M-equivalences and homotopy colimits

DAVID BLANC AND ROBERT D. THOMPSON

ABSTRACT. Given a fixed "model space" M, we call a map $f: X \to Y$ an M-equivalence if it induces a weak equivalence $f_*: X^M \to Y^M$ on mapping spaces. We discuss the following question: under what conditions do homotopy colimits preserve M-equivalences? For certain M's of interest, this is shown to depend precisely on the connectivities of the spaces.

1. Introduction

Let M be a fixed "model space"; we say that a map $f: X \to Y$ is an M-equivalence if it induces a weak equivalence of mapping spaces $f_*: X^M \to Y^M$. Our ultimate object is to understand how much of the theory of CW complexes still holds when we replace the concept of "weak equivalence" by M-equivalence. In particular, we wish to address the following:

Question: What classes of spaces C have the property that homotopy colimits preserve M-equivalences among objects in C?

That is, if $\{X_{\alpha}\}_{\alpha \in A}$ and $\{Y_{\alpha}\}_{\alpha \in A}$ are two diagrams of spaces in \mathcal{C} , and $\{f_{\alpha} : X_{\alpha} \to Y_{\alpha}\}_{\alpha \in A}$ is a map of diagrams with each f_{α} an M-equivalence, is $holim(f_{\alpha}) : holim(X_{\alpha}) \to holim(Y_{\alpha})$ an M-equivalence, too? Thus we would like to know, for example, whether the fact that a space X is M-equivalent to another space Y implies that ΣX is M-equivalent to ΣY .

This is of course one of the defining properties of homotopy colimits with respect to ordinary weak equivalences (S^0 -equivalences, in our terminology) – see [**BK**, XII, 4.2]. Clearly it fails to hold in complete generality: for example,

© 1995 American Mathematical Society 0271-4132/95 \$1.00 + \$.25 per page

¹⁹⁹¹ Mathematics Subject Classification. Primary 55P65; Secondary 55Q70.

Key words and phrases. M-equivalence, homotopy with coefficients, v_n -periodicity, homotopy colimit, realization.

Second author partially supported by the NSF.

if we take $M = S^1$, then S^0 is M-equivalent to a point, but its suspension is not. More generally, if M is *c*-connected and $\pi_t X = 0$ for t > c then X is M-local (i.e., M-equivalent to a point), but ΣX need not be.

On the other hand, if C is the class of M-CW complexes (or M-cellular spaces – i.e., conic spaces obtained by a process of "attaching M-cells", analogously to the usual definition $[W, II, \S1]$, with spheres replaced by suspensions of M – cf. [BT], [DF]), then any M-equivalence of spaces in C is a homotopy equivalence, so is preserved by any homotopy colimit. However, M-CW complexes are difficult to identify, in general; we would like a class of spaces C with a more familiar description – for instance, in terms of connectivities of the spaces.

Our main result in this direction (Theorem 2.5 below) states that for every connected r-dimensional torsion space M there is an integer e = e(M) < r, which we can compute in certain cases (see Proposition 2.9), such that:

- (i) *M*-equivalences between e-connected CW complexes are actually mod p equivalences (i.e., inducing an isomorphism in H
 _{*}(−; Z/p)) for certain primes p, and so are preserved by all homotopy colimits;
- (ii) homotopy colimits in general do *not* preserve M-equivalences between (e-1)-connected spaces.

Remark 1.1. Dwyer and Kan have recently shown that there is a concept of homotopy (co)limits in any closed model category ([**DK**]; see also [**DS**]); the basic property of such homotopy (co)limits is that they preserve the given weak equivalences. On the other hand, Alex Nofech has described, for each choice of M, a model category structure on the category of (pointed) topological spaces in which the weak equivalences are precisely the M-equivalences (cf. [**N**]); we thus have a concept of M-homotopy (co)limits: namely, the appropriate Dwyer-Kan homotopy colimits in the Nofech M-model category.

Thus our basic question can be reformulated in these terms: for which classes of topological spaces do the usual homotopy colimits agree with the M-homotopy colimits?

1.2. Conventions and notation. Let \mathcal{T}_{\star} denote the category of connected pointed CW complexes, with base-point preserving maps. All spaces will be assumed to lie in \mathcal{T}_{\star} , unless otherwise stated.

For any r-dimensional co-H-space $\mathbf{M} \in \mathcal{T}_{\star}$, the homotopy groups with coefficients in \mathbf{M} of $\mathbf{X} \in \mathcal{T}_{\star}$ are defined to be $\pi_t(\mathbf{X}; \mathbf{M}) \stackrel{Def}{=} [\Sigma^{t-r} \mathbf{M}, \mathbf{X}]$ (where this makes sense). Thus $f: \mathbf{X} \to \mathbf{Y}$ is an \mathbf{M} -equivalence if $\pi_k(f; \mathbf{M})$ is an isomorphism for $t \geq r$. A space \mathbf{X} is called \mathbf{M} -local if it is \mathbf{M} -equivalent to a point - i.e., if $\pi_{\star}(\mathbf{X}; \mathbf{M}) = 0$.

If \mathbb{P}_0 is a set of primes, a map $f: \mathbf{X} \to \mathbf{Y}$ is called a \mathbb{P}_0 -equivalence if $H_*(f; \mathbb{Z}/p) : H_*(\mathbf{X}; \mathbb{Z}/p) \to H_*(\mathbf{Y}; \mathbb{Z}/p)$ is an isomorphism for all $p \in \mathbb{P}_0$.

1.3. Acknowledgments. We are very grateful to the referees for their comments, and in particular for suggesting the present Theorem 2.1 and its corollary, which greatly extend our original result.

2. *M*-equivalences and \mathbb{P}_0 -equivalences

In this section we show, essentially, that there are no M-equivalences between sufficiently connected spaces except for the "trivial" ones:

THEOREM 2.1. Let \mathbf{M} be a pointed connected r-dimensional CW-complex $(r \geq 2)$ and p a prime such that $\tilde{H}_*(\mathbf{M};\mathbb{Z})$ is all p-torsion (but $\tilde{H}_s(\mathbf{M};\mathbb{Z}) \neq 0$ for some s), and let \mathbf{X} be an (r-1)-connected \mathbf{M} -local p-complete space; then $\pi_*\mathbf{X} = 0$.

PROOF. Let 0 < s < r be maximal such that $\tilde{H}_s(\boldsymbol{M}; \mathbb{Z}) \neq 0$ – so that $\tilde{H}^{s+1}(\boldsymbol{M}; G) \cong Ext(H_s(\boldsymbol{M}; \mathbb{Z}), G)$ and $\tilde{H}^i(\boldsymbol{M}; G) = 0$ for all i > s + 1 and all abelian groups G by $[\mathbf{S}, \mathbf{V}, \S 5, \text{Thm. 3}]$. We shall show by induction on $k \geq r$ that $\pi_k \mathbf{X} = 0$:

By assumption $\pi_i \mathbf{X} = 0$ for $0 \le i < k$, so by obstruction theory:

(2.2)
$$[\Sigma^{k-s-1}\boldsymbol{M},\boldsymbol{X}] \cong \tilde{H}^k(\Sigma^{k-s-1}\boldsymbol{M};\pi_k\boldsymbol{X}) \cong Ext(H_s(\boldsymbol{M};\mathbb{Z}),\pi_k\boldsymbol{X})$$

(cf. [W, V, 6.18]), and the left-hand side vanishes since X was assumed to be M-local.

However, since $A = \hat{H}_s(\boldsymbol{M}; \mathbb{Z}) \neq 0$ and all the homology of \boldsymbol{M} is p-torsion, there is a short exact sequence $0 \to \mathbb{Z}/p \to A \to A/(\mathbb{Z}/p) \to 0$ and thus (2.2) implies that $Ext(\mathbb{Z}/p, \pi_k \boldsymbol{X}) = 0$ by the corresponding long exact sequence (cf. [McL, III, 3.2 & 3.7]). Since $Ext(\mathbb{Z}/p, G) \cong G/pG$ for any abelian group G(cf. [Ro, 7.17]), we see that $G = \pi_k \boldsymbol{X}$ is p-divisible. But \boldsymbol{X} was p-complete (and 1-connected) by hypothesis, so the group $G = \pi_k \boldsymbol{X}$ is also Ext-p-complete (see [BK, VI, 3.1 & 5.4], and we thus find that $0 = Ext(\mathbb{Z}/p^{\infty}, G) \cong G = \pi_k \boldsymbol{X}$ by [BK, VI, 3.6], which completes the induction step. \Box

COROLLARY 2.3. Let \mathbf{M} be a pointed connected r-dimensional CW-complex $(r \geq 2)$ such that $H_*(\mathbf{M}; \mathbb{Z}/p) \neq 0 \Leftrightarrow p \in \mathbb{P}_0$ (for some set of primes \mathbb{P}_0), and $\tilde{H}_*(\mathbf{M}; \mathbb{Z})$ is all torsion. Let $f: \mathbf{X} \to \mathbf{Y}$ be a map of (r-1)-connected spaces. The f is an \mathbf{M} -equivalence if and only if f is a \mathbb{P}_0 -equivalence.

PROOF. By a theorem of Bousfield (cf. [Mi, Thm. 1.5]) the map $f: \mathbf{X} \to \mathbf{Y}$ is an \mathbf{M} -equivalence if and only if the maps $\hat{f}_p: \hat{\mathbf{X}}_p \to \hat{\mathbf{Y}}_p$ are \mathbf{M} -equivalences for each $p \in \mathbb{P}_0$ (where $(-)_p$, also written $(\mathbb{F}_p)_{\infty}(-)$, denotes the *p*-completion of [**BK**, I, 4.2]). Now if f is a p-equivalence for each $p \in \mathbb{P}_0$, then $\hat{f}_p : \hat{X}_p \to \hat{Y}_p$ is a homotopy equivalence (cf. [**BK**, I, 5.5]), so

$$(\prod_{p\in\mathbb{P}_0}\hat{f}_p)^{\boldsymbol{M}}:(\prod_{p\in\mathbb{P}_0}\hat{\boldsymbol{X}}_p)^{\boldsymbol{M}}\to(\prod_{p\in\mathbb{P}_0}\hat{\boldsymbol{Y}}_p)^{\boldsymbol{M}}$$

is a weak equivalence, and so by an arithemtic square argument (cf. [**BK**, VI, §8]) $f^{\boldsymbol{M}}$ is a weak equivalence (since $(\boldsymbol{W}_{\mathbb{Q}})^{\boldsymbol{M}} \simeq *$ for any 1-connected \boldsymbol{W} by [**W**, V, 6.18] again).

Conversely, if f is an M-equivalence, then each $\hat{f}_p : \hat{X}_p \to \hat{Y}_p$ is an M-equivalence, so \hat{F}_p , the homotopy fiber of \hat{f}_p , is M-local. But \hat{F}_p is the p-completion of the homotopy fiber of $f : X \to Y$ by [**BK**, II, 4.8], so Theorem 2.1 applies to it and thus $\pi_*(\hat{F}_p) = 0$, which implies that \hat{f}_p is a homotopy equivalence and thus that f is a \mathbb{P}_0 -equivalence by [**BK**, I, 5.5] again. \Box

On the other hand, we have the following

LEMMA 2.4. If M is any non-trivial c-connected finite-dimensional p-torsion complex ($c \ge 1$) then homotopy colimits do not in general preserve M-equivalences of c-connected p-local spaces.

PROOF. Let $\mathbf{X} = K(\mathbb{Z}_{(p)}, c+1)$, so \mathbf{X} is \mathbf{M} -local, since $H^{c+1}(\mathbf{M}; \mathbb{Z}_{(p)}) = 0$. Assume s is maximal such that $\tilde{H}_s(\mathbf{M}; \mathbb{Z}) \neq 0$, so $\tilde{H}^{s+1}(\mathbf{M}; \mathbb{Z}_{(p)}) \neq 0$ (by [S, V, 5, Thm. 3], since \mathbf{M} is p-torsion) but $\tilde{H}_t(\mathbf{M}; G) = 0$ for all t > s + 1 and any group G. Since $\Sigma^{s-c}\mathbf{X}$ is s-connected and $\pi_{s+1}\Sigma^{s-c}\mathbf{X} \cong \mathbb{Z}_{(p)}$ by [VII,7.13]GWhE we see $[\mathbf{M}, \Sigma^{s-c}\mathbf{X}] \cong H^{s+1}(\mathbf{M}; \mathbb{Z}_{(p)}) \neq 0$ by [W, V, 6.18].

Similarly for some wedge $X \vee X \vee ... \vee X$, using the (iterates of) the fibration sequence $\Sigma(\Omega X) \wedge (\Omega Y) \rightarrow X \vee Y \rightarrow X \times Y$. \Box

THEOREM 2.5. Let M be a pointed c-connected r-dimensional CW complex $(1 \le c < r-1)$, with torsion homology; then there is an integer e = e(M) (c < e < r) such that

- (i) *M*-equivalences between e-connected CW complexes are actually P₀-equivalences for P₀ as in Corollary 2.3 (and so are preserved by all homotopy colimits);
- (ii) homotopy colimits in general do not preserve M-equivalences between (e-1)-connected spaces (so these are not generally \mathbb{P}_0 -equivalences).

PROOF. Let e be the least integer such that M-equivalences between econnected CW complexes are actually \mathbb{P}_0 -equivalences: then $c+1 \leq e \leq r-1$ by Corollary 2.3 and Lemma 2.4. Thus there exists a non-trivial M-equivalence $f : \mathbf{X} \to \mathbf{Y}$ between (e-1)-connected spaces. Let \mathbf{C} denote the homotopy
cofiber of f; then \mathbf{C} is (e-1)-connected, too, but \mathbf{C} is not \mathbb{P}_0 -equivalent to a
point.

Assume that all homotopy colimits preserve M-equivalences between (e-1)connected spaces. Then in particular the solid vertical maps in

are M-equivalences, so by assumption the dotted vertical map on the cofibers: $C \rightarrow *$, is, too – i.e., C is M-local. Therefore, by the assumption again ΣC is M-local – but ΣC is e-connected, so this implies ΣC is \mathbb{P}_0 -equivalent to a point, by the definition of e, and thus C is, too (since it is 1-connected) – which is a contradiction. \Box

EXAMPLE 2.6. If $V_0 = S^r \cup_k e^{r+1}$ is the (r+1)-dimensional mod k Moore space $(r \ge 2)$, then necessarily $e(V_0) = r$.

More generally, we can identify $e(\mathbf{M})$ (in some cases) for the following class of spaces:

DEFINITION 2.7. Fix a prime p. A space $V \in \mathcal{T}_{\star}$ will be called *periodically resolvable* of type $(p^{\ell}, v_1^{k_1}, v_2^{k_2}, \ldots, v_n^{k_n})$ if if there is a sequence of spaces $\{V_m\}_{m=-1}^n \ (n \geq 0)$ with $V = V_n$ such that for each $m \geq 0$, V_m has a v_m -self map $v_m : \Sigma^{d_m} V_{m-1} \to V_{m-1}$ – see [**R2**, §1.5] – with cofiber V_m . We always start with a sphere $V_{-1} = S^j$, and $v_0 : V_{-1} \to V_{-1}$ is the degree p^{ℓ} map, so V_0 is the (j+1)-dimensional mod p^{ℓ} Moore space. For simplicity we assume that each v_m is a suspension (and all spaces are simply connected).

Our notation implies that (for $m \ge 0$) $d_m = 2k_m(p^m - 1)$ (with $k_m \ge 1$). The dimension of V_m will be denoted by r_m , so $r_{-1} = j$, $r_0 = j + 1$, and in general $r_m = r_{m-1} + d_m + 1$.

Remark 2.8. Such spaces exist for all $n \ge 0$, (though not necessarily for every choice of $(p^{\ell}, v_1^{k_1}, v_2^{k_2}, \ldots, v_n^{k_n} - \text{cf.} [\mathbf{T}]$ and $[\mathbf{R1}, \S1.3]$). They play a central role in the definition of v_n -periodicity (cf. $[\mathbf{B}]$). The concept of V_n -equivalence is in some sense complementary to that of a map inducing an isomorphism in the periodic homotopy groups $v_m^{-1}\pi_*(-; V_{m-1})$ for $0 \le m \le n$. Bousfield has answered the question corresponding to ours by showing that such maps are preserved by homotopy colimits if the spaces in question are sufficiently connected (cf. $[\mathbf{B}, \text{Thm. 13.3}]$ and $[\mathbf{BT}, \text{Cor. 7.9}]$).

PROPOSITION 2.9. Let V = V(n) be an r-dimensional periodically resolvable space of type $(p^{\ell}, v_1 \dots, v_n)$; then e(V) = r - 1.

PROOF. Let BP(n) denote the spectrum with

$$\pi_{\star} \boldsymbol{B} \boldsymbol{P} \langle n \rangle \cong \mathbb{Z}_{(p)}[v_1, v_2, \dots, v_n],$$

where in this case $d_m = |v_m| = 2(p^m - 1)$ (cf. [**R1**, §4.2]), and let **X** denote the infinite loop space corresponding to $\Sigma^{r-1} BP(n)$, so that as a graded \mathbb{Z}/p^{ℓ} module (though no longer as an algebra)

(2.10)
$$\pi_*(\boldsymbol{X}; \boldsymbol{V}_0) \cong \Sigma^{r-1} \mathbb{Z}/p^{\ell}[v_1, v_2, \dots, v_n].$$

We wish to show that $\pi_i(\mathbf{X}; \mathbf{V}) = 0$ for $i \ge r$ – i.e., that \mathbf{X} is a non-trivial (r-2)-connected \mathbf{V} -local space, which proves the Proposition. In order to do so, we shall show by induction on $m \ge 1$ that

(2.11)
$$\pi_*(\boldsymbol{X}; \boldsymbol{V}_m) \cong \Sigma^{r-1}(\mathbb{Z}/p^{\ell}[v_{m+1}, v_{m+2}, \dots, v_n]/(\mathbb{Z}/p^{\ell})),$$

(that is, $\pi_*(\mathbf{X}; \mathbf{V}_m)$ is isomorphic as a graded module to the (shifted) augmentation ideal of the algebra on v_{m+1}, \ldots, v_n , so in particular $\pi_*(\mathbf{X}; \mathbf{V}_n) = 0$).

Now for each m > 0 we have a cofibration sequence

 $\Sigma^{d_m} V_{m-1} \xrightarrow{v_m} V_{m-1} \to V_m,$

and so a long exact sequence (for $t \ge r_{m-1}$):

$$\dots \longrightarrow \pi_t(\boldsymbol{X}; \boldsymbol{V}_{m-1}) \xrightarrow{\boldsymbol{v}_m^{\#}} \pi_{t+d_m}(\boldsymbol{X}; \boldsymbol{V}_{m-1}) \longrightarrow \pi_{t+d_m}(\boldsymbol{X}; \boldsymbol{V}_m) \longrightarrow$$
$$\longrightarrow \pi_{t-1}(\boldsymbol{X}; \boldsymbol{V}_{m-1}) \xrightarrow{\boldsymbol{v}_m^{\#}} \pi_{t+d_m-1}(\boldsymbol{X}; \boldsymbol{V}_{m-1}) \longrightarrow \dots$$

Since $\pi_t(\mathbf{X}; \mathbf{V}_0) = 0$ for $t \leq r-2$, we see that $\pi_s(\mathbf{X}; \mathbf{V}_0) \cong \pi_s(\mathbf{X}; \mathbf{V}_1)$ for $r \leq s \leq r-2+d_1$, so that in fact $\pi_s(\mathbf{X}; \mathbf{V}_1) = 0$ for $r \leq s \leq r-2+d_1$ (using (2.10). But $v_1 : \Sigma^{d_1}\mathbf{V}_0 \to \mathbf{V}_0$ induces (formal) "multiplication by v_1 " (under the isomorphism of (2.10)), and since this is monic (in a polynomial algebra), we find $\pi_s(\mathbf{X}; \mathbf{V}_0)/(\operatorname{im} v_1) \cong \pi_s(\mathbf{X}; \mathbf{V}_1)$ for $s \geq r-1+d_1$ – i.e., (2.11) holds for m = 1.

In general, if (2.11) holds for some m < n, then $\pi_t(\mathbf{X}; \mathbf{V}_m) = 0$ for $r \le t \le r - 1 + d_{m+1}$, so the same argument shows (2.11) holds for m+1. \Box

References

- [A] D.W. Anderson, "Fibrations and geometric realizations", Bull. AMS, 84 (1978) No. 5, pp. 765-788.
- [BT] D. Blanc and R.D. Thompson, "A suspension spectral sequence for v_n -periodic homotopy groups", preprint 1992.
- [B] A.K. Bousfield, "Localization and periodicity in unstable homotopy theory", *preprint* 1992.
- [BK] A.K. Bousfield and D.M. Kan, Homotopy limits, Completions, and Localizations, Springer-Verlag Lec. Notes Math. 304, Berlin-New York 1972.
- [DF] E. Dror-Farjoun, "Localizations, fibrations, and conic structures", preprint 1991.
- [DK] W.G. Dwyer and D.M. Kan, in preparation.
- [DS] W.G. Dwyer and J. Spalinski, "Homotopy theories and model categories", preprint 1993.
- [McL] S. Mac Lane, Homology, Grund. math. Wissens. 114, Springer-Verlag, Berlin-New York, 1963.
- [M2] _____, The Geometry of Iterated Loop Spaces, Springer-Verlag Lec. Notes Math. 271, Berlin-New York 1972.
- [Mi] H.R. Miller, "The Sullivan conjecture on maps from classifying spaces", Ann. Math. 120 (1984) pp. 38-87.
- [N] A. Nofech, On localization of inverse limits, Ph.D. thesis, Hebrew University, Jerusalem, Israel, 1993.

- [R1] D.C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Pure & Appl. Math., Academic Press, Orlando, FA, 1986.
- [R2] _____, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. Math. Studies 128, Princeton U. Press, Princeton, NJ, 1992.
- [Ro] J.J. Rotman, An Introduction to Homological Algebra, Pure & Appl. Math., Academic Press, New York-San Francisco-London, 1979.
- [S] E.H. Spanier, Algebraic Topology, Springer-Verlag, Berlin-New York, 1966.
- [T] H. Toda, "On spectra realizing exterior parts of the Steenrod algebra", Topology 10 (1971), pp. 53-65.
- [W] G.W. Whitehead, Elements of homotopy theory, Grad. Texts Math. 61, Springer-Verlag, Berlin-New York 1971.

THE HEBREW UNIVERSITY OF JERUSALEM

Current address: Haifa University, 31905 Haifa, Israel E-mail address: blanc@mathcs.haifa.ac.il

THE UNIVERSITY OF CHICAGO

Current address: Hunter College & CUNY Graduate Center, New York, NY 10021 E-mail address: thompson@math.hunter.cuny.edu