18. Remark. The funtor �̂nX is representable by U 7!  nU for n � 2,and by U 7! �̂0U for n = 0. It does not appear that �̂1X is repre-sentable in a similar way.Now we an prove 7.13. The terminal homomorphism �̂1X ! �̂1Xis a �̂0X-module map by 7.14; this proposition also handles the othermaps �̂nX ! �̂nX. Suppose n � 2. Aording to [11℄, the homomor-phism �̂nX ! 
�̂n�2X is indued (via 7.15) by the map  in 7.16,and the homomorphism 
�̂n�2X ! �̂n�1X is similarly indued by �.Now let F be one of the funtors of U whih appears in 7.16, or thefuntor given by U 7! �̂n�2�U . Let C(F ) be the pointed simpliialspae F (S0); true, S0 is not an objet of �, but the onstrution ofF (S0) still makes sense. For eah one of these funtors F it is learthat there are isomorphismsF (U) ' C(F ) ^ Uwhere the objet on the right is obtained by taking the simpliial spaeC(F ) and smashing it in eah degree with U . To eah F there isnaturally assoiated a split diagramS0  ��! C(F )+ �! C(F )where C(F )+ is obtained by adding a disjoint basepoint in eah degreeto C(F ). Smashing these diagrams with U 2 � and mapping into Xprodues the maps of split sequenes (4.10) required to show that thehomomorphisms in question are maps of modules over �̂0X (f. 4.12).



32 BLANC, DWYER, AND GOERSS8. Postnikov systems for simpliial spaesIn this setion we set up a theory of Postnikov systems for simpliialspaes, whih is parallel to the Postnikov theories in x3 and x6. Thenew ingredient is 8.15, whih essentially gives a funtorial relationshipbetween geometri k-invariants for simpliial spaes and algebrai k-invariants for the assoiated simpliial �-algebras.Postnikov systems. Suppose that X is a simpliial spae. Attahing aell (see 7.8) (Dn+2;k; Sn+1;k) of horizontal dimension (n+2) to X via amap f : Sn+1;k ! X has no e�et on �̂iX for i � n, and learly kills o�the lass represented by f in �n+1;kX. Now attah ells of horizontaldimension (n + 2) and greater to X by all possible attahing mapsand perform a funtorial �brant replaement to obtain an inlusionX � X1, repeat the proess to obtain X1 � X2, repeat again, et.,and let P̂nX = [jXj. (We use the notation P̂nX to distinguish thisonstrution from PnX, whih is the result of applying the topologialPostnikov onstrution Pn in eah dimension to the simpliial spae X.The \funtorial �brant replaement" involves taking an objet Z and�nding a funtorial ayli o�bration Z ! Z 0 suh that Z 0 is �brant;it is neessary here beause in the E2 model ategory not every objetis �brant.) There is a map X ! P̂nX whih indues isomorphisms on�̂i for i � n, and �̂iP̂nX is trivial for i > n. The onstrution of P̂nXis funtorial in X, and there is a natural map P̂nX ! P̂n�1X whihrespets the inlusions of X in these two simpliial spaes.8.1. Eilenberg-Ma Lane objets. If � is a �-algebra, we say that asimpliial spae X is of type B� if �̂0X ' � and �̂iX is trivial fori > 0. Suppose that M is a �-module. We say that a map X ! Y isof type B�(M;n) n � 1, if X is of type B�, �̂0Y ' �, �̂nY ' M (asa �-module), all other homotopy of Y is trivial, and the map X ! Ygives an isomorphism on �̂0. Sometimes we will say for short that thetarget Y is of type B�(M;n).8.2. Remark. Reall that taking homotopy groups gives a funtor ��from simpliial spaes to simpliial �-algebras. Let f : X ! Y be amap of type B�(M;n). It turns out that ��(f) is not in general a mapof type K�(M;n). In fat, aording to the spiral exat sequene, thereare isomorphisms�i��X ' 8><>:� i = 0
� i = 20 otherwise �i��Y ' �i��X �8><>:M i = n
M i = n+ 20 otherwise :



MODULI PROBLEM 33The di�erene onstrution. Suppose that f : Y ! X is a map ofsimpliial spaes. Consider the pushout C of the diagram X 0  Y 0 !(P0X)0 obtained by using some funtorial onstrution to replae Y byan E2-o�brant spae and the two maps Y ! X and Y ! P0X byE2-o�brations. There is a ommutative diagram(8.3) Y � ��� Y 0 ���! (P̂0X)0f??y ??y ??y�n(f)X � ��� X 0 ���! P̂n+1Cin whih the vertial map on the right is denoted �n(f). The soure(P̂0X)0 of �n(f) is �sn(f), and the target P̂n+1C is �tn(f).8.4. Proposition. Suppose that f : Y ! X is a map of simpliial �-algebras whih is an isomorphism on �̂0 and whose homotopy �bre Fhas �̂iF trivial for i < n (n � 1). Let M = �̂nF . Then M is naturallya �-module for � = �̂0X and �n(f) is a map of type B�(M;n+1). If�̂iF vanishes exept for i = n, then the right-hand square in 8.3 is ahomotopy �bre square.Proof. This is very muh along the lines of the proof of 6.3. LetF� � ��F be the homotopy �bre of ��Y 0 ! ��X 0. By the spiralexat sequene, �iF� = �̂iF is trivial for i < n and isomorphi to Mfor i = n. Diagram 8.3 gives a homotopy pushout diagram��Y 0 ���! ��(P̂0X)0??y ??y��X 0 ���! ��CLet F 0� be the homotopy �bre of the right-hand map. The tehniques inthe proof of 6.3, whih involve using 5.1 to relate a homotopy pushout ofsimpliial �-algebras to the orresponding homotopy pushout of simpli-ial sets, show that the map �iF� ! �iF 0� is an isomorphism for i � n.Let F 0 be the homotopy �bre of (P0X)0 ! C, so that F 0� = ��F 0.Again, the spiral exat sequene gives that �̂iF 0 is trivial for i < nand isomorphi to M for i = n. A homotopy exat sequene argumentshows that �n(f) is of type B�(M;n+ 1) for an appropriate ation of� on M . It is straightforward to hek the homotopy pullbak ondi-tion. �8.5. Mapping into Eilenberg-Ma Lane objets. We wish to study spaesof maps from simpliial spaes into Eilenberg-Ma Lane objets. Con-sider an Eilenberg-Ma Lane map f : B� ! B�(M;n) with n > 1; wean assume that the target is �brant. It follows from 6.3 that if n > 1



34 BLANC, DWYER, AND GOERSSthen �n�1(��f) is a map of type K�(M;n) (note that the di�ereneonstrution here is taken in the ategory of simpliial �-algebras).Assigning to a diagram X � � U ! B�(M;n) of simpliial spaes theassoiated diagram ��X � � ��U ! �tn(��f) � K�(M;n) gives a nat-ural map (f. 2.7)(8.6) �n(X) :MfHom(X;B�(M;n))!MfHom(��X;K�(M;n)) :8.7. Proposition. The map �n(X) is a weak equivalene of simpliialsets for all simpliial spaes X and all n � 2.8.8. Remark. By a slightly more elaborate onstrution, it is possibleto produe an equivalene for n = 1.Proof of 8.7. It is enough to hek the ases in whih X is a sphereSi;j. The reason for this is that the domain of �n(X) is equivalentto Maph(X;B�(M;n)) and the range to Maph(��X;K�(M;n)) (2.7,2.5); sine the funtor �� takes E2-homotopy pushouts to homotopypushouts of simpliial �-algebras, it follows that the domain and rangeof �n(X) take homotopy pushouts (in X) to homotopy pullbaks. Soif �n(X) is a weak equivalene for spheres, it is a weak equivalenefor any simpliial spae Y whih an be onstruted from spheres bya �nite number of homotopy pushouts. To pass to arbitrary X, notethat any simpliial spae X is up to weak equivalene a �ltered olimitof suh Y , and that both the domain and range of �n(X) take �lteredolimits in X to homotopy limits of simpliial sets.So we restrit attention to the bigraded spheres. Eah Si;j is aogroup objet in the E2-homotopy ategory of simpliial spaes, while��Si;j is a ogroup objet in the ategory of simpliial �-algebras. It iseasy to hek that �n(X) ommutes up to homotopy with the induedmultipliations on the spaes involved. This means that in order toprove that �n(Si;j) is a weak equivalene it is enough to show that itindues an isomorphism on ordinary homotopy groups, inluding �0; itis not neessary to hek all possible basepoints.By inspetion, �0�n(Sn;j) is an isomorphism; both domain and rangeare isomorphi to Mj. This implies that �n(Sn;j) is a weak equiva-lene, sine the higher homotopy groups of the domain (isomorphi to�n+k;jB�(M;n)) and of the range (isomorphi to (�n+kK�(M;n))j) aretrivial. Sine Si;j is the E2-suspension of Si�1;j, it follows as above that�n(Si;j) � 
�n(Si�1;j). By indution and the fat that the domain andrange of �n(Si;j) are onneted for i > 0; i 6= n, it is easy to onludethat �n(Si;j) is a weak equivalene for i > 0, and that �k�n(S0;j) is anisomorphism for k > 0. But �0�n(S0;j) is a map �j ! �j, and it iseasy to see by inspetion that this is the identity. �



MODULI PROBLEM 358.9. Existene of Eilenberg-Ma Lane objets. The easiest way to do thisseems to be with generators and relations. To onstrut a simpliialspae of type B�, start with the wedge W = _j�1 _x2�j S0;j; it is learthat �̂0W is the free �-algebra on the underlying graded set of �. Nowattah a one-ell for eah relation in some presentation of �, and applythe funtor P̂0 to obtain an objet W 0 of type B�. Sine �̂0W 0 ' �,there is a map � : ��W 0 ! K� whih is an isomorphism on �0. Toonstrut a map of type B�(M;n), n � 1, start withW 0 and add on thewedge _i�1_x2MiSn;i to obtain Z, so that ��Z is the oprodut of ��W 0with �i�1 �x2Mi Sn �
��Si. . There is a retration Z ! W 0 obtainedby mapping the wedge fators trivially; let F be the homotopy �bre.Consider the diagram��F ���! ��Z ���! ��W 0??y �??y �??yK0(M;n) ���! K�(M;n) ���! K�in whih both rows are �bre sequenes; here � is obtained by mappinga fator Sn �
��Si of ��Z indexed by x 2 Mi so as to represent theelement x 2 �nK0(M;n) 'M . This gives an epimorphism�̂nF '�! �̂nF !M :We now attah (n+1)-ells to Z to kill o� the kernel of this epimorphismand apply the funtor P̂n to obtain Z 0. It is routine to hek thatW 0 ! Z 0 is of type B�(M;n).8.10. Uniqueness of Eilenberg-Ma Lane objets. Reall from above thatif f is of type B�(M;n) then �n�1(��f) is of type K�(M;n).8.11. Proposition. Let � be a �-algebra,M a �-module, and n � 1 aninteger. LetMn denote the moduli spae of all maps of type B�(M;n).Then the funtor �n�1(��) indues a weak equivaleneMn !M(K� # K�(M;n)) :8.12. Remark. By 6.5, the moduli spae on the right is equivalent to�WAut(�;M). In partiular, the moduli spae is onneted.Proof. We �rst handle the ase M = 0; it is easy to see that thisamounts to showing that the funtor P0�� indues a weak equivalenefrom the moduli spae of all objets of type B� to M(K�). In viewof 2.2, it is enough to show that B� is unique up to weak equiv-alene, that Auth(B�) is homotopially disrete, and that the map�0Auth(B�) ! Aut(�) obtained by reording the e�et of a self-mapon �0 is an isomorphism.



36 BLANC, DWYER, AND GOERSSSuppose that X is a �brant objet of type B� and let W be as in8.9. By the onstrution of W it is possible to obtain a map W ! Xwhih is an isomorphism on �0; this will indue equivalenes W 0 =P̂0W ! P̂0X  X. This shows that there is only one suh X up toweak equivalene. The same kind of argument shows that �0Auth(X)maps surjetively to Aut(�). Pik suh an X whih is �brant ando�brant, and in partiular onstruted by ell attahment. Attahinga ell (Di+1;j; Si;j) to an objet Y to get Y 0 gives a homotopy �bresequene Maph(Y 0; X)! Maph(Y;X)! Maph(Si;j; X)in whih the base spae is ontratible for i > 0 and homotopiallydisrete for i = 0 (its homotopy groups are �i+�;jX). Moreover, themap from [S0;j; X℄ to the set of �-algebra maps �̂0S0;j ! �̂0X is anisomorphism. A formal indutive argument now shows that for any Y ,the spae Maph(Y;X) is homotopially disrete and the map [Y;X℄!Hom(�̂0Y; �̂0X) is injetive. The ase Y = X of this is what we arelooking for.Now we onsider the ase of a general M . For any simpliial modelategory C, there is an indued simpliial model ategory struture onthe ategory of arrows in C, in whih a morphismA u���! B�??y �??yC v���! Dfrom u to v is a weak equivalene (resp. �bration) if � and � areweak equivalenes (resp. �brations) in C, and a o�bration if � is ao�bration in C and the natural map C`AB ! D is a o�bration inC. We use this when C is the E2 model ategory struture on simpliialspaes in order to have an expliit way (2.2) to identify the moduli spaeof a map. Let f be a map of type B�(M;n). What we have to prove isthat f is unique up to weak equivalene, that Auth(f) is homotopiallydisrete, and that the natural map � : �0Auth(f) ! Aut(�;M) is anisomorphism. Uniqueness of f and surjetivity of � are proved as aboveusing the expliit models from 8.9. Write f : B� ! X. We an assumethat f is obtained by starting with the identity map B� ! B� andattahing ells to the target of dimension n and higher. An indutiveargument, exatly the same as above, shows that if g : B� ! Y is amap obtained in this way, then Maph(g; f) is homotopially disrete,and the natural map [g; f ℄! Hom(�;�)�Hom(�̂nY; �̂nX) is injetive.Applying this in the ase Y = X �nishes the proof. �



MODULI PROBLEM 37For onveniene, we will denote Eilenberg-Ma Lane objets by B�and B�(M;n).Classi�ation of Postnikov stages. Suppose that X is a simpliial spaewith X � P̂n�1X and thatM is a module over �̂0X. If Y is a simpliialspae, we write Y � X + (M;n) if P̂nY � Y , P̂n�1Y � X, and �̂nYis isomorphi to M as a module over �̂0X, where the isomorphismis realized with respet to some isomorphism �̂0Y ' �̂0X. We writeM(X + (M;n)) for the moduli spae of all simpliial spaes of typeX + (M;n). The following result is proved in the same way as 6.8.8.13. Theorem. Suppose that X is a simpliial spae with X � P̂n�1X,n � 1. Let � = �̂0X, and let M be a module over �. Then there is annatural weak equivaleneM(X + (M;n)) �M(X # B�(M;n + 1)" B�) :8.14. Remark. The arrows # on the right indiate maps whih indueisomorphisms on �̂i for appropriate i (2.3); in this ase it is just iso-morphisms on �̂0. Again, the remarks at the beginning of 3.9 ould berepeated here with some slight modi�ations.The fundamental homotopy �bre square. The following theorem is atthe basis of our lassi�ation result.8.15. Theorem. Suppose that X is a simpliial spae, � is a �-algebra,and M is a �-module. Then for any n � 2 there is a natural homotopy�bre squareM(X  B�(M;n)" B�) ���! M(��X  K�(M;n)" K�)??y ??yM(X) ���! M(��X)8.16. Remark. The moduli spaes on the left here involve simpliialspaes, and the ones on the right simpliial �-algebras. The vertialarrows are indued by the obvious funtors whih take a diagram andselet the �rst omponent; the lower horizontal arrow is indued by thefuntor ��. The upper horizontal arrow is indued (as in 8.5) by thefuntor whih takes a diagram U ! V f �W to the diagram��U ! �tn�1(��f) �sn�1(��f) :Proof of 8.15. Consider the ommutative squareM(X  B�(M;n)" B�) ���! M(��X  K�(M;n)" K�)??y ??yM(X)�M(B�(M;n)" B�) ���! M(��X)�M(K�(M;n)" K�)



38 BLANC, DWYER, AND GOERSSin whih the seond fator of the lower horizontal arrow is induedby the di�erene onstrution (8.5). The lower spaes are onneted,and by 2.11, 2.7, and 8.7 the indued map on vertial �bres is a weakequivalene. Note in this onnetion that with the help of funtorialfatorization it is easy to replae the upper left hand moduli spaeby an equivalent moduli spae of diagrams U ! V  W in whihthe simpliial spae V equivalent to B�(M;n) is �brant. The proof is�nished by observing that the mapM(B�(M;n)" B�)!M(K�(M;n)" K�)is a weak equivalene (8.11). �9. The main theoremReall that if A is a �-algebra, the moduli spae TM(A) of realiza-tions of A is de�ned by TM(A) =ahXiM(X) ;where X ranges over weak equivalene lasses of (pointed) topologialspaes with ��X ' A. In this setion we give the main struturetheorems for this moduli spae.9.1. De�nition. Suppose thatX is a simpliial spae. We say thatX isa potential n-stage for the �-algebra A if the following three onditionsare satis�ed:� �̂0(X) is isomorphi to A as a �-algebra,� �̂i(X) ' 0 for i > n, and� �̂i(X) ' 0 for 1 < i � n+ 1.The partial moduli spae or partial realization spae TMn(A) is de�nedto be the moduli spae of all simpliial spaes whih are potential n-stages for A.9.2. Remark. It follows from the spiral exat sequene that a potentialn-stage X for A has �̂iX ' 
iA for 0 � i � n, �̂iX = 0 for i > n,�̂iX ' 0 for i 6= 0; n+ 2, �̂0X ' A, and �̂n+2X ' 
n+1A.The above de�nition makes sense for n = 1 (the simpliial spaeX involved would have �̂0X ' A and �̂iX ' 0 for i > 0). Our �rsttheorem says that the potential1-stages for A are essentially the sameas realizations of A.9.3. Theorem. The geometri realization funtor indues a weak equiv-alene TM1(A)! TM(A).



MODULI PROBLEM 39Proof. Let F be the funtor whih assigns to a potential1-stage Y forA the geometri realization jY j, where Y  is some funtorial o�brantapproximation to Y ; by inspetion of the homotopy spetral sequeneof a realization (7.9) [11, 8.3℄, F (Y ) is a topologial realization of A.Let G be the funtor whih assigns to suh a topologial realizationX the onstant simpliial spae given by X; it is easy to see diretlythat G(X) is a potential 1-stage for A. The two omposites GFand FG are onneted to the respetive identity funtors by hains ofnatural transformations whih are weak equivalenes, and so indueweak equivalenes of the moduli spaes. �It is easy to see from 7.11 that if X is a potential n-stage for A andm < n, then the horizontal Postnikov setion P̂mX is a potential m-stage for A, In partiular the funtor P̂n�1 indues a map TMn(A)!TMn�1(A). Our next theorem gives an expression for TM1(A) interms of these maps. Let holimR denote the derived homotopy limitfuntor for diagrams of simpliial sets; this is the funtor obtained byreplaing the diagram in some funtorial way by a diagram of �brantsimpliial sets, and applying the ordinary homotopy limit funtor of[3℄.9.4. Theorem. There is a natural weak equivalene of simpliial setsTM1(A) � holimRn TMn(A) :Proof. This follows from [7℄; the main result there is stated for simpliialsets, but the arguments apply to any o�brantly generated simpliialmodel ategory with arbitrary small limits and olimits. The mainresult of [7℄ is applied in exatly the same as in [7, 4.6℄. �This redues the study of TM1(A) to the study of the individualspaes TMn(A), together with the maps between them. We beginwith TM0(A). The following is lear from 6.5, sine TM0(A) is themoduli spae of all simpliial spaes of type BA.9.5. Theorem. The spae TM0(A) is naturally weakly equivalent toBAut(A).In this statement, Aut(A) denotes the disrete group of �-algebraautomorphisms of A; in partiular, the theorem states that TM0(A)is an Eilenberg-Ma Lane spae of type K(�; 1) for � = Aut(A).The next theorem analyzes the di�erene between TMn(A) andTMn�1(A).



40 BLANC, DWYER, AND GOERSS9.6. Theorem. Suppose that n � 1. Then there is a natural homotopy�bre squareTMn(A) ���! M(A# KA(
nA; n+ 2))P̂n�1??y ??yTMn�1(A) ���! M(A# KA(
nA; n+ 2)" A)The vertial map on the right is indued by the funtor whih takesa map U ! V and repeats it to obtain U ! V  U . The other twomaps in the square are onstruted below.9.7. Interpretation. Aording to 2.11 and 6.5, the spae Z =M(A#KA(
nA; n+2)" A) �bres over �WAut(A)� �WAut(A;
nA) with �bre(9.8) af Hn+1A (A; 
nA) ;where the oprodut is taken over the set of all isomorphisms A !�0KA(
nA; n + 2). It is lear that Aut(A) ats simply transitively onthis set, and it follows that Z �bres over �WAut(A;
nA) with �breHn+1A (A; 
nA). In this way eah potential (n � 1)-stage Y for A, i.e.,eah vertex of TMn�1(A), determines an element oY in Hn+2A (A; 
nA)modulo the ation of Aut(A;
nA). This element (whih an be iden-ti�ed with the k-invariant (6.8) of the simpliial �-algebra ��Y ) is theobstrution to lifting Y to a potential n-stage. Let TMn(A)Y denotethe moduli spae of all potential n-stages X for A with P̂n�1X � Y .If oY is nontrivial, then TMn(A)Y is empty, otherwise (given that
Hn+1A (A; 
nA) � HnA(A; 
nA)), there is a �bration sequeneHnA(A; 
nA)! TMn(A)Y !M(Y ) :On the level of �0 this an be interpreted as saying that weak equiv-alene lasses of lifts of Y to a potential n-stage for A orrespond totrivializations of oY ; of ourse the sequene also indiates how the spaeof suh trivializations ontributes to the spaes of self-equivalenes ofthese lifts.9.9. Potential n-stages. Suppose that Y is a potential n-stage for A; wean assume that Y is o�brant as a simpliial spae. Aording to 9.2,the homotopy spetral sequene for ��jY j (7.9) has only two nontrivialolumns at the E2-page: �̂0Y ' A in olumn E20;� and �̂n+2Y ' 
n+1Ain olumn E2n+2;�. It follows from the desription of the spetral se-quene in [11, 8.3℄ that the di�erential dn+2 maps olumn n+2 as muhas possible isomorphially to olumn 0. Consequently, �ijY j is trivialfor i � n+2, and �ijY j ' Ai for i � n+1. But more is true. Let PmYbe the simpliial spae obtained by applying the (m � 1)-onnetive



MODULI PROBLEM 41over funtor degreewise to Y . The spetral sequene of PmY an beomputed by a naturality argument, and it follows that �ijPmY j istrivial for i � n + m + 1 or for i < m, and that �ijPmY j ' Ai forthe remaining values of i. In partiular, the algebrai onstituents of Aare knitted together by Y in a way whih is muh more omprehensivethan is reeted by the single ordinary Postnikov stage jY j.The rest of this setion is taken up with the proof of 9.6.The �rst step is to analyze the di�erene between potential n-stagesfor A and potential (n�1)-stages. Suppose thatX is a potential n-stagefor A. Aording to 9.1 and the spiral exat sequene, �̂nX ' 
nA. LetY = P̂n�1X. Then Y is a potential (n� 1)-stage for A, and aordingto 8.3, after adjusting X and Y up to weak equivalene there is ahomotopy pullbak square(9.10) X ���! BAu??y v??yY f���! BA(
nA; n+ 1)in whih the maps f and v give isomorphisms on �̂0. We now determinehow to reverse this onstrution.9.11. Proposition. Suppose that Y is a potential (n � 1)-stage forA (n � 1) and that X lies in a homotopy �bre square of the form9.10. Then X is a potential n-stage for A if and only if the map g :��Y ! KA(
nA; n+ 1) orresponding (8.6) to f is a weak equivaleneof simpliial �-algebras.Proof. The main thing to prove in showing that X is a potential n-stage for A is that �̂iX vanishes for i = n; n + 1; the other onditionsare simple to hek. The homotopy �bre F of v is of type B0(
nA; n).Consequently, �̂iF vanishes unless i is n or n + 2, and the long exat�̂�-homotopy sequene of u (7.7) degenerates around dimension n intothe exat sequene0! �̂n+1X ! �̂n+1Y ! �̂nF ! �̂nX ! 0 :Thus X is a potential n-stage if and only if the onneting homomor-phism �̂n+1Y ! �̂nF ' 
nA is an isomorphism. A naturality argumentidenti�es this onneting homomorphism with the map �n+1��Y !
nA indued by g. Sine �0(g) is an isomorphism by assumption, andboth domain and range of g have trivial homotopy exept in dimensions0 and n+ 1, the result follows. �



42 BLANC, DWYER, AND GOERSSSuppose that Y is a potential (n � 1)-stage for A. We write X �Y � (
nA; n) if X is a potential n-stage for Y and P̂n�1X � Y . ThespaeM(Y � (
nA; n)) is the moduli spae of all suh X.9.12. Proposition. Suppose that Y is a potential (n � 1)-stage for A(n � 1). Then there is a natural homotopy �bre squareM(Y � (
nA; n)) ���! M(��Y # KA(
nA; n+ 1)" KA)P̂n�1??y ??yM(Y ) �����! M(��Y ) :9.13. Remark. As usual, # signi�es maps whih indue isomorphismson appropriate homotopy groups; in the ase ��Y # KA(
nA; n + 1)these isomorphisms are suh that the map is an equivalene. The rightvertial arrow in the square is indued by the funtor whih takes adiagram U ! V  W of simpliial �-algebras and selets the �rstomponent. As would be revealed by unraveling the proof, the up-per horizontal arrow is indued by two appliations of the di�ereneonstrution, one in the ategory of simpliial spaes (8.4) to obtainY ! BA(
nA; n + 1), and the seond in the ategory of simpliial�-algebras (8.5) to obtain ��Y ! KA(
nA; n+ 1).Proof of 9.12. We let M = 
nA and m = n+ 1. There is a squareM(Y � (M;n)) ���! M(Y ��! BA(M;m)" BA)P̂n�1??y ??yM(Y ) =���! M(Y )whose upper arrow is a weak equivalene obtained by using 9.11 to se-let appropriate omponents of the weak equivalene from 8.13. Here��! denotes maps whih orrespond via 8.5 to weak equivalenes ��Y !KA(M;m). Passing to appropriate omponents with 8.15 gives a ho-motopy �bre squareM(Y ��! BA(M;m)" BA) ���! M(��Y # KA(M;m)" KA)??y ??yM(Y ) �����! M(��Y ) :Combining these squares �nishes the proof. �
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