
RESOLUTIONS OF ASSOCIATIVE AND LIE ALGEBRASRON ADIN AND DAVID BLANCAbstract. Certain canonical resolutions are described for free associative and freeLie algebras in the category of non-associative algebras. These resolutions derivein both cases from geometric objects, which in turn reect the combinatorics ofsuitable collections of leaf-labeled trees.1. IntroductionWe here describe certain explicit canonical resolutions for free associative and free(graded) Lie algebras, in the category of non-associative algebras. Both resolutionsare based on the combinatorics of suitable collections of leaf-labeled trees.The Lie case was needed for the second author's description of higher homotopyoperations in rational homotopy theory, in [B2]: it turns out that in order to describeall such higher operations, one must resolve the di�erential graded Lie algebra L�over Q (representing the rational homotopy type of a given space X) simplicially,by suitable free (di�erential) graded Lie algebras. The higher homotopy operationscorrespond to relations and syzygies for these free graded Lie algebras, thought ofas non-associative algebras over Q. Since we must replace all the Lie algebras bythe corresponding free di�erential algebras in a functorial manner (to preserve thesimplicial structure of the original resolution of L�), we need canonical resolutionsof free Lie algebras in the category of non-associative algebras, as described in thispaper. The construction is closely related to \strongly homotopy Lie algebras" (seex3.21 below).Our main interest is indeed in the Lie case. The associative case, which is based onwork of Stashe� in [Sts], is included mainly as a preliminary illustration of the ideasinvolved, and to �x notation.As might be expected, the resolutions, being canonical, are far from minimal: thisis reected in the fact that the resolution for the free Lie algebra L = Lhx1; : : : ; xgihas generators in all dimensions � g, while if L is considered as a non-associative(skew-commutative) algebra, its homology vanishes above dimension 1, by Theorem4.6 below (so that the generators for a minimal resolution are restricted to dimen-sions � 1). Nevertheless, such canonical resolutions are often needed for functorialconstructions (as noted above), and we hope the combinatorics involved may be ofindependent interest.Date: February 22, 1998.1991 Mathematics Subject Classi�cation. Primary 18G10; Secondary 05C05, 16S10, 17B01,17A50, 18G50.Key words and phrases. resolutions, homology, Lie algebras, associative algebras, non-associativealgebras, Jacobi identity, leaf-labeled trees, associahedron.First author supported in part by the Israel Science Foundation, administered by the IsraelAcademy of Sciences and Humanities, and by an Internal Research Grant from Bar-Ilan University.1



2 RON ADIN AND DAVID BLANC1.1. Notation and conventions. A graded object over any category C is a sequenceof objects X� = (X0;X1; : : : ) from C; we write jxj = n if x 2 Xn.All vector spaces and algebras will be over a �eld k of characteristic 0 (though theapplication we have in mind is to the case of k = Q, the rationals). The (graded)vector space with the (graded) set X as its basis is denoted by VhXi, and the vectorspace dual of V is V ? := Homk(V;k).We denote by Alg the category of not-necessarily-associative algebras over k, byAlga � Alg the full subcategory of associative algebras, and by Algc � Alg thefull subcategory of skew-commutative not-necessarily-associative algebras, satisfyingxy = �yx for all x; y. Lie denotes the category of Lie algebras.Similarly, we denote by A the category of graded not-necessarily-associative al-gebras, which we shall call GNAs. An object A� 2 A is thus a graded vector spaceA� = �1n=0An, equipped with a bilinear graded product � : Ap 
 Aq ! Ap+q foreach p; q � 0.We denote by Aa � A the full subcategory of graded associative algebras (GAAs),and by Ac � A the full subcategory of graded-skew-commutative not-necessarily-associative algebras, satisfying y � x = (�1)jxjjyj+1x � y, which we call GCAs. L � Acdenotes the subcategory of graded Lie algebras (GLAs); the product [ ; ] : Lp
Lq !Lp+q in a GLA L� satis�es the (graded) Jacobi identity(�1)jxjjzj[[x; y]; z] + (�1)jyjjxj[[y; z]; x] + (�1)jzjjyj[[z; x]; y] = 0:(1.2)Note that we can embed Alg in A by thinking of A 2 Alg as a graded algebraA� with A0 = A and Ai = f0g for i � 1; similarly for Alga � Aa, and so on.Thus results stated for graded algebras of various sorts include the ungraded versionsas a special case.There are also di�erential versions of all the above categories of graded algebras.In particular, a di�erential graded (not-necessarily-associative) skew-commutative al-gebra, called a DGCA, is a GCA (A�; �) 2 Ac, equipped with a di�erential (i.e., amap @ = @An : An ! An�1 for each n > 0 such that @2 = 0) which is a gradedderivation in the sense that if x 2 Ap, y 2 Aq then @(x �y) = @(x) �y+(�1)px �@(y).The category of DGCAs is denoted by dAc. Similarly for di�erential graded not-necessarily-associative algebras, or DGNAs.1.3. Notation. For any GNA (A�; �) 2 A, let [x; y] denote 12(x�y+(�1)jxjjyj+1y�x).We then have [y; x] = (�1)jxjjyj+1[x; y], so (A�; [ ; ]) is now a (non-associative) gradedalgebra with a graded-skew-commutative multiplication.1.4. De�nition. A di�erential bigraded (not-necessarily-associative) skew-commu-tative algebra, or DBGCA, is a bigraded vector space A�;� = �1p=0�1s=0Ap;s, equippedwith a bilinear graded product � : Ap;s 
Aq;t ! Ap+q;s+t for each p; q; s; t � 0 anda di�erential @ = @Ap;s : Ap;s ! Ap�1;s satisfying x � y = (�1)(p+s)(q+t)+1y � x and@(x � y) = @(x) � y+(�1)p+sx � @(y) for x 2 Ap;s and y 2 Aq;t. The category of suchDBGCAs will be denoted by dbAc.Each DBGCA (A�;�; @A) has an associated DGCA (A�; @A), de�ned An =Lp+q=n Ap;q (same @A); some authors re-index A�;� so that Âp;s = Ap;p+s, and



RESOLUTIONS OF ASSOCIATIVE AND LIE ALGEBRAS 3then A� is obtained from Â�;� by ignoring the �rst (homological) grading. n = p+sis called the total degree in A�;�.1.5. Organization. In section 2 we describe the simpler case of resolutions of freeassociative algebras, and in section 3 we describe resolutions of free Lie algebras. Insection 4 we explain the connection to the homology of non-associative algebras.1.6. Acknowledgements. We would like to thank Jean-Louis Loday for pointing outTheorem 4.6 to us, Alan Robinson for providing us with a preprint of [RW], and SteveShnider and Richard Stanley for several useful conversations. We would also like tothank the referee for his comments.2. Associative algebrasWe begin with a description of our canonical resolution for a free associative algebraby free non-associative algebras. We do so mainly because the underlying combina-torics, as well as the corresponding geometric objects, are more transparent in thiscase than for Lie algebras. For simplicity we deal here only with the non-graded case.First, some de�nitions. Fix once and for all a �nite set X = fx1; : : : ; xgg (which wethink of as a set of generators for a free algebra).2.1. Trees. Recall that a rooted plane tree T (see [Stn]) consists of a (non-empty)�nite set of nodes, with one designated node called the root r(T ); each node v hasa linearly-ordered set of kv other nodes, called its children; v is called their parent.If kv = 0, then v is called a leaf ; otherwise it is called an internal node of T , andthe set of all internal nodes is denoted by int(T ). The set of all leaves of T hasthe obvious natural linear order \from left to right". In this paper we require thatkv 6= 1 for all nodes v, i.e., all internal nodes have at least two children.Note that the smallest rooted plane tree has a single node which is both the rootand a leaf; in all other trees the root is an internal node.2.2. De�nition. Let In = f1; 2; : : : ; ggn. For I = (i1; : : : ; in) 2 In, let T[I]denote the collection of all rooted plane trees with n leaves labeled xi1; xi2; : : : ; xin,in that order. Write Tn for SI2In T[I], and T := S1n=1 Tn.De�ning the excess of an internal node v of T to be e(v) := kv � 2, the totalexcess of each tree determines a lower grading on T byT 2 Tnk , k = Xv2int(T ) e(v):(2.3)Thus Tn0 consists precisely of the binary trees, for which every internal nodehas exactly two children; such trees correspond to complete parenthesizations on (thelabels of) the leaves, e.g.: (x1((x3x2)x1)). More generally, trees in Tnk (0 � k � n�2)correspond to partial parenthesizations with n�k�1 pairs of parentheses (includingan external pair, when n � 2) { e.g., (x1(x3x2)x1) 2 T41.2.4. Associahedra. Consider the (n� 2)-dimensional associahedron Kn�2 of [Sts,xx2,6], whose vertices are indexed by the possible \associations" (i.e., full parenthe-sizations) on n letters: it has a realization as a convex polytope in Rn�2, and itsboundary @Kn�2 is thus homeomorphic to the (n� 3)-sphere Sn�3 (cf. [Z, p. 18]).



4 RON ADIN AND DAVID BLANCThe dual polytope is simplicial, so that its boundary complex Pn is an (n � 3)-dimensional simplicial complex, in which the top-dimensional faces correspond to thevertices of Kn�2, i.e., to binary trees. In general, the k-simplices of Pn are in one-to-one correspondence with the trees in Tnn�3�k. Note that the indexing is the reverseof the one we described above: the binary trees now appear in the top dimension.By choosing various sequences of labels I 2 In = Xn� to serve as the \letters", weobtain isomorphic copies of Pn, which we denote by Pn[I], with the correspondingrational simplicial chain complexes being C[I]� := C�(Pn[I];k); similarly C[I]� :=Homk(C[I]�;k) are the simplicial cochain complexes.2.5. De�nition. We denote by A lghXi the free non-associative algebra generatedby the set X. This is just the non-associative tensor algebra on the vector spaceVhXi, so we may write A lghXi =L1i=0An(X), where An(X) = VhTn0i (cf. x1.1).The multiplication in A lghXi is de�ned by concatenation: if T 2 Tp0 and T 0 2 Tq0,then T � T 0 2 Tp+q0 is obtained by adjoining a root r(T � T 0) as the common parentof r(T ) and r(T 0), in that order. The free associative algebra on X, denoted byA lgahXi, and the free graded non-associative algebra on a graded set X�, denotedby A lghX�i, are de�ned similarly.2.6. De�nition. Given an associative algebra B 2 Alga, we may think of it as anobject in Alg. As such, it cannot be free (even if B = A lgahXi, say), so we cantry to resolve it: that is, construct a DGNA (E�; @E) 2 dA which is free as a GNA,together with an augmentation " : E0 ! B such that the augmented chain complexE� ! B { called a (dA-)resolution { is acyclic. Of course, the same can be donefor any GNA B (e.g., if B is a Lie algebra).A bigraded dbA-resolution F�;� of a graded algebra A� 2 Aa is de�ned analo-gously.2.7. Constructing the resolution. Since @Kn�2 ' Sn�3, we have ~H iC[I]� = kfor i = n � 3 and ~H iC[I]� = 0 for i 6= n � 3. Let us re-index each C� = C[I]�by setting Ĉi = Cn�4�i for �1 � i � n � 4, and Ĉn�3 = k, so Ĉ� = Ĉ[I]� isan acyclic augmented chain complex. Note that Ĉ�1 is the free vector space on allfull parenthesizations of i1; : : : ; in. Thus if we setE� = 1Mn=1MI2In Ĉ[I]�;we have a dA-resolution of E�1 �= B = A lgahXi. Moreover, E� has the structureof a DGNA, with the product extended bilinearly from the concatenation of treesde�ned in x2.5. 3. Lie AlgebrasWe can now deal with the analogous resolution of a free graded Lie algebra, thoughtof as an object in Ac. Let LhX�i 2 L denote the free graded Lie algebra generatedby the graded set X� = fx1; : : : ; xgg. Ideally, we would like a Lie analogue ofthe associahedron Kn�2 (cf. x2.4): i.e., a (combinatorial) topological space whichencodes the combinatorics of the resolution of LhX�i. Apparently this does notexist, in general; however, there is a version of the dual simplicial complex Pn {



RESOLUTIONS OF ASSOCIATIVE AND LIE ALGEBRAS 5namely, Boardman's \space of fully-grown trees" (see [Bo, x6]). This can be thoughtof as an n-dimensional generalization of the \Lie-hedron" of [MS] { but only for Lieexpressions without repetitions (see x3.6 below).In this section we again use the notation of x2.2, but now we must pay greaterattention to the grading on X�, as well as to the resulting signs. This is because inthe case of Lie algebras we must deal separately with expressions in which the samegenerator appears more than once.3.1. De�nition. Let I = (i1; : : : ; in) be an n-tuple of distinct indices of elementsin X�, and T 2 T[I] a rooted plane tree with leaves labeled xi1; : : : ; xin, inthat order. For each node v 2 int(T ) the symmetric group �kv permutes thekv children of v, changing T into a combinatorially isomorphic tree T 0 2 T[I 0](where I 0 is the permutation of I), and the actions of the symmetric groups atdi�erent nodes commute; so we de�ne the branch automorphism group of T to beB-Aut(T ) := Qv2int(T )�kv . (The elements ' 2 B-Aut(T ) are, strictly speaking,not automorphisms of T , but only of the collection hT i of all rooted plane treescombinatorially isomorphic to T .)Equivalently, we may think of B-Aut(T ) as the subgroup of the symmetric group�n consisting of all linear orderings of the leaf labels xi1; : : : ; xin of T which arecompatible with the tree structure of T .If we identify a tree T with the corresponding partially parenthesized expression �in the letters xi1; : : : ,xin, then we may write B-Aut(�) for B-Aut(T ), and thinkof the group as permuting letters or parenthesized sub-blocks of �.3.2. De�nition. For T as above, de�ne the degree jvj of any node v of T inductivelyby setting the degree of a leaf labeled by x 2 X� to be jxj (as in x1.1), and ifv 2 int(T ) has children u1; : : : ; uk, let jvj := ju1j+ � � �+ jukj+ k� 2. In particular,the total degree of T , denoted by jT j, is de�ned to be the degree of its root r(T ).Thus T[I] is bigraded (with the homological degree de�ned by (2.3)) and we writeT 2 T[I]k;s if jT j = k and T is in homological degree s. If all the generators in X�have degree 0, the two degrees are the same.Note that the action of B-Aut(T ) respects the degrees of the nodes, so we mayde�ne the Koszul sign "(') of a branch automorphism ' 2 B-Aut(T ) to bethe product of Koszul signs signX�(�), taken over all the constituent permutations� 2 �kv . (The Koszul sign of a permutation acting on a graded set X� is de�nedby letting signX�((k; k + 1)) = (�1)pq+1, for an adjacent transposition (k; k + 1)which switches two elements (in our case: nodes) of degrees p, q respectively.)3.3. Remark. The Koszul sign we use actually di�ers by �1 from that usually usedby algebraists, so as to conform to the topological usage needed for our applicationin [B2].3.4. De�nition. For T as above, we de�ne the complexity cx(v) of any node vinductively by setting cx(r(T )) = 0, where r(T ) is the root of T , and if v 2 int(T )has k children, then cx(u) = cx(v) + k for each child u of v.3.5. De�nition. For each T 2 T[I] � Tnk as above, let +hT i � Tnk denotethe collection of all trees T 0 obtainable from T under some ' 2 B-Aut(T ) with�(') = +1, and similarly de�ne �hT i (with �(') = �1). We think of �hT i as the



6 RON ADIN AND DAVID BLANCequivalence class of the tree T , with respect to the relation of abstract combinatorialisomorphism, partitioned by sign into two subclasses.Write În for the collection of (unordered) n-multisets of elements of X�, andset T̂[Î] := SI2Î ST2T[I]�hT i. We may think of T̂[Î] as the collection of all rootedtrees T̂ with n leaves labeled xi1; xi2; : : : ; xin, without a speci�ed planar embedding,but with a sign determining which of the two classes of possible embeddings we havechosen. Set T̂n := SÎ2În T̂[Î].3.6. De�nition. The space of trees is the n-dimensional simplicial complex whosek-simplices consist, in our notation, of the unsigned equivalence classes hT i = +hT i[�hT i of rooted trees T 2 Tn+3n�k[Î], for some �xed set Î 2 În+3 of n + 3 distinctlabels. It is denoted by Tn in [RW, x1], but to avoid over-use of the letter T weshall denote it here by Mn. See also [HW].Thus, the k-simplices Mnk are in one-to-one correspondence with the isomorphismclasses of leaf-labeled trees { without a speci�ed planar embedding { having exactlyk + 2 internal vertices, and with leaves labeled xi1 ; : : : ; xin+3, say, not necessarilyin that order. As Robinson and Whitehouse show, Mn is homotopy equivalent toa wedge of (n + 2)! n-spheres (cf. [RW, Thm. 1.5]). However, we cannot use theirresults as they stand, since we need to be careful with signs. So we make the followingde�nitions:3.7. De�nition. For I = (i1; : : : ; in) as above, let J� = J [I]� denote the (bi)gradedvector space with J [I]k spanned by T̂[I]�;n�3�k for �1 � k � n�2. (For simplicitywe suppress the \topological" grading due to the grading of X�, since it is not relevantat this stage.) We de�ne a di�erential @ = @Jk : Jk ! Jk�1 as follows:Represent any hT i 2 T̂[I]�;n�3�k by a partially parenthesized expression � in theletters xi1; : : : , xin ; then @[T̂ ] will be represented by the sum of all expressionsobtained from � by omitting a pair of parentheses (equivalently: by contracting oneinternal edge of T , i.e., an edge connecting two internal vertices) { with appropriatesigns. These signs are determined recursively by the following three rules:(1) If � = ((a1a2 : : : ak)b1 : : : bm), where each ai or bj is a partially paren-thesized expression (possibly just a generator x 2 X�), then the summand(a1a2 : : : akb1 : : : bm) appears in the expansion of @[�] with the sign (�1)m+1.(2) If � = (ab1 : : : bm), where a (and each bj) is a partially parenthesized expres-sion, then the sum comprising (@[a]b1 : : : bm) appears in the expansion of @[�]with the sign (�1)m+1.(3) If � = (a1 : : : akbc1 : : : cm), where each of ai, b and cj is a partially parenthe-sized expression, then@[�] = (�1)(Pki=1jaij)jbj+k@[(ba1 : : : akc1 : : : cm)]:We set @[x] := 0 for any generator x 2 X�.3.8. Example. For any partially parenthesized expressions a; b; c; d we have@[((ab)c)] = (abc) + ((@[a]b)c) + (�1)jaj((a@[b])c) + (�1)jaj+jbj((ab)@[c])



RESOLUTIONS OF ASSOCIATIVE AND LIE ALGEBRAS 7and @[(((ab)c)d)] =((ab)cd) + ((abc)d) + (((@[a]b)c)d) + (�1)jaj(((a@[b])c)d)+(�1)jaj+jbj(((ab)@[c])d) + (�1)jaj+jbj+jcj(((ab)c)@[d])3.9. Note. Rules (1) and (2) say that if � = ((� � � ((�a)b11 : : : b1m1) � � � )bt1 : : : btmt), wherethe expression �a := a1a2 : : : ak is initial in � (with only left parentheses precedingit), then the sequence ��a = ((� � � (a1a2 : : : akb11 : : : b1m1) � � � )bt1 : : : btmt), obtained from� by omitting the outer parentheses around �a, appears in the expansion of @[�]with the sign (�1)cx(�a) (Def. 3.4).Rule (3) says that if one wishes to omit the outer parentheses around �a when itis not initial in �, and T is the rooted plane tree corresponding to �, then one mustmove �a to the left of all its siblings, and similarly for all its ancestors, by a suitablebranch automorphism ' 2 B-Aut(T ) { which introduces the sign "(') { and thenapply the previous rule. Note that this ' is not unique (unless we specify a preferredchoice for the automorphism); but it is not hard to see that the various choices of' di�er by elements of the isotropy subgroup of B-Aut(T ) which leaves the nodecorresponding to �a �xed, and that the correspondence � 7! ��a commutes with theaction of this subgroup. So the sign of the resulting class �h��ai in the expansion of@J [�] { and thus @J itself { is well de�ned.3.10. Lemma. @J is a di�erential on J�.Proof. Given a partially parenthesized expression � = ((� � � (�a1)�a2) : : : �at), with each�ai = ai1ai2 : : : aiki, we must verify that, for any two pairs of parentheses in �, omittingthem in the two possible orders yields opposite signs in the expansion of @[@[�]].Using the recursive rules of x3.7, one must check the following cases:(i) � = ((�a)(�b)�c), where �a := a1 : : : ak, �b := b1 : : : b` and �c := c1 : : : cm. Wesee that if j�aj := ja1j + � � � + jakj and so on, then the two orders of omittingparentheses yield((�a)(�b)�c) 7!(�1)2+m(�a(�b)�c) = (�1)(2+m)+j�aj(j�bj+`�2)+k((�b)�a�c) 7!(�1)(m+j�aj(j�bj+`)+k)+k+m+1(�b�a�c) = (�1)(j�aj(j�bj+`)+1)+j�ajj�bj+k`(�a�b�c) =(�1)(j�aj+k)`+1(�a�b�c)and((�a)(�b)�c) =(�1)(j�aj+k)(j�bj+`)+1((�b)(�a)�c) 7! (�1)((j�aj+k)(j�bj+`)+1)+2+m(�b(�a)�c) =(�1)(j�aj+k)`+`+1+m((�a)�b�c) 7! (�1)(j�aj+k)`(�a�b�c)respectively, which indeed di�er in sign.The remaining cases, namely:(ii) (((�a)�b)�c) 7! �(�a�b�c),(iii) (a(�b)�c) 7! �(@[a]�b�c),(iv) ((a�b)�c) 7! �(@[a]�b�c),(v) (ab�c) 7! �(@[a]@[b]�c),are dealt with in a similar fashion.



8 RON ADIN AND DAVID BLANCTo show that J [I]� is acyclic except in the top dimension for each I, we mimicthe geometric proof of Robinson and Whitehouse. This requires another3.11. De�nition. Given any subset A = fi1; : : : ; ikg of I with k � 2, let ~J[A]�denote the subcomplex of J [I]� spanned by all trees T in which xi1; : : : ; xik all havethe same parent node (i.e., in the corresponding expression �, the letters xij arenot separated by unbalanced pairs of parentheses). Since @J is de�ned by omittingparentheses, this is clearly a subcomplex. Compare [RW, Def. 1.3], and [RW, Lemma1.4] for the following3.12. Lemma. For any A � I with jAj � 2, the complex ~J[A]� is acyclic.Proof. Write �x := xi1 : : : xik . We de�ne a contracting homotopy � = �Am : ~J [A]m !~J[A]m+1 on basis elements T 2 T̂[I]�;n�3�m (or equivalently, on the correspondingpartially parenthesized expression �), and extend linearly:If T has a node whose leaves are precisely xi1; : : : ; xik (i.e., if � has (�x) as asub-expression), then �(�) := 0; while if � = ((� � � (�x�a1) � � � )�at) (where each�ai = ai1ai2 : : : aiki), we set �(�) := (�1)cx(�x)((� � � ((�x)�a1) � � � )�at). By requiring that�('(�)) = (�1)"(')'(�(�)) for any ' 2 B-Aut(�) (as long as both sides of theequation make sense), we have de�ned � on all of ~J [A]�.Using the rules of x3.7 above, one may verify that � is indeed a contracting homo-topy for ~J[A]� (i.e., @ � � + � � @ = id).This implies the following variant of [RW, Thm. 1.5]:3.13. Proposition. For any n distinct indices I = (i1; : : : ; in) we have Hi(J [I]�) =0 for �1 � i < n� 3, and Hn�3(J [I]�) �= k(n�1)!.Proof. Let C� := S1�k<`<n ~J [(ik; i`)]�. (This is a subcomplex of J [I]�.) The inter-section Trt=1 ~J [(ikt; i`t)]� is acyclic (and nonempty) for any subcollection (kt; `t)rt=1 ofpairs, as can be seen by using the contracting homotopy �A of Lemma 3.12, where thesubset A = Ar of fk1; `1; : : : ; kr; `rg is de�ned by induction on 1 � s � r by lettingA1 := fk1; `1g, As+1 = As if As \ fks+1; `s+1g = ;, and As+1 = As [ fks+1; `s+1gotherwise. Lemma 3.12 and the Mayer-Vietoris sequence imply that C� itself isacyclic, and (n� 3)-dimensional.Now any partially parenthesized expression � 2 J [I]� is actually in C�, unless itis in fact fully parenthesized (corresponding to a binary tree, so in dimension n� 3),and of the form � = ((� � � ((xnx�(1))x�(2)) � � � )x�(n�1)) for some � 2 �n�1. Since@[�] is a cycle in Cn�4, there is some � 2 Cn�3 (unique, for dimensional reasons)such that �� � is a cycle in J [I]�. Thus Hn�3(J [I]�) �= k(n�1)!.3.14. The leaf action. Note that a multiset Î = fi1; : : : ; ing 2 În (x3.5) may bethought of as the collection of orbits of ordered n-tuples I 2 In under the action ofthe symmetric group �n. For simplicity we may take our set of labels to be simplyI = n := (1; : : : ; n), and think of �n as acting on the leaves (i.e., on the labels)of any T 2 T[n]k. This action, extended linearly to J [n]�, commutes with thedi�erential and with the action of the branch automorphism groups, which thereforemakes sense of the following



RESOLUTIONS OF ASSOCIATIVE AND LIE ALGEBRAS 93.15. De�nition. Any multiset Î = (i1 = � � � = i1; i2 = � � � = i2; : : : ; ik = � � � = ik),with a total of n = n1 + n2 + � � � + nk entries counted with repetitions, may bethought of as the orbit set of n under the action a leaf automorphism group L-Aut(Î) = �n1 � � � ��nk � �n. We de�ne the corresponding chain complex J [Î]� tobe the quotient of J [n]� under the action of L-Aut(Î) { though this is no longerassociated to a geometric object in the way that J [n]� was associated (up to signs)to Mn.3.16. The resolution F�;�. To produce our candidate for the dbAc-resolution ofL = LhX�i, we must again re-index, as in x2.7, by setting G[Î]i := (J [Î]n�3�i)?(vector space dual) for 0 � i � n � 3, so that hG[n]�; @?i is (up to sign) there-indexed cochain complex for Mn. We then de�neF�;� := 1Mn=0 MÎ2În+3 G[Î]�:(3.17)(We have re-inserted the \topological" grading into our notation at this stage, to callattention to the fact that we have constructed a bigraded resolution.)3.18. Remark. Note that G[Î]� once more reverses the indexing, so that for I con-sisting of distinct indices, at least, G[Î]k is spanned by all trees of lower (homological)degree k, as de�ned in (2.3). Similarly, @?(T ), which we de�ned by the vector spacedual of @J, could be described directly as the signed sum of all trees obtained from Tby adding internal edges { or equivalently, adding parentheses to the correspondingpartially parenthesized expression �, with the signs again given by x3.7. This is infact more natural algebraically, as the following examples show:3.19. Example. For any partially parenthesized expressions a, b, and c in F�;�,one has @?[(abc)] =((ab)c) + (�1)jajjbj+jajjcj((bc)a) + (�1)jajjcj+jbjjcj((ca)b)+ ((@?[a]b)c) + (�1)jaj((a@?[b])c) + (�1)jaj+jbj((ab)@?[c])(compare Example 3.8). In particular, for any three generators x; y; z 2 X� one has@?[(xyz)] = ((xy)z) + (�1)jxjjyj+jxjjzj((yz)x) + (�1)jxjjzj+jyjjzj((zx)y);which up to the action of B-Aut(T ) is the usual graded Jacobi identity of (1.2).Similarly, for x; y; z; w 2 X�@F [(xyzw)] =� ((xy)zw) + (�1)jyjjzj((xz)yw) + (�1)jyjjwj+jzjjwj+1((xw)yz) +(�1)jxjjyj+jxjjzj+1((yz)xw) + (�1)jxjjyj+jxjjwj+jzjjwj+1((yw)xz) +(�1)(jxj+jyj)(jzj+jwj)((zw)xy) + ((xyz)w) + (�1)jzjjwj+1((xyw)z) +(�1)jyj(jzj+jwj)((xzw)y)(�1)jxj(jyj+jzj+jwj+1)((yzw)x);(3.20)which can be thought of as a \second order Jacobi identity".F�;� has an augmentation " : F�;0 ! LhX�i, which takes any fully parenthesizedexpression in the elements xi to the corresponding iterated Lie bracket. In fact, withthe product structure extended linearly from concatentation of trees, as in x2.5, F�;�



10 RON ADIN AND DAVID BLANCis a DBGCA (see x1.4; or a DGCA, when X� is ungraded). The product is graded-skew-commutative, and Rule (2) of x3.7 implies that @?[a�b] = @?[a]�b+(�1)jaja�@?[b]for any a; b 2 F�;�.3.21. Remark. In fact, F�;� is not merely a free bigraded skew-commutative not-necessarily-associative algebra, but also is the free strongly homotopy Lie algebra onthe graded set X�. The analogous singly-graded objects, �rst introduced by Stashe�and Schlessinger in [SS2] (see also [SS2]) play a role in deformation theory, in rationalhomotopy theory, and in mathematical physics. See also [GK, x1.3.9], and [LM, 2.1],where these are called L(1)-structures. Martin Markl has pointed out to us thatthe resolution for free Lie algebras we de�ne can also be obtained by the methods of[GK] and [M].3.22. Theorem. F�;� is a resolution of L = LhX�i.Proof. It is clear from the construction that H0(F�;�) �= L, and that F�;� is freeas a DBGCA, so it su�ces to show that F�;� is acyclic in positive degrees. SinceF�;� is de�ned as a direct sum of chain complexes (3.17), it is enough to considereach summand separately. Thus, for each Î 2 În+3 (�xed for the remainder of theproof), it su�ces to show that J [Î]� is acyclic in degrees < n.To do so, �rst consider the corresponding multiset I 0 without repetitions. BecauseJ [I 0]� is acyclic by Proposition 3.13 above, it has (many possible) contracting chainhomotopies. We now proceed to make a speci�c choice of such a homotopy (dependenton the original I):Assume that I = I 0=L-Aut(Î) for G = L-Aut(Î) � �n as above. Since @k+1commutes with the action of G, the summand Im(@k+1) of J [I 0]k is invariant underthis action. Thus, by Maschke's Theorem (see [CR, 10.8]), for each 0 < k � n � 3we may choose a splitting J [I 0]k = Im(@k+1)� Sk;where Sk is also invariant under the action of G, and of course @kjSk is an isomor-phism onto Im(@k) � J [I 0]k�1 (because Im(@k+1) = Ker(@k)).We may thus de�ne a linear map �0k : J [I 0]k ! J [I 0]k+1 by �0k(@k+1Ti) = Ti, and�0kjSk� 0; this is a contracting homotopy for J [I 0]�. Moreover, it commutes withthe action of G, so it induces a contracting homotopy � on J [Î]�, which is thusacyclic. 4. Homology of DGLsWe may use the resolutions constructed above to calculate the homology of a freeLie or associative algebra, considered as a non-associative algebra. We �rst recallQuillen's de�nition of homology in model categories:4.1. De�nition. An object X in a category C is said to be abelian if it is an abeliangroup object { that is, if HomC(Y;X) has a natural abelian group structure forany Y 2 C. When C is Lie, Alg, Alga, L, or A, for example, this is equivalentto requiring that all products vanish in X.The full subcategory of abelian objects in C is denoted by Cab � C. It is equivalentto the category Vect of vector spaces if C = Lie, Alg, Alga, and so on, and to



RESOLUTIONS OF ASSOCIATIVE AND LIE ALGEBRAS 11the category V of graded vactor spaces if C = L or A; so we see that Cab isan abelian category, in the cases of interest to us. We then have an abelianizationfunctor Ab : C ! Cab, along with a natural transformation � : Id! Ab having theappropriate universal property. In all the examples above, Ab(X) = X=I(X), whereI(X) is the ideal in X 2 C generated by all non-trivial products.4.2. Homology of algebras. Let C be a category as above, which also has a modelcategory structure (see [Q2, II, x1]). In [Q1, II, x5] (or [Q3, x2]), Quillen de�nes thehomology of an object X 2 C to be the total left derived functor L(Ab) of Ab,applied to X (cf. [Q1, I, x4]).In more familiar terms, this means that we construct a resolution A ! X (i.e.,replace X by a weakly equivalent co�brant object A 2 C), and then de�ne the i-thhomology group of X by HiX := Hi(Ab(A)), where Ab(A) is (equivalent to) achain complex in an abelian category, so its homology is de�ned as usual. One mustverify, of course, that this de�nition is independent of the choice of the resolutionA! X.If C itself does not have a closed model category structure, one often de�nes thehomology of X 2 C by embedding C in some category which does have such a struc-ture, which in most cases may be taken to be sC, the category of simplicial objectsover C (see [Q1, II, x4]). Thus, if � : C ,! sC is the embedding of categories de�nedby taking �(C) to be the constant simplicial object equal to C in all dimensions,then Hi(C) := �i(L(Ab � �)C).This is the approach usually taken for C = Lie, Alg, A, and so on: to de�nethe homology of a graded Lie algebra L� 2 L, say, one chooses a free simplicialresolution A�;� ! L� and then calculates the homotopy groups of the simplicialgraded vector space Ab(A�;�) 2 sV.As for graded Lie algebras and skew-commutative algebras, one can de�ne closedmodel category structures on sAc and dbAc (see [BS, x2], and [B1, x4]), and becausewe are working over a �eld of characteristic 0, we have the following analogue of [Q2,Props. 2.3 & 4.6, Thm. 4.4]4.3. Proposition. There are adjoint functors sA N
N�dbA, which induce equivalencesof the corresponding homotopy categories ho(sA) � ho(dbAc). N� takes free DBG-CAs to free simplicial GCAs.Proof. See [B2, Props. 2.9, 7.2, 7.3].Thus we may use DGCAs (resp. DBGCAs) instead of simplicial commutative al-gebras (resp. simplicial GCAs) as our free resolutions { as in x2.6 { and replacethe homotopy groups by the homology groups of the corresponding (bigraded) chaincomplex.4.4. Remark. We gave the de�nition of homology in its simplicial version, whichapplies to more general types of universal algebras, in order to emphasize that ourmethods do not apply to associative or Lie algebras over an arbitrary (commutative)ground ring k, because in that case one cannot resort to di�erential graded algebrasas resolutions. (The case of k =Z would have been of special interest.)



12 RON ADIN AND DAVID BLANC4.5. Calculating the homology. In particular, we may use the resolutions E� !A lgahXi and F�;� ! LhX�i de�ned above to calculate the homology of a freeassociative or (graded) Lie algebra, considered as an object in Alg or A. Explicitly,if E� is the simplicial algebra corresponding to the DGNA E�, then Hn(A lgahXi)is de�ned to be the n-th homotopy group of the simplicial vector space Ab(E�),where the abelianization functor is applied in each simplicial dimension separately;and similarly for H�(LhX�i).However, the de�nition of the correspondence between E� and E� (cf. [B2,Proof of Prop. 2.9]) implies that the indecomposables in the two cases are in bijectivecorrespondence, so that in fact we may calculate Hn(A lgahXi) as the n-th homologygroup of the di�erential vector space (i.e., chain complex) Ab(E�) := E�=I(E�). Thissimply means that we must replace by 0 all trees in E� whose roots have only twochildren, and compute the homology of the resulting chain complex. Similarly forF�;�.4.6. Theorem. Hi(LhX�i) = 0 for i � 2.Proof. As before, let I = (i1; : : : ; in) be some n-tuple of distinct indices of elementsin the graded set X�, and let N� = N [I]� denote the subcomplex of J� = J [I]�spanned by all trees T with kr(T ) � 3. We will say that a subcomplex C� � J� is`-coconnected if Hi(C�) = 0 for i � n� 3� `.(I) Given any subset A = fi1; : : : ; ikg of I, let ~N [A]� denote the subcomplexof N [I]� spanned by all trees T in which xi1; : : : ; xik all have the same parentnode (compare x3.11 above). We claim that ~N [A]� is k-coconnected, for any A withk � 2.This is shown essentially as in the proof of Lemma 3.12. We de�ne a (partial)contracting homotopy � : ~N [A]i ! ~N [A]i+1 for i < n� 3� k as follows:Write �x := xi1; : : : ; xik . If � has (�x) as a sub-expression, then �[�] = 0; if� = ((� � � (�x�a1) � � � )�at), we set �[�] = (�1)cx(�x)((� � � ((�x)�a1) � � � )�at) (and require that�['(�)] = (�1)"(')'(�[�]) for any ' 2 B-Aut(�)). Any other basis element of~N [A]� is in the subcomplex �xJ [I n A]� { i.e., of the form � = (�x�a) for some�a = a1 � � � at for some t � 1, where (�a) 2 J [I n A]� (again, up to the B-Aut(�)-action). But �xJ [I n A]� is isomorphic to the complex J [I n A]� shifted up by k,and this has a contracting homotopy �0 in degrees < n� k� 3 by Proposition 3.13;set �[(�x�a)] := �0[(�a)] if t = 1, and �[(�x�a)] := �0[(�a)] + ((�x)�a) if t � 2.(II) We now show that N� = N [I]� is 2-coconnected. If we denote the sequenceof chain complexes( ~N [(i1; i2)]�; ~N [(i1; i3)]�; : : : ; ~N [(i1; in�1)]�; ~N [(i2; i3)]�; : : : ; ~N [(in�2; in�1)]�)by (Dt�)mt=1, and set C t� = Sti=1Di� for 1 � t � m, then the chain complexCm� = S1�k<`<n ~N [(ik; i`)]� is in fact all of N�, since any � 2 J [I]� not in Cm� isof the form � = ((� � � ((xnx�(1))x�(2)) � � � )x�(n�1)) for some � 2 �n�1 { so not inN�.Note that each Di� is 2-coconnected by (I) above, and in fact for any subsetfs1; : : : ; s`g � f1; 2; : : : ;mg the complex Tì=1Dsi� is (` + 1)-coconnected (by
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