
ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPESDAVID BLANCAbstract. We de�ne a sequence of purely algebraic invariants { namely, classes in theQuillen cohomology of the �-algebra ��X { for distinguishing between di�erent homotopytypes of spaces. Another sequence of such cohomology classes allows one to decide whether agiven abstract �-algebra can be realized as the homotopy �-algebra of a space.1. IntroductionThe usual Postnikov system for a (simply-connected) CW complex X serves to determineits homotopy type. One begins with purely algebraic data, consisting of the homotopy groups(�nX)1n=2. However, in order to construct the succesive approximations X(n) (n � 2), withX ' holimX(n), one must specify a sequence of cohomology classes kn 2 Hn+2(X(n);�n+1X)(see [W, IX, x2]). These can hardly qualify as algebraic invariants, since their descriptioninvolves the cohomology groups of topological spaces. In this paper we show that if one iswilling to invest the graded group ��X := (�nX)1n=1 with some further algebraic structure,the additional information needed to determine the homotopy type of X can be described inpurely algebraic terms.The structure needed on ��X is that of a �-algebra { i.e., a graded group equipped with anaction of the primary homotopy operations (Whitehead products and compositions). In thiscontext, the additional data needed consists of cohomology classes in the Quillen cohomologyof this �-algebra { which can be de�ned as usual in algebraic terms (see x4.1 below). Weshow:Theorem A. Given two realizations X and X0 of a �-algebra J�, there is a successivelyde�ned sequence of \di�erence obstructions" �n 2 Hn+1(J�;
nJ�), taking value in the Quillencohomology groups of J�, with coe�cients in the J�-module 
nJ�, whose vanishing impliesthat X ' X0.(See Theorems 4.18 and 4.21 below). The (n+1)-st cohomology class is de�ned whenever then-th Postnikov section of the simplicial space resolutions of the spaces X and X0, respectively,agree, up to homotopy. Even though the obstructions are de�ned in terms of a speci�c choiceof �-algebra resolution of J�, in fact they depend only on the homotopy type of the Postnikovsections.Moreover, these cohomology groups can also be used to determine the realizability of anabstract �-algebra as the homotopy groups of some space:Theorem B. Given a �-algebra J�, there is a successively de�ned sequence of \characteristicclasses" � 2 Hn+2(J�;
nJ�), which vanish if and only if J� is realizable by a topological space.(See Theorems 4.8 and 4.15 below). The vanishing requirement should be understood in thesense of an obstruction theory: if any such sequence of cohomology classes vanishes, the �-algebra is realizable; if one reaches a non-trivial obstruction, one must back-track, and try toDate: (Revised version) September 18, 1998.1991 Mathematics Subject Classi�cation. Primary 55S45; Secondary 55Q35, 55P15, 18G10, 18G55.Key words and phrases. homotopy invariants, simplicial resolution, homotopy type, �;-algebra Quillencohomology. 1



2 DAVID BLANCvary the choices involved in order to obtain a realization. These choices again depend only thehomotopy type of a suitable Postnikov section { this time, of a simplicial resolution we aretrying to construct for the putative topological space X realizing J�. See Proposition 4.10below.The theory is greatly simpli�ed if we are only interested in the rational homotopy type of asimply-connected space X. In that case, a rational �-algebra is simply a graded Lie algebraover Q, and the cohomology theory in question reduces to the usual cohomology of Lie algebras.Theorem A thus provides an integral version of (the dual to) the Halperin-Stashe� obstructiontheory for rational homotopy types (see [HS] and x4.22 below).It is in order to be able to deal with this case, too (and other possible variants { seex2.14 below), that we have stated our results for a general model catgory C (subject to certainsomewhat restrictive simplifying assumptions on C { not all of which are really necessary). Fortechnical convenience we have chosen to describe the ordinary topological version of our theorywithin the framework of simplicial groups, rather than topological spaces (see x4.12 below).1.1. notation and conventions. T will denote the category of topological spaces, and T�that of pointed connected topological spaces with base-point preserving maps. The base-pointwill be written � 2 X.The category of groups is denoted by Gp, that of graded groups by grGp, that of (left)R-modules by R-Mod, and that of sets by Set.1.2. De�nition. � is the category of ordered sequences n = h0; 1; : : : ; ni (n 2 N), withorder-preserving maps. �op is the opposite category. As usual, a simplicial object over anycategory C is a functor X :�op ! C; more explicitly, it is a sequence of objects fXng1n=0 in C,equipped with face maps di : Xn ! Xn�1 and degeneracies sj : Xn ! Xn+1 (0 � i; j � n),satisfying the usual simplicial identities ([May, x1.1]). We usually denote such a simplicalobject by X�. The category of simplicial objects over C is denoted by sC. The standardembedding of categories c(�)� : C ! sC is de�ned by letting c(X)� 2 sC denote the constantsimplicial object on any X 2 C (with c(X)n = X, di = sj = idX).The category of simplical sets will be denoted by S, rather than sSet, that of pointedconnected simplicial sets by S�, and that of simplicial groups by G. If we consider a simplicialobject X� over G, say, we shall sometimes call n in X1; : : : ;Xn; : : : the external simplicialdimension, written (�)extn , in distinction from the internal simplicial dimension k, inside G,denoted by (�)intk . In this case we shall sometimes write (X�)intk 2 sGp, in contrast withXn 2 G, to emphasize the distinction.The standard n simplex in S is denoted by �[n], generated by �n 2 �[n]n, with �k[n]the subobject generated by di�n for i 6= k.If we denote by �hni the category obtained from � by omitting the objects fkg1k=n+1,the category of functors (�hni)op ! C is called the category of n-simplicial objects over C {written shniC. If C has enough colimits, the obvious truncation functor trn : sC ! shniC hasa left adjoint �n : shniC ! sC, and the composite skn := �n � trn : sC ! sC is called then-skeleton functor.1.3. organization. In section 2 we review some background material on closed model categorystructures for categories of simplicial objects and show how certain convenient CW resolutionsmay be constructed therein. In section 3 we construct Postnikov systems for such resolutions,and de�ne the action of the fundamental group on them; and in section 4 we explain how theseresolutions are determined in terms of appropriate cohomology classes, which may also be usedto determine the realizability of a (generalized) �-algebra (Theorems 4.8 and 4.15), as well asto distinguish between di�erent possible realizations (Theorems 4.18 and 4.21).
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J�), by di�erent methods, and has since extended his constructionto the full range of invariants we de�ne here: see [Ba3]. Yet a third description of theseinvariants, more in the spirit of the original approach of Dwyer, Kan, and Stover, is planned in[BG]. 2. model categories of simplicial objectsWe �rst review some background material on model category structures for categories ofsimplicial objects, in particular a slightly expanded version of structure de�ned in [DKS2], andshow how one can construct CW resolutions in such a context.2.1. model categories. A model category in the sense of Quillen (see [Q1]) is a category Cequipped with three distinguished classes of morphisms: W (weak equivalences), C, and F,satisfying the following assumptions:(1) C has all small limits and colimits.(2) W is a class of quasi-isomorphisms (i.e., there is some functor F : C ! D such thatf 2W, F (f) is an isomorphism).(3) Any morphism f : A ! B in C has a factorization A i�!C p�!B (f = p � i) withi 2 C \W and p 2 F; moreover, this factorization is unique up to weak equivalence, inthe sense that if A i0�! C 0 p0�! B is another such factorization of f (i0 2 C \W, p0 2 F),then there is a map h : C ! C 0 such that h � i = i0 and p0 � h = p.(4) Similarly, any morphism f : A! B in C has a factorization A i�!C p�!B (f = p � i)with i 2 C and p 2 F \W { again unique up to weak equivalence.(5) We will assume here that the factorizations above may be chosen functorially (though thisis not included in the original de�nition in [Q1, I, x1]).We call the closures under retracts of C and F the classes of co�brations and �brations,respectively. The de�nition given here is then equivalent to the original one of Quillen in[Q1, Q3] (see [Bl5, x2]).An object X 2 C is called �brant if X ! �f is a �bration, where �f is the �nal objectof C; similarly X is co�brant if �i ! X is a co�bration (�i = initial object). If X 2 C isco�brant and Y 2 C is �brant, we denote by [X;Y ]C (or simply [X;Y ]) the set of homotopyequivalence classes [f ] of maps f : X ! Y . For this to be de�ned we in fact need onlyrequire X to be co�brant or Y to be �brant (cf. [Q1, I,x1]). A map in W\F is called a trivial�bration, and one in W \ C a trivial co�bration.Given a model category hC;W;C;Fi, one can \invert the weak equivalences" to obtain theassociated homotopy category hoC, in which the set of morphisms from X to Y is just [X;Y ](at least when X and Y are both �brant and co�brant). See [Q1, I], [Q3, II,x1], or [Hi, ch.IX-XI] for some basic properties of model categories.2.2. pointed model categories. In a pointed model category hC;W;C;Fi { i.e., one witha zero object, denoted by 0 or � (= �f = �i) { we may de�ne the �ber of a map (usually: a�bration) f : X ! Y to be the pullback of X f�! Y  �, and the co�ber of a map (usually:a co�bration) i : A ! B to be the pushout of �  A i�!B. The suspension �A of a



4 DAVID BLANC(co�brant) object A 2 C is then de�ned to be the co�ber of Aq A! A� I, where A� Iis any cylinder object for A (cf. [Q1, I,1,Def. 4]); it is unique up to homotopy equivalence.Similarly, the loops 
X of a �brant object X is the �ber of XI ! X �X, where XI is apath object for X (ibid.). Finally, the cone CA of a (co�brant) object A 2 C is the co�berof either map A ,! A� I. See [Q1, I,2.8-9].2.3. simplicial objects. For any category C with coproducts, one has a simplicial structure(cf. [Q1, II, x1]) on the category sC of simplicial objects over C, de�ned as usual by:(i) For any simplicial set A 2 S and X 2 C, we de�ne X
̂A 2 sC by (X
̂A)n :=`a2An X,with the face and degeneracy maps induced from those of A. We denote the co�ber ofA
̂� ! A
̂X by A ^X.Now for X� 2 sC we de�ne X� 
A 2 sC by (X� 
A)n :=`a2AnXn (the diagonalof the bisimplicial object X�
̂A).(ii) For any X�; Y� 2 sC we de�ne the function complex map(X�; Y�) bymap(X�; Y�)n := HomsC(X� 
�[n]; Y�);where �[n] 2 S denotes the standard simplicial n-simplex.2.4. De�nition. For any complete category C, the matching object functor M : Sop�sC ! C,written MAX� for a (�nite) simplicial set A 2 S and any X� 2 sC, is de�ned by requiringthat M�[n]X� := Xn, and if A = colimiAi then MAX� = limiMAiX� (see [DKS2, x2.1]).This may be de�ned by adjointness, via:HomsC(Z 
A;X�) �= HomC(Z;MAX�)for X� 2 sC and Z 2 C.In particular, we write MknX� for MAX� whereA is the subcomplex of skn�1�[n] generatedby the last (n � k + 1) faces (dk�n; : : : ; dn�n). When C = Set or Gp, for example, thisreduces to:MknX� = f(xk; : : : ; xn) 2 (Xn�1)n+1 j dixj = dj�1xi for all k � i < j � ng;(2.5)and the map �kn : Xn ! MknX� induced by the inclusion A ,! �[n] is de�ned �n(x) =(dkx; : : : ; dnx). The original matching object of [BK, X,x4.5] was M0nX� =M@�[n]X�, whichwe shall further abbreviate to MnX�; note that each face map dk : Xn+1 ! Xn factorsthrough �n := �0n. See also x3.1 below and [Hi, XVII, 87.17].The dual construction yields the colimit LnX�, sometimes called the \n-th latching object"of X� { see [DKS1, x2.3(i)]. For X� 2 x, for example, we have LnX� :=`0�i�n�1Xn�1= �,where for any x 2 Xn�k�1 and 0 � i � j � n � 1 we set sj1sj2 : : : sjkx in the i-th copy ofXn�1 equivalent to si1si2 : : : sikx in the j-th copy of Xn�1 whenever the simplicial identitysisj1sj2 : : : sjk = sjsi1si2 : : : sikholds (so in particular sjx 2 (Xn�1)i is equivalent to six 2 (Xn�1)j+1 for all 0 � i � j �n� 1). The map �n : LnX� ! Xn is de�ned �n(x)i = six, where (x)i 2 (Xn�1)i.There are (at least) two ways to extend a given model category structure on C to sC:2.6. De�nition. In the Reedy model structure on sC (see [R] or [Hi, XVII, x88]), a simplicialmap f : X� ! Y� is(i) a weak equivalence if fn : Xn ! Yn is a weak equivalence in C for each n � 0;(ii) a (trivial) co�bration if fn q �n : Xn qLnX� LnY� ! Yn is a (trivial) co�bration in C foreach n � 0;



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 5(iii) a (trivial) �bration if fn � �n : Xn ! Yn �MnY� MnX� is a (trivial) �bration in C foreach n � 0.Note that these de�nitions imply that X� 2 sC is �brant if and only if the maps �n : Xn !MnX� are �brations (in C) for all n.We shall require another structure, originally called the \E2-model category" (see [DKS1,x3] and x4.20 below), de�ned under the following2.7. Assumption. Assume that hC;W;C;Fi is a pointed co�brantly generated model category,in which every object is �brant (this holds, for example, if C = T� or C = G). Let F = FCbe a small full subcategory of C with the following properties:(i) There is a subset fMh�ig�2F̂ � ObjF consisting of cogroup objects for C { so there isa natural group structure on HomC(Mh�i; Y ) for any Y 2 C.(ii) F is closed under coproducts, and every object Z 2 F is weakly equivalent to some(possibly in�nite) coproduct `iMh�ii with �i 2 F̂ { so Z is a homotopy cogroupobject (i.e., [Z; Y ]C has a natural group structure). However, we do not require themorphisms in F to respect the cogroup structure, even up to homotopy.(iii) F is closed under suspensions { that is, for each X 2 F , there is a model for �X inF . We also assume CMh�i 2 F for every � 2 F̂ (x2.2).We now wish to de�ne an algebraic model for the collection of sets of homotopy classes ofmaps f[X;Y ]CgX2F , for a given object Y 2 C. This is provided by the following2.8. De�nition. Given F � C as in x2.7, we de�ne a �F-algebra to be a functor ho(F)op !Set, which takes coproducts in F to products in Set (compare [Dr]).The category of all �F -algebras will be denoted by �F -Alg, and the functor [hoF ;�] :C ! �F -Alg de�ned ([B; Y ])B2hoF will be denoted by �F . �F -Alg is a category of universalgraded algebras, or CUGA, in the sense of [BS, x2.1]. In particular, the free �F -algebras arethose isomorphic to �FX for some X 2 F . If we assume that X '`�2F̂`t2T�Mh�it forsome F̂ -graded set T�, we say that �FX is the free �F -algebra generated by T�.If f : X ! Y is a morphism in C, the induced morphism of �F -algebras, �Ff : �FX !�FY , will be denoted simply by f#.2.9. Remark. Since all objects in F are homotopy equivalent to coproducts of objects from theset F̂ , a �F -algebra may be thought of more concretely as an F̂ -graded group { i.e., acollection of groups (G�)�2F̂ { equipped with a (contravariant) action of the homotopy classesof morphisms in F on them, modeled on the action of such homotopy classes on f[Mh�i; Y ]g�2F̂by precomposition (cf. [W, XI, x1]).We shall write ��X for (�FX)� := [Mh�i;X], and ��+kX for [�kMh�i;X].2.10. De�nition. As usual, a �F -algebraX is called abelian if Hom�F -Alg(X;A) has a naturalabelian group structure for any A 2 �F -Alg (see [BS, x5.1] for an explicit description.). Inparticular, for any X 2 �F -Alg, its abelianization Xab may be de�ned as in [BS, x5.1.4] as asuitable quotient of X. Another abelian �F -algebra which may be de�ned for any X is its loopalgebra 
X, de�ned by 
X(B) := X(�B) (cf. [DKS2, x9.4]; recall that F is closed undersuspension). The fact that it is abelian follows as in [Gr, Prop. 9.9]. The (abelian) categoryof abelian �F -algebras will be denoted by �F -Algab.2.11. Example. In C = T�, let F denote the subcategory whose objects are wedges ofspheres of various dimensions; then for any space X 2 T�, the functor �FX is determined upto isomorphism by ��X, the homotopy �-algebra ofX { that is, its homotopy groups, togetherwith the action of the primary homotopy operations (Whitehead products and compositions)



6 DAVID BLANCon them. See [Bl2, x2] or [St, x4]. In particular, the abelian �-algebras are those for which allWhitehead products are trivial (cf. [Bl2, x3]).2.12. Remark. This example does not quite �t our assumptions (x2.7), since the spheres areonly co-H-spaces, i.e., homotopy cogroup objects in T�. This does not a�ect the argumentsat this stage { in fact, this is the original example of an \E2-model category" in [DKS1].However, for our purposes G appears to be more convenient than T� as a model for thehomotopy category of (connected) spaces (see [K2]; also, e.g., [Bl6, x5]).In fact, in all the examples we have in mind the objects in C will have an (underlying) groupstructure, so it will be convenient to add to x2.7 the following additional2.13. Assumption. C is equipped with a faithful forgetful functor Û : C ! D { where D isone of the \categories of groups" D = Gp, grGp, G, R-Mod, or sR-Mod, for some ring R {and the cogroup objects Mh�i 2 F̂ of x2.7(i) are in the image of its adjoint F̂ , with the groupstructure on HomC(Mh�i;X) induced from that of Û (X). When D = G or D = sR-Mod,the objects Mh�i must actually lie in the image of the composite F̂ � F 0 : S ! C, whereF 0 : S ! D is adjoint to the forgetful functor U 0 : D ! S.We also assume that the adjoint pair (Û ; F̂ ) create the model category structure on C inthe sense of [Bl5, x4.13] { so in particular Û creates all limits in C (cf. [Mc1, V,x1]).2.14. Remark. In fact, the categories C in which shall be interested are the following:� C = G, so sC, the category of bisimplicial groups, is a model for simplicial spaces;� C = Gp, so sC = G is a model for the homotopy category of connected topological spacesof the homotopy type of a CW complex;� C = dL, the category of di�erential graded Lie algebras (or equivalently, C = sLie), sosC is a model for simplicial rational spaces;� C = Lie, the category of Lie algebras, so sLie is a model for (simply connected) rationalspaces (cf. [Q3, II,x4-5]);� C = R-Mod, the category of (left) modules over a not-necessarily commutative, possiblygraded, ring R, so sC is a model for chain complexes over R.and it is the desire to give a uni�ed treatment for these �ve cases that forces upon us thesomewhat unnatural set of assumptions we have made in x2.7 and here.2.15. De�nition. A map f : V� ! Y� in sC is called F-free if for each n � 0, there isa) a co�brant object Wn which is weakly equivalent to an object in F ;b) a map 'n :Wn ! Yn in C which induces a trivial co�bration (VnqLnV�LnY�)qWn ! Yn.2.16. The resolution model category. Given a model category C and a subcategory F asin x2.7, we de�ne the resolution model category structure on sC, with respect to F by settinga simplicial map f : X� ! Y� to be(i) a weak equivalence if �Ff is a weak equivalence of F̂ -graded simplicial groups (x2.9).(ii) a co�bration if it is a retract of an F -free map;(iii) a �bration if it is a Reedy �bration (Def. 2.6(iii)) and �Ff is a (levelwise) �bration ofsimplicial groups (that is, for each B 2 F and each n � 0, the group homomorphism[B;Xn] [B;fn]���! [B;Yn]ext is an epimorphism (where for G� := [B;Y�] 2 G, Gext� denotesthe connected component of the identity) { see [Q1, II,3.8].This was originally called the \E2-model category structure" on sC. See [DKS1, x5] forfurther details.2.17. Example. Let C = Gp with the trivial model category structure: i.e., only isomor-phisms are weak equivalences, and every map is both a �bration and a co�bration. Let FGpbe the category of all free groups (which are the cogroup objects in Gp { cf. [K1]). The



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 7resulting resolution model category structure on G := sGp is the usual one (cf. [Q1, II, x3]).This observation is due to Pete Bous�eld. We can then iterate the process by letting FG bethe category of (coproducts of) the G-spheres, de�ned: Sn := FSn�1 2 G { see [Mi] { (withS0 := GS0), and obtain a resolution model category structure on sG (bisimplicial groups).Note that if we tried to do the same for C = Set, there are no nontrivial cogroup objects,while in S not all objects are �brant (see x2.7). The category T� of pointed topological spaces,which is the main example we actually have in mind, does not quite �t our assumptions (butsee x2.12 above).Motivation for the name of \resolution model category" is provided by the following2.18. De�nition. A resolution of an object X� 2 sC (relative to F) is a co�brant replacementfor X� in the resolution model category on sC determined by F : that is, it is any co�brantobject Q�, equipped with a weak equivalence to X�, which may be obtained from thefactorization of � ! X� as � cof�! Q� �b+w.e.����! X� { and is thus unique up to weak equivalence,by x2.1(4)).More classically, a (simplicial) resolution for an object X 2 C is a resolution of the constantsimplicial object c(X)� (cf. x1.2) in sC.2.19. Functorial resolutions. The construction of [St, x2] provides canonical resolutions insC, de�ned as follows: consider the comonad L : C ! C given byLY = a�2F̂ a�2HomC(Mh�i;Y ) Mh�i� [ a�2F̂ a�2HomC(CMh�i;Y ) CMh�i�;(2.20)by which we mean the the coproduct, over all � : Mh�i ! Y , of the colimits of the variousdiagrams consisting of an inclusion Mh�i� ! CMh�i� for each � : CMh�i ! Y such that�jMh�i= �. The counit " : LY ! Y is \evaluation of indices", and the comultiplication# : LY ,! L2Y is the obvious \tautological" one. Note that LY 2 F for any Y 2 C by ourassumptions on F (x2.7).Given X 2 C, we de�ne its canonical resolution Q� ! X by Qn := Ln+1X, with thedegeneracies and face maps induced as usual by " and # (see [Gd, App., x3]).The construction can be modi�ed so as to yield resolutions for arbitrary Y� 2 sC, and notonly c(X)�. Moreover, it has the advantage that �Fg : �FQn ! �FYn is clearly surjectivefor all n, so g can be changed into a �bration (Def. 2.16(iii)) by simply changing each Qn upto homotopy, which yields the factorization needed for x2.1(3).An alternative (noncanonical) construction of a resolution is given in Proposition 2.41 below.2.21. representing objects for sC. Just as the spheres \represent" the weak equivalences inthe usual model structure on T�, for example, in the sense that a map f : X ! Y is a weakequivalence if and only if it induces an isomorphism f� : [Sn;X]! [Sn; Y ] for each n � 0, wemay similarly de�ne representing objects for the resolution model category (compare [DKS2,x5.1]):2.22. De�nition. Given a model category C and a subcategory F as above, for each n � 0,the n-dimensional simplicial F-sphere, denoted by SnF , is the subcategory �nF of sC,whose objects are of the form �nX := X ^ Sn for X 2 F , where Sn = �[n]= _�[n] is theusual simplicial n-sphere (see x2.3(i)).Note that each such �nX is co�brant (in fact, free) in the resolution model category sC.Moreover, by the de�nition of the simplicial structure on sC (x2.3), �nX is also a cogroupobject in sC.



8 DAVID BLANCGiven Y� 2 sC, choose some �brant replacement X� (that is, factor Y� ! � as Y� cof+w.e.����!X� �b�! �, using x2.1(3)) and de�ne �̂nY� (also written [SnF ; Y�]) to be the F̂ -graded set�0map(SnF ;X�). This de�nition is independent of the choice of X�.We de�ne a map f : X� ! Y� in sC to be an F-equivalence if it induces isomorphisms in�̂n(�) for all n � 0.2.23. �bration sequences. Let F � C be as in x2.7, and X� ! Y� a �bration in theresolution model category sC (x2.16), with �ber F� (x2.2). Then as usual we have the longexact sequence of the �bration:� � � ! �̂n+1Y� @��! �̂nF�! �̂nX� ! �̂nY� ! � � � ! �̂0Y�;(2.24)(see [Q1, I,3.8]), which in fact may be constructed in this case as for S� (see [May, 7.6]).2.25. De�nition. Given X� 2 sC, , we de�ne the n-cycles object of X�, written ZnX�, tobe the �ber of �n : Xn ! MnX� (see x2.4), so ZnX� = fx 2 Xn j dix = 0 for i = 0; : : : ; ng(cf. [Q1, I,x2]). Of course, this de�nition really makes sense only when �n is a �brationin C. Similarly, the n-chains object of X�, written CnX�, is de�ned to be the �ber of�1n : Xn !M1nX�.Note that for any W 2 C and �brant X� 2 sC we have natural adjunction isomorphismsHomsC(W ^ Sn;X�) �= HomC(W;ZnX�) and HomsC(W ^Dn;X�) �= HomC(W;CnX�) (whereDn := �n=�0[n] 2 S is a simplicial model for the n-disc).If X� is �brant, the map d0 = dn0 := d0jCnX�: CnX� ! Zn�1X� is the pullback of�n : Xn ! MnX� along the inclusion � : Zn�1X� ! MnX� (where �(z) = (z; 0; : : : ; 0)), sod0 is a �bration (in C), �tting into a �bration sequence� � �
Zn�1X� ! ZnX� jXn�! CnX� d0�! Zn�1X�(2.26)(see [DKS2, Prop. 5.7]). Moreover, there is an exact sequence of �F -algebras�FCn+1X� (d0)#���! �FZnX� q�! �̂nX� ! 0;(2.27)(see [DKS2, Prop. 5.8]), which provides a (relatively) explicit way to recover �̂nX� from X�.Finally, the composition of the boundary map @� : 
Zn�1X� ! ZnX� of the �brationsequence (2.26) with 
d0 is trivial, so by (2.27) it induces a map of �F -algebras from�̂n�1
X� �= 
�̂n�1X� (x2.10) to �FZnX� which, composed with the map q in (2.27), de-�nes a \shift map" s : 
�̂n�1X� ! �̂nX� (see [DKS2, Prop. 6.2]).2.28. the simplicial �F-algebra. Applying the functor �F dimensionwise to any simplicialobject X� 2 sC yields a simplicial �F -algebra G� = �FX�, which is in particular an F̂ -gradedsimplicial group; its homotopy groups form a sequence of F̂ -graded groups which we denote by(�n�FX�)1n=0, and each �n�FX� is a �F -algebra.Note that as for any (graded) simplicial group, the homotopy groups of G� may be computedusing the Moore chains C�G�, de�ned CnG� := \ni=0Kerfdi : Gn ! Gn�1g (cf. x2.25 and[May, 17.3]), and we have the following version of [Bl8, Prop. 2.11]2.29. Lemma. For any �brant X� 2 sC, the inclusion � : CnX� ,! Xn induces an isomor-phism �? : ��CnX� �= Cn(��X�) for each n � 0.



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 9Proof. (a) First, note that any trivial co�bration j : A ,! B in S induces a �brationj� :MBX� !MAX� in C.To see this, by assumption 2.13 it su�ces to consider C = D, (since by [Bl5, Def. 4.13], fis a �bration in C if and only if Uf is a �bration in D), and in fact the only nontrivial caseis when D = G (where the �brations are maps which surject onto the identity component{ see [Q1, II, 3.8]). Note that in internal simplicial dimension k we have (MAX�)intk �=HomsGp(FA; (X�)intk ) (see x1.2) for A 2 S, where F denotes the (dimensionwise) free groupfunctor. Since FA is �brant in sGp, Fj : FA ,! FB has a left inverse r : FB ! FA,so j� : (MBX�)intk ! (MAX�)intk has a right inverse r�, so in particular is onto. Since thisis true in each simplicial dimension k, j� : MBX� ! MAX� is a �bration in G. (Note thatdi : Xn ! Xn�1 is always a �bration.)(b) In addition,  kn = j� :M0nX� !MknX� is a �bration for all 0 � k � n, as one can seeby considering (2.5) (since �n�1 surjects onto the identity component by assumption).(c) Given � 2 Cn(��X�), represented by h :Mh�i ! Yn, with djh � 0 for 1 � j � n,note that for 1 � k � n, MknX� is the pullback ofMk+1n X� (dk;:::;dk)�����!Mkn�1X� �kn�1 ��� Xn�1;in which (dk; : : : ; dk) is a �bration by (a) if k � 1, so this is in fact a homotopy pullbacksquare (see [Mat, x1]). By descending induction on 1 � k � n, (starting with �nn = dn), wemay assume �k+1n � h :Mh�i ! Mk+1n X� is nullhomotopic in C, as is dk � h, so the inducedpullback map, which is just �kn � h : Mh�i ! MknX�, is also nullhomotopic by the universalproperty. We conclude that �1n � h � 0, and since �1n : Xn !M1nX� is a �bration by (b), wecan replace h by a homotopic map h0 : Mh�i ! Xn such that �nh0 = 0. Thus h0 lifts toZnY� = Fib(�n), so �? is surjective.(d) Even though the retraction r : F�[n]! F�0n in (a) is not canonical, it may be chosenindependently of the internal simplicial dimension k to yield a section r� for �1n = j� : Xn !!M1nX�. The long exact sequence in [Mh�i;�] for the �bration sequence CnY� i�!Yn �0n�!M1nY�(cf. [Q1, I,x3]) then implies that i# is monic, so �? is, too. The argument lifts from D = Gto C because the objects Mh�i are in the image of the adjoint of U : C ! D, by assumption2.13.This Lemma, together with (2.27), yields a commuting diagram:�FCn+1X� -(d0)# �FZnX� - - �̂nX�?�? �=Cn+1(�FX�) -d�FX�0 ?�̂?Zn(�FX�) - - �n�FX�pppppppppppppp ? hFigure 1which de�nes the dotted morphism of �F -algebras h : �̂nX� ! �n(�FX�) (this was called the\Hurewicz map" in [DKS2, 7.1]). Note that for n = 0 the map �̂? is an isomorphism, so his, too.2.30. An exact couple. If X� 2 sC is Reedy �brant, the long exact sequences (2.24) forthe �brations Cn+1X� ! ZnX� �t into an (N; F̂ )-bigraded exact couple (D1�;�; E1�;�) withD1k;� �= ��ZkX� and E1k;� �= ��CkX� for k � 0 and Mh�i 2 F̂ . As in [DKS2, x8] the



10 DAVID BLANCderived couple has D2k;� �= (�̂kX�)� and E2k;� �= �k(��X�) (using Lemma 2.29), which �t intoa \spiral exact sequence"� � � ! �n+1�FX� @�!
�̂n�1X� s�!�̂nX� h�!�n�FX� ! � � � �̂0X� h�! �0�FX� ! 0(2.31)as in [DKS2, 8.1], so by Reedy �brant replacement (x2.22), one has such an exact sequence forany Y� 2 sC. Of course, �̂�1X� := 0; and at the right hand end we have h : �̂0X� �= �0�FX�,as noted above.We immediately deduce the following2.32. Proposition. A map f : X� ! Y� in sC is a weak equivalence in the resolution modelcategory { i.e., induces an isorphism in �n�F for all n � 0 (x2.16(i)) { if and only if itis an F-equivalence { i.e., induces an isomorphism in �̂n for all n � 0 (see x2.22).2.33. Resolutions. By De�nition 2.18, a resolution of an object X 2 C is a simplicial objectQ� over C which is co�brant and has a weak equivalence f : Q� ! c(X)�. Note that suchan f is detemined by an augmentation " : Q0 ! X in C (with d0 � " = d1 � "); byProposition 2.32, f is a weak equivalence if and only if the augmented F̂ -graded simplicialgroup "� : �FQ� ! �FX is acyclic (i.e., has vanishing homotopy groups in all dimensions� 0).The long exact sequence (2.31) then implies that�̂nQ� �= 
n�FX for all n � 0:(2.34)2.35. De�nition. A CW complex over a pointed category C is a simplicial object R� 2 sC,together with a sequence of objects �Rn (n = 0; 1; : : : ) { called a CW basis for R� { such thatRn = �Rn q LnR� (x2.4), and dij �Rn= 0 for 1 � i � n. The morphism �dn0 : �Rn ! Zn�1R� iscalled the n-th attaching map for R� (compare [Bl1, x5]).A CW resolution of a simplicial �F -algebra A� is a CW complex G� 2 s�F -Alg, withCW basis ( �Gn)1n=0 such that each �Gn is a free �F -algebra, together with a weak equivalence� : G� ! A�.2.36. De�nition. In the situation of x2.7, a simplicial object R� 2 sC is called a CWresolution of X� 2 sC if R� is a CW complex with each �Rn in F , up to homotopy (so inparticular R� is indeed co�brant), equipped with a weak equivalence f : R�! X�.2.37. Remark. It is easy to see that one can inductively construct a CW resolution for everysimplicial �F -algebra A�, since in order for � : G� ! A� to be a weak equivalence it isnecessary and su�cient that Zn� take ZnG� onto a set of representatives of �nA� in ZnA�,and the attaching map �dn0 map �Gn onto a set of representatives for Ker(�n�) in Zn�1G�.Thus we can let �Gn be the free �F -algebra (x2.8) generated by union of the underlying setsof ZnA� and Ker(Zn�1f), say.The \topological" version of this requires a little more care. In particular, [Bl8, Remark 3.16]implies that not every free simplicial �F -algebra A� is realizable in the sense that there is aR� 2 sC with �FR� �= A�. In order to see what can be said on this context, assume givena �brant and co�brant simplicial object P� with an augmentation " : P0 ! X. For each� 2 F̂ , consider the long exact sequence: : : ��+1CmP� (dm0 )#���! ��+1Zm�1P� @m�1���! ��ZmP� (jm)#���! ��CmP� : : :(2.38)for the �bration dm0 , where Z0P� := P0. By de�nition, P� ! X is a resolution if and only if�i�FP� = 0 for each i � 0, where the homotopy groups are understod in the augmented sense



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 11{ that is, �0�FP� := Ker((d00)# : C0�FP� ! Z�1�FP�)= Im((d10)# : C1�FP� ! Z0�FP�). Thekey technical fact we shall need in this context is contained in the following2.39. Lemma. An �brant and co�brant P� 2 sC with an augmentation P� ! X is aresolution of X if and only if for each m > 0:(a) There is a short exact sequence 0! Im(@m�1) ,! �FZmP� (jm)#���! Zm�FP� ! 0, and(b) @mjIm(@m�1) is one-to-one, and surjects onto Im(@m), and Im@0 �= 
�FX.Note that since @m shifts degrees by one, (a) and (b) together imply that Im(@m) �=
m+1�FX for each m.Proof. For any P�, the inclusion jm : ZmP� ! CmP� induces a map of �F -algebras (jm)# :�FZmP� ! �FCmP� �= Cm�FP� (see Lemma 2.29), which factors through Zm�FP�. Denotethe boundary map for the chain complex C��FP� (which computes ���FP�) by Dm :=(jm�1)# � (dm0 )#.If P� ! X is a resolution, we must have Im((jm)# � (dm+10 )#) = Im(Dm+1) = Ker(Dm)for each m � 0, so in particular (jm)# maps onto Zm�1�FP�. Moreover, since �FC1P� !�FP0 !! �FX ! 0 is exact, Im@0 �= 
�FX and so if we assume by induction that (b) holdsfor m � 1, we see that Ker(jm)# = Im@m�1 is isomorphic to 
m�FX, which proves (a).Moreover, if 0 6=  2 Ker @m = Im(dm+10 )#, and  2 Im@m�1 = Ker(jm)#, then we have� 2 �FCm+1P� with (dm+10 )#(�) =  6= 0 but Dm+1(�) = 0 { contradicting (a) for m+ 1.Finally, if (jm)#() 6= 0, there is a � 2 �FCm+1P� with Dm(�) = (jm)#(), by the acyclicityof �FP�, so  � (dm+10 )#(�) 2 Ker(jm)# = Im@m�1, and @m( � (dm+10 )#(�)) = @m(),which proves (b) for m. The identi�cation of Im@0 is immediate from (2.38).Conversely, if (a) and (b) are satis�ed for all m, for any element in � 2 Zm�FP�, we have� = (jm)#() for some  2 �FZmP�. Thus there is a � 2 �FZm�1P� with @m(@m�1(�)) =@m(), by (b), so  � @m�1(�)�1 is in Ker @m = Im(dm+10 )#; thus (jm)#( � @m�1(�)�1) = �bounds, and �FP� is acyclic.It should be pointed out that the fundamental short exact sequence0! 
m�FX �= Im(@m�1) ,! �FZmP� (jm)#���!! Zm�FP� ! 0(2.40)for a resolution P� is actually split, as a sequence of graded groups, because (jm)#jIm(dm+10 )#=(jm)#jKer@m is one-to-one, by (b), and surjects onto Zm�FP� by the acyclicity. However,Im(dm+10 )# = Ker @m need not be a sub-�F -algebra of �FZmP�, since @m is not a morphismof �F -algebras.With the aid of Lemma 2.39 we can now show:2.41. Proposition. Under the assumptions of x2.7 and 2.13, any X 2 C has a CW resolutionR� 2 sC.Proof. Let Q� 2 sC be the functorial resolution of x2.19; we may assume that the augmentation"Q : Q0! X is a �bration.We start o� by choosing a set T 0� � �FQ0 of �F -algebra generators (x2.8), such that if welet R00 := `�2F̂`�2T 0� Mh�i� , then "Q# maps the free �F -algebra �FR00 � �FQ0 onto�FX. We may assume T 0� is minimal, in the sense that no sub-graded set generates a free�F -algebra surjecting onto �FX { so that "Q#(�) 6= 0 for all � 2 T 0� .The inclusion � : �FR00 ,! �FQ0 de�nes a map f 00 : R00! Q0 with (f 00)# = �, and we let"R0 := "Q � f 00; factoring "R0 by 2.1(3) as R00 i�!R0 "R�! X and usng the LLP for i and "Qyields f0 : R0 ! Q0 commuting with ".



12 DAVID BLANCNow assume by induction that we have constructed a �brant and co�brant R� throughsimplicial dimension n � 1 � 0, together with a map trn�1 f : trn�1R� ! trn�1Q� whichinduces an embedding of �F -algebras (trn�1 f)#. We assume that R� satis�es (a) and (b)of Lemma 2.39 for 0 < m < n (and of course Q� satis�es them for all m > 0). If we mapthe short exact sequence (a) for R� to the corresponding sequence for Q� by f�, we seethat Zn�1(f#) = Zn�1� : Zn�1�FR� ! Zn�1�FQ� is one-to-one, so (Zn�1f)# : �FZn�1R� !�FZn�1Q� is, too.Any non-zero element in Zn�1��R� is represented by  2 �FZn�1R�, by (2.40) for Rn�1.Let g : Mh�i ! Zn�1Q� represent f# 2 ��Zn�1Q�, with Mh�i(g) the correspondingcoproduct summand of Qn = LQn�1 in (2.20), with i(g) : Mh�i(g) ! Qn the inclusion.Then di � i(g) = i(di�1g) for 1 � i � n (in the same notation) and d0 � i(g) = g, by x2.19.Thus the �F -algebra generator hi(g)i 2 ��Qn is in Cn�FQ�, and (dn0 )#hi(g)i = f#.Thus if we choose a set T n� of �F -algebra generators for Zn�1�FR� and set�Rn := a�2F̂ a�2Tn� Mh�i(�);(2.42)we have maps �fn : �Rn ! CnQ� and �d0 : �Rn ! Zn�1R� such that (jn�1)# � (dQ0 )# � ( �fn)# =(jn�1)# � (Zn�1f)# � ( �d0)#. Now (2.40) implies that (jn�1)# is one-to-one on Imd0, so(dQ0 )# � ( �fn)# = (Zn�1f)# � ( �d0)#. Because (dQ0 )# is a �bration and �F �Rn is free, thisimplies that one can choose �fn so that dQ0 � �fn = Zn�1f � �d0. Since Lnf : LnR� ! LnQ�exists by the induction hypothesis, one can de�ne fn : Rn ' LnR� q �Rn ! Qn extendingtrn�1 f to trn f : trnR� ! trnQ�, with �Rn : Rn ! MnR� a �bration. Since �i�FP� = 0then holds for i � n� 1, (2.42) and (2.40) hold for m = n.2.43. Remark. We have actually proved a little more: given any minimal simplicial CW res-olution of �F -algebra's A� ! �FX (x2.35) of a realizable �F -algebra, one can �nd a CWresolution R� ! X realizing it: that is, �FR� �= A�. (Minimality here is understood to meanthat we allow no unnecessary �F -algebra generators in each �An, beyond those needed to maponto Zn�1A�.)By a more careful analysis, as in [Bl8, Thm. 3.19], one could in fact show that any CWresolution of �FX is realizable. However, this will follow from Corollary 4.11 below.3. Postnikov systems and the fundamental group actionWe now describe Postnikov systems for simplicial objects in the resolution model category,and the fundamental group action on them.3.1. De�nition. If C is a category satisfying the assumptions of x2.7, a Postnikov system foran object Y� 2 sC is a sequence of objects PnX� 2 sC, together with maps 'n : X� ! PnX�and pn : Pn+1X� ! PnX� (for n � 0), such that �̂kpn and �̂k'n are isomorphisms for allk � n, and �̂kPnX� = 0 for k � n+ 13.2. Remark. In general, such Postnikov towers may be constructed for �brant X� using avariant of the standard construction for simplicial sets (cf. [May, x8]) due to Dwyer and Kanin [DK2, x1.2], and for arbitrary X� by using a �brant approximation.Note that if Q� 2 sC is a resolution of some X 2 C (see x2.33), then by (2.34)�̂iPnQ� �= 
i�FX for n � i � 0, and �̂iPnQ� = 0 for i > n; so (2.31) implies that�i�FPnQ� �= 8><>:�FX for i = 0
n+1�FX for i = n+ 2;0 otherwise.(3.3)



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 133.4. Postnikov towers for resolutions. It is actually easier to construct a co�brant version ofthe Postnikov tower for a resolution than it is to construct the resolution itself: Given a CWresolution Q� of an object X 2 C, (constructed as in Proposition 2.41), with CW basis( �Qk)1k=0, we construct a CW co�brant approximation Y� ! Q(n)� as follows.Let J� := �FX, and choose some G 2 hoF (i.e., G ' `�2F̂ `T� Mh�i) having asurjection of �F -algebras � : �FG !! 
n+1J�. Set �Yn+2 := �Qn+2 q G, with (d0jG)# = �,mapping onto 
n+1J� �= Im(@n) ,! �FZn+1Q� = �FZn+1Y� (see (2.40)). This de�nesY 0n+2 := �Yn+1 q Ln+2Y� �n+2��!Mn+2Y�, which we then change into a �bration. Since (dn+20 )# :�FCn+2Y� !! �FZn+1Y� is surjective, we may assume by induction on k � n+ 2 that(jk)� : �FZkY� �=�! Zk�FY� and @k�1 = 0;(3.5)and thus we may choose �Yk+1 2 hoF with �d0 : �F �Yk+1 !! �FZk�FY�, and see that (3.5) holdsfor k + 1 by (2.40).Note that Y� ' Q(n)� is constructed by \attaching cells" to Q�, as in the traditional methodfor \killing homotopy groups" (cf. [Gr, x17]), so we have a natural embedding � : Q� ,! Y�,rather than a �bration. In fact, it is helpful to think of PnX� as a homotopy-invariant versionof the (n + 1)-skeleton of X�: starting with trn+1X�, one completes it to a full simplicialobject by a functorial construction which (unlike the skeleton) depends only on the homotopytype of X�.3.6. �-algebras and the fundamental group. Under our assumptions, the category C =�F -Alg is a CUGA, or category of universal graded algebras (see [BS, x2.1] and [Mc1, V,x6]),so that sC, the category of simplicial �F -algebras, has a model category structure de�ned byQuillen (see [Q1, II, x4]). Equivalently, one could take the resolution model category on sC,starting with the trivial model category structure on �F -Alg, and letting F�F -Alg be the sub-category of all free �F -algebras { as in x2.17. One thus has a concept of \spheres" in s�F -Alg{ namely, �F�nMh�i, for � 2 F̂ (cf. x2.22) { and (�nA�)� �= [�nMh�i; A�]s�F -Alg for anysimplicial �F -algebra A�. Thus if we take homotopy classes of maps between (coproductsof) these spheres as the primary homotopy operations (see [W, XI, x1]), we can endow thehomotopy groups ��A� = (�iA�)1i=0 of A� with an additional structure: that of a (�F -Alg)-�-algebra, in the (somewhat unfortunate, in this case) terminology of [BS, x3.2]. By de�nition,this structure is a homotopy invariant of A�.In our situation, however, because we are dealing with Postnikov sections, by (3.3) we onlyneed the very simplest part of that structure { namely, the action of the fundamental group�0A� on each of the higher homotopy groups �nA�.Observe that because C has an underlying group structure, by assumption 2.13, the indexingof the homotopy groups of an object in sC should be shifted by one compared with the usualindexing in T�, so that �0A� is indeed the fundamental group, and in fact the action werefer to is a straightforward generalization of the usual action of the fundamental group of asimplicial group (or topological space) on the higher homotopy groups.3.7. J�-modules and J�-algebras. We shall be interested in an algebraic description of thisaction: that is, we would like a category of universal algebras which model this action, in thesame sense that �-algebras model the action of all the primary homotopy operations on thehomotopy groups of a space. Just as in the case of ordinary �-algebras, the action in questionis determined by the homotopy classes of maps of simplicial �F -algebras.Thus we are led to consider two distinct \varieties of algebras", in the terminology of [Mc1,V, x6]): one modeled on the homotopy classes of maps, and one on the actual maps.



14 DAVID BLANC3.8. De�nition. Given a �F -algebra J�, let J�-Mod denote the category of universalalgebras whose operations are in one-to-one correspondence with homotopy classes of maps�F�nMh�i ! �F (�nMh�0i q �0Mh�00i), and whose universal relations correspond to therelations holding among these homotopy class in ho(sC). These model �nA�, with the actionof �0A�, for A� 2 s�F -Alg.An object K� 2 J�-Mod is itself a �F -algebra, equipped with an action of an operation� : J�00 �K�0 ! K� for each � 2 [�F�nMh�i; �F (�nMh�0i q�0Mh�00i)]. Such a K� will becalled a J�-module, even though in general the category of such objects, which we shall denoteby J�-Mod, need not be abelian (and it could depend on n). However, in the cases thatinterest us, J�-Mod will be abelian, and will not depend on n > 0.3.9. De�nition. Given a �F -algebra J�, let J�-Alg denote the category of universal al-gebras whose operations are in one-to-one correspondence with actual maps �F�nMh�i !�F(�nMh�0i q �0Mh�00i) as above, and whose universal relations correspond to the relationsholding among these maps in sC. The objects in J�-Alg, which are again �F -algebras withadditional structure, will be called J�-algebras.The category J�-Alg is generally very complicated; it is not abelian, and we cannot expect toknow much about it, even for C = G, say. In particular, one may well have a di�erent categoryfor each n > 0 (although we surpress the dependence on n to avoid excessive notation). Note,however, that maps ` : �F�nMh�i ! A�, for any simplicial �F -algebra A�, correspondto elements in ZnA�, so that the A0-algebra structure on An restricts to an action of ofZ0A� = A0 on ZnA�.3.10. Remark. Let Q� be a resolution (in sC) of some object X 2 C, with J� := �FX, andY� ' PnQ� its n-th Postnikov approximation. Then we have an action of �0�FY� �= J� on�n+2�FY� �= 
n+1J� which is a homotopy invariant of Y�, and thus in turn of Q�, so of X.It is not clear on the face of it whether the J�-module 
nJ� depends only on J�, though weshall see (in x4.5 below) this holds for n = 1, and hope to show in [BG] that in fact this holdsfor all n. In any case it is describable purely in terms of the primary �F -algebra-structure ofJ�.In general, for any simplicial object X� 2 sC, there is an action of �̂0X� �= �0�FX� on thehigher �F -algebras �̂nX�, de�ned similarly via homotopy classes of maps [SnF ;S0FqSnF ]sC (seex2.22); but there is no reason why this should de�ne the same category of \�̂0X�-modules" asthat de�ned above. Thus we do not know (2.31)to be a long exact sequence of �̂0X�-modules.However, in our case, when X� = Q� is a resolution, the isomorphism of (abelian) �F -algebras�n+2�FY� �= 
n+1J� is de�ned inductively by means of the connecting homomorphism of (2.31),and this yields the J�-module structure on 
nJ�.3.11. Assumption. Under mild assumptions on the category C one may show that for anyA� 2 s�F -Alg and n � 1, the �F -algebra �nA� is abelian (see [BS, Lemma 5.2.1]).However, we shall need to assume more than this: namely, that J�-Mod as de�ned aboveis in fact an abelian category. We also assume that when A� is a simplicial �F -algebra, theaction of �0A� on each �nA� is induced by an action of A0 on An, and if A� = �FQ�,then this in turn is induced by an action of Q0 on Qn. Moreover, ZnA� and CnA� aresub-A0-algebras of An, and d0 is a homomorphism of A0-algebras.3.12. Proposition. These assumptions are satis�ed for the categories listed in x2.14.Proof. As we shall see, all the categories in question are essentially special cases of the �rst:(I) When C = G, the fundamental group action has an explicit description as follows:We de�ne the generalised Samelson product of two elements x 2 Xp;k y 2 Xq;` (where,as in x1.2, p is the \external" dimension, k the \internal" dimension in a a bisimplicial



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 15group X�;� 2 sG) to be the element hhx; yii 2 Xp+q;k+`hhx; yii := Y(�;�)2Sp;q0@ Y('; )2Sk;`(sext�q : : : sext�1 sint ` : : : sint 1 x; sext�q : : : sext�1 sint'` : : : sint'1 y)"(')1A"(�) :(3.13) Here Sp;q is the set of all (p; q)-shu�es { that is, partitions of f0; 1; : : : ; p+ q � 1ginto disjoint sets �1 < �2 < � � � < �p, �1 < �2 < � � � < �q { and "(�) is the sign of thepermutation corresponding to (�; �) (see [Mc2, VIII, x8]); Sp;q is ordered by the reverselexicographical ordering in �. (a; b) denotes the commutator a � b � a�1 � b�1 (where �is the group operation). When p = q = 0, hhx; yii is just the usual Samelson producthx; yi in X0;� 2 G (cf. [C, x11.11]).We are mainly interested here in the case p = 0, so hhx; yii := hx̂; yi for x̂ :=sq�1 � � � s0x 2 Xq;k. It is sometimes convenient to think of this as an \action" of x on y,setting tx(y) := hhx; yii � y (cf. [W, X, (7.4)]).The simplicial identities imply that if dinti x = dinti y = 0 for all i, the same holds forhx; yi, and if x = dint0 z for some z 2 C intk+1Xp;�, then hx; yi = dint0 hz; yi, so that hh ; iiinduces a well-de�ned operation hh ; ii : �intk Xp;���int` Xq;� ! �intk+`Xp+q;�, which is de�nedfor any simplicial �-algebra A��, with � 2 Ap� and � 2 Aq�, by:hh�; �ii := Y(�;�)2Sp;q hs�q : : : s�1�; s�q : : : s�1�i"(�) 2 Ap+q�:(3.14) Again when p = 0 we write ��(�) := hh�; �ii � �, so that �� : Aq� ! Aq� is a grouphomomorphism in each degree (if � 2 ZpA��, � 2 ZqA��, then hh�; �ii 2 Zp+qA��).Now let X�;� := �0Sk q �nS`, (where Sk is the k-sphere for G { x2.17) and let�0;k and �n;` be �-algebra-generators for �kX0;� and �`S` � ��Xn;�, respectively, so��Xn;� is generated by f�̂0;k; �n;`g. Since dj�n;` = 0 (0 � j � n), we have a short exactsequence of �-algebras0! Zn��X�;� ! ��(Sk q S`)! ��Sk ! 0:(3.15) When k; ` > 0, by [H, Theorem A] any element x 2 ��Xn;� �= ��(Sk q S`) can bewritten as a sum of elements of the form �#!(�̂0;k; �n;`) (where !(x; y) = h: : : hx; yi; : : :i issome iterated Samelson product), so x can be obtained by means of the \internal" �-Algoperations from expressions of the form ��(�n;`) (for � 2 ��X0;�).By passing to universal covers we have a similar description when ` > k = 0, sincethen any x 2 �jXn;� (j � 1) can be written as a sum of elements of the form�#!(��1(�n;`); : : : ; ��r(�n;`) (for �i 2 ��X0;�), and any other � 2 ��X0;� acts on this bypermuting the generators ��i(�n;`, so again tau�(�) is a group homomorphism. Whenk = ` = 0, we are reduced to the case C = Gp (see (II) below).When k > 0 and ` = 0, let us write '�(�) := hh�; �ii for � 2 ��X0;� and� 2 �0Xn;�, so that we are thinking of the usual (internal) action of the fundamentalgroup �0Xn;� as a function of �. This is not a homomorphism, since we have '�(� �) ='�(�) + '�() + hh�; hh; �̂iiii by [W, III, (1.7) & X, (7.4)].But hh�; �ii is a cycle (i.e., in Zn��X�;�), by (3.15), so hhhh�; �ii; ii � 0 in �n��X�;�for any  2 �0Xn;� by [BS, 5.2.1], which means that '� induces a homomorphism on�n��X�;�.In summary, an J�-algebra (x3.9), for any J� 2 �-Alg, is just a �-algebra K� togetherwith an action of each � 2 J�, which may be expressed in terms of the (degree-shifting)



16 DAVID BLANChomomorphisms ��, or the functions '�, respectively, satisfying whatever relations holdamong these (and the internal �-algebra operations) in ��Xn;�.A J�-module, on the other hand, is an abelian �-algebra K�, together with homo-morphisms �� : K� ! K� or '� : K� ! K� for each � 2 J�, satisfying the identitiesoccuring in �n��X�;�.These identities could be described more or less explicitly in the category �-Alg, interms of suitable Hopf invariants (cf. [Ba1, II, x3]). Compare [Ba2, x3]).(II) When C = Gp, sC models the homotopy theory of (connected) topological spaces,and J�-Mod, de�ned (as noted above) through the usual action of the fundamentalgroup, is equivalent to the category of (left) modules over the group ring Z[�0A�] (forA� 2 sC � G).(III) When C = Lie, the situation is similar to C = Gp, with Samelson products replaced byLie brackets.(IV) When C = dL � sLie, one has a generalized Lie bracket de�ned for bisimplicial Liealgebras as in (3.13), with commutators replaced by Lie brackets (see [Bl7, x2.6]).(V) When C = R-Mod, sC is equivalent to the category of chain complexes over R, so thereis no action of �0 = H0 on the higher groups.3.16. Remark. It is possible to write down general conditions on category of universal alge-bras (or CUGA) C, de�ned in terms of operations and relations, which su�ce to ensure thatassumptions 3.11 hold: all one really needs is a suitable Hilton-Milnor theorem in sC (see,e.g., [Go]). However, it seems simpler to state the conditions needed as above, and verify themdirectly in any particular case of interest.4. Cohomology of �F -algebrasIn this section we complete the description of the algebraic invariants used to distinguishhomotopy types. To do so, we recall Quillen's de�nition of cohomology in a model category, inthe context of �F -Alg:4.1. De�nition. Let C be a model category with an abelianization functor Ab : C ! Cab,where Cab denotes of course the full category of abelian objects in C; we shall usually writeXab for Ab(X) (see x2.10). In [Q1, II, x5] (or [Q4, x2]), Quillen de�nes the homology of anobject X 2 C to be the total left derived functor LAb of Ab, applied to X (cf. [Q1, I,x4]). Likewise, given an object M 2 Cab=X, the cohomology of X with coe�cients in M isRHomCab=X(X;M) := HomCab=X(LAbX;M).4.2. Quillen cohomology of �F-algebras. When J� 2 C = �F -Alg, we have the modelcategory structure de�ned in x3.6 above, so we can choose a resolution A�! J� in s�F -Algas in x2.33, and de�ne the i-th homology group of J� to be the i-th homotopy group �i(AbA�)of the F̂ -graded simplicial abelian group (A�)ab { i.e., of the associated chain complex (cf.[D, x1]). One must verify, of course, that this de�nition is independent of the choice of theresolution A�! J�.Similarly, if K� is an abelian J�-algebra, then the i-th cohomology group of J� withcoe�cients in K�, written H i(J�;K�), is that of the cochain complex corresponding to thecosimplicial F̂ -graded abelian group HomJ�-Alg(A�;K�).4.3. Remark. Here HomJ�-Alg(A;B) is the group of �F -algebra homomorphisms which respectthe J�-action; because we are mapping into an abelian object K�, HomJ�-Alg(A�;K�) �=HomJ�-Alg((A�)0ab;K�) (where A0ab denotes the abelianization of A 2 J�-Alg as an J�-algebra).



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 17However, in the simplicial abelian X-algebra (A�)0ab we have a direct product decomposition(Ak)0ab = (Â0k)ab � (LkA�)0ab for k � 0, where (Âk)0ab := Ck(A�)0ab is the the sub-abelian X-algebra of (Ak)0ab generated by ( �Ak)0ab (cf. [May, Cor. 22.2]) { and in fact (d̂0)0ab : (Ân)0ab !(An�1)0ab factors through a map @̂n : (Â0n)ab ! (Ân�1)0ab (see [May, p. 95(i)]).Thus the n-cochains split as:HomJ�-Alg((An)0ab;K�) �= HomJ�-Alg((Ân)0ab;K�)�HomJ�-Alg(Ln(A�)0ab;K�);so by [BK, X, x7.1] any cocycle representing a cohomology class in Hn(J�;K�) may berepresented uniquely either by a map of abelian A0-algebras f̂ : (Ân)0ab ! K�, or by a mapof A0-algebras f : An ! K�.Since CnA� contains the sub-A0-algebra of An generated by �An (by assumption 3.11),f determines its restriction f jCnA� : CnA� ! K�, which determines f̂ , which determinesf in turn. We have thus shown that H�(J�;K�) may be calculated as the cohomology ofthe (abelian) cochain complex HomA0-Alg(C�A�;K�) (even though C�A� is not in general ahomotopy invariant of A�, in non-abelian categories).4.4. obstructions to existence of resolutions. Given an object X 2 C, and a (suitable)simplicial resolution A� ! J� of the �F -algebra J� := �FX, we have seen in Section 2 thatone can construct a resolution Q� of X (in the resolution model category sC) realizing A�,in the sense that �FQ� �= A�. It is thus natural to ask whether any simplicial �F -algebra {or at least, any resolution A� of an abstract �F -algebra J� { is realizable in sC.One approach to this question in the topological setting (i.e., for C = G), in terms of higherhomotopy operations, was given in [Bl3]. However, a glance at the proof of Proposition 2.41shows that one can instead consider obstructions to extending trnQ� to the next simplicialdimension. For a homotopy-invariant description, we state this in terms of successive Postnikovapproximations to Q�, since it is clear that, once we have constructed trnQ�, it is alwayspossible to obtain Y� ' Q(n�1)� from it by successive choices of free objects �Yk+1 2 hoF(k = n; : : : ) mapping to ZkY� by a �F -algebra surjection.4.5. constructing the obstruction. Assume given a CW resolution A� 2 s�F -Alg of J�,with CW basis ( �An)1n=0, and choose corresponding free objects �Qn 2 F � C with �F �Qn �= �An.We begin the induction with tr1Q�, and thus Q(0)� , constructed as in the proof of Proposition2.41. Note that to obtain tr1Q� we do not in fact need to know X 2 C with �FX �= J� {or even to know that such an object exists! This implies that the J�-module structure on 
J�is uniquely determined.In the inductive stage we assume given trnQ� (equivalently: Q(n�1)� ), satisfying 2.39(a)and (b) for 0 < m � n. Our strategy is to try to attach (n + 1)-dimensional \cells" totrnQ� in such a way as to guarantee acyclicity of the resulting trn+1Q� in one more simplicialdimension { using Lemma 2.39 above. The key to the construction of trn+1Q� from trnQ�thus lies in the extension of A0-algebras (2.40) (for Q�, rather than P�); the two ends aregiven to us. Observe that this extension determines the A0-algebra structure on 
nJ�, ifmore than one is possible.We want this extension to be \trivial" (that is, split as a semi-direct product of A0-algebras),in order to be able to lift the given map of A0-algebras �dA0 : �An+1 ! ZnA� to a map�dQ0 : �Qn+1 ! ZnQ�, so the question is reduced from one about simplicial objects over C toone of algebraic objects, namely: A0-algebras. There is a close analagy to the classical theoryof group extensions, where the triviality of an extension E : 0 ! A! B ! G is measuredby the characteristic class �(E) 2 H2(G;A) (compare [Mc2, IV, x6]). Similarly, in our casethe triviality of the extension is measured by the vanishing of a suitable cohomology class inHn+2(J�; 
nJ�), de�ned as follows:



18 DAVID BLANCBecause (jn)# : �FZnQ� !! Zn�FQ� �= ZnA� is surjective, and �An+1 is a free �F -algebra,we can choose a lifting � in the following diagram:�An+1 -�dAn+10 ZnA� - 0ppppppppppp ? � ? �=0 - 
nJ� -i �FZnQ� -(jQn )# Zn�FQ� - 0Figure 2and we can �nd a map ` : �Qn+1 ! ZnQ� realizing � (again, because �An+1 = �F �Qn+1 is free).Combined with the \tautological map" Ln+1Q�!Mn+1Q� (see x2.4), which depends only ontrnQ�, by setting Qn+1 := �Qn+1qLn+1Q� we obtain an extension d0 : Qn+1 ! Qn of ` (whichis a map of Q0-algebras), and thus an (n+1)-truncated simplicial object trn+1Q� over C, withQn+1 := �Qn+1qLn+1Q�, and �F trn+1Q� �= trn+1A�. In particular, dQn+10 : Cn+1Q�! ZnQ�induces a map �̂ from �FCn+1Q� = Cn+1A� to �FZnQ� extending (and determined by) thelifting � : �An+1 ! �FZnQ� of �dAn+10 . This is a map of A0 = �FQ0-algebras, by Assumption3.11.Since (jQn )# � (�̂jZn+1A�) = 0, the map �̂jZn+1A� factors through � : Zn+1A�! Ker(jQn )# =
nJ�, and composing � with dAn+20 : Cn+2A�! Zn+1A� de�nes � : Cn+2A� ! 
nJ� { again,a map of A0-algebras:Cn+2A� -dAn+20 Zn+1A� -j Cn+1A� -dAn+10 ZnA� - 0? � ? �̂ ? �=@ @ @ @ @ @ @ @R�0 - 
nJ� -i �FZnQ� -(jQn )# Zn�FQ� - 0The cochain � = � �dAn+20 is clearly a cocycle in the cochain complex HomJ�-Mod(A�;
J�),so it represents a cohomology class �n 2 Hn+2(J�; 
nJ�), called the characteristic class of theextension.4.6. Lemma. The cohomology class �n is independent of the choice of lifting �.Proof. Assume that we want to replace � in x4.5 by a di�erent lifting �0 : �An+1 ! �FZnQ�,and choose maps `; `0 : �Qn+1 ! ZnQ� realizing �, �0 respectively; their extensions to mapsQn+1 ! Qn (which we may denote by d0, d00) agree on Ln+1Q�. We correspondingly having�0 : Zn+1A�! 
nJ� and �0 := �0 � dAn+20 .Because Qn+1 := �Qn+1 q Ln+1Q� is a coproduct of the form `iMh�ii, by x2.13 theunderlying group structure on any X 2 C induces a group structure onHomC(Qn+1;X)(4.7)(and similarly for Hom�F -Alg(An+1; �FX)).Therefore, we can set h := (d0)�1 � (d00) : Qn+1 ! Qn, and h induces a map � : Cn+1A� !�FZnQ� such that �j �An+1= ��1 � �0. Moreover, because d0 and d00 agree outside of �Qn+1,(jQn )# � � = 0. Thus � factors through � : Cn+1A� ! 
nJ�, which is a map of A0-algebras



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 19because 
nJ� is an abelian A0-algebra (actually, a J�-module), and � is induced by groupoperations from the A0-algebra maps d0 and d00.Moreover, �jZn+1A�= �� �0 in the abelian group structure on HomJ�-Mod(�;
nJ�) (whichcorresponds to the group structure of (4.7)). Thus �0 � � = �̂ � dAn+20 is a coboundary.4.8. Theorem. �n = 0 if and only if one can extend Q(n�1)� to an n-th Postnikov approxi-mation Q(n)� of a resolution of X.Proof. First assume that there exists Y� ' Q(n+1)� with trn Y� �= trnQ�: by Lemma 2.39 weknow (jQn )#jIm(dn+10 )# is one-to-one (and onto Zn�FQ�), for dn+10 : Cn+1Y� ! ZnY� = ZnQ�,and thus Im(dn+10 )# \ Im@Qn�1 = f0g. But then we can choose � : �An+1 ! �FZnQ� to factorthrough Im(dn+10 )#, (and this will induce a map of A0-algebras because of x3.10), so that� = 0 and thus � = 0.Conversely, if �n = 0, we can represent it by a coboundary � = # � dAn+20 for some A0-algebra map # : Cn+1A� ! 
nJ�, and thus get i � #j �An+1 : �An+1 ! �FZnQ�. If we set �0 :=� � (i�#j �An+1)�1, we have Im�0\
nJ� = f0g. We can therefore choose �dQn+10 : �Qn+1 ! ZnQ�realizing �0, and then (dQn+10 )# avoids Im(@Qn�1) �= 
nJ�, so that trn+1Q� so constructedyields Q(n+1)� , as required. In particular, this determines a choice of J�-module structure on
n+2J� (if more than one is possible), via (2.40) for n+ 1.4.9. notation. If we wish to emphasize the dependence on the choice of �, we shall writeQ(n+1)� [�] for the extension of Q(n)� so constructed.4.10. Proposition. The class �n depends only on the homotopy type of Q(n�1)� in sC.Proof. Assume Q(n�1)� has been constructed, realizing a simplicial resolution of �F -algebrasA� ! J� through simplicial dimension n, and let B� ! J� be any other �F -algebraresolution: we then have a weak equivalence ' : B� ! A� in s�F -Alg. Assume by inductionon 0 � m < n that we have constructed an m-truncated simplicial object trmR� over C, anda map f : trmR� ! trmQ(n�1)� realizing trm '. Moreover, assume that we have a map of the(split) short exact sequences (2.40) (in dimension m) for R� and Q�:0 - 
mJ� -i �FZmR� -(jmR )# Zm�FR� - 0? = ? (Znf)# ? Zn(f#) = Zn'0 - 
mJ� -i �FZmQ� -(jQm)# Zm�FQ� - 0Now, in order to extend f to dimension n + 1, we must choose the map ( �dRm+10 )# :�F �Rm+1 ! �FZmR� (lifting �dBm+10 : �Bm+1 ! ZmB�) in such a way that (Zmf)# �( �dRm+10 )# =( �dRm+10 )# �Zm'. Since �Bm+1 = �F �Rm+1 is free, it su�ces to show that the obvious map from�FZmR� to the pullback of �FZmQ� (jQm)#���! Zm�FQ� = ZmA� Zm' ��� ZmB� is a surjection:given (a; b) 2 �FZmQ��ZmB� with (jQm)#(a) = '(b), for any z 2 �FZmR� with (jRm)#(z) = bwe have an ! 2 
m+1J� � �FZmR� such that (Zmf)#(z � !) = (Zmf)#(z0) � ! = b in thediagram above (where � is the group operation), so z � ! maps to (a; b). Thus we canchoose �dRm+10 : �Rm+1 ! ZmR� in such a way that we can de�ne trm+1R�, together with amap trm+1 f : trm+1R� ! trm+1Q� realizing trm+1 '.Because ' was a weak equivalence of resolutions, it is actually a homotopy equivalence, withhomotopy inverse  : A� ! B�, say, and the above argument also yields a homotopy inverse



20 DAVID BLANCfor f (m) (or trm+1 f). Moreover, the characteristic classes we de�ned are clearly functorialwith respect to maps in sC; since the characteristic class �m+1 2 Hm+3(J�; 
m+1J�), de�nedfor the resolution A� ! J� by means of the lift �dQm+10 , must vanish, by Theorem 4.8, thesame holds for R�, so by Theorem 4.8 again we can extend R(m)� to R(m+1)� , and continuethe induction as long as m < n.We deduce the following generalization of Proposition 2.41:4.11. Corollary. Given X 2 C, any CW �F-algebra resolution A�! �FX is realizable asa resolution Q� ! X in sC.One could further extend Proposition 4.10 to obtain a statement about the naturality of thecharacteristic classes with respect to morphisms of �F -algebras  : J� ! L�. However, sucha statement would be somewhat convoluted, in our setting, and it seems better to defer it to amore general discussion of the realization of simplicial �F -algebras, in [BG].4.12. realization of �-algebras. If G : S� ! G denotes Kan's simplicial loop functor (cf.[May, Def. 26.3]), with adjoint �W : G ! S� the Eilenberg-Mac Lane classifying space functor(cf. [May, x21]), and S : T� ! S� is the singular set functor, with adjoint k � k : S� ! T�the geometric realization functor (see [May, x1,14]), then functorsT� S
k�k S� G
�W G(4.13)induce isomorphisms of the corresponding homotopy categories (see [Q1, I, x5]), so any homo-topy-theoretic question about topological spaces may be translated to one in G. In particular,in order to �nd a topological space X having a speci�ed homotopy �-algebra J� �= ��X, itsu�ces to �nd the corresponding simplicial group X 2 G (with the �F -algebra J� suitablyre-indexed). If J� is realizable by such an X, any free simplicial resolution Q�! X evidentlyprovides a �-algebra resolution ��Q� of J� = ��X. But the converse is also true: if Q� 2 sGrealizes some (abstract) �-algebra resolution A� 2 s�-Alg of J�, then the collapse of theQuillen spectral sequence of [Q2], withE2s;t = �s(�tQ�)) �s+t diagQ�(4.14)converging to the diagonal diagQ� 2 G (de�ned (diagQ�)k = (Qk)intk ) implies that�� diagQ� �= J�. Thus J� is realizable by a simplicial group (or topological space) if and onlyif some �-algebra resolution A�! J� is realizable.The characteristic classes (�n)1n=0 (whose existence was promised in [DKS2, x1.3] under thename of the \k-invariants for J�), thus provide a more succinct (if less explicit) version of thetheory described in [Bl3, x5-6] (as simpli�ed in [Bl6, x6]), for determining the realizablity of a�-algebra in terms of higher homotopy operations { which we summarize in4.15. Theorem. Given an (abstract) �-algebra J�, the following conditions are equivalent:(1) J� is realizable as ��X for some topological space X 2 T�.(2) Any CW �-algebra resolution A�! J� is realizable by a simplicial space Q�.(3) The (inductively de�ned) characteristic classes �n 2 Hn+2(J�; 
nJ�) (n = 0; 1; : : : ) allvanish.Of course, the characteristic class �n+1 is determined by the choice of some extension Q(n)�of Q(n�1)� , so as usual our obstruction theory requires back-tracking if at some stage we �nd�n 6= 0. We shall now show how we can use other cohomology classes to determine the choicesof extensions at each stage:



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 214.16. distinguishing between di�erent resolutions. A more interesting question, perhaps,is how one can distinguish between non-equivalent realizations Q�; R� 2 sC of a �xed �F -algebra resolution A� ! J� of a realizable �F -algebra J� �= �FX. Of course, if Q� andR� are both resolutions (in the resolution model category sC) of weakly equivalent objectsX ' Y in the model category C, then by de�nition Q� is weakly equivalent (actually:homotopy equivalent) to R�. Thus we are looking for a way to distinguish between objectsin C, using the iterative construction of a resolution Q� ! X (or equivalently, the Postnikovsystem for Q�).There are a number of possible approaches to this question: one could try to construct ahomotopy equivalence Q� ! R� by induction on the Postnikov tower for R�, using anadaptation to sC of the classical obstruction theory for spaces (cf. [W, V, x5]). Alternatively,one could try directly to construct a map Q� ! Y realizing the augmentation �FA� ! J�(see [Bl3, x7], and compare [B, x5]). A description more in this spirit will be given in [BG].Here our strategy is similar to that of x4.4: rather than assuming that we are given X andY to begin with, we try to construct all di�erent realizations (up to homotopy equivalence insC) of a given simplicial �F -algebra A� (which is assumed to be a resolution of a realizable�F -algebra J�). We start our construction as in x4.5, and in the induction step we have assumegiven trnQ� { or equivalently Q(n�1)� , satisfying the assumptions of x4.5 (see the proof ofProposition 2.41). We ask in how many di�erent ways we can attach (n + 1)-dimensional\cells" to extend the realization one further dimension.Again the key lies in the extension of �F -algebras of (2.40). Of course, we may assume thatthe characteristic class �n 2 Hn+2(J�; 
nJ�) vanishes, so that it is possible to �nd \splittings"for (2.40), given by various liftings � in Figure 2 { all of which yield the same cohomologyclass �n by Lemma 4.6. As in the classical case of groups, we �nd that the di�erence betweentwo such \semi-direct products" is represented by suitable cohomology classes, in dimensionlower by one than the characteristic classes (see [Mc2, IV, x2]).4.17. De�nition. Assume given two liftings �; �0 : �An+1 ! �FZnQ� in Figure 2 above, whichde�ne extensions of trnQ� { so that, as in the proof of Theorem 4.8, we may assume withoutloss of generality that the corresponding maps �; �0 : Zn+1A�! 
nJ� vanish. As in the proof ofLemma 4.6, we extend �, �0 to face maps d0; d00 : Qn+1 ! Qn, de�ne � : Cn+1A�! �FZnQ�with (jQn )# � � = 0, and lift to a map of A0-algebras � : Cn+1A� ! 
nJ�. Again�jZn+1A�= � � �0, which is zero, so � is a cocycle in HomJ�-Mod(A�;
J�), representing acohomology class ��;�0 2 Hn+1(J�;
nJ�), which we call the di�erence obstruction for thecorresponding Postnikov sections Q(n)� [�] and Q(n)� [�0] (in the notation of x4.9).Just as in the proof of Proposition 4.10, one can show that the classes ��n+1;�0n+1 in questiondo not in fact depend on the choice of �F -algebra resolution A� ! J�, but only on thehomotopy type of Q(n�1)� in sC. Their signi�cance is indicated by the following4.18. Theorem. If ��;�0 = 0 then the corresponding Postnikov sections Q(n)� [�] and Q(n)� [�0]are weakly equivalent.Proof. If � is a coboundary, there is a map # : CnA� ! 
nJ� such that � = # � dAn0 .Composing with the inclusion i : 
nJ� ,! �FZnQ� yields a morphism of A0-algebras ' :An ! �FZnQ�. If, as in the proof of Proposition 2.41, we set Q0n := �Qn q LnQ�, we mayrealize ' by a map z0 : Q0n ! ZnQ�. Since we assumed Q0n is actually a coproduct ofobjects in F̂ , it is a cogroup object in C by x2.7(i), so using the resulting group structure onHomC(Q0n; Qn) we may set s0 := k � z : Q0n ! Qn, where k : Q0n ,! Qn is the inclusion. Sincek is a trivial cofbration and Qn is �brant in C, we have a retraction r : Qn ! Q0n (which isa weak equivalence). Let s := s0 � r : Qn ! Qn.



22 DAVID BLANCRecall from x2.13 that we have a faithful forgetful functor Û : C ! D, where for simplicitywe may assume D = G or D = sR-Mod (the other cases are trivial). We therefore have afurther forgetful functor U 0 : D ! S, and we denote U 0 � Û simply by U : C ! S. Thegroup operation map, while not a morphism in C or D, is a map m : UQn�UQn ! UQn inS. Thus the following diagram commutes in S:UZnQ� -id>U(z0 � r � j) UZnQ� � UZnQ� -mjZnQ� UZnQ�?Uj ? U(j � j) ? UjUQn -Ur' UQ0n -Uk>U(j � z0) UQn � UQn -m UQn@ @ Us � ��Since U is faithful, this implies that s � j : ZnQ� ! Qn factors through a map t :ZnQ� ! ZnQ� in C. Moreover, because we assumed that each Mh�i 2 F̂ is of the formMh�i = FMh�i0 for some Mh�i0 2 S (where F = F̂ �F 0 is adjoint to U : C ! S), any mapb : Mh�i ! ZnQ� corresponds under the adjunction isomorphism to b̂ : Mh�i0 ! UZnQ�,and thus t#� = � � (� � (jQn )#�) for any � 2 �FZSnQ� (since the group operation � in�FZnQ� is induced by m { cf. [Gr, Prop. 9.9]).Now if ` : �Qn+1 ! ZnQ� realizes �, we have (t � `)# = (` � (z0 � `))# = � � (# � (jQn )# � �) =� � (��1 � �0) = �0 : �An+1 ! �FZnQ�. Thus we have a comutative diagram�F �Qn+1 = �An+1 -�0 �FZnQ� -(jQn )# Zn�FQ� = ZnA�?id ? t# ? id�F �Qn+1 = �An+1 -� �FZnQ� -(jQn )# Zn�FQ� = ZnA�which yields a map of (n+1)-truncated objects � : trn+1Q�[�]! trn+1Q�[�0] (or equivalently,Q(n)� [�]! Q(n)� [�0]). Clearly � induces an isomorphism in �k�F for k � n+ 1.Now for any choice of lifting � we have �n+2�FQ(n)� [�] �= Im(@Qn ), and since(# � (jQn )#)jIm(@Qn�1)= 0;we �nd (t#)jIm(@Qn�1)= id, so by 2.39(b) the diagram��+1ZnQ� -@Qn ��Zn+1Q�?t# ? id��+1ZnQ� -@Qn ��Zn+1Q�commutes. Thus � induces an isomorphism on Im(@Qn ), so that (�)� : Q(n)� [�]! Q(n)� [�0] is aweak equivalence.4.19. Remark. Given a (realizable) �F -algebra J�, a CW resolution A� 2 s�F -Alg of J�,and a �xed (but arbitrary) choice object X 2 C with �FX �= J�, by Corollary 4.11 we have acorresponding resolution Q�! X. If X 0 2 C is another realization of J� with corresponding



ALGEBRAIC INVARIANTS FOR HOMOTOPY TYPES 23Q0�! X 0, we may assume without loss of generality that Y 0� := (Q0�)(n) ' Y� := Q(n)� for somen � 0, with �; �0 : An+2 ! �FZn+1Q� �= �FZn+1Q0� the respective liftings.4.20. di�erent realizations of a �-algebra. Assume given an abstract �-algebra J�, whichis known to be realizable (e.g., by the cohomological criterion of Theorem 4.15). We wishto distinguish between the various non-weakly equivalent realizations of J� by topologicalspaces (or simplicial groups). The spectral sequence (4.14) implies that in order for two suchX;X 0 2 G (with ��X �= J� �= ��X 0) to be weakly equivalent, it su�ces that their correspondingresolutions Q� ! X and Q0� ! X 0 be weakly equivalent (and thus homotopy equivalent)in the resolution model category. This is in fact the main reason for considering this modelcategory structure on sG in the �rst case (and justi�es its original name of \E2-modelcategory" in [DKS1]).Note, however, that this is not a necessary condition; an alternative model structure on sS(or sG), de�ned in [Mo], has as weak equivalences precisely those maps in sC inducing anequivalence on the realizations.The di�erence obstructions ��;�0, which yield an inductive procedure for distinguishingbetween various realizations of a given �-algebra resolution A� ! J�, thus again provide analternative to the theory described in [Bl3, x7] (as simpli�ed in [Bl4, x4.9]) for distinguishingbetween di�erent realizations of a given �-algebra, in terms of higher homotopy operations.To state this explicitly, assume given an (abstract) �-algebra J�, a CW resolution A� 2s�-Alg of J�, and two realizations Q�; Q0� 2 sG of A�, determined as in x4.16 bysuccessive choices of lifts �k+1 : �Ak+1 ! �FZkQ� and �0k+1 : �Ak+1 ! �FZkQ0�. By x4.12,we know that the realizations X := diagQ� and X 0 := diagQ0� are two realizations ofJ�. If ��0;�00 = 0, there is a weak equivalence f0 : (Q0�)(0) ' Q(0)� , which we can use topush forward �01 : �A2 ! �FZ1Q0� to �001 : �A2 ! �FZ1Q� so it is meaningful to consider��1;�01 := ��1;�001 2 H2(J�;
J�). Proceeding in this way we obtain the following4.21. Theorem. Assume given a �-algebra J�, a CW resolution A� 2 s�-Alg of J�,and two topological spaces X;X0 2 T� realizing J�, corresponding to X;X 0 2 G under(4.13). Let Q�; Q0� 2 sG be CW resolutions of X;X 0 respectively, determined as in x4.16by successive choices of lifts �n+1 : �An+1 ! �FZnQ� and �0n+1 : �An+1 ! �FZnQ0�. If thedi�erence obstructions ��n+1;�0n+1 2 Hn+2(J�;
n+1J�) vanish for all n � 0, then X and X0are weakly equivalent.Again, these classes satsify certain naturality conditions, which are more easily stated forsimplicial �F -algebras: see [BG].4.22. Remark. Theorem 4.21 provides a collection of algebraic invariants { starting with thehomotopy �-algebra ��X { for distinguishing between (weak) homotopy types of spaces. Aswith the ordinary Postnikov systems and their k-invariants, these are not actually invariant,in the sense that distinct values (i.e., non-vanishing di�erence obstructions) do not guaranteedistinct homotopy types. Thus we are still far from a full algebraization of homotopy theory{ even if we disregard the fact that �-algebras, not too mention their cohomology groups, arerather mysterious objects, and no non-trivial naturally occurring examples are fully known todate.Note, however, that we have a considerable simpli�cation of the theory in the case of therational homotopy type of simply-connected spaces: in this case the �F -algebras in questionare just connected graded Lie algebras over Q, and the cohomology theory reduces to the usualCartan-Eilenberg cohomology of Lie algebras. The obstruction theory we de�ne appears to bethe Lie algebra version of the theory for graded algebras due to Halperin and Stashe� in [HS].See also [O, xIII] and [F].
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