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M -equivalences and homotopy co limits 

DAVID BLANC AND ROBERT D. THOMPSON 

ABSTRACT. Given a fixed "model space" M, we call a map f: X-+ Y an 
M-equivalence if it induces a weak equivalence f.: xM-+ yM on map-
ping spaces. We discuss the following question: under what conditions do 
homotopy colimits preserve M-equivalences? For certain M's of interest, 
this is shown to depend precisely on the connectivities of the spaces. 

1. Introduction 

Let M be a fixed "model space"; we say that a map f : X ---) Y is an M-
equivalence if it induces a weak equivalence of mapping spaces f* : X M ---) Y M. 

Our ultimate object is to understand how much of the theory of CW complexes 
still holds when we replace the concept of "weak equivalence" by M-equivalence. 
In particular, we wish to address the following: 

Question: What classes of spaces C have the property that homotopy colimits 
preserve M-equivalences among objects inC? 

That is, if {Xa}aEA and {Y a}aEA are two diagrams of spaces inC, and 
Ua :X a---) Ya}aEA is a map of diagrams with each fa an M-equivalence, is 
holim(fa): holim(Xa)---) holim(Y a) an M-equivalence, too? Thus we would __, __, __, 
like to know, for example, whether the fact that a space X is M-equivalent to 
another spaceY implies that ~X isM-equivalent to ~Y. 

This is of course one of the defining properties of homotopy colimits with 
respect to ordinary weak equivalences (5°-equivalences, in our terminology) -
see [BK, XII, 4.2]. Clearly it fails to hold in complete generality: for example, 
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if we take J.\!J = S 1, then 8° isM-equivalent to a point, but its suspension is 
not. More generally, if M is c-connected and 7rtX = 0 for t > c then X is 
M-local (i.e., M-equivalent to a point), but ~X need not be. 

On the other hand, if C is the class of M -CW complexes (or M -cellular spaces 
- i.e., conic spaces obtained by a process of "attaching 1\..f-cells", analogously 
to the usual definition [W, II, §1], with spheres replaced by suspensions of M 
- cf. [BT], [DF]), then any M -equivalence of spaces in C is a homotopy equiv-
alence, so is preserved by any homotopy colimit. However, M-CW complexes 
are difficult to identify, in general; we would like a class of spaces C with a more 
familiar description - for instance, in terms of connectivities of the spaces. 

Our main result in this direction (Theorem 2.5 below) states that for every 
connected r-dimensional torsion space M there is an integer e = e(M) < r, 
which we can compute in certain cases (see Proposition 2.9), such that: 

(i) M-equivalences between e-connected CW complexes are actually mod p 
equivalences (i.e., inducing an isomorphism in fi.(-;Z/p)) for certain 
primes p, and so are preserved by all homotopy colimits; 

(ii) homotopy colimits in general do not preserve M-equivalences between 
( e - 1 )-connected spaces. 

Remark 1.1. Dwyer and Kan have recently shown that there is a concept of 
homotopy (co)limits in any closed model category ([DK]; see also [DS]); the 
basic property of such homotopy (co)limits is that they preserve the given weak 
equivalences. On the other hand, Alex Nofech has described, for each choice of 
M, a model category structure on the category of (pointed) topological spaces in 
which the weak equivalences are precisely the M -equivalences ( cf. [N]); we thus 
have a concept of M-homotopy (co)limits: namely, the appropriate Dwyer-Kan 
homotopy colimits in the Nofech M-model category. 

Thus our basic question can be reformulated in these terms: for which classes 
of topological spaces do the usual homotopy co limits agree with theM -homotopy 
colimits? 

1.2. Conventions and notation. Let 4 denote the category of connected 
pointed CW complexes, with base-point preserving maps. All spaces will be 
assumed to lie in 4, unless otherwise stated. 

For any r-dimensional co-H-space M E 4, the homotopy groups with 
coefficients in M of X E 4 are defined to be 7rt(X; M) D_;/ [~t-r M, X] 
(where this makes sense). Thus f: X ----. Y is an M-equivalence if 1rk(j; M) 
is an isomorphism for t 2: r. A space X is called M-local if it isM-equivalent 
to a point - i.e., if 1r.(X; M) = 0. 

If 1P'0 is a set of primes, a map f : X ----> Y is called a lf1'0-equivalence if 
H.(f; Z/p): H.(X; Z/p)----. H.(Y; Z/p) is an isomorphism for all p E lfl'o. 
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1.3. Acknowledgments. We are very grateful to the referees for their com-
ments, and in particular for suggesting the present Theorem 2.1 and its corollary, 
which greatly extend our original result. 

2. M -equivalences and IP'0-equivalences 

In this section we show, essentially, that there are noM-equivalences between 
sufficiently connected spaces except for the "trivial" ones: 

THEOREM 2.1. Let M be a pointed connected r-dimensional CW -complex 
(r ~ 2) andp a prime such that it(M;Z) is allp-torsion (but H8 (M;Z) :f. 0 
for some s), and let X be an ( r - 1) -connected M -local p-complete space; then 
1r*X = 0. 

PROOF. Let 0 < s < r be maximal such that fls ( M; Z) :f. 0 - so that 
fls+l(M; G)~ Ext(Hs(M;Z), G) and fli(M; G)= 0 for all i > s + 1 and 
all abelian groups G by [S, V, §5, Thm. 3]. We shall show by induction on 
k ~ r that 7rkX = 0: 

By assumption 1riX = 0 for 0 ~ i < k, so by obstruction theory: 

(cf. [W, V, 6.18]), and the left-hand side vanishes since X was assumed to be 
M-local. 

However, since A= H8 (M; Z) :f. 0 and all the homology of M is p-torsion, 
there is a short exact sequence 0 ~ Z/p ~A~ A/(Z/p) ~ 0 and thus (2.2) 
implies that Ext(Z/p, 7rkX) = 0 by the corresponding long exact sequence (cf. 
[MeL, III, 3.2 & 3.7]). Since Ext(Z/p,G) ~ G/pG for any abelian group G 
( cf. [Ro, 7.17]), we see that G = 1rkX is p-divisible. But X was p-complete 
(and 1-connected) by hypothesis, so the group G = 1rkX is also Ext-p-complete 
(see [BK, VI, 3.1 & 5.4], and we thus find that 0 = Ext(Z/p00 ,G) ~ G = 1rkX 
by [BK, VI, 3.6], which completes the induction step. 0 

COROLLARY 2.3. Let M be a pointed connected r-dimensional CW -complex 
(r ~ 2) such that H*(M;Z/p) i- 0 ¢::> p E IP'o (for some set of primesiP'o), 
and fl*(M;Z) isalltorsion. Let f:X~Y beamapof (r-1)-connected 
spaces. The f is an M -equivalence if and only iff is a IP'0 -equivalence. 

PROOF. By a theorem of Bousfield ( cf. [Mi, Thm. 1.5]) the map f : X ~ Y 
is an M -equivalence if and only if the maps JP : X P ~ Y P are M -equivalences 
for each p E IP'o (where ( _:_ )p, also written (lFp)oo(-), denotes the p-completion 
of [BK, I, 4.2]). 
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Now if f is a p-equivalence for each p E lP'0 , then jP : X P -+ Y P is a 
homotopy equivalence ( cf. [BK, I, 5.5]), so 

pEl!' a pE!P'o pE!P'o 

is a weak equivalence, and so by an arithemtic square argument ( cf. [BK, VI, 
§8]) fM is a weak equivalence (since (WIQI)M ~ * for any 1-connected W 
by [W, V, 6.18] again). 

Conversely, if f is an M -equivalence, then each f~ : X P -+ Y P is an M-
equivalence, so PP, the homotopy fiber of JP, is M-local. But Fp is the 
p-completion of the homotopy fiber of f : X -+ Y by [BK, II, 4.8], so Theorem 
2.1 applies to it and thus 1r*(Fp) = 0, which implies that jP is a homotopy 
equivalence and thus that f is a lP'0-equivalence by [BK, 1, 5.5] again. D 

On the other hand, we have the following 

LEMMA 2.4. If M is any non-trivial c-connected finite-dimensional p-torsion 
complex ( c 2: 1) then homotopy colimits do not in general preserve M -equivalen-
ces of c-connected p-local spaces. 

PROOF. Let X= K(Z(P)' c+1), so X isM-local, since Hc+ 1(M; Z(p)) = 0. 
Assumes is maximal such that Hs(M;Z) -:f. 0, so fls·+-l(M;Z(p)) -:f. 0 (by 
[S, V, 5, Thm. 3], since M is p-torsion) but Ht(M; G) == 0 for all t > s + 1 
and any group G. Since ~s-c X is s-connected and 1fs+I~s-c X ~ Z(p) by 
[VII,7.13]GWhE we see [M, ~s-c X]~ H 8 +1(M; Z(pJ) -:f. 0 by [W, V, 6.18]. 

Similarly for some wedge XV XV ... V X, using the (iterates of) the fibration 
sequence ~(nX) 1\ (nY)-+ X v Y-+ X x Y. D 

THEOREM 2.5. Let M be a pointed c-connected r-dimensional CW complex 
(1 :::; c < r- 1), with torsion homology; then there is an integer e = e(M) 
(c < e < r) such that 

(i) M -equivalences between e-connected CW comple:res are actually lP'0 -

equivalences for lP'0 as in Corollary 2.3 (and so are preserved by all 
homotopy colimits); 

(ii) homotopy colimits in general do not preserve M-equivalences between 
( e - 1) -connected spaces (so these are not generally lP'o -equivalences). 

PROOF. Let e be the least integer such that M -equivalences between e-
connected CvV complexes are actually lP'0-equivalences: then c + 1 :::; e :::; r - 1 
by Corollary 2.3 and Lemma 2.4. Thus there exists a non-trivial M-equivalence 
f : X -+ Y between ( e - 1 )-connected spaces. Let C denote the homotopy 
co fiber of f; then C is ( e - 1 )-connected, too, but C is not lP'o-equivalent to a 
point. 

Assume that all homotopy colimits preserve M-equivalences between (e- I)-
connected spaces. Then in particular the solid vertical maps in 
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X__L__._Y-C 
f I lid : 

• id • T 
Y-Y-* 

are M-equivalences, so by assumption the dotted vertical map on the cofibers: 
C----+ *, is, too - i.e., C is M-local. Therefore, by the assumption again L.C 
is M -local - but L.C is e-connected, so this implies L.C is lP'0-equivalent to 
a point, by the definition of e, and thus C is, too (since it is !-connected) -
which is a contradiction. 0 

EXAMPLE 2.6. If Vo = sr Uk er+l is the (r +I)-dimensional mod k Moore 
space (r ~ 2), then necessarily e(Vo) = r. 

More generally, we can identify e(M) (in some cases) for the following class 
of spaces: 

DEFINITION 2.7. Fix a prime p. A space V E 4 will be called periodi-
cally resolvable of type (pe, v~ 1 , v~ 2 , ••• , v~n) if if there is a sequence of spaces 
{Vm}~=-l (n ~ 0) with V = Vn such that for each m ~ 0, Vm has a Vm-self 
map Vm : L,dm Vm-l ----+ Vm_ 1 - see [R2, §1.5] - with cofiber Vm. We always 
start with a sphere V-1 = Sj, and Vo : V-1 ----+ V_l is the degree pe map, SO 

Vo is the (j + 1 )-dimensional mod pe Moore space. For simplicity we assume 
that each Vm is a suspension (and all spaces are simply connected). 

Our notation implies that (for m ~ 0) dm = 2km(Pm- 1) (with km ~ 1). 
The dimension of Vm will be denoted by r m, so r _1 = j, r0 = j + 1, and in 
general Tm = Tm-1 + dm + 1. 

Remark 2.8. Such spaces exist for all n ~ 0, (though not necessarily for every 
choice of (pe, v~ 1 , v~ 2 , ••• , v~n - cf. [T] and [Rl, §1.3]). They play a central 
role in the definition of Vn-periodicity (cf. [B]). The concept of Yr.-equivalence 
is in some sense complementary to that of a map inducing an isomorphism in 
the periodic homotopy groups v;;,l7r.(-; Vm-1) for 0 :S m :S n. Bousfield 
has answered the question corresponding to ours by showing that such maps 
are preserved by homotopy colimits if the spaces in question are sufficiently 
connected (cf. [B, Thm. 13.3] and [BT, Cor. 7.9]). 

PROPOSITION 2.9. Let V = V(n) be an r-dimensional periodically resolvable 
space of type (pe, v1 ... , vn)i then e(V) = r- 1. 

PROOF. Let BP(n) denote the spectrum with 

1l'*BP(n) ~ Z(p) [vi, v2, ... , Vn], 

where in this case dm = [vml = 2(pm- 1) (cf. [Rl, §4.2]), and let X denote 
the infinite loop space corresponding to r,r-l BP(n), so that as a graded Z/pe-
module (though no longer as an algebra) 

(2.10) 
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We wish to show that 1ri(X; V) = 0 for i 2 r -.i.e., that X is a non-trivial 
(r - 2)-connected V-local space, which proves the Proposition. In order to do 
so, we shall show by induction on m 2 1 that 

(2.11) 

(that is, 1r*(X; Vm) is isomorphic as a graded module to the (shifted) augmen-
tation ideal of the algebra on Vm+l• ... , Vn, so in particular 1r*(X; Vn) = 0). 

Now for each m > 0 we have a cofibration sequence 

and so a long exact sequence (for t 2 rm-1): 

v# 
---+ 1rt-dX; Vm-d ~ 1rt+dm-1(X; Vm-1)---+ ... 

Since 7rt(X; Vo) = 0 for t :S: r- 2, we see that 7r8 (X; Vo) ~ 7r8 (X; lll) for 
r :S: s :S: r- 2 + d1o so that in fact 7r 8 (X; lll) = 0 for r :S: s :S: r- 2 + d1 (using 
(2.10). But v1 : ~d 1 Vo -+ Vo induces (formal) "multiplication by v1" (under 
the isomorphism of (2.10)), and since this is monic (in a polynomial algebra), 
we find 7r8 (X; Vo)/(im v1) ~ 1r8 (X; lll) for s 2 r- 1 + d1 - i.e., (2.11) holds 
for m = 1. 

In general, if (2.11) holds for some m < n, then 7rt(X; Vm) = 0 for 
r :S: t :S: r - 1 + dm+ 1, so the same argument shows ( 2.11) holds for m + 1. D 
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