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M-equivalences and homotopy colimits

DAVID BLANC AND ROBERT D. THOMPSON

ABSTRACT. Given a fixed “model space” M, wecallamap f: X - Y an
M-equivalence if it induces a weak equivalence fi: X — Y™ on map-
ping spaces. We discuss the following question: under what conditions do
homotopy colimits preserve M-equivalences? For certain M'’s of interest,
this is shown to depend precisely on the connectivities of the spaces.

1. Introduction

Let M be a fixed “model space”; we say that amap f: X — Y isan M-
equivalence if it induces a weak equivalence of mapping spaces f, : X¥ — Y,
Our ultimate object is to understand how much of the theory of CWcomplexes
still holds when we replace the concept of “weak equivalence” by M-equivalence.
In particular, we wish to address the following:

Question: What classes of spaces C have the property that homotopy colimits
preserve M-equivalences among objects in C?

That is, if {Xa}aca and {Y,}aca are two diagrams of spaces in C, and
{fa: Xa = Yaltaca is a map of diagrams with each f, an M-equivalence, is
holim(fo) : holim(Xa) — holim(Y ) an M-equivalence, too? Thus we would
like to know, for example, whether the fact that a space X is M-equivalent to
another space Y implies that ¥ X is M-equivalent to XY .

This is of course one of the defining properties of homotopy colimits with
respect to ordinary weak equivalences (So—equivalences, in our terminology) -
see [BK, XII, 4.2]. Clearly it fails to hold in complete generality: for example,
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28 DAVID BLANC AND R. D. THOMPSON

if we take M = S!, then S”is M -equivalent to a point, but its suspension is
not. More generally, if M is c-connected and 7 X =0 for ¢t > ¢ then X is
M-local (i.e., M-equivalent to a point), but X need not be.

On the other hand, if C is the class of M-CW complexes (or M-cellular spaces
- 1i.e., conic spaces obtained by a process of “attaching M-cells”, analogously
to the usual definition (W, II, §1], with spheres replaced by suspensions of M
- cf. [BT], [DF)), then any M-equivalence of spaces in C is a homotopy equiv-
alence, so is preserved by any homotopy colimit. However, M-CW complexes
are difficult to identify, in general; we would like a class of spaces C with a more
familiar description — for instance, in terms of connectivities of the spaces.

Our main result in this direction (Theorem 2.5 below) states that for every
connected r-dimensional torsion space M there is an integer e = e(M) < r,
which we can compute in certain cases (see Proposition 2.9), such that:

(i) M-equivalences between e-connected CW complexes are actually mod p
equivalences (i.e., inducing an isomorphism in H,(—;Z/p)) for certain
primes p, and so are preserved by all homotopy colimits;

(i) homotopy colimits in general do not preserve M-equivalences between
(e — 1)-connected spaces.

Remark 1.1. Dwyer and Kan have recently shown that there is a concept of
homotopy (co)limits in any closed model category ([DK]; see also [DS]); the
basic property of such homotopy (co)limits is that they preserve the given weak
equivalences. On the other hand, Alex Nofech has described, for each choice of
M, a model category structure on the category of (pointed) topological spaces in
which the weak equivalences are precisely the M-equivalences (cf. [N]); we thus
have a concept of M-homotopy (co)limits: namely, the appropriate Dwyer-Kan
homotopy colimits in the Nofech M-model category.

Thus our basic question can be reformulated in these terms: for which classes
of topological spaces do the usual homotopy colimits agree with the M-homotopy
colimits?

1.2. Conventions and notation. Let 7, denote the category of connected
pointed CW complexes, with base-point preserving maps. All spaces will be
assumed to lie in 7, unless otherwise stated.

For any r-dimensional co-H-space M € 7,, the homotopy groups with
coefficients in M of X € T, are defined to be m(X; M) Def [Z"M, X]
(where this makes sense). Thus f: X — Y is an M-equivalence if m(f; M)
is an isomorphism for t > r. A space X is called M-local if it is M-equivalent
to a point — i.e., if m.(X;M)=0.

If Py is a set of primes, amap f: X — Y is called a Py-equivalence if
H.(f;Z/p): H.(X;Z/p) — H.(Y;Z/p) is an isomorphism for all p € Py.

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



M-EQUIVALENCES AND HOMOTOPY COLIMITS 29

1.3. Acknowledgments. We are very grateful to the referees for their com-
ments, and in particular for suggesting the present Theorem 2.1 and its corollary,
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2. M-equivalences and Pgy-equivalences

In this section we show, essentially, that there are no M-equivalences between
sufficiently connected spaces except for the “trivial” ones:

THEOREM 2.1. Let M be a pointed connected r-dimensional ~C’W—complem
(r >2) andp a prime such that H.(M;Z) is all p-torsion (but Hs(M;Z) # 0
for some s), and let X be an (r — 1)-connected M -local p-complete space; then
X =0.

PROOF. Let 0 < s < r be maximal such that H,(M;Z) # 0 - so that
H*1(M;G) = Ext(H,(M;Z),G) and H'(M;G)=0 forall i>s+1 and
all abelian groups G by [S, V, §5, Thm. 3]. We shall show by induction on
k>r that m;X =0:

By assumption m;X =0 for 0 <¢ <k, so by obstruction theory:

(22) [SFTIM, X2 HY(SF S TIMG 1 X) 2 Ext(H, (MG Z), 1 X)

(cf. [W, V, 6.18]), and the left-hand side vanishes since X was assumed to be
M -local.

However, since A = H,(M;Z) # 0 and all the homology of M is p-torsion,
there is a short exact sequence 0 — Z/p — A — A/(Z/p) — 0 and thus (2.2)
implies that Fxt(Z/p, m,X) =0 by the corresponding long exact sequence (cf.
[McL, 111, 3.2 & 3.7]). Since FEzt(Z/p,G) = G/pG for any abelian group G
(cf. [Ro, 7.17]), we see that G = m; X is p-divisible. But X was p-complete
(and 1-connected) by hypothesis, so the group G = m X is also Ext-p-complete
(see [BK, VI, 3.1 & 5.4], and we thus find that 0= Exzt(Z/p>*,G) 2 G = m X
by [BK, VI, 3.6], which completes the induction step. [

COROLLARY 2.3. Let M be a pointed connected r-dimensional CW -complex
(r >2) such that H.(M;Z/p) # 0 < p € Py (for some set of primes Py),
and H,(M;Z) is all torsion. Let f: X — Y be a map of (r—1)-connected
spaces. The f is an M -equivalence if and only if [ is a Py-equivalence.

PROOF. By a theorem of Bousfield (cf. [Mi, Thm. 1.5]) themap f: X =Y
is an M-equivalence if ancAi only if the maps fp X p— f’p are M-equivalences
for each p € Py (where (—)_, also written (F,)s(—), denotes the p-completion
of [BK, I, 4.2]).

p’
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Now if f is a p-equivalence for each p € Py, then fp : Xp — Yp is a
homotopy equivalence (cf. [BK, I, 5.5]), so

(IT 2™ - (J] XM - (] Y2 M

pEPy p€EPo pePy

is a weak equivalence, and so by an arithemtic square argument (cf. [BK, VI,
88]) f is a weak equivalence (since (W@)M ~  for any l-connected W
by [W, V, 6.18] again). ‘
Conversely, if f is an M-equivalence, then each fp : X — Yp is an M-
equivalence, so Fp, the homotopy fiber of fp, is M- local But F is the
p-completion of the homotopy fiber of f: X — Y by [BK, 11, 4.8], so Theorem
2.1 applies to it and thus 7r*(F ) = 0, which implies that f,, is a homotopy
equivalence and thus that f is a Pg-equivalence by [BK, 1, 5.5] again. [J

On the other hand, we have the following

LEMMA 2.4. If M is any non-trivial c-connected finite-dimensional p-torsion
complez (¢ > 1) then homotopy colimits do not in general preserve M -equivalen-
ces of c-connected p-local spaces.

PROOF. Let X = K(Z,),c+1), so X is M-local, since H**!(M;Z,)) = 0.
Assume s is maximal such that H,(M;Z) # 0, so H*t'(M; L) # 0 (by
[S, V, 5, Thm. 3], since M is p-torsion) but H;(M;G) =0 forall ¢t > s+ 1
and any group G. Since ¥°7°X is s-connected and 7, 1X°7°X = Z, by
[VIL,7.13]GWhE we see [M,%* °X| = H"'(M;Z,)) #0 by [W, V, 6.18].

Similarly for some wedge X VX V...VX, using the (iterates of) the fibration
sequence L(QX)A(QY)->XVY -XxY. O

THEOREM 2.5. Let M be a pointed c-connected r-dimensional CW complex
(1 <c<r—1), with torsion homology; then there is an integer e = e(M)
(e<e<r) such that

(1) M -equivalences between e-connected CW complezes are actually Pp-
equivalences for Py as in Corollary 2.3 (and so are preserved by all
homotopy colimits);

(ii) homotopy colimits in general do not preserve M -equivalences between
(e — 1)-connected spaces (so these are not generally Py-equivalences).

PROOF. Let e be the least integer such that M-equivalences between e-
connected CW complexes are actually Pg-equivalences: then ¢c+1<e<r-1
by Corollary 2.3 and Lemma 2.4. Thus there exists a non-trivial M-equivalence
f: X — Y between (e — 1)-connected spaces. Let C denote the homotopy
cofiber of f; then C is (e — 1)-connected, too, but C is not Py-equivalent to a
point.

Assume that all homotopy colimits preserve M-equivalences between (e — 1)-
connected spaces. Then in particular the solid vertical maps in
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x—Ly—c
|l

Y—Y——«

are M-equivalences, so by assumption the dotted vertical map on the cofibers:
C — %, is, too — ie., C is M-local. Therefore, by the assumption again XC
is M-local — but XC is e-connected, so this implies XC is Pg-equivalent to
a point, by the definition of e, and thus C is, too (since it is 1-connected) -
which is a contradiction. [

EXAMPLE 2.6. If V5 = 8" U, e"™! is the (r + 1)-dimensional mod k Moore
space (r > 2), then necessarily e(Vp) =r.
More generally, we can identify e(M) (in some cases) for the following class

of spaces:

DEFINITION 2.7. Fix a prime p. A space V € 7, will be called periodi-
cally resolvable of type (pz,v{cl , v§2, ... ,vkn) if if there is a sequence of spaces
{Vin}r—_1 (n>0) with V=V, such that for each m >0, V}, has a v,,-self

map v, X4 V,_1 — V,_1 - see [R2, §1.5] — with cofiber V,,. We always
start with a sphere V_; =87, and vo: V., — V.| is the degree p’ map, so
V; is the (j + 1)-dimensional mod p® Moore space. For simplicity we assume
that each v,, is a suspension (and all spaces are simply connected).

Our notation implies that (for m > 0) d,, = 2k, (p™ — 1) (with k,, > 1).
The dimension of V;, will be denoted by r,,, so r_1 =7, ro=j+1, and in
general 7, = Trpo1 + dy + 1.

Remark 2.8. Such spaces exist for all n > 0, (though not necessarily for every
choice of (p,vF vk2 ... vk~ — cf [T] and [R1, §1.3]). They play a central
role in the definition of v,-periodicity (cf. [B]). The concept of V,-equivalence
is in some sense complementary to that of a map inducing an isomorphism in
the periodic homotopy groups v, !'m.(—;V;,_;) for 0 < m < n. Bousfield
has answered the question corresponding to ours by showing that such maps
are preserved by homotopy colimits if the spaces in question are sufficiently

connected (cf. [B, Thm. 13.3] and [BT, Cor. 7.9)).

PROPOSITION 2.9. Let V = V(n) be an r-dimensional periodically resolvable
space of type (p%,v1...,v,); then e(V)=r—1.

PROOF. Let BP(n) denote the spectrum with
T BP(n) = L [v1,02,... 0],

where in this case dp, = |v,| = 2(p™ — 1) (cf. [R1, §4.2]), and let X denote
the infinite loop space corresponding to £""!BP(n), so that as a graded Z/p*-
module (though no longer as an algebra)

(2.10) T (X; Vo) = 27712 /pb vy, va, . .., 0.
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We wish to show that m;(X;V) =0 for i >r - ie., that X is a non-trivial
(r — 2)-connected V-local space, which proves the Proposition. In order to do
so, we shall show by induction on m > 1 that

(211) T % (.X, Vm) & ET_I(Z/pe['Um-}-l, Um+2a e 7vn]/(Z/pe))’

(that is, m,(X;V,,) is isomorphic as a graded module to the (shifted) augmen-
tation ideal of the algebra on vp,1,...,vy, so in particular w.(X;V,)=0).

Now for each m > 0 we have a cofibration sequence
Edmvm—l RAIN Vine1 — Vi,

and so a long exact sequence (for ¢ > r,_;):
#
> (X Vino1) = Ta, (X5 Vino1) — Tepa,, (X5 Vin) —

U#
— M1 (X5 V1) = Tigd,—1( X5 Vi) —

Since m(X;Vp) =0 for ¢t <r—2, weseethat 74(X;Vp) & 7s(X; W) for
r<s<r—2+dp, sothatinfact 7,(X;V) =0 for r <s<r-—2+d; (using
(2.10). But v; : ¥4V, — V; induces (formal) “multiplication by v;” (under
the isomorphism of (2.10)), and since this is monic (in a polynomial algebra),
we find 74(X; Vo) /(imvy) = 7s(X; Vi) for s>r—14+d; - ie., (2.11) holds
for m=1.

In general, if (2.11) holds for some m < m, then m(X;V,,) =0 for
r<t<r—1+4dmn+1, sothe same argument shows (2.11) holds for m+1. O
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