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tionA �-algebra A is a graded group fAngn�1 with all of the primaryalgebrai
 stru
ture possessed by the 
olle
tion of homotopy groups ofa pointed 
onne
ted topologi
al spa
e. In parti
ular, An is abelianfor n � 2, and there are Whitehead produ
t and 
omposition mapswhi
h satisfy appropriate identities (see 4.1). The basi
 example of a�-algebra is the homotopy �-algebra ��X of a spa
e X.Given an abstra
t �-algebra A, it is tempting to ask whether it hasany topologi
al signi�
an
e. Is it possible to �nd a spa
e X su
h thatA is isomorphi
 to ��X? If su
h an X exists, is it unique up to weakequivalen
e? These questions and others 
an be studied by lookingat the moduli spa
e TM(A) of topologi
al realizations of A, or therealization spa
e of A. This is de�ned to be the nerve or 
lassifyingspa
e of the 
ategory whose obje
ts are the topologi
al spa
es X with��X ' A and whose morphisms are the weak equivalen
es betweenDate: September 14, 2001.The se
ond and third authors were partially supported by the National S
ien
eFoundation (USA).. 1



2 BLANC, DWYER, AND GOERSSthese spa
es. Up to homotopy TM(A) 
an be identi�ed (2.1) as adisjoint union ahXi �WAuth(X) ;indexed by homotopy equivalen
e 
lasses of CW-
omplexes X with��X ' A, where �WAuth(X) is the 
lassifying spa
e of the simpli
ialmonoid of self homotopy equivalen
es of X. The �-algebra A 
an berealized as ��X for some X if and only if TM(A) is nonempty; therealization is unique up to weak equivalen
e if and only if TM(A) is
onne
ted.In this paper we study TM(A). The �rst step is to 
onstru
t partialmoduli spa
es TMn(A), n � 0, whi
h �t into a tower� � � ! TMn(A)! TMn�1(A)! � � � ! TM1(A)! TM0(A)whose homotopy limit is equivalent to TM(A). We then approa
h thepartial moduli spa
es indu
tively, and show that TMn(A) is tied toTMn�1(A) by a simple homotopy �bre square (9.6, 9.7). The 
on
lu-sion is that the spa
es TMn(A) are relatively a

essible, and in fa
thave a surprisingly 
ohomologi
al 
avor. In analyzing them we aredoing a type of homotopi
al deformation theory; the obstru
tions and
hoi
es at ea
h level lie in the Quillen 
ohomology groups of A, whi
hare the analogues for a �-algebra of the Ho
hs
hild 
ohomology groupsof an asso
iative ring or the Andr�e-Quillen 
ohomology groups of a
ommutative ring.One of the motivations for this paper is that we expe
t our studyof the realization spa
e of a �-algebra to serve as a blueprint for thestudy of other moduli problems of a similar type. For that reason wehave tried to keep our 
onstru
tions and arguments as 
on
eptual aspossible. There are several lessons that might be learned from the pa-per. One is the usefulness of working with moduli spa
es as a whole,rather than with their sets of 
omponents, if only be
ause the modulispa
es tend to �t into �bration sequen
es and �bre squares. This is nota new lesson, but it 
omes through pretty 
learly in what we do. An-other point is the power and 
exibility that 
an be gained by workingwith simpli
ial resolutions of obje
ts (in our 
ase simpli
ial resolutionsof spa
es) instead of with the obje
ts themselves. Finally, on a mu
hmore te
hni
al level, suppose that F is a fun
tor from �nite sets tosets or spa
es. The reader might be interested in how prolonging Fto the 
ategory of simpli
ial sets 
an be interpreted as taking a homo-topy 
oend (5.10); this explains to the authors a family of 
onne
tivityformulas (e.g. 5.1) whi
h otherwise 
an seem mysterious.We will now dis
uss our results in more detail.



MODULI PROBLEM 3The partial moduli spa
es. We �rst des
ribe how the partial modulispa
es TMn(A) arise. Any spa
e X has a spheri
al resolution S(X);this is a simpli
ial spa
e whose realization is equivalent to X, and ea
hof whose simpli
ial 
onstituents S(X)[n℄ is equivalent to a wedge ofspheres. In fa
t there is a model 
ategory stru
ture on the 
ategoryof simpli
ial spa
es in whi
h the 
o�brant obje
ts are spheri
al; theresolution S(X) is obtained by treatingX as a 
onstant simpli
ial spa
eand taking a 
o�brant model for it. This is analogous to a standardpro
edure in homologi
al algebra. There is a model 
ategory stru
tureon the 
ategory of nonnegatively graded 
hain 
omplexes in whi
h the
o�brant obje
ts are the 
hain 
omplexes of proje
tive modules. Aproje
tive resolution of a moduleM is then obtained by treatingM asa 
hain 
omplex 
on
entrated in degree 0 and taking a 
o�brant modelfor it.Suppose now that A is a �-algebra. Rather than dire
tly tryingto build a spa
e X whi
h realizes A, we try to build the resolutionS(X). This gives some added 
exibility, be
ause inside the 
ategoryof simpli
ial spa
es there are various types of Postnikov stages; we
on
entrate on one of these types, the horizontal Postnikov stages P̂�,and attempt to 
onstru
t S(X) indu
tively by building its Postnikovse
tions P̂nS(X). It turns out that there is a simple algebrai
 
onditionthat a simpli
ial spa
e Y has to satisfy in order to be of the formP̂nS(X) for some spa
e X realizing A; if Y satis�es this property,we say that it is a potential n-stage for A. The partial moduli spa
eTMn(A) is then de�ned to be the moduli spa
e of all potential n-stagesfor A, i.e., the nerve of the 
ategory whose obje
ts are the simpli
ialspa
es whi
h are potential n-stages for A, and whose maps are the weakequivalen
es between these simpli
ial spa
es.Analyzing the partial moduli spa
es. A module M over the �-algebraA is de�ned to be an abelian �-algebra with a 
ertain kind of a
tionby A, or equivalently as an abelian group obje
t in the 
ategory of�-algebras over A. Asso
iated to su
h a module M are 
ohomologygroups Hn(A;M), n � 0. These 
ohomology groups 
an be des
ribedin terms of the homotopy groups of 
ertain simpli
ial sets Hn(A;M)obtained by mapping A into Eilenberg-Ma
 Lane obje
ts. The groupHn(A;M) is given by �0Hn(A;M), and more generally there are iso-morphisms �iHn(A;M) ' Hn�i(A;M) :By fun
toriality the dis
rete group Aut(A;M) of automorphisms of thepair (A;M) a
ts on Hn(A;M), and we let Ĥn(A;M) denote the Borel
onstru
tion of this a
tion. The group Aut(A;M) �xes the basepoint of
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h 
orresponds to the zero element of Hn(A;M)), andthis gives a natural map �WAut(A;M) ! Ĥn(A;M). The A-modulesthat are interesting for our purposes are shifted 
opies 
mA of A itself.Our main result is the following one, whi
h is a re
ast version (9.7) ofTheorem 9.6. It provides an indu
tive approa
h to understanding thepartial moduli spa
es TMn(A).1.1. Theorem. Suppose that A is a �-algebra. Then TM0(A) is equiv-alent to �WAut(A), and for ea
h n � 1 there is a homotopy �bre squareTMn(A) ���! �WAut(A;
nA)??y ??yTMn�1(A) ���! Ĥn+2(A; 
nA) :It follows immediately from the theorem that the homotopy �breof TMn(A) ! TMn�1(A) over any point of TMn�1(A) is equiva-lent to the generalized Eilenberg-Ma
 Lane spa
e 
Hn+2(A; 
nA) �Hn+1(A; 
nA). This spa
e has nontrivial homotopy groups only in di-mensions 0 through n + 1, and so the tower fT Mn(A)g is a type ofmodi�ed Postnikov system for TM(A). This tower is better than theusual Postnikov system for TM(A) in that the su

essive �bres de-pend in an expli
it 
ohomologi
al way on A. The tower also leads toan obstru
tion theory for �nding a point in TM(A) � holimTMn(A),i.e., an obstru
tion theory for �nding a topologi
al realization of A.1.2. Theorem. Suppose that A is a �-algebra, and that Y is a poten-tial (n � 1)-stage for A. Then there is an asso
iated element oY inHn+2(A; 
nA), well-de�ned up to the a
tion of Aut(A; 
nA) on thisgroup, su
h that Y lifts up to weak equivalen
e to a potential n-stagefor A if and only if oY = 0.This theorem is proved by noti
ing that �0Ĥn+2(A; 
nA) is the orbitspa
e of the a
tion of Aut(A;
nA) on Hn+2(A; 
nA); by 1.1, the path
omponent P of TMn�1(A) 
orresponding to Y is the image of a 
om-ponent of TMn(A) if and only if the image of P in Ĥn+2(A; 
nA) liesin the 
omponent 
orresponding to the zero element of Hn+2(A;
nA).Interpretation of the partial moduli spa
es. It is natural to ask aboutthe 
on
eptual nature of the partial moduli spa
es TMn(A). Sin
e avertex of TMn(A) is just a simpli
ial spa
e with is a potential n-stagefor A, this amounts to asking what topologi
al information relevant tothe problem of realizing A is 
ontained in su
h a Y . To begin with, therealization of Y is a 
onne
ted spa
e Xh0; n+1i with �iXh0; n+1i = Aifor i � n+1 and vanishing homotopy in higher dimensions; this is justthe (n + 1)'st (ordinary) Postnikov stage of a potential realization of



MODULI PROBLEM 5A. But there is more. Suppose that a and b are positive integers withb > a and b�a � n. With some simple manipulation (9.9) it is possibleto extra
t from Y spa
es Xha; bi with�iXha; bi = (Ai a � i � b0 otherwise :ThisXha; bi is the b'th ordinary Postnikov stage of the (a�1)'st 
onne
-tive 
over of a potential realization of A. The various Xha; bi obtainedin this way are as 
ompatible as they 
an be when a and b vary; forinstan
e Xha; b � 1i is the (b � 1)'st Postnikov stage of Xha; bi. Weinterpret this to mean that giving a potential n-stage Y for A amountsamong other things to threading the 
onstituents of A together byk-invariants in su
h a way that the threads only rea
h a depth of n-dimensions. These threads 
reate genuine spa
es whi
h realize ea
hblo
k of groups from A whi
h is n dimensions or less in extent. Asthe threads grow in length one dimension at time (if possible, sin
e by1.2 there may be obstru
tions) the blo
ks of homotopy whi
h a
hievegeometri
 expression also expand. In the limit, we obtain a spa
e Xwith ��X = A.Organization of the paper. Se
tion 2 
ontains a general dis
ussion ofmoduli spa
es, and x3 analyzes Postnikov theory for ordinary topolog-i
al spa
es in terms of moduli. Se
tions 4 and 6 treat the Postnikovtheory of simpli
ial �-algebras; this is what leads to the 
onstru
tionof our algebrai
 invariants. There is a detour in x5 to prove a generalrelative 
onne
tivity theorem that gives information about homotopypushouts in the 
ategory of simpli
ial �-algebras. Se
tions 7 and 8look at simpli
ial spa
es and their Postnikov theory, and x9 
ontainsproofs of the main results.1.3. Notation. We use the language of simpli
ial model 
ategories([19℄ [12℄ [15℄ [13℄); if C is a simpli
ial model 
ategory and X and Yare obje
ts of C, then Map(X; Y ) denotes the simpli
ial set of maps inC from X to Y . All of our model 
ategories have fun
torial fa
toriza-tions, in that a map X ! Y 
an be naturally fa
tored as a 
o�brationfollowed by an a
y
li
 �bration, or as an a
y
li
 
o�bration followedby a �bration. The notation Maph(X; Y ) denotes the derived mapping
omplex obtained by �nding a fun
torial 
o�brant model X 0 ! X forX, a fun
torial �brant model Y ! Y 0 for Y , and forming Map(X 0; Y 0);the set �0Maph(X; Y ) of derived homotopy 
lasses of maps is denoted[X; Y ℄. In the same way, Auth(X) is the simpli
ial monoid of self ho-motopy equivalen
es of some 
o�brant/�brant obje
t weakly equivalent



6 BLANC, DWYER, AND GOERSSto X in a fun
torial way. Homotopy pushouts and pullba
ks are 
on-stru
ted as usual [12, x10℄; sin
e the model 
ategories have fun
torialfa
torization, we 
an take the homotopy pushouts and pullba
ks to befun
torial.We will make use of Eilenberg-Ma
 Lane obje
ts in various 
ate-gories, and we will try to make notational distin
tions between them.We use �WG for the 
lassifying simpli
ial set of a group or simpli
ialmonoidG [17, x21℄. The notations BG(M;n), K�(M;n), and B�(M;n)spe
ify twisted Eilenberg-Ma
 Lane obje
ts in, respe
tively, the 
ate-gory of pointed spa
es (3.1), simpli
ial �-algebras (6.1), and simpli
ialspa
es (8.1). Here G is a group, � is a �-algebra, M is a module overG or �, and n denotes the dimension in whi
h M sits as a homotopyobje
t. We will also need various 
oprodu
ts: ` is a generi
 
oprod-u
t, t is the 
oprodu
t of sets or unpointed spa
es, _ the 
oprodu
tfor pointed spa
es, and � the 
oprodu
t for �-algebras.1.4. Simpli
ial obje
ts. A simpli
ial obje
t X in a 
ategory C is a fun
-tor from�op toC, where � is the simpli
ial 
ategory [17℄. Equivalently,X is a 
olle
tion X[n℄, n � 0 of obje
ts of C, together with fa
e mapsdi : X[n℄! X[n� 1℄ and degenera
y maps si : X[n℄! X[n+1℄ whi
hsatisfy the standard simpli
ial identities. Note that we write X[n℄ todistinguish the simpli
ial grading of X from a possible internal grad-ing asso
iated to the individual obje
ts of C. We identify C with the
ategory of 
onstant simpli
ial obje
ts in C, i.e., simpli
ial obje
ts inwhi
h the fa
e and degenera
y maps are identities.1.5. Simpli
ial disks and spheres. Our basi
 referen
e for simpli
ial setsand their model 
ategory stru
ture is [13℄. It is 
onvenient to have�xed models for simpli
ial disks and spheres. The standard simpli
ialmodel for the n-sphere is 
Sn = �n=��n (the letter \
" stands for
ombinatorial). It is natural to take as a model for the n-disk the
ombinatorial simplex �n itself, so that the sphere 
Sn is obtained fromthe disk by 
ollapsing out the boundary. This 
onvention is slightlyawkward, be
ause the boundary ��n is not 
ombinatorially isomorphi
to 
Sn�1 (although these two 
omplexes are weakly equivalent). Toavoid this awkwardness we let �0n be the 
ontra
tible sub
omplex of�n obtained by taking the union of all fa
es of the top-dimensionalsimplex ex
ept the 0'th fa
e, and we take as our simpli
ial model forthe n-disk the quotient 
Dn = �n=�0n. The in
lusion of the 0'th fa
ein �n indu
es a map �n�1 ! 
Dn whi
h is 
onstant on ��n�1 andpasses to an in
lusion 
Sn�1 ! 
Dn. This gives a 
o�bration sequen
eof pointed simpli
ial sets
Sn�1 ! 
Dn ! 
Sn :



MODULI PROBLEM 72. Moduli spa
esHere we de�ne moduli spa
es, and re
all some of the properties ofmoduli spa
es whi
h arise from model 
ategories. For our purposes, amoduli spa
e is always the nerve [3, XI.2℄ of some 
ategory. The readermay be worried by the fa
t that the 
ategories we 
onsider in this
onne
tion are usually large, in the sense that the 
olle
tion of obje
tsforms a proper 
lass instead of a set. The nerve of su
h a 
ategory is notstri
tly speaking a simpli
ial set. There are two ways to deal with this.One is to noti
e that the nerves we make use of are homotopi
ally small[5℄ and so determine well-de�ned ordinary homotopy types. Anotheris to restri
t in ea
h 
ase to a small sub
ategory of the 
ategory inquestion, a sub
ategory whi
h is still large enough to have a nerve ofthe 
orre
t homotopy type; e.g., in the 
ase of a model 
ategory C,restri
t to some small model sub
ategory of C 
ontaining some desiredset of obje
ts. The issues here are routine, and we will suppress themin order to avoid 
luttering the exposition.2.1. Moduli spa
es for obje
ts. A 
ategory with weak equivalen
esis a pair (C;W) 
onsisting of a 
ategory C together with a sub
ategoryW whi
h 
ontains all of the isomorphisms of C. The morphisms ofWare 
alled weak equivalen
es. The basi
 examples are model 
ategories,whi
h 
ome equipped with su
h sub
ategories of weak equivalen
es aspart of the model 
ategory stru
ture. Two obje
ts X and Y of Care said to be weakly equivalent if they are related by the equivalen
erelation generated by the existen
e of a weak equivalen
e f : X ! Y .If X is an obje
t of a 
ategory with weak equivalen
es, the modulispa
e M(X) is de�ned to be the nerve of the sub
ategory of C 
on-sisting of all obje
ts weakly equivalent to X together with the weakequivalen
es between them. By de�nition M(X) is 
onne
ted. Themain general theorem about it is the following.2.2. Theorem. [7, 2.3℄ Suppose that C is a simpli
ial model 
ategoryand that X is an obje
t of C. Then there is a natural weak equivalen
eM(X) � �WAuth(X).If fX�g is a set of obje
ts in a 
ategory with weak equivalen
es,then MfX�g denotes the nerve of the 
ategory 
onsisting of all ob-je
ts weakly equivalent to one of the X�'s, together with the weakequivalen
es between these obje
ts.2.3. Moduli spa
es for diagrams. Suppose thatC is a 
ategory withweak equivalen
es and that D is some small 
ategory. The fun
tor
ategory CD is in a natural way a 
ategory with weak equivalen
es,where a natural transformation between fun
tors is a weak equivalen
e



8 BLANC, DWYER, AND GOERSSif for ea
h obje
t in D it gives a weak equivalen
e in C. For instan
e,if D is a 
ategory with two obje
ts and one nonidentity map betweenthem, we obtain the 
ategory of arrows in C. Given a map f : X ! Yin C, we letM(X f�! Y ) =M(f) denote the moduli spa
e of f insidethe 
ategory of arrows. More generally,M(X  Y ) denotes the modulispa
e of all arrows X 0 ! Y 0, where X 0 is weakly equivalent to X andY 0 is weakly equivalent to Y . If C is a model 
ategory, X is 
o�brant,and Y is �brant, thenM(X  Y ) is `hfiM(f), where f ranges overweak equivalen
e 
lasses of maps X ! Y . The indexing set here is notquite homotopy 
lasses of maps (see 2.10).If C is a 
ategory with some spe
i�ed notion of homotopy groups orhomotopy obje
ts �i, i � 0, then for 
onvenien
e we letM(X # Y )denote the moduli spa
e of arrows f : X 0 ! Y 0, where X 0 is weaklyequivalent to X, Y 0 is weakly equivalent to Y , and f indu
es isomor-phisms on �i for all i with the property that �iX and �iY are bothnontrivial. Note thatM(X # Y ) is a (possibly empty) union of 
om-ponents ofM(X  Y ).We use similar notation for moduli spa
es of pairs of arrows. Forinstan
e M(X  Y " Z) denotes the moduli spa
e of all diagramsU ! V  W in whi
h U , V andW are weakly equivalent to X, Y andZ respe
tively, and the map W ! V has the appropriate isomorphismproperty on homotopy.2.4. Fun
tion spa
es as moduli. We also need to express derivedfun
tion 
omplexes as moduli spa
es. If X and Y are two obje
ts of amodel 
ategory C, let MHom(X; Y ) denote the nerve of the 
ategorywhose obje
ts are diagrams X  U ! V  Y in whi
h the maps U !X and Y ! V are weak equivalen
es. The morphisms are 
ommutativediagrams(2.5) X � ��� U ���! V � ��� Y=??y �??y ??y� ??y=X � ��� U 0 ���! V 0 � ��� Yin whi
h the indi
ated maps are identities or weak equivalen
es.2.6. Theorem. [6, 4.7℄ [5, 1.1℄ Suppose that C is a simpli
ial model
ategory and that X and Y are obje
ts of C. ThenMHom(X; Y ) is ina natural way weakly equivalent to the simpli
ial set Maph(X; Y ).2.7. Remark. One 
an 
onsider a similar 
ategory whose obje
ts arethe smaller diagrams X � � U ! Y ; this is the full sub
ategory of theabove given by diagrams in whi
h the map Y ! V is required to be theidentity. We denote the nerve of this 
ategoryMfHom(X; Y ). If Y is a
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t of C, then the in
lusionMfHom(X; Y )!MHom(X; Y ) isa weak equivalen
e. This follows from the arguments of [6, 7.2℄.2.8. Relationships between moduli spa
es. Suppose thatX and Yare two obje
ts of a model 
ategory C. There is a mapMHom(X; Y )!M(X  Y ) given by the fun
tor whi
h sends a diagram X  U !V  Y to the diagram U ! V . The 
omposite of this with theobvious proje
tionM(X  Y )!M(X)�M(Y ) is again given by afun
tor, and this is 
onne
ted to the 
onstant fun
tor with value (X; Y )by a 
hain of two natural transformations. This indu
es a map fromMHom(X; Y ) to the homotopy �bre of the proje
tion.2.9. Theorem. Suppose that X and Y are two obje
ts of a model 
at-egory C. The sequen
eMHom(X; Y )!M(X  Y ) p�!M(X)�M(Y )is a homotopy �bre sequen
e, in the sense that the natural map fromMHom(X; Y ) to the homotopy �bre of p is a weak equivalen
e.Proof. This follows from Quillen's Theorem B [18℄, given the observa-tion, immediate from 2.6, that weak equivalen
es X ! X 0 and Y 0 ! Yindu
e a weak equivalen
eMHom(X; Y )!MHom(X 0; Y 0).2.10. Remark. Theorem 2.9 indi
ates that in the model 
ategory 
asethe set whi
h indexes the 
omponents of M(X  Y ) is the set ofhomotopy 
lasses of maps from X to Y , modulo the a
tion on the onehand of the self homotopy equivalen
es of X and on the other of theself homotopy equivalen
es of Y .2.11. Remark. The proof of 2.9 gives many other similar results. Forinstan
e, given three obje
tsX, Y , Z in an appropriate model 
ategory,there is a natural homotopy �bre sequen
eMHom(X; Y )!M(X  Y " Z)!M(X)�M(Y " Z) :3. Postnikov systems for spa
esIn this se
tion we sket
h an approa
h to the Postnikov theory ofpointed topologi
al spa
es whi
h is based on the use of moduli spa
es.Our obje
t is to establish some notation and provide a 
ontext for whatwe do later on. We assume that the spa
es are pointed and usually (for
onvenien
e) that they are 
onne
ted. The 
ategory of pointed topo-logi
al spa
es has its usual model 
ategory stru
ture [19, II.3℄ [12, x8℄in whi
h weak equivalen
es are weak homotopy equivalen
es, �brationsare Serre �brations, and 
o�brations are retra
ts of relative 
ell 
om-plexes.



10 BLANC, DWYER, AND GOERSSPostnikov systems. Atta
hing an (n + 2)-
ell to a spa
e X by a mapf : Sn+1 ! X has no e�e
t on the homotopy of X in dimensions � n,and 
learly kills o� the 
lass represented by f in �n+1X. Now atta
h
ells of dimension (n + 2) and greater to X by all possible atta
hingmaps to obtain an in
lusion X � X1, repeat the pro
ess to obtainX1 � X2, repeat again, et
., and let PnX = [kXk. There is a mapX ! PnX whi
h indu
es isomorphisms on �i for i � n, and �iPnX ' 0for i > n. The 
onstru
tion of PnX is fun
torial in X and preservesweak equivalen
es, and so it indu
es a mapM(PnX)!M(Pn�1X).3.1. Eilenberg-Ma
 Lane obje
ts. If G is a group, we say that a spa
e Xis of type BG if �1X is isomorphi
 to G and the higher homotopy of Xvanishes. Suppose that M is a G-module. We say that a map X ! Yis of type BG(M;n), n � 2, if X is of type BG, �1Y ' G, �nY ' M(as a G-module), all other homotopy groups of Y vanish, and the mapX ! Y gives an isomorphism on �1. Sometimes we say for short thatthe target spa
e Y is of type BG(M;n).The di�eren
e 
onstru
tion. Suppose that f : Y ! X is a map ofspa
es. Consider the pushout C of the diagram X 0  Y 0 ! (P1X)0obtained by using some fun
torial 
onstru
tion to repla
e Y by a 
o�-brant spa
e and the two maps Y ! X and Y ! P1X by 
o�brations.There is a 
ommutative diagram(3.2) Y � ��� Y 0 ���! (P1X)0f??y ??y ??y�n(f)X � ��� X 0 ���! Pn+1CWe denote the verti
al map on the right by �n(f); its sour
e is �sn(f)and its target is �tn(f).The following is easy to prove by 
al
ulating that, in the above situ-ation, if X ! Y is surje
tive on �1 then the universal 
over of C is thehomotopy 
o�bre of the map ~X ! ~Y , where ~Y is the universal 
overof Y and ~X is the pullba
k of the 
over ~Y to X.3.3. Proposition. Suppose that f : Y ! X is a map of spa
es whosehomotopy �bre F is (n � 1)-
onne
ted, n � 1. Let M = �nF and ifn = 1 assume that M is abelian. Then M is naturally a G-module forG = �1F , and �n(f) is a map of type BG(M;n + 1). If �iF vanishesex
ept for i = n, then the right-hand square in 3.2 is a homotopy �bresquare.Existen
e and uniqueness of Eilenberg-Ma
 Lane obje
ts. It is easy to
onstru
t spa
es of type BG by hand (take a wedge of 
ir
les indexedby a set of generators for G, atta
h a 2-
ell for ea
h relation between



MODULI PROBLEM 11the generators, and apply the fun
tor P1) or by taking the geometri
 re-alization of �WG. A simple argument gives that these spa
es are uniqueup to weak equivalen
e. We let BG denote a generi
 
o�brant spa
e ofthis type. It follows from obstru
tion theory or 
overing spa
e theorythat Auth(BG) is homotopi
ally dis
rete and that its group of 
ompo-nents is Aut(G). Another way to express this is to say that the modulispa
e of all spa
es of type BG is weakly equivalent to �WAut(G). Thenext proposition extends this to higher Eilenberg-Ma
 Lane obje
ts.If G is a group and M is a G-module, we write Aut(G;M) for thegroup of pairs (�; �), where � is an automorphism of G and � is an�-linear automorphism of M . This is the same as the group of auto-morphisms of the split short exa
t sequen
e0 �!M �! GoM  ��! G �! 0 :3.4. Proposition. Let G be a group, M a G-module, and n � 2 andinteger. Then the moduli spa
e of all maps of type BG(M;n) is weaklyequivalent to �WAut(G;M).3.5. Remark. In parti
ular the moduli spa
e is nonempty and 
on-ne
ted, and so spa
es or maps of type BG(M;n) exist and are uniqueup to weak equivalen
e. We denote a generi
 spa
e of this type byBG(M;n).Sket
h of proof. LetMn, n � 2, denote the moduli spa
e of all mapsX ! Y of type BG(M;n). There is a mapMn !Mn+1 indu
ed bythe fun
tor whi
h sends X ! Y to �n(X ! P1X). There is also a mapMn+1 !Mn indu
ed by the fun
tor whi
h sends X ! Y to the homo-topy pullba
k of X ! Y  X. Both 
omposite fun
tors are 
onne
tedto the respe
tive identity fun
tors by 
hains of natural transformations,and so these maps of moduli spa
es are weak equivalen
es. Similar
onstru
tions give a weak equivalen
e M2 � M(B(G oM) ��!BG),where this last denotes the moduli spa
e of maps U ! V with a se
tionV ! U , su
h that U and V have no higher homotopy groups, and su
hthat on the level of �1 the map U ! V with its se
tion gives a diagramof groups isomorphi
 to GoM ��!G. Now 
ompute dire
tly that thislast moduli spa
e is weakly equivalent to �WAut(G;M). �3.6. Cohomology of spa
es. Consider a spa
e BG(M;n), n � 2. ThenP1 BG(M;n) � BG, and so we write the map from this spa
e to its�rst Postnikov stage as BG(M;n)! BG. Given another spa
e X overBG (i.e. with a map X ! BG), we de�ne HnG(X;M) byHnG(X;M) ' [X;BG(M;n)℄BGwhere the symbol on the right denotes derived (1.4) homotopy 
lassesof maps from X to BG(M;n) in the model 
ategory of spa
es over



12 BLANC, DWYER, AND GOERSSBG [12, 3.11℄. Let HnG(X;M) denote MaphBG(X;BG(M;n)), so thatHnG(X;M) is �0 of this spa
e. The homotopy �bre squaresBG(M;n� 1) ���! BG??y ??yBG ���! BG(M;n)give natural weak equivalen
es 
HnG(X;M) � Hn�1G (X;M), so thatthere are isomorphisms�iHnG(X;M) ' (Hn�iG (X;M) 0 � i � n� 20 i > n :We use this formula to de�ne H iG(X;M) for i = 0; 1; be
ause we areworking with pointed maps these turn out to be what would normallybe 
alled redu
ed twisted 
ohomology groups.Classi�
ation of Postnikov stages. Suppose that X is a spa
e with X �Pn�1X, n � 2, and that M is a module over G = �1X. If Y is a spa
e,we write Y � X + (M;n) if PnY � Y , Pn�1Y � X, and �nY ' Mas a module over G, where this module isomorphism is realized withrespe
t to some isomorphism �1Y ' G. We writeM(X + (M;n)) forthe moduli spa
e of all spa
es Y of this type.3.7. Proposition. Suppose that X is a spa
e with X � Pn�1X, n � 2and that M is a module over G = �1X. Then there is a natural weakequivalen
e of moduli spa
esM(X + (M;n)) �M(X # BG(M;n + 1)" BG) :3.8. Remark. The arrows # on the right indi
ate maps whi
h indu
eisomorphisms on appropriate homotopy groups (2.3); in this 
ase it isjust isomorphisms on �1.Proof. There is a fun
tor in one dire
tion whi
h given a spa
e Y �X + (M;n) 
onstru
ts the diagram (Pn�1Y )0 ! �tn(f) �sn(f) from3.2, where f is the map Y ! Pn�1Y . There is a fun
tor in the otherdire
tion whi
h given U ! V  W of type X # BG(M;n+1)" BG
onstru
ts the spa
e Y � X + (M;n) whi
h is the homotopy pullba
kof U ! V  W . Both 
omposites are 
onne
ted to the 
orrespondingidentity fun
tors by 
hains of natural transformations, and so theyindu
e weak equivalen
es on the moduli spa
es. �3.9. Interpretation. Let X, G and M be as above. A

ording to 3.7,3.4, and 2.11, there is a �bration sequen
e(3.10) Maph1(X;BG(M;n+ 1))!M(X + (M;n))!M(X)� �W� :



MODULI PROBLEM 13where � = Aut(G;M) and the obje
t on the left is the union of the
omponents of Maph(X;BG(M;n)) giving maps whi
h indu
e isomor-phisms on �1. It is easy to identify this sub
omplex as t�HGX(n +1;M�), where � runs through the isomorphisms �1X ! G and M�is the module over �1X determined by M and �. Ea
h spa
e Y �X + (M;n) determines an element of�0 �t�HGX(n+ 1;M�)� ' t�Hn+1G (X;M�)modulo the a
tion of �0Auth(X)�Aut(G;M) on this set; this is the k-invariant kn(Y ), in its genuinely invariant form. Correspondingly, ea
hk-invariant gives rise to a spa
e Y . Note that 3.7 not only 
lassi�esspa
es of type X + (M;n), but also determines their self-equivalen
es.The reader might want to 
ompare �bration 3.10 with the 
orre-sponding �brationMaph0(X;B
(M;n+ 1))u !Mu(X + (M;n))!Mu(X)from [9℄. Here 
 = Aut(M), Maph0({; {)u denotes an appropriate set of
omponents of the spa
e of unpointed maps, andMu is the unpointedmoduli spa
e. The appearan
e of the extra fa
tor in the base of the our�bration 3.10 is explained by the fa
t that for us the target of the k-invariant map is BG(M;n+1), G = �1X, while in [9℄ it is B
(M;n+1),
 = Aut(M); the extra fa
tor allows for potential automorphisms ofM whi
h are not indu
ed by elements of G.4. �-algebras and their modulesHere we explore �-algebras, simpli
ial �-algebras, and modules overthem. This is in preparation for a dis
ussion in x6 of their 
ohomology.4.1. �-algebras. Let � be the full sub-
ategory of the homotopy 
at-egory of pointed spa
es 
losed under isomorphism and 
ontaining thewedges of spheres Sn1 _ : : : _ Snkwith ni � 1. A �-algebra is a produ
t-preserving fun
tor� : �op �! S ;or equivalently a 
ontravariant fun
tor � ! S whi
h takes wedges toprodu
ts. This 
ondition and the Hilton-Milnor Theorem imply that� is determined by the sets �n = �(Sn), n � 1 and the followingadditional data:(1) a group stru
ture on �n whi
h is abelian for n > 1;(2) 
omposition maps �(Sn; Sk)� �k = �n(Sk)� �k ! �n;(3) Whitehead produ
t maps [ ; ℄ : �n � �k ! �n+k�1;



14 BLANC, DWYER, AND GOERSS(4) a �1-module stru
ture on ea
h abelian group �n, n > 1.There are relations among these stru
tures; for example, (4) is redun-dant, sin
e for x 2 �1 and a 2 �n,ax = [a; x℄ + awhere + is the group operation on �n. The relations are 
lassi
al,but are 
ompli
ated to write down [4℄. We omit them, as the exa
tformulas are unne
essary for our purposes. But re
all that 
ompositionis not additive: if f!g is a basis for the free Lie algebra over Z on twogenerators, then for x; y 2 �k, k > 1, and � 2 �kSn, we have(4.2) (x + y) Æ � = x Æ � + y Æ � +X! !(x; y) ÆH!(�)where the sum is over elements ! of length greater than 1, we write!(x; y) for the 
orresponding iterated Whitehead produ
t, and H! isthe asso
iated higher Hopf invariant [22, xXI.8.5℄. We may at timestake � to be the graded group f�ng together with this additional stru
-ture; however, we will often stipulate �-algebras by displaying the fun
-tor U 7! �(U)from �op to the 
ategory of sets. In parti
ular, we will often write Ufor an obje
t in the 
ategory �. �-algebras form a 
ategory, in whi
hthe morphisms are natural transformations of fun
tors.4.3. Example. If X is a pointed spa
e, there is a �-algebra ��X givenby the fun
tor whi
h sends U 2 � to the set [U;X℄ of homotopy 
lassesof pointed maps from U to X. Note that ��(X)n = �nX, and that thisfun
tor does not in
lude �0X. The �-algebra ��X 
aptures the homo-topy groups of X and all of the primary operations tying these groupstogether. The 
onstru
tion ��({) gives a fun
tor from the homotopy
ategory of pointed spa
es to the 
ategory of �-algebras.The 
ategory of �-algebras is a 
ategory of universal algebras andhas all limits and 
olimits. We write 0 for the trivial obje
t, whi
h
an be des
ribed as ��X for X a one-point spa
e. This obje
t is bothinitial and terminal, and the 
ategory of �-algebras is pointed in thesense that the unique map from the initial obje
t to the terminal obje
tis an isomorphism.4.4. Simpli
ial �-algebras. As usual, a simpli
ial �-algebra A is asimpli
ial obje
t (1.4) in the 
ategory of �-algebras. The �-algebraA[n℄ is the portion of A in simpli
ial degree n, and A[n℄i is the group(abelian if i > 1) whi
h is the i'th 
onstituent of the �-algebra A[n℄.We write Ai for the asso
iated simpli
ial group whi
h in simpli
ialdimension n 
ontains the group A[n℄i. Ea
h simpli
ial group Ai has



MODULI PROBLEM 15homotopy groups ��Ai, whi
h 
an be 
omputed from the asso
iatednormalized (Moore) 
omplex N(Ai) [17, 17.3, 22.1℄. We let ��A denotethe 
olle
tion of all of these homotopy groups.4.5. Model 
ategory stru
ture. By Quillen [19, xII.4℄, there is a standardsimpli
ial model 
ategory stru
ture on the 
ategory of simpli
ial �-algebras. In this stru
ture, a map f : A ! B is a weak equivalen
e ifand only if it is a weak equivalen
e of graded simpli
ial groups, i.e., ifand only if ��A! ��B is an isomorphism. Every obje
t is �brant, anda map A ! B is a �bration if for ea
h i the indu
ed map N(Ai) !N(Bi) is surje
tive in degrees 1 and above. A map is a 
o�bration ifand only if it is a retra
t of a map whi
h is \free" in the sense of [19,xII.4℄. To de�ne these free maps, note that the forgetful fun
tor from�-algebras to graded sets has a left adjoint F withF (V�) �= ��(_n _x2Vn Sn) ' �n �x2Vn ��Sn:Then a morphism A ! B of simpli
ial �-algebras is free if for ea
hn � 0 there is a graded set Vn � B[n℄, 
losed under the degenera
ymaps in B, su
h that B[n℄ �= A[n℄ � F (Vn):Suppose that A is a simpli
ial �-algebra and K is a simpli
ial set. Thesimpli
ial stru
ture on the 
ategory of simpli
ial �-algebras is given byletting K 
 A be the simpli
ial obje
t with (K 
 A)[n℄ = �s2K[n℄A[n℄.4.6. Cells. Suppose in the above situation that K is a pointed sim-pli
ial set. In this 
ase we write K �
A = (K �
A)=(��
A), where thequotient is taken in the 
ategory of simpli
ial �-algebras. The pairs(
Di+1 �
��Sj; 
Si �
��Sj), i � 0, j � 1, are 
alled 
ells, and a simpli
ial�-algebra is 
ellular if it 
an be 
onstru
ted from a trivial simpli
ial�-algebra by atta
hing 
ells, perhaps trans�nitely often. Any 
ellularsimpli
ial �-algebra is 
o�brant, any simpli
ial �-algebra has a fun
-torial 
ellular approximation, and any 
o�brant simpli
ial �-algebra isa retra
t of a 
ellular one.Cells are atta
hed to A by elements in ��A, in that [
Sn �
��Sj; A℄is isomorphi
 to �nAj. Note that in fa
t for ea
h n � 0, �nA is a�-algebra, given as a fun
tor (4.1) by the formula(4.7) (�nA)(U) = [
Sn �
��U;A℄; U 2 �:4.8. Abelian �-algebras; modules. A �-algebra M is abelian if themap M �M ! M given in ea
h gradation by group multipli
ationis a map of �-algebras. This is equivalent to saying that M admitsthe stru
ture of an abelian group obje
t in the 
ategory of �-algebras,or more 
on
retely to saying that all of the Whitehead produ
ts in



16 BLANC, DWYER, AND GOERSSM vanish [1℄. The full-sub
ategory of �-algebras 
onsisting of abelian�-algebras is an abelian 
ategory.As in any 
ategory of universal algebras, the notion of module is arelativization of this 
on
ept.4.9. De�nition. Given a �-algebra �, a �-module is an abelian groupobje
t in the 
ategory of �-algebras over �.More expli
itly, a �-module amounts to a split short exa
t sequen
eof �-algebras(4.10) 0 �!M �! EM  ��! � �! 0in whi
hM is an abelian �-algebra. A morphism of �-modules is a mapof split sequen
es whi
h is the identity on �. We will sometimes identifya �-module with M and leave the short exa
t sequen
e understood; inparti
ular, we usually write M ! N for a morphism of �-modules.Sin
e the graded 
onstituents of a �-algebra are already groups, it iseasy to see that an abelian group obje
t in the 
ategory of �-algebrasover � is the same as a group obje
t in this 
ategory.Modules via a
tions. A �-moduleM gives rise to a type of a
tion of �on M . To see this, observe that the splitting of EM ! � determines,for ea
h U 2 �, an isomorphism of setsEM(U) �= �(U)�M(U):This means that for ea
h map f : V ! U in �, the morphism EM(f) :EM(U)! EM (V ) is determined by an a
tion map(4.11) �f : �(U)�M(U)!M(V )subje
t to the 
onditions(1) �f(0; x) =M(f)(x), and(2) �gÆf (a; x) = �g(�(f)a; �f(a; x)).It is even possible to go in the other dire
tion. Given maps 4.11 subje
tto the indi
ated 
onditions, we 
an form a �-algebra �oM whi
h liesin a split sequen
e0 �!M �! �oM  ��! � �! 0and so de�ne a �-module stru
ture on M . If M began life as a �-module, there is an isomorphism of �-algebras EM �= �oM , makingthe evident diagram of split sequen
es 
ommute.4.12. Modules via split 
o�bration sequen
es. A split 
o�bration se-quen
e in a pointed model 
ategory C is a diagramA  ��! B �! C
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h that the obje
ts involved are 
o�brant, A ! B ! C is a
o�bration sequen
e, and the left-hand maps exhibit A as a retra
tof B. Suppose that there are fun
tors �;  : � ! C whi
h take on
o�brant values and preserve 
oprodu
ts up to weak equivalen
e. Thenthere are �-algebras MX and �X asso
iated to any obje
t X of C andgiven by the formulas�X(U) = [�U;X℄ MX(U) = [ U;X℄ :In order to show that MX is in a natural way a module over �X itis enough to prove that MX is abelian for ea
h X, and to 
onstru
tobje
ts  +U whi
h �t into split 
o�bration sequen
es�U  ��!  +U �!  Uwhi
h are natural in U . For the split sequen
es en
oding the modulestru
ture (4.10) 
an be 
onstru
ted by mapping this split 
o�brationsequen
e into obje
ts X of C. Note that in order to show that MX isan abelian �-algebra for ea
h X, it is enough by Yoneda's lemma toshow that  U is a 
ogroup obje
t in the homotopy 
ategory of C in away whi
h is natural in U .4.13. Examples. A �-algebra � is not a module over itself, unless � isabelian. However, we may de�ne new �-algebras 
n� by the fun
toron �op U 7! �(Sn ^ U):This mimi
s topology: 
n��X �= ��
nX. For n � 1, 
n� is a �-module. To see this, de�ne a �-algebra 
n+� byU 7! �(Sn+ ^ U)where the ({)+ denotes adding a disjoint basepoint. Then there is asplit sequen
e 0 �! 
n� �! 
n+�  ��! � �! 0whi
h gives a 
anoni
al �-module stru
ture on 
n�. These modulestru
tures are 
entral to what follows in this paper; they arise from thefa
t that in the homotopy 
ategory of pointed spa
es, Sn+ for n � 1 is a
ogroup obje
t in the 
ategory of spa
es under S0. Note that if X is aspa
e then 
n+��X is naturally isomorphi
 to the homotopy �-algebraof the spa
e of all (not ne
essarily pointed) maps Sn ! X.If we have a morphism M ! N of �-modules, the ordinary kernelK is a �-module; the ne
essary total spa
e EK for the split sequen
eis the pull-ba
k of EM ! EN s � �. If M is a �-module, so is 
+M ;
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e of the split sequen
e is de�ned by the pull-ba
k squareE
+M ���! 
+EM??y ??y� s���! 
+� :Consequently, if M is a �-module, 
M is a � module: it is the kernelof 
n+M !M . It is easy to 
he
k that the �-module stru
ture on 
n�des
ribed above is the same as that obtained indu
tively by startingwith the given �-module stru
ture on 
� and making the identi�
ation
n� ' 
(
n�1�).4.14. Homotopy group modules. For n � 1, 
Sn is a 
ogroup obje
t inthe homotopy 
ategory of pointed simpli
ial sets, and there is a split
o�bration sequen
e(4.15) 
S0  ��! 
Sn+ �! 
Snof pointed simpli
ial sets, where (�)+ denotes adding a disjoint base-point. Tensoring this with ��U for U 2 � (4.7) gives the stru
turene
essary (4.12) to show that for any simpli
ial �-algebra A, �nA isabelian for n � 1 and is naturally a module over �0A.5. Relative 
onne
tivity of pushoutsIn this se
tion we give a partial 
al
ulation of the homotopy typeof the homotopy pushout of a diagram of simpli
ial �-algebras (5.1).This is along the lines of [21, 1.10, 3.6℄, but we work in more generalityand remove some simple 
onne
tivity hypotheses.To express the result we will introdu
e a slightly unorthodox notionof 
onne
tivity. If f : A ! B is a map of simpli
ial sets, the 
ellu-lar 
onne
tivity of f , denoted �(f) (or �(B;A) if f is understood), isthe greatest integer n su
h that f 
an be obtained up to weak equiv-alen
e by taking A (or a �brant representative) and atta
hing 
ells ofdimension n and above. If f is a weak equivalen
e, then �(f) = 1.More pre
isely, �(f) = n if and only if all of the homotopy �bres of fare (n � 2)-
onne
ted, and at least one of the homotopy �bres is not(n � 1)-
onne
ted. The numbers here are potentially 
onfusing. Onerough way to remember them is to keep in mind that if A and B are1-
onne
ted and A is a sub
omplex of B, then �(B;A) is the lowestdimension in whi
h B=A has nontrivial homology (or homotopy).If f : A ! B is a map of simpli
ial �-algebras or of graded sim-pli
ial sets, we let �(B;A) denote the minimum value of the numbers�(Bn; An), n � 1. In the statement of the following proposition the



MODULI PROBLEM 19symbol [h denotes homotopy pushout in the 
ategory of graded sim-pli
ial sets, while �h is homotopy pushout in the 
ategory of simpli
ial�-algebras.5.1. Proposition. Suppose that B  A ! C is a two-sour
e of sim-pli
ial �-algebras. Then�(B �hA C;B [hA C) � �(B;A) + �(C;A) :We will dedu
e 5.1 from some very general observations. A �nitegraded set is a graded set whi
h is �nite in every gradation and emptyin all but a �nite number of gradations. Consider a fun
tor F from the
ategory of �nite graded sets to the 
ategory of graded simpli
ial sets.There is a standard way to prolong F to a fun
tor on the 
ategory ofall graded sets by setting(5.2) F (T ) = 
olimS�T F (S) ;where the 
olimit is taken over the 
ategory of �nite graded subsets ofT . The fun
tor F 
an be further prolonged to a fun
tor on the 
ategoryof graded simpli
ial sets by setting(5.3) F (X) = diag(n 7! F (X[n℄) :Here diag is the diagonal or realization fun
tor from the 
ategory ofbisimpli
ial sets to the 
ategory of simpli
ial sets [13, IV.1℄. The argu-ment of diag in the above formula is a graded bisimpli
ial set, but thediagonal is to be taken gradation by gradation. In ea
h of the followingstatements the fun
tor F involved is prolonged like this to a fun
toron the 
ategory of graded simpli
ial sets.5.4. Proposition. Any fun
tor F from �nite graded sets to gradedsimpli
ial sets respe
ts 
ellular 
onne
tivity, in the sense that for anymap X ! Y of graded simpli
ial sets there is an inequality�(F (Y ); F (X)) � �(Y;X) :5.5. Proposition. Any fun
tor F from �nite graded sets to gradedsimpli
ial sets preserves homotopy pushouts in the stable range, in thesense that for any two-sour
e Y  X ! Z of graded simpli
ial setsthere is an inequality� �F (Y [hX Z); F (Y ) [hF (X) F (Z)� � �(Y;X) + �(Z;X) :We also need the following lemma, whi
h 
an be proved by the samesort of gluing argument used in the proof of [13, IV.1.7℄.5.6. Lemma. Suppose that X ! Y is a map of bisimpli
ial sets, andthat n is an integer su
h that �(Y [i℄; X[i℄) � n for all i � 0. Then�(diag(Y ); diag(X)) � n.



20 BLANC, DWYER, AND GOERSSProof of 5.1. This is similar to the se
ond part of the proof of [21, 3.6℄.First, some ba
kground. Let F denote the free fun
tor from gradedsets to �-algebras, prolonged degreewise to be a fun
tor from gradedsimpli
ial sets to simpli
ial �-algebras. For any simpli
ial �-algebraD there is a bar resolution B(D) [21, 3.2℄; this is a bisimpli
ial �-algebra, i.e. a simpli
ial obje
t in the 
ategory simpli
ial �-algebras,with B(D)[n℄ = F n+1(D). Let �D = diag(B(D)). By [21, 3.2℄, �Dis a 
o�brant simpli
ial �-algebra; more generally, if D ! D0 is amap of simpli
ial �-algebras whi
h is an inje
tion of underlying gradedsimpli
ial sets, then the maps B(D)[n℄ ! B(D0)[n℄ and the diagonalmap �D! �D0 are both 
o�brations. There is a natural weak equivalen
e�D! D.Now for the proof. By adjusting the obje
ts up to weak equivalen
e,we 
an assume that the maps A ! B and A ! C are 
o�brations ofsimpli
ial �-algebras and hen
e inje
tions on underlying graded simpli-
ial sets. The simpli
ial �-algebra �A is 
o�brant and the indu
ed maps�A! �B and �A! �C are 
o�brations; hen
e there are weak equivalen
es(5.7) B �hA C � �B � �A �C = diag �B(B) �B(A) B(C)�B [hA C � �B [h�A �C = diag �B(B) [B(A) B(C)� :Let U = B(A), V = B(B), W = B(C). By 5.4 and indu
tion on n,there are inequalities�(V [n℄; U [n℄) = �(F n+1(B); F n+1(A)) � �(B;A)�(W [n℄; U [n℄) = �(F n+1(C); F n+1(A)) � �(C;A)and hen
e by 5.5 inequalities� ((V �U W )[n℄; (V [U W )[n℄) � �(B;A) + �(C;A) :Note in this 
onne
tion that be
ause of the fa
t that F (as a left ad-joint) preserves 
olimits, there is a natural isomorphism (V �UW )[n℄ 'F ((V [U W )[n� 1℄). The result follows from 5.6 and 5.7. �For the sake of 
larity we will prove 5.5 and 5.4 in the ungraded
ase (i.e. with the word \graded" deleted from the statements); themodi�
ations ne
essary to pass to the graded 
ase are notational.Suppose that D be a small 
ategory and that F and G are respe
-tively 
ovariant and 
ontravariant fun
tors from D to simpli
ial sets.We denote the 
oend [16, IX.6℄ of the bifun
tor G�F by G�DF . Thisis the 
oequalizer of a more or less evident pair of mapsad!d0G(d0)� F (d)�ad G(d)� F (d)
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oprodu
t in the range is indexed by the obje
ts in D andthe 
oprodu
t in the domain by the arrows. This 
oequalizer diagramis the low degree part of the bisimpli
ial set B(F;D; G) (
f. [14, x3℄)with(5.8) B(F;D; G)[k℄ = ad0!���!dkG(dk)� F (d0) ;where the 
oprodu
t is indexed by the k-simpli
es of the nerve of D.We will denote the diagonal of this bisimpli
ial set by G�hD F and 
allit the homotopy 
oend of the bifun
tor G � F . There is an obviousmap(5.9) G�hD F ! G�D F:Let F be the 
ategory of �nite sets. Suppose that F is a fun
tor from�nite sets to simpli
ial sets, prolonged as in 5.2 and 5.3 to a fun
tor ofsimpli
ial sets. As remarked in [21, 1.1℄, this prolonged fun
tor 
an beexpressed by the formula F (X) = X� �F Fwhere X is a simpli
ial set and X� is the 
ontravariant fun
tor on Fwhi
h sends S to XS. The observation we begin with is that this 
oendis a
tually equivalent to the 
orresponding homotopy 
oend.5.10. Proposition. Suppose that F is a fun
tor from �nite sets tosimpli
ial sets. Then for any simpli
ial set X the natural mapX� �hF F ! X� �F F = F (X)is a weak equivalen
e.Proof. We 
onsider the map 5.9 for an arbitrary 
ontravariant fun
torG from F to sets or simpli
ial sets. It is easy to see that the mapis a weak equivalen
e if G is representable, that is, if G has the formHom({; T ) for some obje
t T of F ; in this 
ase both domain and rangeare equivalent to F (T ) [14, 3.1(5)℄. Sin
e �ltered 
olimits preserveweak equivalen
es [3, XII.3.6℄ and all of the 
onstru
tions in question
ommute with �ltered 
olimits, the map 5.9 is 
learly an equivalen
e ifG is a �ltered 
olimit of representable fun
tors. It now follows from adiagonal argument that 5.9 is a weak equivalen
e if ea
h of the fun
torsG({)[n℄ is a �ltered 
olimit of representable fun
tor; to obtain this use[13, IV.1.7℄ and the fa
t that 5.9 is the diagonal of a map of bisimpli
ialsets whi
h in degree n 
ontains the map G({)[n℄�hF F ! G({)[n℄�F F .But observe that any set is the �ltered 
olimit of its �nite subsets, sothat the fun
tor on F sending S to X[n℄S = HomS(S;X[n℄) is indeeda �ltered 
olimit of representable fun
tors. �
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ise in elementary homotopy theory.5.11. Lemma. Suppose that Y  X ! Z is a two-sour
e of simpli-
ial sets in whi
h the maps are inje
tive (so that the homotopy pushoutagrees with the ordinary pushout). Then for any n � 0 there are in-equalities �(Y n; Xn) � �(Y;X)�((Y [X Z)n; Y n [Xn Zn) � �(Y;X) + �(Z;X)Proof of 5.4 (ungraded 
ase). By 5.10, �(F (Y ); F (X)) is the same asthe 
ellular 
onne
tivity of the map X� �hF F ! Y � �hF F . This map
an be realized as the diagonal of a map of bisimpli
ial sets (5.8) whi
hin degree k is 
onstru
ted as a disjoint union of maps of the formXS � F (T ) ! Y S � F (T ). It follows from the �rst inequality of 5.11that �(Y S�F (T ); XS�F (T )) � �(Y;X). Sin
e taking disjoint unionsdoes not lower 
ellular 
onne
tivity, the desired result follows from5.6. �Proof of 5.5 (ungraded 
ase). We 
an assume that X ! Y and X ! Zare inje
tions, so that the pushout of the two-sour
e is the same as thehomotopy pushout. By 5.10, ��F (Y [hX Z); F (Y ) [hF (X) F (Z)� is thesame as the 
ellular 
onne
tivity of the map(Y � �hF F ) [X��hFF (Z� �hF F )! (Y [X Z)� �hF F :By de�nition (5.8) and inspe
tion, this map is realized as the diagonalof a map of bisimpli
ial sets whi
h in degree k is 
onstru
ted as adisjoint union of maps of the form(Y S [XS ZS)� F (T )! (Y [X Z)S � F (T ) :It follows from the se
ond inequality of 5.11 that the 
ellular 
onne
-tivity of this last map is at least �(Y;X)+�(Z;X), and as in the proofabove the desired result is now a 
onsequen
e of 5.6. �6. Postnikov systems for simpli
ial �-algebrasIn this se
tion we study Postnikov systems for simpli
ial �-algebrasin a way whi
h is largely parallel to the study of Postnikov systemsfor topologi
al spa
es in x3. In the 
ourse of this we develop a notionof 
ohomology for simpli
ial �-algebras. This di�ers from the notionof 
ohomology for �-algebras 
onsidered by the se
ond author andKan in [8℄ in that more general 
oeÆ
ients are allowed. In [8℄ the
oeÆ
ients are \strongly abelian" �-algebras in whi
h both Whiteheadprodu
ts and 
ompositions are trivial; here we a

ept arbitrary abelian
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h the Whitehead produ
ts vanish but 
ompositionsmay be nontrivial.Postnikov systems. Suppose that X is a simpli
ial �-algebra. Atta
h-ing an (n+ 2)-
ell 
Dn+2 �
��Sk to X via a map f : 
Sn+1 �
��Sk ! Xhas no e�e
t on �iX for i � n, and 
learly kills of the 
lass repre-sented by f (4.7) in (�n+1X)k. Now atta
h 
ells of dimension (n + 2)and greater to X by all possible atta
hing maps to obtain an in
lusionX � X1, repeat the pro
ess to obtain X1 � X2, repeat again, et
., andlet PnX = [jXj. There is a map X ! PnX whi
h indu
es isomor-phisms on �i for i � n, and �iPnX ' 0 for i > n. The 
onstru
tionof PnX is fun
torial in X, and there is a natural map PnX ! Pn�1Xwhi
h respe
ts the in
lusions of X in these two simpli
ial �-algebras.6.1. Eilenberg-Ma
 Lane obje
ts. If � is a �-algebra, we say that a sim-pli
ial �-algebra X is of type K� if �0X ' � and the higher homotopyof X is trivial. Suppose that M is a �-module. We say that a mapX ! Y is of type B�(M;n) n � 1, if X is of type K�, �0Y ' �,�nY 'M (as a �-module), all other homotopy of Y is trivial, and themap X ! Y gives an isomorphism on �0. Sometimes we will say forshort that the target Y is of type K�(M;n).The di�eren
e 
onstru
tion. Suppose that f : Y ! X is a map ofsimpli
ial �-algebras. Consider the pushout C of the diagram X 0  Y 0 ! (P0X)0 obtained by using some fun
torial 
onstru
tion to repla
eY by a 
o�brant obje
t and the two maps Y ! X and Y ! P0X by
o�brations. There is a 
ommutative diagram(6.2) Y � ��� Y 0 ���! (P0X)0f??y ??y ??y�n(f)X � ��� X 0 ���! Pn+1Cin whi
h the verti
al map on the right is �n(f). The sour
e (P0X)0 of�n(f) is �sn(f), and the target Pn+1C is �tn(f).6.3. Proposition. Suppose that f : Y ! X is a map of simpli
ial�-algebras whi
h is an isomorphism on �0 and whose homotopy �breF is (n � 1)-
onne
ted, n � 1. Let M = �nF . Then M is naturally a�-module for � = �0X and �n(f) is a map of type K�(M;n + 1). If�iF vanishes ex
ept for i = n, then the right-hand square in 6.2 is ahomotopy �bre square.We need a modi�ed form of 3.3. A map f : A ! B of 
onne
tedsimpli
ial sets is simple if its homotopy �bre is 
onne
ted and �1A a
tstrivially on the homotopy groups of the homotopy �bre.



24 BLANC, DWYER, AND GOERSS6.4. Proposition. Let f : A! B be a simple map of 
onne
ted simpli-
ial sets with homotopy �bre F . Assume that �iF is trivial for i < n,n � 1, and let M = �nF . Let � be the mapping 
one of f , and Pn+1�its (n + 1)'st Postnikov stage in the 
ategory of simpli
ial sets. ThenPn+1� is a simpli
ial set of type K(M;n + 1). If the homotopy of Fvanishes ex
ept in dimension n, then the sequen
e A! B ! Pn+1� isa homotopy �bre sequen
e.Proof of 6.3. This follows from 5.1 and 6.4. Clearly �((P0X)0; Y 0) � 2and �(X 0; Y 0) � 2. Let � = (P0X)0 [Y 0X 0; this is a homotopy pushoutin the 
ategory of graded simpli
ial sets. By 5.1, �(C;�) � 2 (here Cis from 6.2). It is easy to see that up to weak equivalen
e applyingPn+1 to a simpli
ial �-algebra 
ommutes with taking the underlyinggraded simpli
ial set. But �0� ' �0C ' �, and it follows from 6.4 that�iPn+1C vanishes ex
ept for the fa
t that it is isomorphi
 to � if i = 0and to M if i = n + 1. Thus M is naturally a �-module (4.14) andPn+1C is of type K�(M;n+1). (This last dedu
tion involves applying6.4 
omponentwise to a map Y 0 ! X 0 of graded dis
onne
ted simpli
ialsets whi
h is an isomorphism on �0; note that P0X is homotopi
allydis
rete, so that � is essentially obtained by taking 
omponentwisemapping 
ones of Y 0 ! X 0. The map Y 0 ! X 0 is 
omponentwisesimple be
ause Y 0 and X 0, as simpli
ial �-algebras, are a
tually gradedsimpli
ial groups.) The �nal statement again follows from 6.4, sin
etaking the homotopy pullba
k of a two-sink of simpli
ial �-algebras
ommutes up to weak equivalen
e with passing to underlying gradedsimpli
ial sets. �Existen
e and uniqueness of Eilenberg-Ma
 Lane obje
ts. The �-algebra�, 
onsidered as a 
onstant simpli
ial obje
t, is of type K�. Moreover,if X is any simpli
ial �-algebra of type K� then the natural map fromX to its �-algebra of 
omponents gives a weak equivalen
e X � �. Itis easy to dedu
e from this that the moduli spa
e of all simpli
ial �-algebra's of type K� is 
onne
ted and weakly equivalent to �WAut(�).We will denote a generi
 simpli
ial �-algebra of this type by K�.6.5. Proposition. Let � be a �-algebra and M a �-module. Then forea
h n � 1 the moduli spa
e of all maps of type K�(M;n) is weaklyequivalent to �WAut(�;M).6.6. Remark. In parti
ular, the moduli spa
e is nonempty and 
on-ne
ted, so obje
ts or maps of type K�(M;n) are unique up to weakequivalen
e. We will denote a generi
 simpli
ial �-algebra of this typeby K�(M;n).Proof. LetMn be the moduli spa
e of maps of type K�(M;n). As inthe proof of 3.4, the di�eren
e 
onstru
tion 6.3 gives weak equivalen
es



MODULI PROBLEM 25Mn !Mn+1, n � 1. LetM0 be the moduli spa
eM(K�oM ��!K�),i.e, the moduli spa
e of maps U ! V of simpli
ial �-algebras with ase
tion V ! U su
h that U and V have trivial higher homotopy and on�0 the map with its se
tion gives a diagram of �-algebras isomorphi
to � o M ��!�. It is easy to see that M0 is weakly equivalent to�WAut(�;M). The fun
tor whi
h assigns to a map U ! V of typeK�(M;n) the homotopy pullba
k of U ! V  U gives a mapM1 !M0, but in 
ontrast to the situation in the proof of 3.4, the di�eren
e
onstru
tion does not give an inverse. Instead we pro
eed as follows.Given U ��!V of type K�oM ��!K�, write �0 = �0V , �0 oM 0 = �0Uand form the map �0 ! �0o �WM 0 of type K�(M; 1). This 
onstru
tionis fun
torial and gives a map M0 ! M1. The 
omposite M0 !M1 ! M0 is 
learly an equivalen
e be
ause the underlying fun
toris 
onne
ted to the identity by natural transformations. The same istrue of the other 
omposite; the key observation is this. Suppose thatU ! V is a map of type K�(M; 1), whi
h we 
an assume to be a�bration, and let U�V be the simpli
ial obje
t whi
h in simpli
ial degreen 
ontains the n-fold �bre power of U over V . The diagonal of thisbisimpli
ial �-algebra maps to V by a weak equivalen
e, but it alsomaps to the simpli
ial �-algebra obtained by applying �0 degreewise;this simpli
ial �-algebra is exa
tly �0V o �W�1V . �6.7. Cohomology of �-algebras. We follow 3.6. Consider an Eilenberg-Ma
 Lane obje
t K�(M;n), n � 1. Then P0K�(M;n) � K�, andso we write the map from this obje
t to its zeroth Postnikov stage asK�(M;n) ! K�. Given another simpli
ial �-algebra X over K�, wede�ne Hn�(X;M) byHn�(X;M) = [X;K�(M;n)℄K�where the symbol on the right denotes derived homotopy 
lasses ofmaps in the 
ategory of simpli
ial �-algebras over K�. Let Hn�(X;M)denote MaphK�(X;K�(M;n)), so that the set of 
omponents of thisspa
e is Hn�(X;M). As in 3.6, there are isomorphisms�iHn�(X;M) ' (Hn�i� (X;M) 0 � i � n� 10 i > n :We use this formula to de�ne H0�(X;M).Classi�
ation of Postnikov stages. Suppose that X is a simpli
ial �-algebra with X � Pn�1X, n � 1 and that M is a module over �0X.If Y is a simpli
ial �-algebra, we write Y � X + (M;n) if PnY � Y ,Pn�1Y � X, and �nY is isomorphi
 toM as a module over �0Y , wherethe isomorphism is realized by some isomorphism �0X ! �0Y . We



26 BLANC, DWYER, AND GOERSSwriteM(X + (M;n)) for the moduli spa
e of all simpli
ial �-algebrasof type X + (M;n).The following result is proved in the same way as 3.7, with 6.3 re-pla
ing 3.2 in the argument.6.8. Theorem. Suppose that X is a simpli
ial �-algebra with X �Pn�1X, n � 1. Let � = �0X, and let M be a module over �. Thenthere is an natural weak equivalen
eM(X + (M;n)) �M(X # K�(M;n + 1)" K�) :6.9. Remark. The arrows # on the right indi
ate maps whi
h indu
eisomorphisms on appropriate homotopy groups (2.3); in this 
ase it isjust isomorphisms on �0. The remarks at the beginning of 3.9 
an berepeated almost verbatim here.7. Simpli
ial spa
es and the spiral exa
t sequen
eIn [10℄ and [11℄, Kan and Stover and the se
ond author of this pa-per developed a model 
ategory stru
ture on the 
ategory of simpli
ialpointed topologi
al spa
es whi
h is adapted to making spheri
al res-olutions of ordinary spa
es that mirror resolutions of their homotopy�-algebras. In this se
tion we spell out what we need from these pa-pers and extend the theory in some ways (7.13). All of our topologi
alspa
es have basepoints; we sometimes take this for granted and referto \spa
es" instead of to \pointed spa
es".7.1. The Reedy model stru
ture. To begin with, the 
ategory ofsimpli
ial spa
es a
quires a Reedy model 
ategory stru
ture [20℄ [10,2.4℄ [15, 5.2.5℄ from the usual model 
ategory stru
ture (x3) on the
ategory of pointed spa
es. A map X ! Y of simpli
ial spa
es is aReedy weak equivalen
e if X[n℄ ! Y [n℄ is a weak equivalen
e for alln � 0, a Reedy �bration if X[0℄! Y [0℄ is a �bration and, for all n � 1,the map X[n℄! Y [n℄�MnY MnXis a �bration. Here MnX is the nth mat
hing spa
e:MnX = lim�:[m℄![n℄X[m℄where � runs over inje
tions in the ordinal number 
ategory withm < n. Co�brations are de�ned symmetri
ally: X ! Y is a Reedy
o�bration if X[0℄! Y [0℄ is a 
o�bration and for n � 1,X[n℄ _LnX LnY ! Y [n℄
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o�bration. Here LnX is the lat
hing spa
eLnX = 
olim :[n℄![m℄X[m℄where  runs over the surje
tions in the ordinal number 
ategory withm < n. This Reedy model stru
ture has the desirable property thatthe geometri
 realization fun
tor X 7! jXj preserves weak equivalen
esbetween 
o�brant obje
ts [11, x4℄.7.2. The E2 model stru
ture. The E2 model 
ategory stru
ture isbuilt from the Reedy model 
ategory stru
ture. If X is a simpli
ialpointed spa
e, we let ��X denote the simpli
ial �-algebra obtained byapplying the fun
tor �� degreewise to X.7.3. De�nition. De�ne a morphism f : X ! Y of simpli
ial pointedspa
es to be(1) an E2-equivalen
e if ��(f) is a weak equivalen
e of simpli
ial�-algebras (4.4);(2) an E2-�bration, if f is a Reedy �bration and ��(f) is a �brationof simpli
ial �-algebras (4.4); and(3) an E2-
o�bration if f is a retra
t of an S1-free map; here fis S1-free if there is a CW 
omplex Zn � Y [n℄ whi
h has thehomotopy type of a wedge of spheres Sk, k � 1, and(X[n℄ _LnX LnY ) _ Zn ! Y [n℄is an a
y
li
 
o�bration.The 
ategory of simpli
ial spa
es has a standard simpli
ial stru
turein the sense of Quillen [19, xII.2℄; if K is a simpli
ial set and X issimpli
ial spa
e, then K 
X is the simpli
ial spa
e with(K 
X)[n℄ = _x2K[n℄X[n℄ :The Reedy model 
ategory stru
ture on simpli
ial spa
es does not ex-tend to a simpli
ial model 
ategory stru
ture with respe
t to this sim-pli
ial stru
ture: if X ! Y is a Reedy 
o�bration and K ! L is a
o�bration of simpli
ial sets, thenX 
 L _X
K Y 
K ! Y 
 Lis a Reedy 
o�bration whi
h is Reedy a
y
li
 ifX ! Y is a Reedy weakequivalen
e, but pretty evidently need not be a Reedy weak equivalen
eif K ! L is a weak equivalen
e of simpli
ial sets. The main result of[10℄ is:7.4. Proposition. With notions of E2-equivalen
e, E2-�bration, andE2-
o�bration just given, and with the simpli
ial stru
ture des
ribed
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ategory of simpli
ial spa
es be
omes a 
o�brantly generatedsimpli
ial model 
ategory.From now on, when we refer to 
o�brations, �brations, and weakequivalen
es between simpli
ial spa
es, we will unless otherwise spe
i-�ed be referring to the E2-model stru
ture.7.5. Remark. Note that an obje
t is E2-�brant if and only if it is Reedy�brant. If X is E2-
o�brant, it is also Reedy 
o�brant, although notvi
e versa (
f 7.8).7.6. The fun
tor �� preserves homotopy pushouts. If f : X ! Y isan E2-
o�bration, then ��(f) is a 
o�bration of simpli
ial �-algebras.Suppose that X  Y ! Z is a two-sour
e of simpli
ial pointed spa
esin whi
h the obje
ts are E2-
o�brant and the maps are E2-
o�brations,and let C be the pushout of the square. Then ��C is the pushout of��X  ��Y ! ��Z (in ea
h simpli
ial degree, the pushout pro
essjust involves wedging on spheres). It follows that the fun
tor �� fromsimpli
ial spa
es to simpli
ial �-algebras preserves homotopy pushouts.7.7. The fun
tor �� often preserves homotopy �bres. Let f : X ! Ybe an E2-�bration with �bre F . If ��(f) is surje
tive, then 
learly the�bre of ��(f) is exa
tly ��F . By 4.4 and the de�nition of E2-�bration,��(f) is surje
tive if and only if the map �0��X ! �0��Y is surje
tive.It follows that for su
h maps f , the fun
tor �� preserves (homotopy)�bres.7.8. Cells. If X is a simpli
ial spa
e and K is a simpli
ial set withbasepoint �, we de�ne K �
X to be the quotient (K 
 X)=(� 
 X).The bigraded spheres Si;j are de�ned by Si;j = 
Si �
Sj, and the 
orre-sponding disks by Di;j = 
Di �
Sj. Say that a simpli
ial spa
e is 
ellularif it is 
onstru
ted from the trivial simpli
ial spa
e by atta
hing 
ells(Di+1;j; Si;j), i � 0, j � 1. Then any 
ellular simpli
ial spa
e is E2-
o�brant, any simpli
ial spa
e has a fun
torial 
ellular approximation,and any 
o�brant simpli
ial spa
e is a retra
t of a 
ellular one.7.9. Homotopy groups and the spiral exa
t sequen
e. If X is aReedy 
o�brant simpli
ial spa
e, there is a �rst quadrant (homology)spe
tral sequen
e 
onverging to ��jXj with E2i;j = �i�jX [2℄ [11, 8.3℄.This explains the term \E2 model 
ategory stru
ture": a map X ! Yof simpli
ial spa
es is an E2 weak equivalen
e if and only if it indu
esan isomorphism on these E2-pages. We will write �̂iX = �i��X forthe i'th 
olumn of this E2-term. By 4.5 and 4.14, �̂iX is a �-algebrawhi
h for i � 1 is naturally a module over �̂0X. By de�nition, a mapX ! Y is an E2 weak equivalen
e if and only if it indu
es isomorphisms�̂�X ' �̂�Y .
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ellular simpli
ial spa
e (7.8) suggests another notionof homotopy; if X is a simpli
ial spa
e we de�ne �i;jX, i � 0, j � 1 by�i;jX = �iMaph(Sj; X) ' [Si;j; X℄where the symbol on the right denotes derived homotopy 
lasses ofmaps in the E2 model 
ategory. These are the bigraded homotopygroups of X. Let �̂iX = �i;�X. The obje
ts �̂iX (i � 0) have formalproperties very similar to those of �̂iX.7.10. Proposition. Suppose that X is a simpli
ial spa
e. Then �̂iXis a �-algebra, whi
h for i � 1 is a module over �̂0X. A map X !Y of simpli
ial spa
es is a weak equivalen
e if and only if it indu
esisomorphisms �̂iX ! �̂iY , i � 0.Proof. It is easy to see that �̂iX is exhibited as a �-algebra by thefun
tor whi
h sends U 2 � to �iMaph(U;X) = [
Si �
U;X℄. Themodule stru
ture arises (4.12) from the fa
t that for i � 1, 
Si+ is a
ogroup obje
t in the homotopy 
ategory of simpli
ial sets under 
S0with 
Si+= 
S0 ' 
Si. The last statement is from [11, 5.3℄. �The obje
ts �̂iX and �̂iX are related by a long exa
t sequen
e, 
alledthe spiral exa
t sequen
e.7.11. Proposition. [11, 7.2, 8.1℄ Suppose that X is a simpli
ial spa
e.Then there is a natural isomorphism �̂0X ' �̂0X of �-algebras, as wellas a long exa
t sequen
e of �-algebras� � � ! �̂n+1X ! 
�̂n�1X ! �̂nX ! �̂nX ! � � � ! �̂1X ! �̂1X ! 0 :7.12. Stru
ture of the spiral exa
t sequen
e. All of the 
on-stituents of the spiral exa
t sequen
e are naturally modules over �̂0X:�̂nX by 7.10, 
�̂n�1X by 7.10 and 4.13, and �̂nX by 4.14 and the iso-morphism �̂0X ' �̂0X given by 7.11. In the rest of this se
tion we willprove the following proposition.7.13. Proposition. With respe
t to the module stru
tures des
ribedabove, the spiral exa
t sequen
e 7.11 is an exa
t sequen
e of �̂0X-modules.This will be proved in stages.7.14. Proposition. The homomorphisms �̂iX ! �̂iX from 7.11 aremaps of modules over �̂0X.Proof. By de�nition [11℄ these homomorphisms are obtained from theisomorphisms ��(
Si �
U) ' 
Si �
��U , U 2 �; these give maps(�̂iX)(U) = [
Si �
U;X℄! [
Si �
��U; ��X℄ = (�̂iX)(U) :For i = 0 we obtain the isomorphism �̂0X ' �̂0X. Let Q be thesplit 
o�bration sequen
e from 4.15. Then the 
orresponding maps
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U;X℄! [Q�
��U; ��X℄ provide morphisms of split sequen
es (4.10)whi
h show that �̂iX ! �̂iX is a map of �̂0X-modules.To go any further, we need more information about how to repre-sent the 
onstituents of the spiral exa
t sequen
e in the E2 homotopy
ategory. This information is in [11, 7.4℄, but we have to examine it insome detail be
ause we need a relative version.IfX is a spa
e, the pointed 
ylinder IX is the pushout of the diagram�  ��I ! X�I, where I = [0; 1℄; the 
one CX is then (IX)=(X�1).There is a natural in
lusion X ! CX given by x 7! (x; 0), and thequotient CX=X is the suspension �X.If X is a simpli
ial spa
e, we write D̂nX = 
Dn �
X and �̂nX =
Sn �
X. It is easy to see [10, 4.1℄ that D̂nX is always E2-
ontra
tible,in the sense that it is E2 weakly equivalent to a trivial simpli
ial spa
ewith one point in ea
h simpli
ial degree.The representing obje
ts. Suppose that U 2 �, and that n � 2 is aninteger. We wish to 
onstru
t a simpli
ial spa
e ~�n�2�U by 
onsideringthe following diagram�̂n�2U ���! �̂n�2CU ���! �̂n�2�U=??y �??y �??y�̂n�2U ���! D̂n�1CU ���! ~�n�2�U :The top row is a sequen
e of simpli
ial spa
es whi
h in ea
h simpli
ialdegree gives a 
o�bration sequen
e of spa
es, and ~�n�2�U is de�ned sothat the same is true of the bottom row. (These are not E2-
o�brationsequen
es; for instan
e, the left hand horizontal maps do not indu
einje
tions on ��. In spite of the notation, ~�n�2�U is a fun
tor of U , notof �U .) It is 
lear that the verti
al arrows are Reedy equivalen
es, andtherefore E2-equivalen
es; in e�e
t, ~�n�2�U is obtained from �̂n�2�Uby wedging on some number of 
opies of CU in ea
h simpli
ial degree.The following is 
lear from the de�nitions (4.13).7.15. Proposition. If X is a simpli
ial spa
e, the �-algebra 
�̂n�2Xis represented by the fun
torU 7! [~�n�2�U;X℄ ' [�̂n�2�U;X℄ :Noti
e that there is a natural map� : �̂n�1U = D̂n�1U=�̂n�2U ! D̂n�1CU=�̂n�2U = ~�n�2�U :
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onstru
t a simpli
ial spa
e  nU by 
onsidering the followingdiagram(7.16) �̂n�1U ����! D̂nU ���! �̂nU�??y ??y ??y~�n�2�U 
���!  nU ���! �̂nUThe obje
t  nU is de�ned so that the left hand square is a pushoutsquare. Sin
e the map � is an E2-
o�bration and both of the obje
tson the left are E2-
o�brant, the rows of this diagram are E2-
o�bresequen
es.7.17. Proposition. [11, 7.5℄ For any simpli
ial spa
e X and integern � 2, the �-algebra �̂nX is given by the fun
torU 7! [ nU;X℄ :7.18. Remark. The fun
tor �̂nX is representable by U 7!  nU for n � 2,and by U 7! �̂0U for n = 0. It does not appear that �̂1X is repre-sentable in a similar way.Now we 
an prove 7.13. The terminal homomorphism �̂1X ! �̂1Xis a �̂0X-module map by 7.14; this proposition also handles the othermaps �̂nX ! �̂nX. Suppose n � 2. A

ording to [11℄, the homomor-phism �̂nX ! 
�̂n�2X is indu
ed (via 7.15) by the map 
 in 7.16,and the homomorphism 
�̂n�2X ! �̂n�1X is similarly indu
ed by �.Now let F be one of the fun
tors of U whi
h appears in 7.16, or thefun
tor given by U 7! �̂n�2�U . Let C(F ) be the pointed simpli
ialspa
e F (S0); true, S0 is not an obje
t of �, but the 
onstru
tion ofF (S0) still makes sense. For ea
h one of these fun
tors F it is 
learthat there are isomorphismsF (U) ' C(F ) ^ Uwhere the obje
t on the right is obtained by taking the simpli
ial spa
eC(F ) and smashing it in ea
h degree with U . To ea
h F there isnaturally asso
iated a split diagramS0  ��! C(F )+ �! C(F )where C(F )+ is obtained by adding a disjoint basepoint in ea
h degreeto C(F ). Smashing these diagrams with U 2 � and mapping into Xprodu
es the maps of split sequen
es (4.10) required to show that thehomomorphisms in question are maps of modules over �̂0X (
f. 4.12).
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ial spa
esIn this se
tion we set up a theory of Postnikov systems for simpli
ialspa
es, whi
h is parallel to the Postnikov theories in x3 and x6. Thenew ingredient is 8.15, whi
h essentially gives a fun
torial relationshipbetween geometri
 k-invariants for simpli
ial spa
es and algebrai
 k-invariants for the asso
iated simpli
ial �-algebras.Postnikov systems. Suppose that X is a simpli
ial spa
e. Atta
hing a
ell (see 7.8) (Dn+2;k; Sn+1;k) of horizontal dimension (n+2) to X via amap f : Sn+1;k ! X has no e�e
t on �̂iX for i � n, and 
learly kills o�the 
lass represented by f in �n+1;kX. Now atta
h 
ells of horizontaldimension (n + 2) and greater to X by all possible atta
hing mapsand perform a fun
torial �brant repla
ement to obtain an in
lusionX � X1, repeat the pro
ess to obtain X1 � X2, repeat again, et
.,and let P̂nX = [jXj. (We use the notation P̂nX to distinguish this
onstru
tion from PnX, whi
h is the result of applying the topologi
alPostnikov 
onstru
tion Pn in ea
h dimension to the simpli
ial spa
e X.The \fun
torial �brant repla
ement" involves taking an obje
t Z and�nding a fun
torial a
y
li
 
o�bration Z ! Z 0 su
h that Z 0 is �brant;it is ne
essary here be
ause in the E2 model 
ategory not every obje
tis �brant.) There is a map X ! P̂nX whi
h indu
es isomorphisms on�̂i for i � n, and �̂iP̂nX is trivial for i > n. The 
onstru
tion of P̂nXis fun
torial in X, and there is a natural map P̂nX ! P̂n�1X whi
hrespe
ts the in
lusions of X in these two simpli
ial spa
es.8.1. Eilenberg-Ma
 Lane obje
ts. If � is a �-algebra, we say that asimpli
ial spa
e X is of type B� if �̂0X ' � and �̂iX is trivial fori > 0. Suppose that M is a �-module. We say that a map X ! Y isof type B�(M;n) n � 1, if X is of type B�, �̂0Y ' �, �̂nY ' M (asa �-module), all other homotopy of Y is trivial, and the map X ! Ygives an isomorphism on �̂0. Sometimes we will say for short that thetarget Y is of type B�(M;n).8.2. Remark. Re
all that taking homotopy groups gives a fun
tor ��from simpli
ial spa
es to simpli
ial �-algebras. Let f : X ! Y be amap of type B�(M;n). It turns out that ��(f) is not in general a mapof type K�(M;n). In fa
t, a

ording to the spiral exa
t sequen
e, thereare isomorphisms�i��X ' 8><>:� i = 0
� i = 20 otherwise �i��Y ' �i��X �8><>:M i = n
M i = n+ 20 otherwise :
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e 
onstru
tion. Suppose that f : Y ! X is a map ofsimpli
ial spa
es. Consider the pushout C of the diagram X 0  Y 0 !(P0X)0 obtained by using some fun
torial 
onstru
tion to repla
e Y byan E2-
o�brant spa
e and the two maps Y ! X and Y ! P0X byE2-
o�brations. There is a 
ommutative diagram(8.3) Y � ��� Y 0 ���! (P̂0X)0f??y ??y ??y�n(f)X � ��� X 0 ���! P̂n+1Cin whi
h the verti
al map on the right is denoted �n(f). The sour
e(P̂0X)0 of �n(f) is �sn(f), and the target P̂n+1C is �tn(f).8.4. Proposition. Suppose that f : Y ! X is a map of simpli
ial �-algebras whi
h is an isomorphism on �̂0 and whose homotopy �bre Fhas �̂iF trivial for i < n (n � 1). Let M = �̂nF . Then M is naturallya �-module for � = �̂0X and �n(f) is a map of type B�(M;n+1). If�̂iF vanishes ex
ept for i = n, then the right-hand square in 8.3 is ahomotopy �bre square.Proof. This is very mu
h along the lines of the proof of 6.3. LetF� � ��F be the homotopy �bre of ��Y 0 ! ��X 0. By the spiralexa
t sequen
e, �iF� = �̂iF is trivial for i < n and isomorphi
 to Mfor i = n. Diagram 8.3 gives a homotopy pushout diagram��Y 0 ���! ��(P̂0X)0??y ??y��X 0 ���! ��CLet F 0� be the homotopy �bre of the right-hand map. The te
hniques inthe proof of 6.3, whi
h involve using 5.1 to relate a homotopy pushout ofsimpli
ial �-algebras to the 
orresponding homotopy pushout of simpli-
ial sets, show that the map �iF� ! �iF 0� is an isomorphism for i � n.Let F 0 be the homotopy �bre of (P0X)0 ! C, so that F 0� = ��F 0.Again, the spiral exa
t sequen
e gives that �̂iF 0 is trivial for i < nand isomorphi
 to M for i = n. A homotopy exa
t sequen
e argumentshows that �n(f) is of type B�(M;n+ 1) for an appropriate a
tion of� on M . It is straightforward to 
he
k the homotopy pullba
k 
ondi-tion. �8.5. Mapping into Eilenberg-Ma
 Lane obje
ts. We wish to study spa
esof maps from simpli
ial spa
es into Eilenberg-Ma
 Lane obje
ts. Con-sider an Eilenberg-Ma
 Lane map f : B� ! B�(M;n) with n > 1; we
an assume that the target is �brant. It follows from 6.3 that if n > 1



34 BLANC, DWYER, AND GOERSSthen �n�1(��f) is a map of type K�(M;n) (note that the di�eren
e
onstru
tion here is taken in the 
ategory of simpli
ial �-algebras).Assigning to a diagram X � � U ! B�(M;n) of simpli
ial spa
es theasso
iated diagram ��X � � ��U ! �tn(��f) � K�(M;n) gives a nat-ural map (
f. 2.7)(8.6) �n(X) :MfHom(X;B�(M;n))!MfHom(��X;K�(M;n)) :8.7. Proposition. The map �n(X) is a weak equivalen
e of simpli
ialsets for all simpli
ial spa
es X and all n � 2.8.8. Remark. By a slightly more elaborate 
onstru
tion, it is possibleto produ
e an equivalen
e for n = 1.Proof of 8.7. It is enough to 
he
k the 
ases in whi
h X is a sphereSi;j. The reason for this is that the domain of �n(X) is equivalentto Maph(X;B�(M;n)) and the range to Maph(��X;K�(M;n)) (2.7,2.5); sin
e the fun
tor �� takes E2-homotopy pushouts to homotopypushouts of simpli
ial �-algebras, it follows that the domain and rangeof �n(X) take homotopy pushouts (in X) to homotopy pullba
ks. Soif �n(X) is a weak equivalen
e for spheres, it is a weak equivalen
efor any simpli
ial spa
e Y whi
h 
an be 
onstru
ted from spheres bya �nite number of homotopy pushouts. To pass to arbitrary X, notethat any simpli
ial spa
e X is up to weak equivalen
e a �ltered 
olimitof su
h Y , and that both the domain and range of �n(X) take �ltered
olimits in X to homotopy limits of simpli
ial sets.So we restri
t attention to the bigraded spheres. Ea
h Si;j is a
ogroup obje
t in the E2-homotopy 
ategory of simpli
ial spa
es, while��Si;j is a 
ogroup obje
t in the 
ategory of simpli
ial �-algebras. It iseasy to 
he
k that �n(X) 
ommutes up to homotopy with the indu
edmultipli
ations on the spa
es involved. This means that in order toprove that �n(Si;j) is a weak equivalen
e it is enough to show that itindu
es an isomorphism on ordinary homotopy groups, in
luding �0; itis not ne
essary to 
he
k all possible basepoints.By inspe
tion, �0�n(Sn;j) is an isomorphism; both domain and rangeare isomorphi
 to Mj. This implies that �n(Sn;j) is a weak equiva-len
e, sin
e the higher homotopy groups of the domain (isomorphi
 to�n+k;jB�(M;n)) and of the range (isomorphi
 to (�n+kK�(M;n))j) aretrivial. Sin
e Si;j is the E2-suspension of Si�1;j, it follows as above that�n(Si;j) � 
�n(Si�1;j). By indu
tion and the fa
t that the domain andrange of �n(Si;j) are 
onne
ted for i > 0; i 6= n, it is easy to 
on
ludethat �n(Si;j) is a weak equivalen
e for i > 0, and that �k�n(S0;j) is anisomorphism for k > 0. But �0�n(S0;j) is a map �j ! �j, and it iseasy to see by inspe
tion that this is the identity. �
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e of Eilenberg-Ma
 Lane obje
ts. The easiest way to do thisseems to be with generators and relations. To 
onstru
t a simpli
ialspa
e of type B�, start with the wedge W = _j�1 _x2�j S0;j; it is 
learthat �̂0W is the free �-algebra on the underlying graded set of �. Nowatta
h a one-
ell for ea
h relation in some presentation of �, and applythe fun
tor P̂0 to obtain an obje
t W 0 of type B�. Sin
e �̂0W 0 ' �,there is a map � : ��W 0 ! K� whi
h is an isomorphism on �0. To
onstru
t a map of type B�(M;n), n � 1, start withW 0 and add on thewedge _i�1_x2MiSn;i to obtain Z, so that ��Z is the 
oprodu
t of ��W 0with �i�1 �x2Mi 
Sn �
��Si. . There is a retra
tion Z ! W 0 obtainedby mapping the wedge fa
tors trivially; let F be the homotopy �bre.Consider the diagram��F ���! ��Z ���! ��W 0
??y �??y �??yK0(M;n) ���! K�(M;n) ���! K�in whi
h both rows are �bre sequen
es; here � is obtained by mappinga fa
tor 
Sn �
��Si of ��Z indexed by x 2 Mi so as to represent theelement x 2 �nK0(M;n) 'M . This gives an epimorphism�̂nF '�! �̂nF !M :We now atta
h (n+1)-
ells to Z to kill o� the kernel of this epimorphismand apply the fun
tor P̂n to obtain Z 0. It is routine to 
he
k thatW 0 ! Z 0 is of type B�(M;n).8.10. Uniqueness of Eilenberg-Ma
 Lane obje
ts. Re
all from above thatif f is of type B�(M;n) then �n�1(��f) is of type K�(M;n).8.11. Proposition. Let � be a �-algebra,M a �-module, and n � 1 aninteger. LetMn denote the moduli spa
e of all maps of type B�(M;n).Then the fun
tor �n�1(��) indu
es a weak equivalen
eMn !M(K� # K�(M;n)) :8.12. Remark. By 6.5, the moduli spa
e on the right is equivalent to�WAut(�;M). In parti
ular, the moduli spa
e is 
onne
ted.Proof. We �rst handle the 
ase M = 0; it is easy to see that thisamounts to showing that the fun
tor P0�� indu
es a weak equivalen
efrom the moduli spa
e of all obje
ts of type B� to M(K�). In viewof 2.2, it is enough to show that B� is unique up to weak equiv-alen
e, that Auth(B�) is homotopi
ally dis
rete, and that the map�0Auth(B�) ! Aut(�) obtained by re
ording the e�e
t of a self-mapon �0 is an isomorphism.



36 BLANC, DWYER, AND GOERSSSuppose that X is a �brant obje
t of type B� and let W be as in8.9. By the 
onstru
tion of W it is possible to obtain a map W ! Xwhi
h is an isomorphism on �0; this will indu
e equivalen
es W 0 =P̂0W ! P̂0X  X. This shows that there is only one su
h X up toweak equivalen
e. The same kind of argument shows that �0Auth(X)maps surje
tively to Aut(�). Pi
k su
h an X whi
h is �brant and
o�brant, and in parti
ular 
onstru
ted by 
ell atta
hment. Atta
hinga 
ell (Di+1;j; Si;j) to an obje
t Y to get Y 0 gives a homotopy �bresequen
e Maph(Y 0; X)! Maph(Y;X)! Maph(Si;j; X)in whi
h the base spa
e is 
ontra
tible for i > 0 and homotopi
allydis
rete for i = 0 (its homotopy groups are �i+�;jX). Moreover, themap from [S0;j; X℄ to the set of �-algebra maps �̂0S0;j ! �̂0X is anisomorphism. A formal indu
tive argument now shows that for any Y ,the spa
e Maph(Y;X) is homotopi
ally dis
rete and the map [Y;X℄!Hom(�̂0Y; �̂0X) is inje
tive. The 
ase Y = X of this is what we arelooking for.Now we 
onsider the 
ase of a general M . For any simpli
ial model
ategory C, there is an indu
ed simpli
ial model 
ategory stru
ture onthe 
ategory of arrows in C, in whi
h a morphismA u���! B�??y �??yC v���! Dfrom u to v is a weak equivalen
e (resp. �bration) if � and � areweak equivalen
es (resp. �brations) in C, and a 
o�bration if � is a
o�bration in C and the natural map C`AB ! D is a 
o�bration inC. We use this when C is the E2 model 
ategory stru
ture on simpli
ialspa
es in order to have an expli
it way (2.2) to identify the moduli spa
eof a map. Let f be a map of type B�(M;n). What we have to prove isthat f is unique up to weak equivalen
e, that Auth(f) is homotopi
allydis
rete, and that the natural map � : �0Auth(f) ! Aut(�;M) is anisomorphism. Uniqueness of f and surje
tivity of � are proved as aboveusing the expli
it models from 8.9. Write f : B� ! X. We 
an assumethat f is obtained by starting with the identity map B� ! B� andatta
hing 
ells to the target of dimension n and higher. An indu
tiveargument, exa
tly the same as above, shows that if g : B� ! Y is amap obtained in this way, then Maph(g; f) is homotopi
ally dis
rete,and the natural map [g; f ℄! Hom(�;�)�Hom(�̂nY; �̂nX) is inje
tive.Applying this in the 
ase Y = X �nishes the proof. �



MODULI PROBLEM 37For 
onvenien
e, we will denote Eilenberg-Ma
 Lane obje
ts by B�and B�(M;n).Classi�
ation of Postnikov stages. Suppose that X is a simpli
ial spa
ewith X � P̂n�1X and thatM is a module over �̂0X. If Y is a simpli
ialspa
e, we write Y � X + (M;n) if P̂nY � Y , P̂n�1Y � X, and �̂nYis isomorphi
 to M as a module over �̂0X, where the isomorphismis realized with respe
t to some isomorphism �̂0Y ' �̂0X. We writeM(X + (M;n)) for the moduli spa
e of all simpli
ial spa
es of typeX + (M;n). The following result is proved in the same way as 6.8.8.13. Theorem. Suppose that X is a simpli
ial spa
e with X � P̂n�1X,n � 1. Let � = �̂0X, and let M be a module over �. Then there is annatural weak equivalen
eM(X + (M;n)) �M(X # B�(M;n + 1)" B�) :8.14. Remark. The arrows # on the right indi
ate maps whi
h indu
eisomorphisms on �̂i for appropriate i (2.3); in this 
ase it is just iso-morphisms on �̂0. Again, the remarks at the beginning of 3.9 
ould berepeated here with some slight modi�
ations.The fundamental homotopy �bre square. The following theorem is atthe basis of our 
lassi�
ation result.8.15. Theorem. Suppose that X is a simpli
ial spa
e, � is a �-algebra,and M is a �-module. Then for any n � 2 there is a natural homotopy�bre squareM(X  B�(M;n)" B�) ���! M(��X  K�(M;n)" K�)??y ??yM(X) ���! M(��X)8.16. Remark. The moduli spa
es on the left here involve simpli
ialspa
es, and the ones on the right simpli
ial �-algebras. The verti
alarrows are indu
ed by the obvious fun
tors whi
h take a diagram andsele
t the �rst 
omponent; the lower horizontal arrow is indu
ed by thefun
tor ��. The upper horizontal arrow is indu
ed (as in 8.5) by thefun
tor whi
h takes a diagram U ! V f �W to the diagram��U ! �tn�1(��f) �sn�1(��f) :Proof of 8.15. Consider the 
ommutative squareM(X  B�(M;n)" B�) ���! M(��X  K�(M;n)" K�)??y ??yM(X)�M(B�(M;n)" B�) ���! M(��X)�M(K�(M;n)" K�)
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h the se
ond fa
tor of the lower horizontal arrow is indu
edby the di�eren
e 
onstru
tion (8.5). The lower spa
es are 
onne
ted,and by 2.11, 2.7, and 8.7 the indu
ed map on verti
al �bres is a weakequivalen
e. Note in this 
onne
tion that with the help of fun
torialfa
torization it is easy to repla
e the upper left hand moduli spa
eby an equivalent moduli spa
e of diagrams U ! V  W in whi
hthe simpli
ial spa
e V equivalent to B�(M;n) is �brant. The proof is�nished by observing that the mapM(B�(M;n)" B�)!M(K�(M;n)" K�)is a weak equivalen
e (8.11). �9. The main theoremRe
all that if A is a �-algebra, the moduli spa
e TM(A) of realiza-tions of A is de�ned by TM(A) =ahXiM(X) ;where X ranges over weak equivalen
e 
lasses of (pointed) topologi
alspa
es with ��X ' A. In this se
tion we give the main stru
turetheorems for this moduli spa
e.9.1. De�nition. Suppose thatX is a simpli
ial spa
e. We say thatX isa potential n-stage for the �-algebra A if the following three 
onditionsare satis�ed:� �̂0(X) is isomorphi
 to A as a �-algebra,� �̂i(X) ' 0 for i > n, and� �̂i(X) ' 0 for 1 < i � n+ 1.The partial moduli spa
e or partial realization spa
e TMn(A) is de�nedto be the moduli spa
e of all simpli
ial spa
es whi
h are potential n-stages for A.9.2. Remark. It follows from the spiral exa
t sequen
e that a potentialn-stage X for A has �̂iX ' 
iA for 0 � i � n, �̂iX = 0 for i > n,�̂iX ' 0 for i 6= 0; n+ 2, �̂0X ' A, and �̂n+2X ' 
n+1A.The above de�nition makes sense for n = 1 (the simpli
ial spa
eX involved would have �̂0X ' A and �̂iX ' 0 for i > 0). Our �rsttheorem says that the potential1-stages for A are essentially the sameas realizations of A.9.3. Theorem. The geometri
 realization fun
tor indu
es a weak equiv-alen
e TM1(A)! TM(A).



MODULI PROBLEM 39Proof. Let F be the fun
tor whi
h assigns to a potential1-stage Y forA the geometri
 realization jY 
j, where Y 
 is some fun
torial 
o�brantapproximation to Y ; by inspe
tion of the homotopy spe
tral sequen
eof a realization (7.9) [11, 8.3℄, F (Y ) is a topologi
al realization of A.Let G be the fun
tor whi
h assigns to su
h a topologi
al realizationX the 
onstant simpli
ial spa
e given by X; it is easy to see dire
tlythat G(X) is a potential 1-stage for A. The two 
omposites GFand FG are 
onne
ted to the respe
tive identity fun
tors by 
hains ofnatural transformations whi
h are weak equivalen
es, and so indu
eweak equivalen
es of the moduli spa
es. �It is easy to see from 7.11 that if X is a potential n-stage for A andm < n, then the horizontal Postnikov se
tion P̂mX is a potential m-stage for A, In parti
ular the fun
tor P̂n�1 indu
es a map TMn(A)!TMn�1(A). Our next theorem gives an expression for TM1(A) interms of these maps. Let holimR denote the derived homotopy limitfun
tor for diagrams of simpli
ial sets; this is the fun
tor obtained byrepla
ing the diagram in some fun
torial way by a diagram of �brantsimpli
ial sets, and applying the ordinary homotopy limit fun
tor of[3℄.9.4. Theorem. There is a natural weak equivalen
e of simpli
ial setsTM1(A) � holimRn TMn(A) :Proof. This follows from [7℄; the main result there is stated for simpli
ialsets, but the arguments apply to any 
o�brantly generated simpli
ialmodel 
ategory with arbitrary small limits and 
olimits. The mainresult of [7℄ is applied in exa
tly the same as in [7, 4.6℄. �This redu
es the study of TM1(A) to the study of the individualspa
es TMn(A), together with the maps between them. We beginwith TM0(A). The following is 
lear from 6.5, sin
e TM0(A) is themoduli spa
e of all simpli
ial spa
es of type BA.9.5. Theorem. The spa
e TM0(A) is naturally weakly equivalent toBAut(A).In this statement, Aut(A) denotes the dis
rete group of �-algebraautomorphisms of A; in parti
ular, the theorem states that TM0(A)is an Eilenberg-Ma
 Lane spa
e of type K(�; 1) for � = Aut(A).The next theorem analyzes the di�eren
e between TMn(A) andTMn�1(A).



40 BLANC, DWYER, AND GOERSS9.6. Theorem. Suppose that n � 1. Then there is a natural homotopy�bre squareTMn(A) ���! M(A# KA(
nA; n+ 2))P̂n�1??y ??yTMn�1(A) ���! M(A# KA(
nA; n+ 2)" A)The verti
al map on the right is indu
ed by the fun
tor whi
h takesa map U ! V and repeats it to obtain U ! V  U . The other twomaps in the square are 
onstru
ted below.9.7. Interpretation. A

ording to 2.11 and 6.5, the spa
e Z =M(A#KA(
nA; n+2)" A) �bres over �WAut(A)� �WAut(A;
nA) with �bre(9.8) af Hn+1A (A; 
nA) ;where the 
oprodu
t is taken over the set of all isomorphisms A !�0KA(
nA; n + 2). It is 
lear that Aut(A) a
ts simply transitively onthis set, and it follows that Z �bres over �WAut(A;
nA) with �breHn+1A (A; 
nA). In this way ea
h potential (n � 1)-stage Y for A, i.e.,ea
h vertex of TMn�1(A), determines an element oY in Hn+2A (A; 
nA)modulo the a
tion of Aut(A;
nA). This element (whi
h 
an be iden-ti�ed with the k-invariant (6.8) of the simpli
ial �-algebra ��Y ) is theobstru
tion to lifting Y to a potential n-stage. Let TMn(A)Y denotethe moduli spa
e of all potential n-stages X for A with P̂n�1X � Y .If oY is nontrivial, then TMn(A)Y is empty, otherwise (given that
Hn+1A (A; 
nA) � HnA(A; 
nA)), there is a �bration sequen
eHnA(A; 
nA)! TMn(A)Y !M(Y ) :On the level of �0 this 
an be interpreted as saying that weak equiv-alen
e 
lasses of lifts of Y to a potential n-stage for A 
orrespond totrivializations of oY ; of 
ourse the sequen
e also indi
ates how the spa
eof su
h trivializations 
ontributes to the spa
es of self-equivalen
es ofthese lifts.9.9. Potential n-stages. Suppose that Y is a potential n-stage for A; we
an assume that Y is 
o�brant as a simpli
ial spa
e. A

ording to 9.2,the homotopy spe
tral sequen
e for ��jY j (7.9) has only two nontrivial
olumns at the E2-page: �̂0Y ' A in 
olumn E20;� and �̂n+2Y ' 
n+1Ain 
olumn E2n+2;�. It follows from the des
ription of the spe
tral se-quen
e in [11, 8.3℄ that the di�erential dn+2 maps 
olumn n+2 as mu
has possible isomorphi
ally to 
olumn 0. Consequently, �ijY j is trivialfor i � n+2, and �ijY j ' Ai for i � n+1. But more is true. Let PmYbe the simpli
ial spa
e obtained by applying the (m � 1)-
onne
tive
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over fun
tor degreewise to Y . The spe
tral sequen
e of PmY 
an be
omputed by a naturality argument, and it follows that �ijPmY j istrivial for i � n + m + 1 or for i < m, and that �ijPmY j ' Ai forthe remaining values of i. In parti
ular, the algebrai
 
onstituents of Aare knitted together by Y in a way whi
h is mu
h more 
omprehensivethan is re
e
ted by the single ordinary Postnikov stage jY j.The rest of this se
tion is taken up with the proof of 9.6.The �rst step is to analyze the di�eren
e between potential n-stagesfor A and potential (n�1)-stages. Suppose thatX is a potential n-stagefor A. A

ording to 9.1 and the spiral exa
t sequen
e, �̂nX ' 
nA. LetY = P̂n�1X. Then Y is a potential (n� 1)-stage for A, and a

ordingto 8.3, after adjusting X and Y up to weak equivalen
e there is ahomotopy pullba
k square(9.10) X ���! BAu??y v??yY f���! BA(
nA; n+ 1)in whi
h the maps f and v give isomorphisms on �̂0. We now determinehow to reverse this 
onstru
tion.9.11. Proposition. Suppose that Y is a potential (n � 1)-stage forA (n � 1) and that X lies in a homotopy �bre square of the form9.10. Then X is a potential n-stage for A if and only if the map g :��Y ! KA(
nA; n+ 1) 
orresponding (8.6) to f is a weak equivalen
eof simpli
ial �-algebras.Proof. The main thing to prove in showing that X is a potential n-stage for A is that �̂iX vanishes for i = n; n + 1; the other 
onditionsare simple to 
he
k. The homotopy �bre F of v is of type B0(
nA; n).Consequently, �̂iF vanishes unless i is n or n + 2, and the long exa
t�̂�-homotopy sequen
e of u (7.7) degenerates around dimension n intothe exa
t sequen
e0! �̂n+1X ! �̂n+1Y ! �̂nF ! �̂nX ! 0 :Thus X is a potential n-stage if and only if the 
onne
ting homomor-phism �̂n+1Y ! �̂nF ' 
nA is an isomorphism. A naturality argumentidenti�es this 
onne
ting homomorphism with the map �n+1��Y !
nA indu
ed by g. Sin
e �0(g) is an isomorphism by assumption, andboth domain and range of g have trivial homotopy ex
ept in dimensions0 and n+ 1, the result follows. �



42 BLANC, DWYER, AND GOERSSSuppose that Y is a potential (n � 1)-stage for A. We write X �Y � (
nA; n) if X is a potential n-stage for Y and P̂n�1X � Y . Thespa
eM(Y � (
nA; n)) is the moduli spa
e of all su
h X.9.12. Proposition. Suppose that Y is a potential (n � 1)-stage for A(n � 1). Then there is a natural homotopy �bre squareM(Y � (
nA; n)) ���! M(��Y # KA(
nA; n+ 1)" KA)P̂n�1??y ??yM(Y ) �����! M(��Y ) :9.13. Remark. As usual, # signi�es maps whi
h indu
e isomorphismson appropriate homotopy groups; in the 
ase ��Y # KA(
nA; n + 1)these isomorphisms are su
h that the map is an equivalen
e. The rightverti
al arrow in the square is indu
ed by the fun
tor whi
h takes adiagram U ! V  W of simpli
ial �-algebras and sele
ts the �rst
omponent. As would be revealed by unraveling the proof, the up-per horizontal arrow is indu
ed by two appli
ations of the di�eren
e
onstru
tion, one in the 
ategory of simpli
ial spa
es (8.4) to obtainY ! BA(
nA; n + 1), and the se
ond in the 
ategory of simpli
ial�-algebras (8.5) to obtain ��Y ! KA(
nA; n+ 1).Proof of 9.12. We let M = 
nA and m = n+ 1. There is a squareM(Y � (M;n)) ���! M(Y ��! BA(M;m)" BA)P̂n�1??y ??yM(Y ) =���! M(Y )whose upper arrow is a weak equivalen
e obtained by using 9.11 to se-le
t appropriate 
omponents of the weak equivalen
e from 8.13. Here��! denotes maps whi
h 
orrespond via 8.5 to weak equivalen
es ��Y !KA(M;m). Passing to appropriate 
omponents with 8.15 gives a ho-motopy �bre squareM(Y ��! BA(M;m)" BA) ���! M(��Y # KA(M;m)" KA)??y ??yM(Y ) �����! M(��Y ) :Combining these squares �nishes the proof. �



MODULI PROBLEM 43Proof of 9.6. For any �-algebra �, �-module M , and m � 1 there is a
ommutative diagram(9.14)M(K�(M;m)" K�) ����! M(K�(M;m+ 1)" K�)??y ??yM(K� + (M;m)) ����! M(K� # K�(M;m+ 1)" K�)in whi
h the horizontal arrows are equivalen
es obtained with the dif-feren
e 
onstru
tion; see the proof of 6.5 for the upper arrow and 6.8for the lower one. Clearly, this is a homotopy �bre square. Supposethat Y is a potential (n� 1)-stage for A. Let � = A, M = 
nA, andm = n + 1. Then M(��Y ) is one 
omponent of M(K� + (M;m)).Moreover, the mapM(K�(M;n))!M(��Y # KA(
nA; n + 1)) ob-tained by sending a map U  V to U =�! U  V is a weak equivalen
e(a homotopy inverse is given by the fun
tor sending U ! V  W toV  W ). Combining this observation with 9.12 and 9.14 then gives ahomotopy �bre square`hY iM(Y � (
nA; n)) ���! M(K�(M;m + 1)" K�)??y ??y`hY iM(Y ) ���! M(K� # K�(M;m+ 1)" K�)whi
h is the one we are looking for, sin
e the left verti
al arrow isTMn(A)! TMn�1(A). �Referen
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