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1. INTRODUCTION

A II-algebra A is a graded group {A,},>1 with all of the primary
algebraic structure possessed by the collection of homotopy groups of
a pointed connected topological space. In particular, A, is abelian
for n > 2, and there are Whitehead product and composition maps
which satisfy appropriate identities (see 4.1). The basic example of a
[T-algebra is the homotopy Il-algebra 7, X of a space X.

Given an abstract II-algebra A, it is tempting to ask whether it has
any topological significance. Is it possible to find a space X such that
A is isomorphic to 7, X7 If such an X exists, is it unique up to weak
equivalence? These questions and others can be studied by looking
at the moduli space TM(A) of topological realizations of A, or the
realization space of A. This is defined to be the nerve or classifying
space of the category whose objects are the topological spaces X with
X =~ A and whose morphisms are the weak equivalences between
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these spaces. Up to homotopy 7T M(A) can be identified (2.1) as a
disjoint union

[ Aut"(X),
(X)

indexed by homotopy equivalence classes of CW-complexes X with
m,.X ~ A, where WAut"(X) is the classifying space of the simplicial
monoid of self homotopy equivalences of X. The II-algebra A can be
realized as 7, X for some X if and only if TM(A) is nonempty; the
realization is unique up to weak equivalence if and only if TM(A) is
connected.

In this paper we study 7 M(A). The first step is to construct partial
moduli spaces TM,,(A), n > 0, which fit into a tower

coe o TM(A) = TMp_1(A) = -« = TM(A) = TMy(A)

whose homotopy limit is equivalent to 7T M (A). We then approach the
partial moduli spaces inductively, and show that 7 M, (A) is tied to
TM, 1(A) by a simple homotopy fibre square (9.6, 9.7). The conclu-
sion is that the spaces T M, (A) are relatively accessible, and in fact
have a surprisingly cohomological flavor. In analyzing them we are
doing a type of homotopical deformation theory; the obstructions and
choices at each level lie in the Quillen cohomology groups of A, which
are the analogues for a Il-algebra of the Hochschild cohomology groups
of an associative ring or the André-Quillen cohomology groups of a
commutative ring.

One of the motivations for this paper is that we expect our study
of the realization space of a Il-algebra to serve as a blueprint for the
study of other moduli problems of a similar type. For that reason we
have tried to keep our constructions and arguments as conceptual as
possible. There are several lessons that might be learned from the pa-
per. One is the usefulness of working with moduli spaces as a whole,
rather than with their sets of components, if only because the moduli
spaces tend to fit into fibration sequences and fibre squares. This is not
a new lesson, but it comes through pretty clearly in what we do. An-
other point is the power and flexibility that can be gained by working
with simplicial resolutions of objects (in our case simplicial resolutions
of spaces) instead of with the objects themselves. Finally, on a much
more technical level, suppose that F' is a functor from finite sets to
sets or spaces. The reader might be interested in how prolonging F
to the category of simplicial sets can be interpreted as taking a homo-
topy coend (5.10); this explains to the authors a family of connectivity
formulas (e.g. 5.1) which otherwise can seem mysterious.

We will now discuss our results in more detail.
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The partial moduli spaces. We first describe how the partial moduli
spaces T M, (A) arise. Any space X has a spherical resolution S(X);
this is a simplicial space whose realization is equivalent to X, and each
of whose simplicial constituents S(X)[n] is equivalent to a wedge of
spheres. In fact there is a model category structure on the category
of simplicial spaces in which the cofibrant objects are spherical; the
resolution S(X) is obtained by treating X as a constant simplicial space
and taking a cofibrant model for it. This is analogous to a standard
procedure in homological algebra. There is a model category structure
on the category of nonnegatively graded chain complexes in which the
cofibrant objects are the chain complexes of projective modules. A
projective resolution of a module M is then obtained by treating M as
a chain complex concentrated in degree 0 and taking a cofibrant model
for it.

Suppose now that A is a Il-algebra. Rather than directly trying
to build a space X which realizes A, we try to build the resolution
S(X). This gives some added flexibility, because inside the category
of simplicial spaces there are various types of Postnikov stages; we
concentrate on one of these types, the horizontal Postnikov stages ]5*,
and attempt to construct S(X) inductively by building its Postnikov
sections an(X). It turns out that there is a simple algebraic condition
that a simplicial space Y has to satisfy in order to be of the form
an(X) for some space X realizing A; if Y satisfies this property,
we say that it is a potential n-stage for A. The partial moduli space
T M, (A) is then defined to be the moduli space of all potential n-stages
for A, i.e., the nerve of the category whose objects are the simplicial
spaces which are potential n-stages for A, and whose maps are the weak
equivalences between these simplicial spaces.

Analyzing the partial moduli spaces. A module M over the II-algebra
A is defined to be an abelian Il-algebra with a certain kind of action
by A, or equivalently as an abelian group object in the category of
[T-algebras over A. Associated to such a module M are cohomology
groups H"(A; M), n > 0. These cohomology groups can be described
in terms of the homotopy groups of certain simplicial sets H"(A; M)
obtained by mapping A into Eilenberg-Mac Lane objects. The group
H™(A; M) is given by myH"(A; M), and more generally there are iso-
morphisms
mH" (A; M) ~ H" "(A; M) .

By functoriality the discrete group Aut(A, M) of automorphisms of the
pair (A, M) acts on H"(A: M), and we let H"(A; M) denote the Borel
construction of this action. The group Aut(A, M) fixes the basepoint of
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H"(A; M) (which corresponds to the zero element of H"(A; M)), and
this gives a natural map WAut(A, M) — H"(A; M). The A-modules
that are interesting for our purposes are shifted copies Q2™ A of A itself.
Our main result is the following one, which is a recast version (9.7) of
Theorem 9.6. It provides an inductive approach to understanding the
partial moduli spaces T M, (A).

1.1. Theorem. Suppose that A is a ll-algebra. Then T Mo(A) is equiv-
alent to WAut(A), and for each n > 1 there is a homotopy fibre square

TMu(A) —— WAut(A, Q" A)

J J

TMu_1(A) —— H"™ 2(A;Q"A)

It follows immediately from the theorem that the homotopy fibre
of TM,(A) — TM,_1(A) over any point of TM,_;(A) is equiva-
lent to the generalized Eilenberg-Mac Lane space QH"2(A; Q" A) ~
H" T (A; Q" A). This space has nontrivial homotopy groups only in di-
mensions 0 through n + 1, and so the tower {T M, (A)} is a type of
modified Postnikov system for 7 M(A). This tower is better than the
usual Postnikov system for 7M(A) in that the successive fibres de-
pend in an explicit cohomological way on A. The tower also leads to
an obstruction theory for finding a point in 7M(A) ~ holim 7 M,,(A),
i.e., an obstruction theory for finding a topological realization of A.

1.2. Theorem. Suppose that A is a [1-algebra, and that Y is a poten-
tial (n — 1)-stage for A. Then there is an associated element oy in
H"2(A; Q" A), well-defined up to the action of Aut(A; Q"A) on this
group, such that'Y lifts up to weak equivalence to a potential n-stage
for A if and only if oy = 0.

This theorem is proved by noticing that moH"*2(A; Q" A) is the orbit
space of the action of Aut(A,Q"A) on H""2(A;Q"A); by 1.1, the path
component P of T M,,_;(A) corresponding to Y is the image of a com-
ponent of TM,(A) if and only if the image of P in H"*2(A; Q" A) lies
in the component corresponding to the zero element of H"™2(A, Q"A).
Interpretation of the partial moduli spaces. It is natural to ask about
the conceptual nature of the partial moduli spaces T M, (A). Since a
vertex of T M, (A) is just a simplicial space with is a potential n-stage
for A, this amounts to asking what topological information relevant to
the problem of realizing A is contained in such a Y. To begin with, the
realization of Y is a connected space X (0, n+1) with ;X (0, n+1) = A;
for i < n+1 and vanishing homotopy in higher dimensions; this is just
the (n + 1)’st (ordinary) Postnikov stage of a potential realization of
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A. But there is more. Suppose that a and b are positive integers with
b > aand b—a < n. With some simple manipulation (9.9) it is possible
to extract from Y spaces X (a, b) with

mi X {(a,b) = {AZ ast S b .

0  otherwise
This X (a, b) is the b’'th ordinary Postnikov stage of the (a—1)’st connec-
tive cover of a potential realization of A. The various X (a, b) obtained
in this way are as compatible as they can be when a and b vary; for
instance X (a,b — 1) is the (b — 1)’st Postnikov stage of X(a,b). We
interpret this to mean that giving a potential n-stage Y for A amounts
among other things to threading the constituents of A together by
k-invariants in such a way that the threads only reach a depth of n-
dimensions. These threads create genuine spaces which realize each
block of groups from A which is n dimensions or less in extent. As
the threads grow in length one dimension at time (if possible, since by
1.2 there may be obstructions) the blocks of homotopy which achieve
geometric expression also expand. In the limit, we obtain a space X
with 7, X = A.
Organization of the paper. Section 2 contains a general discussion of
moduli spaces, and §3 analyzes Postnikov theory for ordinary topolog-
ical spaces in terms of moduli. Sections 4 and 6 treat the Postnikov
theory of simplicial II-algebras; this is what leads to the construction
of our algebraic invariants. There is a detour in §5 to prove a general
relative connectivity theorem that gives information about homotopy
pushouts in the category of simplicial II-algebras. Sections 7 and 8
look at simplicial spaces and their Postnikov theory, and §9 contains
proofs of the main results.

1.3. Notation. We use the language of simplicial model categories
([19] [12] [15] [13]); if C is a simplicial model category and X and Y
are objects of C, then Map(X,Y’) denotes the simplicial set of maps in
C from X to Y. All of our model categories have functorial factoriza-
tions, in that a map X — Y can be naturally factored as a cofibration
followed by an acyclic fibration, or as an acyclic cofibration followed
by a fibration. The notation Map"(X,Y") denotes the derived mapping
complex obtained by finding a functorial cofibrant model X’ — X for
X, a functorial fibrant model Y — Y’ for Y, and forming Map(X', Y');
the set mg Maph(X, Y) of derived homotopy classes of maps is denoted
[X.,Y]. In the same way, Aut"(X) is the simplicial monoid of self ho-
motopy equivalences of some cofibrant/fibrant object weakly equivalent
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to X in a functorial way. Homotopy pushouts and pullbacks are con-
structed as usual [12, §10]; since the model categories have functorial
factorization, we can take the homotopy pushouts and pullbacks to be
functorial.

We will make use of Eilenberg-Mac Lane objects in various cate-
gories, and we will try to make notational distinctions between them.
We use W@ for the classifying simplicial set of a group or simplicial
monoid G [17, §21]. The notations BG(M,n), Kx(M,n), and By(M,n)
specify twisted Eilenberg-Mac Lane objects in, respectively, the cate-
gory of pointed spaces (3.1), simplicial TI-algebras (6.1), and simplicial
spaces (8.1). Here G is a group, A is a Il-algebra, M is a module over
G or A, and n denotes the dimension in which M sits as a homotopy
object. We will also need various coproducts: [] is a generic coprod-
uct, U is the coproduct of sets or unpointed spaces, V the coproduct
for pointed spaces, and * the coproduct for II-algebras.

1.4. Simplicial objects. A simplicial object X in a category C is a func-
tor from A°P to C, where A is the simplicial category [17]. Equivalently,
X is a collection X[n], n > 0 of objects of C, together with face maps
d; : X[n] = X[n — 1] and degeneracy maps s; : X[n] — X[n+ 1] which
satisfy the standard simplicial identities. Note that we write X|[n| to
distinguish the simplicial grading of X from a possible internal grad-
ing associated to the individual objects of C. We identify C with the
category of constant simplicial objects in C, i.e., simplicial objects in
which the face and degeneracy maps are identities.

1.5. Simplicial disks and spheres. Our basic reference for simplicial sets
and their model category structure is [13]. It is convenient to have
fixed models for simplicial disks and spheres. The standard simplicial
model for the n-sphere is ¢S™ = A, /0A, (the letter “c” stands for
combinatorial). It is natural to take as a model for the n-disk the
combinatorial simplex A,, itself, so that the sphere ¢S™ is obtained from
the disk by collapsing out the boundary. This convention is slightly
awkward, because the boundary dA,, is not combinatorially isomorphic
to ¢S™7! (although these two complexes are weakly equivalent). To
avoid this awkwardness we let A? be the contractible subcomplex of
A, obtained by taking the union of all faces of the top-dimensional
simplex except the 0’th face, and we take as our simplicial model for
the n-disk the quotient ¢cD™ = A, /AY. The inclusion of the 0’th face
in A, induces a map A,_; — ¢D" which is constant on dA,_; and
passes to an inclusion ¢S™" ! — ¢D". This gives a cofibration sequence
of pointed simplicial sets

cS" ! 5 ¢D™ — ¢S™ .
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2. MODULI SPACES

Here we define moduli spaces, and recall some of the properties of
moduli spaces which arise from model categories. For our purposes, a
moduli space is always the nerve [3, XI.2] of some category. The reader
may be worried by the fact that the categories we consider in this
connection are usually large, in the sense that the collection of objects
forms a proper class instead of a set. The nerve of such a category is not
strictly speaking a simplicial set. There are two ways to deal with this.
One is to notice that the nerves we make use of are homotopically small
[5] and so determine well-defined ordinary homotopy types. Another
is to restrict in each case to a small subcategory of the category in
question, a subcategory which is still large enough to have a nerve of
the correct homotopy type; e.g., in the case of a model category C,
restrict to some small model subcategory of C containing some desired
set of objects. The issues here are routine, and we will suppress them
in order to avoid cluttering the exposition.

2.1. Moduli spaces for objects. A category with weak equivalences
is a pair (C, W) consisting of a category C together with a subcategory
W which contains all of the isomorphisms of C. The morphisms of W
are called weak equivalences. The basic examples are model categories,
which come equipped with such subcategories of weak equivalences as
part of the model category structure. Two objects X and Y of C
are said to be weakly equivalent if they are related by the equivalence
relation generated by the existence of a weak equivalence f: X — Y.

If X is an object of a category with weak equivalences, the moduli
space M(X) is defined to be the nerve of the subcategory of C con-
sisting of all objects weakly equivalent to X together with the weak
equivalences between them. By definition M(X) is connected. The
main general theorem about it is the following.

2.2. Theorem. [7, 2.3] Suppose that C is a simplicial model category
and that X is an object of C. Then there is a natural weak equivalence
M(X) ~ WAut"(X).

If {X,} is a set of objects in a category with weak equivalences,
then M{X,} denotes the nerve of the category consisting of all ob-
jects weakly equivalent to one of the X,’s, together with the weak
equivalences between these objects.

2.3. Moduli spaces for diagrams. Suppose that C is a category with
weak equivalences and that D is some small category. The functor
category CP is in a natural way a category with weak equivalences,
where a natural transformation between functors is a weak equivalence
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if for each object in D it gives a weak equivalence in C. For instance,
if D is a category with two objects and one nonidentity map between
them, we obtain the category of arrows in C. Given amap f: X — Y

in C, we let M(X EN Y) = M(f) denote the moduli space of f inside
the category of arrows. More generally, M(X ~~ Y') denotes the moduli
space of all arrows X' — Y, where X' is weakly equivalent to X and
Y is weakly equivalent to Y. If C is a model category, X is cofibrant,
and Y is fibrant, then M(X ~Y) is [[ sy M(f), where f ranges over
weak equivalence classes of maps X — Y. The indexing set here is not
quite homotopy classes of maps (see 2.10).

If C is a category with some specified notion of homotopy groups or
homotopy objects m;, i > 0, then for convenience we let M(X ¢ V)
denote the moduli space of arrows f : X' — Y’ where X' is weakly
equivalent to X, Y’ is weakly equivalent to Y, and f induces isomor-
phisms on m; for all ¢ with the property that m; X and ;Y are both
nontrivial. Note that M(X ¢ Y') is a (possibly empty) union of com-
ponents of M(X ~ Y).

We use similar notation for moduli spaces of pairs of arrows. For
instance M(X ~» Y «p Z) denotes the moduli space of all diagrams
U — V < W in which U, V and W are weakly equivalent to X, Y and
Z respectively, and the map W — V has the appropriate isomorphism
property on homotopy.

2.4. Function spaces as moduli. We also need to express derived
function complexes as moduli spaces. If X and Y are two objects of a
model category C, let Mpom(X,Y) denote the nerve of the category
whose objects are diagrams X <— U — V < Y in which the maps U —
X and Y — V are weak equivalences. The morphisms are commutative
diagrams

~

X < U s Vo< Y
I
X & U y VI« Y

in which the indicated maps are identities or weak equivalences.

2.6. Theorem. [6, 4.7] [5, 1.1] Suppose that C is a simplicial model
category and that X and Y are objects of C. Then Myom(X,Y) is in

a natural way weakly equivalent to the simplicial set Maph(X, Y).

2.7. Remark. One can consider a similar category whose objects are
the smaller diagrams X <~ U — Y; this is the full subcategory of the
above given by diagrams in which the map Y — V' is required to be the
identity. We denote the nerve of this category M, (X,Y). If Vs a

Hom
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fibrant object of C, then the inclusion M _(X,Y) — Myon(X,Y) is

Hom

a weak equivalence. This follows from the arguments of [6, 7.2].

2.8. Relationships between moduli spaces. Suppose that X and Y
are two objects of a model category C. There is a map Myon (X,Y) —
M(X ~»Y) given by the functor which sends a diagram X « U —
V < Y to the diagram U — V. The composite of this with the
obvious projection M(X ~Y) — M(X) x M(Y) is again given by a
functor, and this is connected to the constant functor with value (X,Y)
by a chain of two natural transformations. This induces a map from
Mipom (X, Y") to the homotopy fibre of the projection.

2.9. Theorem. Suppose that X and Y are two objects of a model cat-
eqgory C. The sequence

Mupom(X,Y) = M(X ~ V) & M(X) x M(Y)

15 a homotopy fibre sequence, in the sense that the natural map from
Miuom (X, Y) to the homotopy fibre of p is a weak equivalence.

Proof. This follows from Quillen’s Theorem B [18], given the observa-
tion, immediate from 2.6, that weak equivalences X — X' and Y’ - Y
induce a weak equivalence Myom(X,Y) = Mpom (X', Y7).

2.10. Remark. Theorem 2.9 indicates that in the model category case
the set which indexes the components of M(X ~» Y) is the set of
homotopy classes of maps from X to Y, modulo the action on the one
hand of the self homotopy equivalences of X and on the other of the
self homotopy equivalences of Y.

2.11. Remark. The proof of 2.9 gives many other similar results. For
instance, given three objects X, Y, Z in an appropriate model category,
there is a natural homotopy fibre sequence

Mitom(X,Y) = M(X ~ Y <P Z) = M(X) x M(Y ¢ Z) .

3. POSTNIKOV SYSTEMS FOR SPACES

In this section we sketch an approach to the Postnikov theory of
pointed topological spaces which is based on the use of moduli spaces.
Our object is to establish some notation and provide a context for what
we do later on. We assume that the spaces are pointed and usually (for
convenience) that they are connected. The category of pointed topo-
logical spaces has its usual model category structure [19, I1.3] [12, §8]
in which weak equivalences are weak homotopy equivalences, fibrations
are Serre fibrations, and cofibrations are retracts of relative cell com-
plexes.
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Postnikov systems. Attaching an (n + 2)-cell to a space X by a map
f:S™! — X has no effect on the homotopy of X in dimensions < n,
and clearly kills off the class represented by f in m,,;X. Now attach
cells of dimension (n + 2) and greater to X by all possible attaching
maps to obtain an inclusion X C Xj, repeat the process to obtain
X, C Xs, repeat again, etc., and let P, X = U;X,. There is a map
X — P, X which induces isomorphisms on ; for i < n, and 7; P,X ~ 0
for ¢ > n. The construction of P, X is functorial in X and preserves
weak equivalences, and so it induces a map M(P,X) — M(P, 1X).
3.1. Eilenberg-Mac Lane objects. If G is a group, we say that a space X
is of type BG if m X is isomorphic to G and the higher homotopy of X
vanishes. Suppose that M is a G-module. We say that a map X — Y
is of type BG(M,n), n > 2, if X is of type BG, mY ~ G, m,Y ~ M
(as a G-module), all other homotopy groups of Y vanish, and the map
X — Y gives an isomorphism on 7. Sometimes we say for short that
the target space Y is of type BG(M, n).

The difference construction. Suppose that f : Y — X is a map of
spaces. Consider the pushout C of the diagram X' < Y' — (P, X)’
obtained by using some functorial construction to replace Y by a cofi-
brant space and the two maps Y — X and Y — P, X by cofibrations.
There is a commutative diagram

~

Y < Y’ > (PLX)
(3.2) fl J JAn(f)
X < - X' > n+1C

We denote the vertical map on the right by A, (f); its source is A3 (f)
and its target is AL (f).

The following is easy to prove by calculating that, in the above situ-
ation, if X — VY is surjective on 7; then the universal cover of C' is the
homotopy cofibre of the map X — Y, where Y is the universal cover
of Y and X is the pullback of the cover Y to X.

3.3. Proposition. Suppose that f:Y — X is a map of spaces whose
homotopy fibre F is (n — 1)-connected, n > 1. Let M = m,F and if
n =1 assume that M is abelian. Then M is naturally a G-module for
G =mF, and A, (f) is a map of type BG(M,n + 1). If mF vanishes
except for i = n, then the right-hand square in 3.2 is a homotopy fibre
square.

Ezxistence and uniqueness of Eilenberg-Mac Lane objects. It is easy to
construct spaces of type BG by hand (take a wedge of circles indexed
by a set of generators for GG, attach a 2-cell for each relation between
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the generators, and apply the functor P;) or by taking the geometric re-
alization of W@G. A simple argument gives that these spaces are unique
up to weak equivalence. We let BG denote a generic cofibrant space of
this type. It follows from obstruction theory or covering space theory
that Aut"(BG) is homotopically discrete and that its group of compo-
nents is Aut(G). Another way to express this is to say that the moduli
space of all spaces of type BG is weakly equivalent to WAut(G). The
next proposition extends this to higher Eilenberg-Mac Lane objects.

If G is a group and M is a G-module, we write Aut(G, M) for the
group of pairs («, ), where « is an automorphism of G and f is an
a-linear automorphism of M. This is the same as the group of auto-
morphisms of the split short exact sequence

0—M-—GxMTG—0.

3.4. Proposition. Let G be a group, M o G-module, and n > 2 and
integer. Then the moduli space of all maps of type BG(M,n) is weakly
equivalent to W Aut(G, M).

3.5. Remark. In particular the moduli space is nonempty and con-
nected, and so spaces or maps of type BG(M,n) exist and are unique
up to weak equivalence. We denote a generic space of this type by
BG(M,n).

Sketch of proof. Let M,,, n > 2, denote the moduli space of all maps
X — Y of type BG(M,n). There is a map M,, — M, induced by
the functor which sends X — Y to A, (X — P, X). There is also a map
M1 — M, induced by the functor which sends X — Y to the homo-
topy pullback of X — Y «+ X. Both composite functors are connected
to the respective identity functors by chains of natural transformations,
and so these maps of moduli spaces are weak equivalences. Similar
constructions give a weak equivalence My ~ M(B(G x M) BG),
where this last denotes the moduli space of maps U — V' with a section
V' — U, such that U and V have no higher homotopy groups, and such
that on the level of m; the map U — V' with its section gives a diagram
of groups isomorphic to G X M G. Now compute directly that this
last moduli space is weakly equivalent to WAut(G, M). O
3.6. Cohomology of spaces. Consider a space BG(M,n), n > 2. Then
Py BG(M,n) ~ BG, and so we write the map from this space to its
first Postnikov stage as BG(M,n) — BG. Given another space X over
BG (i.e. with a map X — BG), we define H:(X; M) by

H:(X; M) ~ [X,BG(M,n)]gg

where the symbol on the right denotes derived (1.4) homotopy classes
of maps from X to BG(M,n) in the model category of spaces over
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BG [12, 3.11]. Let H%(X; M) denote Maph,(X,BG(M,n)), so that
HE(X; M) is m of this space. The homotopy fibre squares

BG(M,n—1) ——>  BG

J l

BG —— BG(M,n)

give natural weak equivalences QHZL(X; M) ~ HE '(X; M), so that
there are isomorphisms

THE(X: M) = {HG (X5M) 0<isn=2
0 1>n

We use this formula to define H(X; M) for i = 0, 1; because we are
working with pointed maps these turn out to be what would normally
be called reduced twisted cohomology groups.

Classification of Postnikov stages. Suppose that X is a space with X ~
P, 1X,n > 2, and that M is a module over G = m; X. If Y is a space,
we write Y ~ X + (M,n) if B,Y ~Y, P, 1YV ~ X, and m,Y ~ M
as a module over G, where this module isomorphism is realized with
respect to some isomorphism m Y ~ G. We write M(X + (M, n)) for
the moduli space of all spaces Y of this type.

3.7. Proposition. Suppose that X s a space with X ~ P,_1X, n > 2
and that M is a module over G = mX. Then there is a natural weak
equivalence of moduli spaces

M(X + (M, n)) ~ M(X o BG(M,n + 1) ¢ BG) .

3.8. Remark. The arrows % on the right indicate maps which induce
isomorphisms on appropriate homotopy groups (2.3); in this case it is
just isomorphisms on 7.

Proof. There is a functor in one direction which given a space Y ~
X + (M, n) constructs the diagram (P, 1Y) — A!(f) <= AS(f) from
3.2, where f is the map Y — P,_1Y. There is a functor in the other
direction which given U — V - W of type X & BG(M,n+1) «¢ BG
constructs the space Y ~ X + (M, n) which is the homotopy pullback
of U - V < W. Both composites are connected to the corresponding
identity functors by chains of natural transformations, and so they
induce weak equivalences on the moduli spaces. 0]
3.9. Interpretation. Let X, G and M be as above. According to 3.7,
3.4, and 2.11, there is a fibration sequence

(3.10) Map}(X,BG(M,n+1)) = M(X + (M,n)) — M(X) x WT .
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where I' = Aut(G, M) and the object on the left is the union of the
components of Map" (X, BG(M,n)) giving maps which induce isomor-
phisms on 7. It is easy to identify this subcomplex as LaHS (n +
1; M,), where « runs through the isomorphisms mX — G and M,
is the module over m X determined by M and «. FEach space Y ~
X + (M, n) determines an element of

7o (Lo HS (0 + 15 M,)) = U HEF (X M)

modulo the action of 9 Aut™(X) x Aut(G, M) on this set; this is the k-
invariant k,(Y'), in its genuinely invariant form. Correspondingly, each
k-invariant gives rise to a space Y. Note that 3.7 not only classifies
spaces of type X + (M, n), but also determines their self-equivalences.

The reader might want to compare fibration 3.10 with the corre-
sponding fibration

Mapg (X, By(M,n + 1))y — My(X + (M,n)) = M,(X)

from [9]. Here v = Aut(M), Map{ (-, ), denotes an appropriate set of
components of the space of unpointed maps, and M, is the unpointed
moduli space. The appearance of the extra factor in the base of the our
fibration 3.10 is explained by the fact that for us the target of the k-
invariant map is BG(M,n+1), G = 7 X, while in [9] it is By(M, n+1),
v = Aut(M); the extra factor allows for potential automorphisms of
M which are not induced by elements of G.

4. II-ALGEBRAS AND THEIR MODULES

Here we explore II-algebras, simplicial II-algebras, and modules over
them. This is in preparation for a discussion in §6 of their cohomology.

4.1. TI-algebras. Let II be the full sub-category of the homotopy cat-
egory of pointed spaces closed under isomorphism and containing the
wedges of spheres

S™MNV LV ST

with n; > 1. A Il-algebra is a product-preserving functor
A:TI? — S,

or equivalently a contravariant functor I[I — S which takes wedges to
products. This condition and the Hilton-Milnor Theorem imply that
A is determined by the sets A, = A(S™), n > 1 and the following
additional data:

(1) a group structure on A, which is abelian for n > 1;
(2) composition maps T1(S™, S*) x Ay = 7,(S%) x Ay — Ay;
(3) Whitehead product maps [, | : Ay X Ay = Apyp1;
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(4) a Aj;-module structure on each abelian group A, n > 1.

There are relations among these structures; for example, (4) is redun-
dant, since for x € Ay and a € A,

ar = [a,z] + a

where + is the group operation on A,. The relations are classical,
but are complicated to write down [4]. We omit them, as the exact
formulas are unnecessary for our purposes. But recall that composition
is not additive: if {w} is a basis for the free Lie algebra over Z on two
generators, then for z,y € Ay, k > 1, and o € 1, S™, we have

(4.2) (x+y)oa:xoa—i—yoa—i—Zw(x,y)on(a)
w

where the sum is over elements w of length greater than 1, we write
w(z,y) for the corresponding iterated Whitehead product, and H,, is
the associated higher Hopf invariant [22, §X1.8.5]. We may at times
take A to be the graded group {A,} together with this additional struc-
ture; however, we will often stipulate IT-algebras by displaying the func-
tor

Uw— AU)
from I1°? to the category of sets. In particular, we will often write U
for an object in the category II. Il-algebras form a category, in which
the morphisms are natural transformations of functors.
4.3. Example. If X is a pointed space, there is a Il-algebra 7, X given
by the functor which sends U € 11 to the set [U, X] of homotopy classes
of pointed maps from U to X. Note that 7,(X), = m, X, and that this
functor does not include 7y X. The II-algebra 7, X captures the homo-
topy groups of X and all of the primary operations tying these groups
together. The construction 7,(-) gives a functor from the homotopy
category of pointed spaces to the category of [I-algebras.

The category of Il-algebras is a category of universal algebras and
has all limits and colimits. We write 0 for the trivial object, which
can be described as 7, X for X a one-point space. This object is both
initial and terminal, and the category of Il-algebras is pointed in the
sense that the unique map from the initial object to the terminal object
is an isomorphism.

4.4. Simplicial [lI-algebras. As usual, a simplicial 11-algebra A is a
simplicial object (1.4) in the category of Il-algebras. The II-algebra
A[n] is the portion of A in simplicial degree n, and A[n]; is the group
(abelian if 7 > 1) which is the i’th constituent of the II-algebra A[n].
We write A; for the associated simplicial group which in simplicial
dimension n contains the group A[n];. Each simplicial group A; has
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homotopy groups m,A;, which can be computed from the associated
normalized (Moore) complex N(A4;) [17, 17.3, 22.1]. We let m, A denote
the collection of all of these homotopy groups.

4.5. Model category structure. By Quillen [19, §11.4], there is a standard
simplicial model category structure on the category of simplicial II-
algebras. In this structure, a map f: A — B is a weak equivalence if
and only if it is a weak equivalence of graded simplicial groups, i.e., if
and only if 7, A — 7, B is an isomorphism. Every object is fibrant, and
a map A — B is a fibration if for each i the induced map N(A;) —
N(B;) is surjective in degrees 1 and above. A map is a cofibration if
and only if it is a retract of a map which is “free” in the sense of [19,
§I1.4]. To define these free maps, note that the forgetful functor from
[T-algebras to graded sets has a left adjoint F' with

F(Vk) = W*(vn \/meVn Sn) Xk *pcy, 71'*5“

Then a morphism A — B of simplicial TI-algebras is free if for each
n > 0 there is a graded set V,, C Bln], closed under the degeneracy
maps in B, such that

B[n] =2 Aln] x F(V,).

Suppose that A is a simplicial IT-algebra and K is a simplicial set. The
simplicial structure on the category of simplicial [1-algebras is given by
letting K’ ® A be the simplicial object with (K ® A)[n] = *scxmjAln].
4.6. Cells. Suppose in the above situation that K is a pointed sim-
plicial set. In this case we write KA = (K®A)/(*®A), where the
quotient is taken in the category of simplicial II-algebras. The pairs
(cD*@m, 587, cSi@m,S87), i >0, j > 1, are called cells, and a simplicial
[T-algebra is cellular if it can be constructed from a trivial simplicial
[T-algebra by attaching cells, perhaps transfinitely often. Any cellular
simplicial TI-algebra is cofibrant, any simplicial TI-algebra has a func-
torial cellular approximation, and any cofibrant simplicial II-algebra is
a retract of a cellular one.

Cells are attached to A by elements in 7,4, in that [cS"®m,S7, A]
is isomorphic to m,A;. Note that in fact for each n > 0, m,A is a
[T-algebra, given as a functor (4.1) by the formula

(4.7) (1 A)(U) = [eS"&m,U, A], U € 1L

4.8. Abelian [I-algebras; modules. A [l-algebra M is abelian if the
map M x M — M given in each gradation by group multiplication
is a map of [l-algebras. This is equivalent to saying that M admits
the structure of an abelian group object in the category of II-algebras,
or more concretely to saying that all of the Whitehead products in
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M vanish [1]. The full-subcategory of II-algebras consisting of abelian
[T-algebras is an abelian category.

As in any category of universal algebras, the notion of module is a
relativization of this concept.

4.9. Definition. Given a [I-algebra A, a A-module is an abelian group
object in the category of Il-algebras over A.

More explicitly, a A-module amounts to a split short exact sequence
of TI-algebras

(4.10) 0—M-—Ey 5 A—0

in which M is an abelian I[1-algebra. A morphism of A-modules is a map
of split sequences which is the identity on A. We will sometimes identify
a A-module with M and leave the short exact sequence understood; in
particular, we usually write M — N for a morphism of A-modules.
Since the graded constituents of a Il-algebra are already groups, it is
easy to see that an abelian group object in the category of I[I-algebras
over A is the same as a group object in this category.

Modules via actions. A A-module M gives rise to a type of action of A
on M. To see this, observe that the splitting of F; — A determines,
for each U € II, an isomorphism of sets

En(U) 2= A(U) x M(U).

This means that for each map f: V — U in II, the morphism Ey;(f) :
Ey(U) — En(V) is determined by an action map

(4.11) or AU) x M(U) = M(V)
subject to the conditions
(1) ¢4(0,z) = M(f)(x), and
(2) bgor(a, x) = ¢g(A(f)a, ds(a, z)).
It is even possible to go in the other direction. Given maps 4.11 subject

to the indicated conditions, we can form a II-algebra A x M which lies
in a split sequence

0—M-—AXMIZA—0

and so define a A-module structure on M. If M began life as a A-
module, there is an isomorphism of II-algebras E); = A x M, making
the evident diagram of split sequences commute.

4.12. Modules via split cofibration sequences. A split cofibration se-
quence in a pointed model category C is a diagram

A B—C
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in C such that the objects involved are cofibrant, A - B — (' is a
cofibration sequence, and the left-hand maps exhibit A as a retract
of B. Suppose that there are functors ¢, : II — C which take on
cofibrant values and preserve coproducts up to weak equivalence. Then
there are II-algebras My and Ay associated to any object X of C and
given by the formulas

In order to show that Mx is in a natural way a module over Ay it
is enough to prove that My is abelian for each X, and to construct
objects 1, U which fit into split cofibration sequences

U 4= U — U

which are natural in U. For the split sequences encoding the module
structure (4.10) can be constructed by mapping this split cofibration
sequence into objects X of C. Note that in order to show that My is
an abelian Il-algebra for each X, it is enough by Yoneda’s lemma to
show that U is a cogroup object in the homotopy category of C in a
way which is natural in U.

4.13. Examples. A Il-algebra A is not a module over itself, unless A is

abelian. However, we may define new Il-algebras Q"A by the functor
on [I°

U A(S" A D).

This mimics topology: Q"m, X = 7,Q0"X. For n > 1, Q"A is a A-
module. To see this, define a II-algebra (2} A by

U A(S" AT)

where the (—); denotes adding a disjoint basepoint. Then there is a
split sequence

0 — QA — MASTSA—0

which gives a canonical A-module structure on Q"A. These module
structures are central to what follows in this paper; they arise from the
fact that in the homotopy category of pointed spaces, S for n > 1is a
cogroup object in the category of spaces under S°. Note that if X is a
space then (2} 7, X is naturally isomorphic to the homotopy II-algebra
of the space of all (not necessarily pointed) maps S™ — X.

If we have a morphism M — N of A-modules, the ordinary kernel
K is a A-module; the necessary total space Ex for the split sequence
is the pull-back of Fy; — Ex < A. If M is a A-module, so is Q. M;
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the total space of the split sequence is defined by the pull-back square
EQ+M E— Q+EM

J l

A = QA

Consequently, if M is a A-module, QM is a A module: it is the kernel
of O M — M. It is easy to check that the A-module structure on Q"A
described above is the same as that obtained inductively by starting
with the given A-module structure on QA and making the identification
QA ~ Q(Q"TA).

4.14. Homotopy group modules. For n > 1, ¢S™ is a cogroup object in
the homotopy category of pointed simplicial sets, and there is a split
cofibration sequence

4.15 cSY & ¢S" —» 9™
5 ooy

of pointed simplicial sets, where (—), denotes adding a disjoint base-
point. Tensoring this with 7w, U for U € II (4.7) gives the structure
necessary (4.12) to show that for any simplicial IT-algebra A, 7, A is
abelian for n > 1 and is naturally a module over myA.

5. RELATIVE CONNECTIVITY OF PUSHOUTS

In this section we give a partial calculation of the homotopy type
of the homotopy pushout of a diagram of simplicial II-algebras (5.1).
This is along the lines of [21, 1.10, 3.6], but we work in more generality
and remove some simple connectivity hypotheses.

To express the result we will introduce a slightly unorthodox notion
of connectivity. If f : A — B is a map of simplicial sets, the cellu-
lar connectivity of f, denoted k(f) (or k(B, A) if f is understood), is
the greatest integer n such that f can be obtained up to weak equiv-
alence by taking A (or a fibrant representative) and attaching cells of
dimension n and above. If f is a weak equivalence, then x(f) = oc.
More precisely, x(f) = n if and only if all of the homotopy fibres of f
are (n — 2)-connected, and at least one of the homotopy fibres is not
(n — 1)-connected. The numbers here are potentially confusing. One
rough way to remember them is to keep in mind that if A and B are
1-connected and A is a subcomplex of B, then k(B, A) is the lowest
dimension in which B/A has nontrivial homology (or homotopy).

If f: A— Bisa map of simplicial II-algebras or of graded sim-
plicial sets, we let (B, A) denote the minimum value of the numbers
k(Bn, An), n > 1. In the statement of the following proposition the
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symbol U" denotes homotopy pushout in the category of graded sim-
plicial sets, while %" is homotopy pushout in the category of simplicial
[1-algebras.

5.1. Proposition. Suppose that B < A — C' is a two-source of sim-
plicial I1-algebras. Then

k(B % C,BUY C) > k(B,A) + k(C, A).

We will deduce 5.1 from some very general observations. A finite
graded set is a graded set which is finite in every gradation and empty
in all but a finite number of gradations. Consider a functor F' from the
category of finite graded sets to the category of graded simplicial sets.
There is a standard way to prolong F' to a functor on the category of
all graded sets by setting

(5.2) F(T) = colimger F(S) |

where the colimit is taken over the category of finite graded subsets of
T. The functor F can be further prolonged to a functor on the category
of graded simplicial sets by setting

(5.3) F(X) = diag(n — F(X[n)) .

Here diag is the diagonal or realization functor from the category of
bisimplicial sets to the category of simplicial sets [13, IV.1]. The argu-
ment of diag in the above formula is a graded bisimplicial set, but the
diagonal is to be taken gradation by gradation. In each of the following
statements the functor F' involved is prolonged like this to a functor
on the category of graded simplicial sets.

5.4. Proposition. Any functor F from finite graded sets to graded
simplicial sets respects cellular connectivity, in the sense that for any
map X — Y of graded simplicial sets there is an inequality

K(F(Y),F(X)) > r(Y,X) .

5.5. Proposition. Any functor F from finite graded sets to graded
simplicial sets preserves homotopy pushouts in the stable range, in the
sense that for any two-source Y <+ X — Z of graded simplicial sets
there is an inequality

k(F(Y U% Z), F(Y) Upx) F(2)) > 6(Y, X) + k(Z,X).
We also need the following lemma, which can be proved by the same
sort of gluing argument used in the proof of [13, IV.1.7].

5.6. Lemma. Suppose that X — 'Y is a map of bisimplicial sets, and
that n is an integer such that k(Y[i], X[i]) > n for all © > 0. Then
k(diag(Y), diag(X)) > n.
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Proof of 5.1. This is similar to the second part of the proof of [21, 3.6].
First, some background. Let F' denote the free functor from graded
sets to Il-algebras, prolonged degreewise to be a functor from graded
simplicial sets to simplicial I[I-algebras. For any simplicial II-algebra
D there is a bar resolution B(D) [21, 3.2]; this is a bisimplicial II-
algebra, i.e. a simplicial object in the category simplicial II-algebras,
with B(D)[n] = F"*'(D). Let D = diag(B(D)). By [21, 3.2], D
is a cofibrant simplicial IT-algebra; more generally, if D — D’ is a
map of simplicial [I-algebras which is an injection of underlying graded
simplicial sets, then the maps B(D)[n] — B(D')[n] and the diagonal
map D — D' are both cofibrations. There is a natural weak equivalence
D — D.

Now for the proof. By adjusting the objects up to weak equivalence,
we can assume that the maps A — B and A — C are cofibrations of
simplicial [I-algebras and hence injections on underlying graded simpli-
cial sets. The simplicial IT-algebra A is cofibrant and the induced maps
A — B and A — C are cofibrations; hence there are weak equivalences

B! C ~ B x; C = diag (B(B) xp(4) B(C))
B U C ~ BUY% C = diag (B(B) U B(C)) .

Let U = B(A4), V = B(B), W = B(C). By 5.4 and induction on n,
there are inequalities

k(VInl, Uln]) = w(F"1(B), F"*'(A)) > (B, A)
K(W(n], Uln]) = &(F"H(C), F""1(A)) > K(C, A)

(5.7)

and hence by 5.5 inequalities
K ((V xg W)[n], (V Uy W)n]) > (B, A) + k(C, A) .

Note in this connection that because of the fact that F' (as a left ad-
joint) preserves colimits, there is a natural isomorphism (V xy W)[n] ~
F((V Uy W)[n — 1]). The result follows from 5.6 and 5.7. O

For the sake of clarity we will prove 5.5 and 5.4 in the ungraded
case (i.e. with the word “graded” deleted from the statements); the
modifications necessary to pass to the graded case are notational.

Suppose that D be a small category and that F' and G are respec-
tively covariant and contravariant functors from D to simplicial sets.
We denote the coend [16, IX.6] of the bifunctor G x F' by G xp F'. This
is the coequalizer of a more or less evident pair of maps

[1 Gd) x Fd) =[] G(d) x F(d)

d—d’
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where the coproduct in the range is indexed by the objects in D and
the coproduct in the domain by the arrows. This coequalizer diagram
is the low degree part of the bisimplicial set B(F,D,G) (cf. [14, §3])
with

(5.8) B(F,D,G)k = [] Gd) x F(do),

do—>+—dy,

where the coproduct is indexed by the k-simplices of the nerve of D.
We will denote the diagonal of this bisimplicial set by G' x& F' and call
it the homotopy coend of the bifunctor G x F. There is an obvious
map

(5.9) G x% F— GxpF.

Let F be the category of finite sets. Suppose that F'is a functor from
finite sets to simplicial sets, prolonged as in 5.2 and 5.3 to a functor of
simplicial sets. As remarked in [21, 1.1], this prolonged functor can be
expressed by the formula

F(X)=X*xzF

where X is a simplicial set and X* is the contravariant functor on F
which sends S to X°. The observation we begin with is that this coend
is actually equivalent to the corresponding homotopy coend.

5.10. Proposition. Suppose that F is a functor from finite sets to
simplicial sets. Then for any simplicial set X the natural map

X*xLF - X*xz F=F(X)
18 a weak equivalence.

Proof. We consider the map 5.9 for an arbitrary contravariant functor
G from F to sets or simplicial sets. It is easy to see that the map
is a weak equivalence if G is representable, that is, if G has the form
Hom(—, T') for some object T" of F; in this case both domain and range
are equivalent to F(7T') [14, 3.1(5)]. Since filtered colimits preserve
weak equivalences [3, XI1.3.6] and all of the constructions in question
commute with filtered colimits, the map 5.9 is clearly an equivalence if
G is a filtered colimit of representable functors. It now follows from a
diagonal argument that 5.9 is a weak equivalence if each of the functors
G(-)[n] is a filtered colimit of representable functor; to obtain this use
[13, IV.1.7] and the fact that 5.9 is the diagonal of a map of bisimplicial
sets which in degree n contains the map G(-)[n] x%* F — G(-)[n] x s F.
But observe that any set is the filtered colimit of its finite subsets, so
that the functor on F sending S to X[n]® = Homg(S, X[n]) is indeed
a filtered colimit of representable functors. O
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The following is an exercise in elementary homotopy theory.

5.11. Lemma. Suppose that Y < X — Z s a two-source of simpli-
cial sets in which the maps are injective (so that the homotopy pushout
agrees with the ordinary pushout). Then for any n > 0 there are in-
equalities

k(Y X") > k(Y X)
K((Y Ux Z)%, Y™ Uxn Z") > (Y, X) + K(Z, X)

Proof of 5.4 (ungraded case). By 5.10, k(F(Y), F(X)) is the same as
the cellular connectivity of the map X* x" FF — Y* x F. This map
can be realized as the diagonal of a map of bisimplicial sets (5.8) which
in degree k is constructed as a disjoint union of maps of the form
XS x F(T) — Y® x F(T). It follows from the first inequality of 5.11
that k(Y x F(T), X® x F(T)) > x(Y, X). Since taking disjoint unions
does not lower cellular connectivity, the desired result follows from
5.6. 0]

Proof of 5.5 (ungraded case). We can assume that X — Y and X — Z
are injections, so that the pushout of the two-source is the same as the

homotopy pushout. By 5.10, x (F(Y U% Z), F(Y) Upx F(Z)) is the
same as the cellular connectivity of the map

(Y* X5 F)Uxesnp (2" X5 F) = (Y Ux Z)" x5 F.

By definition (5.8) and inspection, this map is realized as the diagonal
of a map of bisimplicial sets which in degree k is constructed as a
disjoint union of maps of the form

(Y5 Uys Z%) x F(T) — (Y Ux Z2)° x F(T).

It follows from the second inequality of 5.11 that the cellular connec-
tivity of this last map is at least x(Y, X )+ (Z, X), and as in the proof
above the desired result is now a consequence of 5.6. 0

6. POSTNIKOV SYSTEMS FOR SIMPLICIAL [I-ALGEBRAS

In this section we study Postnikov systems for simplicial TI-algebras
in a way which is largely parallel to the study of Postnikov systems
for topological spaces in §3. In the course of this we develop a notion
of cohomology for simplicial II-algebras. This differs from the notion
of cohomology for II-algebras considered by the second author and
Kan in [8] in that more general coefficients are allowed. In [8] the
coefficients are “strongly abelian” II-algebras in which both Whitehead
products and compositions are trivial; here we accept arbitrary abelian
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[T-algebras, in which the Whitehead products vanish but compositions
may be nontrivial.

Postnikov systems. Suppose that X is a simplicial II-algebra. Attach-
ing an (n + 2)-cell cD"*2@m,S* to X via a map f : cS" @7, 5% — X
has no effect on m; X for ¢ < n, and clearly kills of the class repre-
sented by f (4.7) in (7,41 X)k. Now attach cells of dimension (n + 2)
and greater to X by all possible attaching maps to obtain an inclusion
X C Xy, repeat the process to obtain X; C X5, repeat again, etc., and
let P, X = U;X;. There is a map X — P, X which induces isomor-
phisms on m; for i < n, and m;P,X ~ 0 for ¢ > n. The construction
of P,X is functorial in X, and there is a natural map P, X — P,_; X
which respects the inclusions of X in these two simplicial I[1-algebras.

6.1. Filenberg-Mac Lane objects. If A is a [1-algebra, we say that a sim-
plicial IT-algebra X is of type K, if mp X ~ A and the higher homotopy
of X is trivial. Suppose that M is a A-module. We say that a map
X — Y is of type BA(M,n) n > 1, if X is of type Ky, mY =~ A,
mY =~ M (as a A-module), all other homotopy of Y is trivial, and the
map X — Y gives an isomorphism on 7. Sometimes we will say for
short that the target Y is of type K, (M, n).

The difference construction. Suppose that f : Y — X is a map of
simplicial [T-algebras. Consider the pushout C' of the diagram X' <+
Y’ — (PyX)' obtained by using some functorial construction to replace
Y by a cofibrant object and the two maps ¥ — X and Y — P, X by
cofibrations. There is a commutative diagram

Y +——— Y’ s (PyX)
(6.2) fJ( J JAn(f)
X +— X s P, C

in which the vertical map on the right is A, (f). The source (PyX)" of
A, (f) is A3(f), and the target P, ,C is AL(f).

6.3. Proposition. Suppose that f :' Y — X is a map of simplicial
[T-algebras which is an isomorphism on my and whose homotopy fibre
F is (n — 1)-connected, n > 1. Let M = w,F. Then M is naturally a
A-module for A = moX and A, (f) is a map of type Kxn(M,n +1). If
m; F vanishes except for © = n, then the right-hand square in 6.2 is a
homotopy fibre square.

We need a modified form of 3.3. A map f : A — B of connected
simplicial sets is simple if its homotopy fibre is connected and 7 A acts
trivially on the homotopy groups of the homotopy fibre.
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6.4. Proposition. Let f : A — B be a simple map of connected simpli-
cial sets with homotopy fibre F. Assume that m;F s trivial for 1 < n,
n>1, and let M = m,F. Let " be the mapping cone of f, and P,
its (n + 1)’st Postnikov stage in the category of simplicial sets. Then
P11 is a simplicial set of type K(M,n + 1). If the homotopy of F
vanishes except in dimension n, then the sequence A — B — P, 41 is
a homotopy fibre sequence.

Proof of 6.3. This follows from 5.1 and 6.4. Clearly x((PyX)",Y") > 2
and k(X' Y') > 2. Let T' = (P X)" Uys X'; this is a homotopy pushout
in the category of graded simplicial sets. By 5.1, x(C,T') > 2 (here C'
is from 6.2). It is easy to see that up to weak equivalence applying
P, ., to a simplicial II-algebra commutes with taking the underlying
graded simplicial set. But my[' ~ 7myC' ~ A, and it follows from 6.4 that
7; P11 C vanishes except for the fact that it is isomorphic to A if i =0
and to M if i = n+ 1. Thus M is naturally a A-module (4.14) and
P,1C is of type Kz(M,n+1). (This last deduction involves applying
6.4 componentwise to a map Y’ — X’ of graded disconnected simplicial
sets which is an isomorphism on 7y; note that Py X is homotopically
discrete, so that I' is essentially obtained by taking componentwise
mapping cones of Y/ — X'. The map Y’ — X' is componentwise
simple because Y’ and X', as simplicial II-algebras, are actually graded
simplicial groups.) The final statement again follows from 6.4, since
taking the homotopy pullback of a two-sink of simplicial II-algebras
commutes up to weak equivalence with passing to underlying graded
simplicial sets. O
Ezxistence and uniqueness of Filenberg-Mac Lane objects. The I1-algebra
A, considered as a constant simplicial object, is of type K. Moreover,
if X is any simplicial IT-algebra of type K, then the natural map from
X to its [T-algebra of components gives a weak equivalence X ~ A. It
is easy to deduce from this that the moduli space of all simplicial TI-
algebra’s of type K is connected and weakly equivalent to WAut(A).
We will denote a generic simplicial [I-algebra of this type by Kj,.

6.5. Proposition. Let A be a I1-algebra and M a A-module. Then for
each n > 1 the moduli space of all maps of type Kx(M,n) is weakly
equivalent to W Aut(A, M),

6.6. Remark. In particular, the moduli space is nonempty and con-
nected, so objects or maps of type K, (M,n) are unique up to weak
equivalence. We will denote a generic simplicial TI-algebra of this type
by Kx(M,n).

Proof. Let M,, be the moduli space of maps of type Kx(M,n). As in
the proof of 3.4, the difference construction 6.3 gives weak equivalences
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M, = M1, n > 1. Let My be the moduli space M (K5 Kn),
i.e, the moduli space of maps U — V of simplicial II-algebras with a
section V' — U such that U and V' have trivial higher homotopy and on
o the map with its section gives a diagram of Il-algebras isomorphic
to A x MIA. It is easy to see that M, is weakly equivalent to
WAut(A, M). The functor which assigns to a map U — V of type
Kx(M,n) the homotopy pullback of U — V « U gives a map M; —
My, but in contrast to the situation in the proof of 3.4, the difference
construction does not give an inverse. Instead we proceed as follows.
Given UV of type KpunSSKa, write ' = mV, A" x M' = myU
and form the map A’ — A’ xW M’ of type K, (M, 1). This construction
is functorial and gives a map My — M;. The composite M, —
My — M, is clearly an equivalence because the underlying functor
is connected to the identity by natural transformations. The same is
true of the other composite; the key observation is this. Suppose that
U — V is a map of type Kx(M,1), which we can assume to be a
fibration, and let U;, be the simplicial object which in simplicial degree
n contains the n-fold fibre power of U over V. The diagonal of this
bisimplicial II-algebra maps to V' by a weak equivalence, but it also
maps to the simplicial II-algebra obtained by applying 7y degreewise;
this simplicial TI-algebra is exactly moV x W V. 0]
6.7. Cohomology of 11-algebras. We follow 3.6. Consider an Eilenberg-
Mac Lane object Kx(M,n), n > 1. Then PyKx(M,n) ~ K,, and
so we write the map from this object to its zeroth Postnikov stage as
Kx(M,n) — K. Given another simplicial IT-algebra X over K, we
define H}(X; M) by
H/T\Z(X M) = [X: KA(M7 n)]KA

where the symbol on the right denotes derived homotopy classes of
maps in the category of simplicial II-algebras over K. Let H} (X; M)

denote Mapl, (X, K(M.n)), so that the set of components of this
space is Hy(X; M). As in 3.6, there are isomorphisms

HU7(X;M) 0<i<n-—1

iHA(X; M) ~ .
T A( ) {0 1>n

We use this formula to define HY (X; M).

Classification of Postnikov stages. Suppose that X is a simplicial II-
algebra with X ~ P,_1X, n > 1 and that M is a module over mX.
If Y is a simplicial II-algebra, we write Y ~ X + (M, n) if B,Y ~ Y,
P,_1Y ~ X, and 7,Y is isomorphic to M as a module over 7Y, where
the isomorphism is realized by some isomorphism 7y X — 7 Y. We
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write M(X + (M, n)) for the moduli space of all simplicial II-algebras
of type X + (M, n).

The following result is proved in the same way as 3.7, with 6.3 re-
placing 3.2 in the argument.

6.8. Theorem. Suppose that X is a simplicial 11-algebra with X ~
P, X, n>1. Let A = ngX, and let M be a module over A. Then
there is an natural weak equivalence

6.9. Remark. The arrows & on the right indicate maps which induce
isomorphisms on appropriate homotopy groups (2.3); in this case it is
just isomorphisms on 7y. The remarks at the beginning of 3.9 can be
repeated almost verbatim here.

7. SIMPLICIAL SPACES AND THE SPIRAL EXACT SEQUENCE

In [10] and [11], Kan and Stover and the second author of this pa-
per developed a model category structure on the category of simplicial
pointed topological spaces which is adapted to making spherical res-
olutions of ordinary spaces that mirror resolutions of their homotopy
[T-algebras. In this section we spell out what we need from these pa-
pers and extend the theory in some ways (7.13). All of our topological
spaces have basepoints; we sometimes take this for granted and refer
to “spaces” instead of to “pointed spaces”.

7.1. The Reedy model structure. To begin with, the category of
simplicial spaces acquires a Reedy model category structure [20] [10,
2.4] [15, 5.2.5] from the usual model category structure (§3) on the
category of pointed spaces. A map X — Y of simplicial spaces is a
Reedy weak equivalence if X[n] — Y[n] is a weak equivalence for all
n > 0, a Reedy fibration if X[0] — Y[0] is a fibration and, for all n > 1,
the map

is a fibration. Here M, X is the nth matching space:
M, X = lim X[m)]

¢:[m]—(n]

where ¢ runs over injections in the ordinal number category with
m < n. Cofibrations are defined symmetrically: X — Y is a Reedy
cofibration if X[0] — Y[0] is a cofibration and for n > 1,

X[n] \/ LY = Yn

L, X
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is a cofibration. Here L, X is the latching space
L,X = colim X|[m)]
:[n]—=[m]
where v runs over the surjections in the ordinal number category with
m < n. This Reedy model structure has the desirable property that
the geometric realization functor X — |X| preserves weak equivalences
between cofibrant objects [11, §4].

7.2. The E; model structure. The E; model category structure is
built from the Reedy model category structure. If X is a simplicial
pointed space, we let 7, X denote the simplicial [I-algebra obtained by
applying the functor m, degreewise to X.

7.3. Definition. Define a morphism f : X — Y of simplicial pointed
spaces to be
(1) an Ey-equivalence if m,(f) is a weak equivalence of simplicial
[I-algebras (4.4);
(2) an Es-fibration, if f is a Reedy fibration and 7, (f) is a fibration
of simplicial TT-algebras (4.4); and
(3) an Ey-cofibration if f is a retract of an S'-free map; here f
is S-free if there is a CW complex Z,, C Y[n] which has the
homotopy type of a wedge of spheres S*, k > 1, and

(X[n] \/ LaY) V Z, = Y[n]
Lo X
is an acyclic cofibration.

The category of simplicial spaces has a standard simplicial structure
in the sense of Quillen [19, §I1.2]; if K is a simplicial set and X is
simplicial space, then K ® X is the simplicial space with

(K ® X)[n] = VaexmX[n] -

The Reedy model category structure on simplicial spaces does not ex-
tend to a simplicial model category structure with respect to this sim-
plicial structure: if X — Y is a Reedy cofibration and K — L is a
cofibration of simplicial sets, then

X®L\/X®KY®K—>Y®L

is a Reedy cofibration which is Reedy acyclic if X — Y is a Reedy weak
equivalence, but pretty evidently need not be a Reedy weak equivalence
if K — L is a weak equivalence of simplicial sets. The main result of
[10] is:

7.4. Proposition. With notions of Es-equivalence, Es-fibration, and
Es-cofibration just given, and with the simplicial structure described
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above, the category of simplicial spaces becomes a cofibrantly generated
simplicial model category.

From now on, when we refer to cofibrations, fibrations, and weak
equivalences between simplicial spaces, we will unless otherwise speci-
fied be referring to the E5-model structure.

7.5. Remark. Note that an object is Fo-fibrant if and only if it is Reedy
fibrant. If X is Ey-cofibrant, it is also Reedy cofibrant, although not
vice versa (cf 7.8).

7.6. The functor m, preserves homotopy pushouts. If f : X — Y is
an FE,-cofibration, then 7,(f) is a cofibration of simplicial TI-algebras.
Suppose that X < Y — Z is a two-source of simplicial pointed spaces
in which the objects are Fs-cofibrant and the maps are Es-cofibrations,
and let C' be the pushout of the square. Then 7,C is the pushout of
m.X < mY — m.Z (in each simplicial degree, the pushout process
just involves wedging on spheres). It follows that the functor 7, from
simplicial spaces to simplicial II-algebras preserves homotopy pushouts.

7.7. The functor m, often preserves homotopy fibres. Let f: X — YV
be an Fy-fibration with fibre F. If 7, (f) is surjective, then clearly the
fibre of 7, (f) is exactly m,F. By 4.4 and the definition of E,-fibration,
m.(f) is surjective if and only if the map mym, X — mom.Y is surjective.
It follows that for such maps f, the functor 7, preserves (homotopy)
fibres.

7.8. Cells. If X is a simplicial space and K is a simplicial set with
basepoint *, we define K®X to be the quotient (K ® X)/(x ® X).
The bigraded spheres S are defined by S = ¢S'®S7, and the corre-
sponding disks by D% = ¢D'®S7. Say that a simplicial space is cellular
if it is constructed from the trivial simplicial space by attaching cells
(D43 843 i >0, 7 > 1. Then any cellular simplicial space is Ey-
cofibrant, any simplicial space has a functorial cellular approximation,
and any cofibrant simplicial space is a retract of a cellular one.

7.9. Homotopy groups and the spiral exact sequence. If X is a
Reedy cofibrant simplicial space, there is a first quadrant (homology)
spectral sequence converging to m,|X| with E}; = mm; X [2] [11, 8.3].
This explains the term “F,; model category structure”: a map X — Y
of simplicial spaces is an F, weak equivalence if and only if it induces
an isomorphism on these Fsj-pages. We will write ¢,X = 77, X for
the 7’th column of this Ey-term. By 4.5 and 4.14, ¢, X is a [I-algebra
which for 7 > 1 is naturally a module over é¢X. By definition, a map
X — Yisan Es weak equivalence if and only if it induces isomorphisms
6X ~éY.
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The notion of cellular simplicial space (7.8) suggests another notion
of homotopy; if X is a simplicial space we define 7; ;X,4 >0, j > 1 by

mi ;X = m Map™(S7, X) ~ [S™, X]

where the symbol on the right denotes derived homotopy classes of
maps in the Fy; model category. These are the bigraded homotopy
groups of X. Let m,X = m; ,X. The objects 7;X (i > 0) have formal
properties very similar to those of €;X.
7.10. Proposition. Suppose that X is a simplicial space. Then m; X
s a Il-algebra, which for ¢ > 1 is a module over mpX. A map X —
Y of simplicial spaces is a weak equivalence if and only if it induces
isomorphisms m; X — m;Y, 1 > 0.
Proof. 1t is easy to see that 7; X is exhibited as a Il-algebra by the
functor which sends U € TI to m; Map"(U, X) = [cS'®U, X]. The
module structure arises (4.12) from the fact that for ¢ > 1, ¢S% is a
cogroup object in the homotopy category of simplicial sets under ¢S°
with ¢S% /¢S° ~ ¢S”. The last statement is from [11, 5.3]. O
The objects €; X and 7; X are related by a long exact sequence, called
the spiral exact sequence.

7.11. Proposition. [11, 7.2, 8.1] Suppose that X is a simplicial space.
Then there is a natural isomorphism 7y X ~ éyX of [1-algebras, as well
as a long exact sequence of I1-algebras

= e X 2 Qm, X > X 26X > > m X 56X —0.

7.12. Structure of the spiral exact sequence. All of the con-
stituents of the spiral exact sequence are naturally modules over 7y X:
T, X by 7.10, Q7,1 X by 7.10 and 4.13, and €,X by 4.14 and the iso-
morphism €yX ~ 7y X given by 7.11. In the rest of this section we will
prove the following proposition.

7.13. Proposition. With respect to the module structures described
above, the spiral exact sequence 7.11 is an exact sequence of ToX -
modules.

This will be proved in stages.

7.14. Proposition. The homomorphisms m; X — X from 7.11 are
maps of modules over 1y X .

Proof. By definition [11] these homomorphisms are obtained from the

isomorphisms 7, (cS'®U) ~ ¢S'@m,U, U € TI; these give maps
(7:X)(U) = [eS'®U, X] — [cS'@mU,7.X] = (6X)(U).

For + = 0 we obtain the isomorphism 7, X ~ €;X. Let ) be the

split cofibration sequence from 4.15. Then the corresponding maps



30 BLANC, DWYER, AND GOERSS

[QRU, X] — [Q&r,U, 7. X| provide morphisms of split sequences (4.10)
which show that 7, X — ¢, X is a map of 7y X-modules.

To go any further, we need more information about how to repre-
sent the constituents of the spiral exact sequence in the Ey homotopy
category. This information is in [11, 7.4], but we have to examine it in
some detail because we need a relative version.

If X is a space, the pointed cylinder 1X is the pushout of the diagram
% <— % x I — X xI, where I = [0, 1]; the cone CX is then (I1.X)/(X x1).
There is a natural inclusion X — CX given by z +— (z,0), and the
quotient CX/X is the suspension ¥ X.

If X is a simplicial space, we write D'"X = ¢D"®X and L"X =
cS"®X. It is easy to see [10, 4.1] that D"X is always Fy-contractible,
in the sense that it is £y weakly equivalent to a trivial simplicial space
with one point in each simplicial degree.

The representing objects. Suppose that U € II, and that n > 2 is an

integer. We wish to construct a simplicial space Y1220 by considering
the following diagram

Y2y 20U s M2

Y2y DnIOU ——— NP2

The top row is a sequence of simplicial spaces which in each simplicial
degree gives a cofibration sequence of spaces, and Y250 is defined so
that the same is true of the bottom row. (These are not Es-cofibration
sequences; for instance, the left hand horizontal maps do not induce
injections on 7,. In spite of the notation, Y"=2%0 is a functor of U, not
of XU.) It is clear that the vertical arrows are Reedy equivalences, and
therefore Fy-equivalences; in effect, £ 25U is obtained from S 25U
by wedging on some number of copies of C'U in each simplicial degree.
The following is clear from the definitions (4.13).

7.15. Proposition. If X is a simplicial space, the 1l-algebra Qmw, X
s represented by the functor

U [E"7250, X] ~ 27250, X].
Notice that there is a natural map

57U = DPTU/SIRY s DMTICU/SI AU = SRR
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Now we construct a simplicial space ¢"U by considering the following
diagram

sl Yy DU ——— U

(7.16) @ l l

Sy L YU —— SU

The object ¢"U is defined so that the left hand square is a pushout
square. Since the map « is an Es-cofibration and both of the objects
on the left are Es-cofibrant, the rows of this diagram are Fs-cofibre
sequences.

7.17. Proposition. [11, 7.5] For any simplicial space X and integer
n > 2, the Il-algebra €,X is given by the functor

U [W"U,X] .

7.18. Remark. The functor €, X is representable by U +— ¢"U forn > 2,
and by U +— YU for n = 0. It does not appear that X is repre-
sentable in a similar way.

Now we can prove 7.13. The terminal homomorphism 1, X — X
is a T X-module map by 7.14; this proposition also handles the other
maps 7,X — €,X. Suppose n > 2. According to [11], the homomor-
phism é,X — Qf, »X is induced (via 7.15) by the map ~ in 7.16,
and the homomorphism Q#,_»X — 7,_1X is similarly induced by £.
Now let F' be one of the functors of U which appears in 7.16, or the
functor given by U — £" 2%U. Let C(F) be the pointed simplicial
space F(S%); true, S° is not an object of II, but the construction of
F(SY) still makes sense. For each one of these functors F' it is clear
that there are isomorphisms

FU)~C(F)ANU

where the object on the right is obtained by taking the simplicial space
C(F) and smashing it in each degree with U. To each F' there is
naturally associated a split diagram

S0 C(F). — C(F)

where C'(F'), is obtained by adding a disjoint basepoint in each degree
to C'(F'). Smashing these diagrams with U € II and mapping into X
produces the maps of split sequences (4.10) required to show that the
homomorphisms in question are maps of modules over 7, X (cf. 4.12).
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8. POSTNIKOV SYSTEMS FOR SIMPLICIAL SPACES

In this section we set up a theory of Postnikov systems for simplicial
spaces, which is parallel to the Postnikov theories in §3 and §6. The
new ingredient is 8.15, which essentially gives a functorial relationship
between geometric k-invariants for simplicial spaces and algebraic k-
invariants for the associated simplicial II-algebras.

Postnikov systems. Suppose that X is a simplicial space. Attaching a
cell (see 7.8) (D™+2k Sn+LE) of horizontal dimension (n+2) to X via a
map f : S"t1* — X has no effect on 7; X for i < n, and clearly kills off
the class represented by f in m,11,X. Now attach cells of horizontal
dimension (n + 2) and greater to X by all possible attaching maps
and perform a functorial fibrant replacement to obtain an inclusion
X C X, repeat the process to obtain X; C X, repeat again, etc.,
and let PnX = U;X,. (We use the notation PnX to distinguish this
construction from P, X, which is the result of applying the topological
Postnikov construction P, in each dimension to the simplicial space X.
The “functorial fibrant replacement” involves taking an object Z and
finding a functorial acyclic cofibration Z — Z' such that Z' is fibrant;
it is necessary here because in the E5 model category not every object
is fibrant.) There is a map X — P, X which induces isomorphisms on
m; for i < n, and frilsnX is trivial for ¢+ > n. The construction of ISnX
is functorial in X, and there is a natural map ISnX — pn,lX which
respects the inclusions of X in these two simplicial spaces.

8.1. FEilenberg-Mac Lane objects. If A is a Il-algebra, we say that a
simplicial space X is of type By if 7pX ~ A and 7;X is trivial for
i > 0. Suppose that M is a A-module. We say that a map X — Y is
of type By(M,n) n > 1, if X is of type By, 7Y ~ A, 7,Y ~ M (as
a A-module), all other homotopy of Y is trivial, and the map X — Y
gives an isomorphism on 7. Sometimes we will say for short that the
target Y is of type By(M,n).

8.2. Remark. Recall that taking homotopy groups gives a functor m,
from simplicial spaces to simplicial II-algebras. Let f : X — Y be a
map of type By(M,n). It turns out that 7. (f) is not in general a map
of type Ky (M, n). In fact, according to the spiral exact sequence, there
are isomorphisms

A 1=20 M 1=n
T X ~ < QA =2 Y ~mm X X QM 1=n-+2

0 otherwise 0 otherwise
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The difference construction. Suppose that f : Y — X is a map of
simplicial spaces. Consider the pushout C' of the diagram X' + V' —
(PyX)" obtained by using some functorial construction to replace Y by
an Fs-cofibrant space and the two maps ¥ — X and Y — P X by
Es-cofibrations. There is a commutative diagram

Y «—— Y sy (PyX)'
(8.3) fJ( J JAn(f)
X +— X' s Py C

in which the vertical map on the right is denoted A, (f). The source
(PoX)" of A,(f) is A3(f), and the target P, 1C is At (f).

8.4. Proposition. Suppose that f :Y — X is a map of simplicial T1-
algebras which is an isomorphism on Ty and whose homotopy fibre F
has ; F trivial for i <n (n >1). Let M = 7,F. Then M is naturally
a A-module for A = 7o X and A, (f) is a map of type BA(M,n+1). If
m;F vanishes except for © = n, then the right-hand square in 8.3 is a
homotopy fibre square.

Proof. This is very much along the lines of the proof of 6.3. Let
F, ~ 7w,F be the homotopy fibre of 7,Y' — =m,X'. By the spiral
exact sequence, m;F, = € F is trivial for « < n and isomorphic to M
for i« = n. Diagram 8.3 gives a homotopy pushout diagram

Y —— m(BX)

l J

X — 7 C

Let F! be the homotopy fibre of the right-hand map. The techniques in
the proof of 6.3, which involve using 5.1 to relate a homotopy pushout of
simplicial [1-algebras to the corresponding homotopy pushout of simpli-
cial sets, show that the map m;F; — m;F is an isomorphism for i < n.
Let F' be the homotopy fibre of (P X) — C, so that F, = m,F".
Again, the spiral exact sequence gives that 7; F” is trivial for i < n
and isomorphic to M for i = n. A homotopy exact sequence argument
shows that A, (f) is of type BA(M,n + 1) for an appropriate action of
A on M. Tt is straightforward to check the homotopy pullback condi-
tion. 0]
8.5. Mapping into Eilenberg-Mac Lane objects. We wish to study spaces
of maps from simplicial spaces into Eilenberg-Mac Lane objects. Con-
sider an Eilenberg-Mac Lane map f : By — Bx(M,n) with n > 1; we
can assume that the target is fibrant. It follows from 6.3 that if n > 1
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then A, (m.f) is a map of type Kx(M,n) (note that the difference
construction here is taken in the category of simplicial TI-algebras).
Assigning to a diagram X <~ U — Ba(M,n) of simplicial spaces the
associated diagram m, X < m,U — Al (7, f) ~ Ky(M,n) gives a nat-
ural map (cf. 2.7)

(8.6) @, (X): M (X, Bx(M,n)) — Mk, (7m.X, Ky(M,n)).

Hom

8.7. Proposition. The map ®,(X) is a weak equivalence of simplicial
sets for all simplicial spaces X and all n > 2.

8.8. Remark. By a slightly more elaborate construction, it is possible
to produce an equivalence for n = 1.

Proof of 8.7. 1t is enough to check the cases in which X is a sphere
S%i. The reason for this is that the domain of ®,(X) is equivalent
to Map"(X, By(M,n)) and the range to Map" (7, X, Kx(M,n)) (2.7,
2.5); since the functor w, takes E,-homotopy pushouts to homotopy
pushouts of simplicial II-algebras, it follows that the domain and range
of ®,(X) take homotopy pushouts (in X') to homotopy pullbacks. So
if ®,,(X) is a weak equivalence for spheres, it is a weak equivalence
for any simplicial space Y which can be constructed from spheres by
a finite number of homotopy pushouts. To pass to arbitrary X, note
that any simplicial space X is up to weak equivalence a filtered colimit
of such Y, and that both the domain and range of ®,,(X) take filtered
colimits in X to homotopy limits of simplicial sets.

So we restrict attention to the bigraded spheres. Each S%/ is a
cogroup object in the Ey-homotopy category of simplicial spaces, while
7,S% is a cogroup object in the category of simplicial II-algebras. It is
easy to check that ®,(X) commutes up to homotopy with the induced
multiplications on the spaces involved. This means that in order to
prove that @,(S%/) is a weak equivalence it is enough to show that it
induces an isomorphism on ordinary homotopy groups, including mg; it
is not necessary to check all possible basepoints.

By inspection, my®,,(S™7) is an isomorphism; both domain and range
are isomorphic to M;. This implies that ®,(S™7) is a weak equiva-
lence, since the higher homotopy groups of the domain (isomorphic to
Tntk,;Ba (M, n)) and of the range (isomorphic to (7,4t Ka(M,n)),) are
trivial. Since S* is the Fy-suspension of S'~1 it follows as above that
®,,(57) ~ Q®, (S 7). By induction and the fact that the domain and
range of ®,,(S%7) are connected for i > 0,i # n, it is easy to conclude
that @, (S%7) is a weak equivalence for i > 0, and that 7;®,,(5%7) is an
isomorphism for £ > 0. But mo®,(S%) is a map A; — Aj, and it is
easy to see by inspection that this is the identity. 0]
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8.9. Fxistence of Filenberg-Mac Lane objects. The easiest way to do this
seems to be with generators and relations. To construct a simplicial
space of type By, start with the wedge W = V;>1 Vaea, S%7; it is clear
that 7oW is the free II-algebra on the underlying graded set of A. Now
attach a one-cell for each relation in some presentation of A, and apply
the functor Py to obtain an object W' of type By. Since 7oW' ~ A,
there is a map « : m,W' — K, which is an isomorphism on m,. To
construct a map of type By (M, n), n > 1, start with W' and add on the
wedge Vi>1 Vaen, S™ to obtain Z, so that 7,7 is the coproduct of 7, W'
with #;51 *zepr, ¢S"®m. S’ . There is a retraction Z — W' obtained
by mapping the wedge factors trivially; let F' be the homotopy fibre.
Consider the diagram

T F —_— VA —_— T W

| /| |
Ko(M,n) —— Kx(M,n) —— K,

in which both rows are fibre sequences; here 3 is obtained by mapping
a factor ¢S"®mn,S* of m,Z indexed by x € M, so as to represent the
element x € m, Ko(M,n) ~ M. This gives an epimorphism

inF = é,F — M.

We now attach (n+1)-cells to Z to kill off the kernel of this epimorphism
and apply the functor P, to obtain Z'. It is routine to check that
W' — Z'is of type Ba(M,n).

8.10. Uniqueness of Filenberg-Mac Lane objects. Recall from above that
if f is of type By(M,n) then A,_;(m,f) is of type Kx(M,n).

8.11. Proposition. Let A be a [1-algebra, M a A-module, andn > 1 an
integer. Let M,, denote the moduli space of all maps of type By(M,n).
Then the functor A, () induces a weak equivalence

M, = M(Ex & Ky (M, n)).

8.12. Remark. By 6.5, the moduli space on the right is equivalent to
WAut(A, M). In particular, the moduli space is connected.

Proof. We first handle the case M = 0; it is easy to see that this
amounts to showing that the functor Pym, induces a weak equivalence
from the moduli space of all objects of type By to M(K}). In view
of 2.2, it is enough to show that B, is unique up to weak equiv-
alence, that Auth(BA) is homotopically discrete, and that the map
7o Aut"(B,) — Aut(A) obtained by recording the effect of a self-map
on 7y is an isomorphism.
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Suppose that X is a fibrant object of type B, and let W be as in
8.9. By the construction of W it is possible to obtain a map W — X
which is an isomorphism on my; this will induce equivalences W' =
]50W — PUX < X. This shows that there is only one such X up to
weak equivalence. The same kind of argument shows that 7y Aut"(X)
maps surjectively to Aut(A). Pick such an X which is fibrant and
cofibrant, and in particular constructed by cell attachment. Attaching
a cell (D13 S%) to an object Y to get Y’ gives a homotopy fibre
sequence

Map"(Y’, X) — Map"(Y, X) — Map"(S*/, X)

in which the base space is contractible for ¢ > 0 and homotopically
discrete for ¢ = 0 (its homotopy groups are 7, ;X). Moreover, the
map from [S%/, X] to the set of II-algebra maps 7,S% — 7y X is an
isomorphism. A formal inductive argument now shows that for any Y,
the space Map”(Y, X) is homotopically discrete and the map [V, X] —
Hom (7Y, 70X ) is injective. The case Y = X of this is what we are
looking for.

Now we consider the case of a general M. For any simplicial model
category C, there is an induced simplicial model category structure on
the category of arrows in C, in which a morphism

A—"3 B

ol

C —— D
from u to v is a weak equivalence (resp. fibration) if o and [ are
weak equivalences (resp. fibrations) in C, and a cofibration if « is a
cofibration in C and the natural map C'[[, B — D is a cofibration in
C. We use this when C is the E, model category structure on simplicial
spaces in order to have an explicit way (2.2) to identify the moduli space
of a map. Let f be a map of type By(M,n). What we have to prove is
that f is unique up to weak equivalence, that Aut"(f) is homotopically
discrete, and that the natural map a : m Aut"(f) — Aut(A, M) is an
isomorphism. Uniqueness of f and surjectivity of a are proved as above
using the explicit models from 8.9. Write f : By — X. We can assume
that f is obtained by starting with the identity map By, — B, and
attaching cells to the target of dimension n and higher. An inductive
argument, exactly the same as above, shows that if g : By — Y is a
map obtained in this way, then Map"(g, f) is homotopically discrete,
and the natural map [g, f] — Hom(A, A) x Hom(7,Y, 7, X) is injective.
Applying this in the case Y = X finishes the proof. 0



MODULI PROBLEM 37

For convenience, we will denote Eilenberg-Mac Lane objects by By
and By (M, n).
Classification of Postnikov stages. Suppose that X is a simplicial space
with X ~ Pn_lX and that M is a module over 7o X. If Y is a simplicial
space, we write Y ~ X 4+ (M,n) if P,Y ~Y, P,_,Y ~ X, and #,Y
is isomorphic to M as a module over 74X, where the isomorphism
is realized with respect to some isomorphism 7Y ~ 7, X. We write
M(X + (M, n)) for the moduli space of all simplicial spaces of type
X + (M, n). The following result is proved in the same way as 6.8.

8.13. Theorem. Suppose that X is a simplicial space with X ~ I?’n,lX,
n>1. Let A = 1 X, and let M be a module over A. Then there is an
natural weak equivalence

8.14. Remark. The arrows & on the right indicate maps which induce
isomorphisms on 7; for appropriate i (2.3); in this case it is just iso-
morphisms on 7. Again, the remarks at the beginning of 3.9 could be
repeated here with some slight modifications.

The fundamental homotopy fibre square. The following theorem is at
the basis of our classification result.

8.15. Theorem. Suppose that X is a simplicial space, A is a I1-algebra,
and M is a A-module. Then for any n > 2 there is a natural homotopy
fibre square

M(X ~ BA(M,TL) <—PBA) — M(W*X WKA(M,TL) <—PKA)

l J

M(X) — M(m. X)

8.16. Remark. The moduli spaces on the left here involve simplicial
spaces, and the ones on the right simplicial [1-algebras. The vertical
arrows are induced by the obvious functors which take a diagram and
select the first component; the lower horizontal arrow is induced by the
functor m,. The upper horizontal arrow is induced (as in 8.5) by the

functor which takes a diagram U — V LW to the diagram
U — AL (o f) < AS (1. f) .
Proof of 8.15. Consider the commutative square
M(X ~ By(M,n) «P By) —— M(m.X ~ Ky\(M,n) <P K,)

J l

M(X) x M(By(M,n) «f By) —— M(1.X) x M(Ky(M,n) < Ky)
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in which the second factor of the lower horizontal arrow is induced
by the difference construction (8.5). The lower spaces are connected,
and by 2.11, 2.7, and 8.7 the induced map on vertical fibres is a weak
equivalence. Note in this connection that with the help of functorial
factorization it is easy to replace the upper left hand moduli space
by an equivalent moduli space of diagrams U — V < W in which
the simplicial space V' equivalent to By(M,n) is fibrant. The proof is
finished by observing that the map

M(BA(M, TL) P BA) — M(KA(M, TL) P KA)

is a weak equivalence (8.11). O

9. THE MAIN THEOREM

Recall that if A is a I[T-algebra, the moduli space T M(A) of realiza-
tions of A is defined by

TM(A) = [[M(X),
(Xx)

where X ranges over weak equivalence classes of (pointed) topological
spaces with 7, X ~ A. In this section we give the main structure
theorems for this moduli space.

9.1. Definition. Suppose that X is a simplicial space. We say that X is
a potential n-stage for the Il-algebra A if the following three conditions
are satisfied:

e 7y(X) is isomorphic to A as a II-algebra,

e 7;(X)~0 fori>n, and

e ¢;(X)~0forl<i<n+1.
The partial moduli space or partial realization space T M, (A) is defined
to be the moduli space of all simplicial spaces which are potential n-
stages for A.

9.2. Remark. It follows from the spiral exact sequence that a potential
n-stage X for A has m; X ~ QA for 0 <i <n, 7,X = 0 for i > n,
&X ~0fori#0,n+2, 6X ~A, and é,,,X ~ Q"F1A,

The above definition makes sense for n = oo (the simplicial space
X involved would have 70X ~ A and ¢X ~ 0 for 7 > 0). Our first
theorem says that the potential co-stages for A are essentially the same
as realizations of A.

9.3. Theorem. The geometric realization functor induces a weak equiv-

alence TMoo(A) = TM(A).
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Proof. Let F be the functor which assigns to a potential oc-stage Y for
A the geometric realization |Y¢|, where Y is some functorial cofibrant
approximation to Y'; by inspection of the homotopy spectral sequence
of a realization (7.9) [11, 8.3], F'(Y) is a topological realization of A.
Let G be the functor which assigns to such a topological realization
X the constant simplicial space given by X; it is easy to see directly
that G(X) is a potential co-stage for A. The two composites GF
and F'G are connected to the respective identity functors by chains of
natural transformations which are weak equivalences, and so induce
weak equivalences of the moduli spaces. 0]

It is easy to see from 7.11 that if X is a potential n-stage for A and
m < n, then the horizontal Postnikov section b,X is a potential m-
stage for A, In particular the functor P,_; induces a map TM,(A) —
TM,_1(A). Our next theorem gives an expression for T M (A) in
terms of these maps. Let holim® denote the derived homotopy limit
functor for diagrams of simplicial sets; this is the functor obtained by
replacing the diagram in some functorial way by a diagram of fibrant
simplicial sets, and applying the ordinary homotopy limit functor of

[3].

9.4. Theorem. There is a natural weak equivalence of simplicial sets
T Meoo(A) ~ holimBT M, (A) .

Proof. This follows from [7]; the main result there is stated for simplicial
sets, but the arguments apply to any cofibrantly generated simplicial
model category with arbitrary small limits and colimits. The main
result of [7] is applied in exactly the same as in [7, 4.6]. O

This reduces the study of T My (A) to the study of the individual
spaces T M, (A), together with the maps between them. We begin
with TMg(A). The following is clear from 6.5, since T Mq(A) is the
moduli space of all simplicial spaces of type Bj4.

9.5. Theorem. The space T My(A) is naturally weakly equivalent to
BAut(A).

In this statement, Aut(A) denotes the discrete group of Il-algebra
automorphisms of A; in particular, the theorem states that 7 Mg(A)
is an Eilenberg-Mac Lane space of type K (m, 1) for 7 = Aut(A).

The next theorem analyzes the difference between 7 M, (A) and
TMp_1(A).
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9.6. Theorem. Suppose that n > 1. Then there is a natural homotopy
fibre square

TMu(A) ——  M(A% Ki(QA,n+2))

The vertical map on the right is induced by the functor which takes
a map U — V and repeats it to obtain U — V < U. The other two
maps in the square are constructed below.
9.7. Interpretation. According to 2.11 and 6.5, the space 7 = M(A %
KA(Q"A,n+2) «p A) fibres over WAut(A) x WAut(A, Q"A) with fibre

(9.8) [T#i 4 0m4)
!

where the coproduct is taken over the set of all isomorphisms A —
moKA(Q"A,n + 2). It is clear that Aut(A) acts simply transitively on
this set, and it follows that Z fibres over WAut(A, Q"A) with fibre
HOTH(A; Q" A). In this way each potential (n — 1)-stage Y for A4, i.e.,
each vertex of TM,,_;(A), determines an element oy in HT?(A; Q" A)
modulo the action of Aut(A, Q"A). This element (which can be iden-
tified with the k-invariant (6.8) of the simplicial [T-algebra 7,Y) is the
obstruction to lifting Y to a potential n-stage. Let T M, (A)y denote
the moduli space of all potential n-stages X for A with Py X ~Y.
If oy is nontrivial, then 7T M, (A)y is empty, otherwise (given that
QH"(A; Q" A) ~ HT(A; Q" A)), there is a fibration sequence

H(A;Q"A) = TM,(A)y = M(Y) .

On the level of 7y this can be interpreted as saying that weak equiv-
alence classes of lifts of YV to a potential n-stage for A correspond to
trivializations of oy ; of course the sequence also indicates how the space
of such trivializations contributes to the spaces of self-equivalences of
these lifts.

9.9. Potential n-stages. Suppose that Y is a potential n-stage for A; we
can assume that Y is cofibrant as a simplicial space. According to 9.2,
the homotopy spectral sequence for 7,|Y| (7.9) has only two nontrivial
columns at the Fs-page: €Y =~ A in column Eg* and €,,,Y ~ QLA
in column E7 ., .. It follows from the description of the spectral se-
quence in [11, 8.3] that the differential d,, ;» maps column n+2 as much
as possible isomorphically to column 0. Consequently, 7;|Y’| is trivial
fori > n+2, and m;|Y| ~ A; for i < n+1. But more is true. Let P"Y
be the simplicial space obtained by applying the (m — 1)-connective
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cover functor degreewise to Y. The spectral sequence of P™Y can be
computed by a naturality argument, and it follows that ;| P™Y| is
trivial for ¢ > n 4+ m + 1 or for i < m, and that m;|P™Y| ~ A; for
the remaining values of 7. In particular, the algebraic constituents of A
are knitted together by Y in a way which is much more comprehensive
than is reflected by the single ordinary Postnikov stage |Y|.

The rest of this section is taken up with the proof of 9.6.

The first step is to analyze the difference between potential n-stages
for A and potential (n—1)-stages. Suppose that X is a potential n-stage
for A. According to 9.1 and the spiral exact sequence, 7, X ~ Q" A. Let
Y = P,_X. Then Y is a potential (n — 1)-stage for A, and according
to 8.3, after adjusting X and Y up to weak equivalence there is a
homotopy pullback square

X —— By

(9.10) o 0|

Y L By A, n+1)

in which the maps f and v give isomorphisms on 7. We now determine
how to reverse this construction.

9.11. Proposition. Suppose that Y is a potential (n — 1)-stage for
A (n > 1) and that X lies in a homotopy fibre square of the form
9.10. Then X is a potential n-stage for A if and only if the map g :
Y — KAo(Q"A,n+ 1) corresponding (8.6) to f is a weak equivalence
of simplicial T1-algebras.

Proof. The main thing to prove in showing that X is a potential n-
stage for A is that €;X vanishes for ¢ = n,n + 1; the other conditions
are simple to check. The homotopy fibre F' of v is of type By(Q2"A,n).
Consequently, é;F vanishes unless 7 is n or n + 2, and the long exact
é,-homotopy sequence of u (7.7) degenerates around dimension n into
the exact sequence

0 =X 26y =26, F—=6,X—0.

Thus X is a potential n-stage if and only if the connecting homomor-
phism €, 1Y — €,F ~ Q" A is an isomorphism. A naturality argument
identifies this connecting homomorphism with the map 7, 7Y —
0" A induced by g¢. Since my(g) is an isomorphism by assumption, and
both domain and range of g have trivial homotopy except in dimensions
0 and n + 1, the result follows. O
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Suppose that Y is a potential (n — 1)-stage for A. We write X ~
Y @& (2"A,n) if X is a potential n-stage for Y and P, ;X ~ Y. The
space M(Y & (2" A, n)) is the moduli space of all such X.

9.12. Proposition. Suppose that Y is a potential (n — 1)-stage for A
(n > 1). Then there is a natural homotopy fibre square

MY & (A, n)) —— M(mY & Ka(QA,n+1) «p K)

o !

M(Y) s M(m.Y)

9.13. Remark. As usual, 3 signifies maps which induce isomorphisms
on appropriate homotopy groups; in the case 7,V & K4(Q2"A,n + 1)
these isomorphisms are such that the map is an equivalence. The right
vertical arrow in the square is induced by the functor which takes a
diagram U — V <« W of simplicial [I-algebras and selects the first
component. As would be revealed by unraveling the proof, the up-
per horizontal arrow is induced by two applications of the difference
construction, one in the category of simplicial spaces (8.4) to obtain
Y — Bs(2"A,n + 1), and the second in the category of simplicial
[I-algebras (8.5) to obtain 7,V — KA(Q"A,n + 1).

Proof of 9.12. We let M = Q™A and m = n + 1. There is a square

MY & (M,n)) — MY S Bu(M,m) p By)

| J

M(Y) = M(Y)

whose upper arrow is a weak equivalence obtained by using 9.11 to se-
lect appropriate components of the weak equivalence from 8.13. Here

25 denotes maps which correspond via 8.5 to weak equivalences 7,Y —
KA(M,m). Passing to appropriate components with 8.15 gives a ho-
motopy fibre square

MY S Bu(M,m) < By) —— M(m,Y & Ku(M,m) «p K )

J J

M(Y) BELLEEY M(7,Y)

Combining these squares finishes the proof. OJ
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Proof of 9.6. For any Il-algebra A, A-module M, and m > 1 there is a
commutative diagram
(9.14)

M(KA(M,m)ePKA) ;> M(KA(M,m+1)<—PKA)

J J

M(Ky+ (M,m)) —— M(Ky% Kx(M,m+1) «p K,)

in which the horizontal arrows are equivalences obtained with the dif-
ference construction; see the proof of 6.5 for the upper arrow and 6.8
for the lower one. Clearly, this is a homotopy fibre square. Suppose
that Y is a potential (n — 1)-stage for A. Let A = A, M = Q" A, and
m = n+ 1. Then M(7.Y) is one component of M(K, + (M, m)).
Moreover, the map M (K (M,n)) - M(m.Y & Ka(Q"A,n+ 1)) ob-
tained by sending a map U < V to U — U « V is a weak equivalence
(a homotopy inverse is given by the functor sending U — V < W to
V < W). Combining this observation with 9.12 and 9.14 then gives a
homotopy fibre square

[y MY ® (2" An)) ——  M(EA(M,m + 1) p K,)

J l

[y M(Y) —— M(K) & Ky(M,m +1) <P Ky)
which is the one we are looking for, since the left vertical arrow is
TMu(A) = TM,_1(A). O
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