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Abstract

We construct a generalized Grothendieck spectral sequence for com-

puting the derived functors of a composite functor T ◦S, extending the

classical version to non-additive functors and non-abelian categories.

1 Introduction

The classical Grothendieck spectral sequence [Gr, Thm 2.4.1] computes the
derived functors of a composite functor T ◦ S in terms of those of T and S:

That is, suppose C
T
→ B

S
→ A are additive functors between abelian

categories (with enough projectives), and T (P ) is S-acyclic for projective
P ∈ C; then for any C ∈ C one has a spectral sequence with

E2
s,t

∼= (LsS)(LtT )C ⇒ (Ls+t(S ◦ T ))C

(see [HS, VIII, Thm 9.3]).
The derived functors L⋆F in question are usually defined as the homology

groups of certain chain-complexes; however, they may also be defined as the
homotopy groups of suitable simplicial objects (see §2.2.4 below), and this
more general definition extends to cases where the functors involved are not
additive, or the categories are not abelian.

Now if B is a category of universal algebras – such as groups, rings,
or Lie algebras (§2.1) – then the homotopy groups of a simplicial object
X• over B support an action of the primary homotopy operations (§3.1.2)
associated to B: we then say that π⋆X• is a B-Π-algebra. In particular,
for any functor F : C → B, the derived functors L⋆F = {L0F, L1F, . . .}
together take values in the category of B-Π-algebras. Moreover, if C is also
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a category of universal algebras, F induces a functor

F̄∗ : C-Π-algebras→B-Π-algebras.

In this setting we have a generalized Grothendieck spectral sequence:

Theorem 4.4 Let C
T
→ B

S
→ A be functors between categories of universal

algebras, such that TF is S-acyclic for every free F ∈ C; then for every
C ∈ C there is a spectral sequence with

E2
s,t

∼= (LsS̄t)(L⋆T )C ⇒ (Ls+t(S ◦ T ))C.

More generally, given a suitable simplicial object X• over a category
B, and a functor F : B → A, one is often interested in determining the
homotopy groups of F (X•) – e.g., in order to calculate derived functors.
In particular one may ask how these depend on π⋆X•. If B is a category of
universal algebras, one has a spectral sequence converging to π⋆FX• with
E2-term the derived functors of F̄∗ applied to π⋆X• (Theorem 4.2).

The generalized Grothendieck spectral sequence is a special case of this;
further (degenerate) examples are the Kunneth and Universal Coefficients
short exact sequences, and others (§4.2.1).

1.1 notation

For any category C, we denote by grC the category of non-negatively graded
objects over C, and by sC the category of simplicial objects over C. We use
the convention that X• denotes a simplicial object (cf. [May, §2]), while
X∗ = {Xi}

∞
i=0 denotes a graded object. The category of groups will be

denoted Gp, that of abelian groups by AbGp, that of pointed sets by Set∗,
and that of pointed simplicial sets by S∗ (rather than sSet∗).

We shall assume that all categories are pointed (=have a zero object), and
all functors are covariant and pointed (=take zero object to zero object).

1.2 organization

After recalling the needed homotopical algebra in §2, C-Π-algebras and in-
duced functors are defined in §3. The general spectral sequence is set up,
and the above theorem is proved, in §4. In §5 we explain why the homotopy
group objects over sC take values in C.

2 universal algebras & homotopical algebra

First, we give some definitions, and remind the reader of some of the (non-
abelian) homological algebra needed in our context:
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2.1 universal algebras

Recall [McL, I,§7] that a (pointed) concrete category C is one with a
faithful functor U : C → Set∗. In particular, we shall be interested
in categories of (possibly graded) universal algebras (or varieties of alge-
bras, in the terminology of [McL, V,§6]): that is, categories whose objects,
which we shall call simply algebras, are (non-negatively graded) sets X (=
{Xi}

∞
i=0), together with an action of a fixed set of operators W of the form

ω : Xi1 × Xi2 × . . .Xin −→ Xk, satisfying a set of identities E.
For simplicity we assume X (or each Xi) has the underlying structure

of a group. (This assumption may be relinquished in certain cases – e.g.,
for C = Set∗ – but our construction will not work in general for arbitrary
universal algebras.)

To avoid confusion with the simplicial dimensions needed later, we shall
denote the underlying group in degree i by GiX. Such a category of uni-
versal graded algebras will be called a CUGA. The ungraded version can be
thought of as a CUGA with objects concentrated in degree 0.

If each GiX is abelian we call X underlying-abelian; if this is true of all
X ∈ C, we say the category C is underlying-abelian (of course, C need not
then be an abelian catgeory).

2.1.1 CUGA’s

Examples of CUGA’s include regular graded algebras in the sense of [B2, §2]
(all of which are underlying-abelian), such as:

(i) The category of abelian groups, or more generally of (graded) left R-
modules for some ring R.

(ii) The category of graded commutative algebras over a ring k; similarly
the category of associative algebras over k.

(iii) Kp, the category of Fp-algebras over the mod-p Steenrod algebra.

(iv) More generally, the category of algebras over E∗E for any ring spec-
trum E (though these need not be non-negatively graded).

(v) The category of graded Lie rings; similarly the category Lp of graded
restricted Lie algebras over Fp.

CUGA’s which are not underlying-abelian include:

(vi) The category of (graded) groups.
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(vii) the category of Π-algebras: recall ([B1, §3] or [St, §4]) that a Π-algebra
is a graded group X = {Xi}

∞
i=0 together with an action of the primary

homotopy operations – Whitehead products, compositions, and action
of the fundamental group – which satisfies all the universal relations
on such operations (cf. [W, XI, §1]). These are modeled on π⋆X,
where X is a pointed space.

2.1.2 free algebras and underlying sets

Each CUGA C is equipped with a pair of adjoint functors C
U

⇋
F

grSet∗ to

the category of graded pointed sets, with U(A) the underlying graded
set of A ∈ C, and F (X) the free algebra on a graded set of generators
X = {Xi}

∞
i=1 (where in each degree the base point ∗ is identified with the

group identity element e). Thus every CUGA C has enough projectives. It
can also be shown to have all limits and colimits, as in [McL, V,§1 & IX,§1].

2.2 homotopical algebra

When C is a CUGA, Quillen shows in [Q1, II,§4] that sC can be given a
closed (simplicial) model category structure as follows:

2.2.1 the model category sC

A map f : X• → Y• in sC is called a fibration if it is a surjection on the
basepoint components of the underlying simplicial groups; it is called a weak
equivalence (w.e.) if it induces an isomorphism on homotopy groups (§3.1.1).
A map i : A• → B• is called a cofibration if it has the left lifting property
(LLP) with respect to trivial fibrations – that is, if the dotted arrow exists
in the following commutative diagram whenever f is both a fibration and a
weak equivalence:

A•
- X•

?

icof.

B•

?

f fib. w.e.

Y•
-

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p�

These three classes of maps satisfy certain axioms (cf. [BF, §1]), which
allow one to ‘do homotopy theory’ in sC.

2.2.2 cofibrant and free objects

An object A• is called cofibrant if ∗ → A• is a cofibration; the full
subcategory of such objects is denoted sCc. Examples are the free objects
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C•, where for each n ≥ 0 there is a (graded) set T n ⊆ Cn such that Cn ∈ C
is the free object generated by T n, and each degeneracy map sj : Cn → Cn+1

takes T n to T n+1.

2.2.3 resolutions

The homotopy category HoX of any model category X is obtained from it
by localizing with respect to the weak equivalences, with γ : X → HoX
the localization functor. In our case, because all objects in sC are fibrant,
Ho(sC) is equivalent to the category π(sCc), whose objects are the cofibrant
ones of sC, and whose morphisms are homotopy classes of maps (cf. [Q1,
I, §1]). Here homotopies between maps in sC are defined simplicially, as
in [Q1, II, §2]; the set of homotopy classes of maps A• → B• is denoted
[A•, B•]sC.

Under this equivalence of Ho(sC) and π(sCc), the localization functor is
determined by the choice, for each object X• ∈ sC, of a cofibrant object A•

with a weak equivalence A• → X•. This is called a resolution of X•, and
all such are homotopy equivalent. We use the embedding c(−)• : C → sC
(which sends X ∈ C to the constant simplicial object c(X)•) to define
resolutions of objects in C.

2.2.4 derived functors

If H : X → Y is a functor between model categories which preserves weak
equivalences between cofibrant objects, the total left derived functor of H is
the functor LH = H̃ ◦γ : X → Ho(Y), where H̃ : HoX → HoY is induced
by H on Xc.

Any functor T : C → C′ may be prolonged to a functor sT : sC → sC′,
by applying it dimensionwise (by abuse of notation we shall often denote sT
simply by T .) In particular, if T : C → C′ is a functor from a CUGA
into a concrete category, the usual n-th derived functor of F , denoted LnT ,
assigns to an object X ∈ C the object (LnT )X = πn((LsT )c(X)•) = πnTA•,
where A• → X is any resolution, and πn(−) is defined in §3.1.1 below.
The derived functors L⋆F = {L0F, L1F, . . .} together take values in the
category of C′-Π-algebras (see §3.2).

Note that T need only be given on the full subcategory of free objects of
C in order to define LnT on C. In this case L0T is called the extension of
T to all of C; it agrees with T on the subcategory of free objects, and often
agrees with T on all of C (e.g., if T preserves colimits).
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3 homotopy operations over C

Simplicial object X• over a CUGA C have homotopy group objects πnX• ∈
C. These are represented in the homotopy category by certain models:

3.1 models in sC

Let ∆[n]• denote the standard simplicial n-simplex,
•

∆[n]• = ∆[n]
(n−1)
• its

(n − 1)-skeleton, and Sn
• = ∆[n]•/∆[n]

(n−1)
• the simplicial n-sphere. We

denote by Sn(k)• the graded simplicial set with Sn
• in degree k. The

simplicial objects F (Sn(k)•) ∈ sC (n, k ≥ 0) should be thought of as the
“spheres” of sC. The free simplicial algebras (§2.2.1) which are weakly
equivalent to “wedges of spheres” F (

∨

i∈I Sni(ki)•) ∼=
∐

i∈I F (Sni(ki)•)
will be called models for sC; the full subcategory of models in sC is
denoted by M.

3.1.1 homotopy groups

If C is ungraded, the homotopy groups πnX• (n ≥ 0) of any X• ∈ sC
are defined to be those of its underlying simplicial group (§5.2). When C is
graded, πnX• is the graded group with Gk(πnX•) = πn(GkX•).

The models of sC then represent the homotopy groups over sC, in the
sense that [F (Sn(k)•), X•]sC ∼= GkπnX•, by the adjointness of U and F
(§2.1.2; and compare [Q1, I,§4]).

In fact, πnX• takes values in C, with the C-structure induced by maps
in

HomC(F (Sn(k)n), F (

N
∨

i=1

Sn(ki)n) ) ∼= GkF{x1, . . . xN}, where |xi| = ki ,

which correspond to N -ary operations in W of C. For n ≥ 1 it turns out
that πnX• is actually an abelian object in C (§5.1.3) – as in the case C = Gp
– so that many of these operations will be trivial (see Lemma 5.2.1).

3.1.2 homotopy operations

In addition, π⋆X• ∈ grC has an action of the (primary) C-homotopy opera-
tions, which are described as usual by the universal examples – homotopy
classes of maps between models. Any such class

α ∈ [F (Sn(k)•), F (

N
∨

i=1

Sni(ki)•)]sC (1)

induces a C-homotopy operation (natural in X•)

α# : πn1
Gk1

(X•) × πn2
Gk2

(X•) × . . . πnN
GkN

(X•) −→ πnGk(X•) .
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3.2 C-Π-algebras

We define a C-Π-algebra A∗ to be a sequence A0, A1, . . . of objects in C
(abelian, if n ≥ 1), together with an action of the C-homotopy operations,
subject to the universal relations coming from (1). These form a category,
denoted C-Π-Alg, which is itself a CUGA (now bigraded , if C is graded).
The free C-Π-algebras are those that are isomorphic to π⋆(F (

∨

i S
ni(ki)•))

for various ni, ki.
Note that the category s(C-Π-Alg) of simplical C-Π-algebras thus has a

model category structure, as in §2.2.1.

3.2.1 examples of C-Π-algebras

For some specific CUGA’s C, the category of C-Π-algebras has a familiar
description:

(I) If the CUGA C is an abelian category, sC is equivalent to the category
cC of chain complexes over C (as in [Do, §1]), with a model F (Sn(k)•)
in sC corresponding to a minimal chain complex ΣnF [xk]. Then

[F (Sn(k)•), F (

N
∨

i=1

Sni(ki)•)]sC ∼=
⊕

ni=n

GkF (Sn(ki)•),

so there are no homotopy operations in sC, except for the internal
ones of C – and thus the category C-Π-Alg is equivalent to grC.

(II) If C = Gp, the category of groups, then the homotopy category of sGp
is equivalent to that of connected toplogical spaces (cf. [Kan, §9,11]),
so a Gp-Π-algebra is just an ordinary Π-algebra (see §2.1.1(vii)), with
a shift in dimension.

(III) The homotopy operations for Lp, the category of ungraded Lie algebras
over Fp, include a graded Lie bracket which satisfies a Hilton-Milnor
theorem (see [Sch], where this is shown to hold over Z). The homotopy
groups of the individual models:

π⋆F (Sn
• )

∼= Λ(n)

are just the “Λ-algebra spheres” π⋆LASn of [6A, 5.4 & 5.4’].

(IV) Similarly, the homotopy operations for commutative algebras over F2

have been calculated by Bousfield and Dwyer (in [Bo, Dw]): They
form a commutative algebra on certain unary “divided power” opera-
tions δi, of degree i, for each 2 ≤ i, subject to the relations of [Dw,
Thm. 2.1].
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3.2.2 other categories

We may extend the concept of a C-Π-algebra to categories C which are not
CUGA’s, by the following convention:

a) If C is any abelian category, we let C-Π-Alg = grC, as in §3.2.1(I).

b) If C = Set∗, a Set∗-Π-algebra {Xi}
∞
i=0 is an ordinary Π-algebra

(§2.1.1(vii)) {Xi}
∞
i=1 in positive degrees, together with a pointed set

X0 in degree 0.

c) If C is any concrete category which is neither abelian nor a CUGA, we
set C-Π-Alg = Set∗-Π-Alg, and for each X• ∈ sC we let π⋆X• ∈ C-Π-
Alg denote π⋆(UX•), where U : C → Set∗ is the faithful “underlying
set” functor.

With this convention, for any concrete category C the functor π⋆, and
thus the derived functors of any T : C′ → C, take values in C-Π-Alg.

3.2.3 Proposition. Any covariant functor T : C → B from a CUGA
C into a concrete category B induces a functor T̄∗ : C-Π-Alg → B-Π-Alg,
which is the extension (§2.2.4) of the functor on free C-Π-algebras defined by
T̄t(π⋆A•) = πt(TA•) for A• ∈ M.

Proof: If C is a CUGA, it is evident that for any two models A•, B• ∈ M
there is a natural bijection

π⋆(−) : HomHo(sC)(A•, B•) → HomC-Π-Alg(π⋆A•, π⋆B•).

In particular, this means that if π⋆A•
∼= π⋆B• as C-Π-algebras, then A•

and B• are actually homotopy equivalent, so πt(TA•) ∼= πt(TB•). The
naturality of the bijection implies that T̄t is in fact a functor. �

Note that T̄∗(π⋆X•) is usually not the same as π⋆TX• for X• 6∈ M –
e.g., for T = −⊗ Z/p : AbGp → AbGp.

3.2.4 examples in the abelian case

If C and B are abelian categories, then C-Π-Alg, B-Π-Alg are equivalent
to grC, grB respectively (§3.2.1(I)), and any A• ∈ M is equivalent to a
minimal chain complex Â∗.

a) When T is additive, πnTA•
∼= TÂn = TπnA• and T̄∗ is, in each degree,

just the 0-th derived functor of T (§2.2.4).
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b) When T is not additive, this need not be the case: For example, if
T : AbGp ×AbGp → AbGp is T (X, Y ) = X ⊗ Y , its prolongation to
sAbGp× sAbGp corresponds (under the equivalence cAbGp → sAbGp
of §3.2.1(I)) to the chain-complex tensor product, so for any X•, Y•

T̄t(π⋆X•, π⋆Y•) =
⊕

i+j=t

πiX• ⊗ πjY•

(compare [Do, §6]).

4 bisimplicial objects

We now consider the category ssC of bisimplicial objects over a CUGA
C. We think of an object A•• ∈ ssC as having internal and external
simplicial structures, with corresponding homotopy group objects πi

tA•• and
πe

sA•• (each in sC). There are two embeddings ce, ci : sC →֒ ssC, with
ce(X•)t,s = Xt, and ci(X•)t,s = Xs. We use the convention that for At,s,
t is the internal dimension and s is the external one.

The category ssC can be given a number of different closed model category
structures (e.g. [BF, Thm B.6]). We shall need the one defined by Dwyer,
Kan and Stover in [DKS]:

4.1 the model category ssC

One can use the models for sC to provide ssC with a closed simplicial model
category structure, in which a map f : X•• → Y•• is a weak equivalence if
for each s, t ≥ 0, f⋆ : πsπ

i
tX•• → πsπ

i
tY•• is an isomorphism. Fibrations

and cofibrations are defined as in [DKS, §5].

4.1.1 M-free objects

We say that A•• ∈ ssC is M-free if for each m ≥ 0 there are (graded)
simplicial sets X[m]• ≃

∨

i S
ni(ki)• such that A•,m

∼= F (X[m]•), and
the external degeneracies of A•• are induced under F by maps X[m]• →
X[m + 1]• which are, up to homotopy, the inclusion of wedge summands.
Such an object is cofibrant, and any X• ∈ sC may be resolved (§2.2.3) by
such an M-free A•• , as follows:

The construction is that of [St, §2]. Let CSn(k)• be the cone on the
(graded) simplicial set Sn(k)•. We obtain the simplicial algebra W (X•) ∈ sC
from

∐

n,k≥0

(
∐

f :F (Sn(k)•)→X•

F (Sn(k)•) ∐
∐

H:F (CSn(k)•)→X•

F (CSn(k)•) ) ,
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by identifying the natural sub-object F (Sn(k)•)
i
→֒ F (CSn(k)•) of the copy

of F (CSn(k)•) indexed by H in the second sum with the copy of F (Sn(k)•)
indexed by f = H ◦ i in the first sum.

This defines a cotriple W : sC → sC, with the obvious counit (“eval-
uation”) and comultiplication, and A•• is defined to be the simplicial ob-
ject over sC induced by this cotriple (cf. [Go, App., §3]). Clearly each
A•,n = W n+1X• ∈ M; moreover, the natural augmentation A•• → ce(X•)•
is a weak equivalence in ssC (see [St, Prop. 2.6]).

4.2 Theorem. Let S : B → A be a functor from a CUGA to any
concrete category; then for any X• ∈ sB there is a first quadrant spectral
sequence with

E2
s,t

∼= (LsS̄t)π⋆X• ⇒ (Ls+tS)X• .

Here S̄∗ and LsS̄∗ have values in A-Π-Alg (see §3.2.2 and Proposition
3.2.3). Note that if X• is cofibrant, (LnS)X• = πn(SX•).

Proof: For any bisimplicial set Y•• there is a spectral sequence with

E2
s,t

∼= πsπ
i
tY•• ⇒ πs+t∆Y••

where the diagonal ∆Y•• ∈ S∗ is defined by (∆Y••)n = Yn,n, with dj = de
jd

i
j ,

sj = se
js

i
j (cf. [BF, Thm B.5], [Q3]).

Given X• ∈ sB, construct an M-free resolution B•• → X• as in §4.1.1.
Note that π∗B•• → π⋆X• is a free simplicial resolution in the category of
C-Π-algebras, by definition of the weak equivalences for ssB. Therefore,
by Proposition 4.2 πi

tSB•• = S̄tπ
i
∗B•• (since each B•,n ∈ M), and in the

spectral sequence for SB•• ∈ ssA we have

E2
s,t

∼= πsπ
i
tSB••

∼= πsS̄tπ
i
∗B••

∼= (LsS̄t)π⋆X• (2)

Since B•• is weakly equivalent to ce(X•)•, by definition 4.1 πsπ
i
tB••

∼=
πsπ

i
tc

e(X•)•, so the spectral sequence for B•• collapses and π⋆(∆B••) ∼=
π⋆X•. Moreover, by the construction of §4.1.1 ∆B•• is a free object in sB,
so in fact ∆B•• → X• is a resolution in sC, and thus ∆SB•• = S∆B••

∼=
(LS)X• and (2) converges to (Ls+tS)X•. �

4.2.1 examples

(i) If B = A = R-Mod, M is an R-module, and S = HomR−Mod(−, M)
or S = −⊗M , the spectral sequence reduces to the Universal Coeffi-
cients short exact sequences for (co)homology.

(ii) For S = ⊗ : R-Mod×R-Mod → R-Mod (§3.2.4) one similarly obtains
the Kunneth short exact sequence for homology.
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(iii) If B = Gp, A = R-Mod, and S = M⊗ZAb(−) for some M ∈ A, one
obtains the Hurewicz spectral sequence of [B1, §2]. This generalizes
to the homology functor in any CUGA C (in particular, the André-
Quillen homology of a supplemented algebra over a ground ring k –
see [Q2, §1]), by taking S = Ab : C → Cab to be the abelianization
functor (cf. §5.1.4).

4.3 Theorem. Let Y be an arbitrary model category, and H : Y → sB
a functor which preserves cofibrancy and weak equivalences between cofibrants.
Let S : B → A be a functor from a CUGA to any concrete category. For
every Y ∈ Y there is a Grothendieck spectral sequence with

E2
s,t

∼= (LsS̄t)(L⋆H)Y ⇒ (Ls+t(S ◦ H))Y.

Proof: We may assume Y ∈ Y is cofibrant, and let W• = HY ∈ sB,
so πtW• = (LtH)Y and the spectral sequence of Theorem 4.2 has E2

s,t
∼=

(LsS̄t)(L∗H)Y . For B•• as in the Theorem, we have ∆B•• ≃ W• = HY ,
and since H preserves cofibrancy, ∆SB••

∼= S∆B•• ≃ SW• ≃ (S ◦ H)Y so
the spectral sequence converges to (Ls+t(S ◦ H))Y . �

It should be pointed out that we have different assumptions on the three
categories in question: Y may be any model category – e.g., sC, for a
wide range of allowable C’s (cf. [Q1, II,§4]; B must actually be a CUGA, as
defined in §2.1; while A may be any concrete category.

If in fact Y = sC for some CUGA C, and H is the prolongation of
T : C → B, then H = sT will preserve cofibrancy if T takes free objects
in C to free objects in B. However, in this case the requirement may be
weakened using the following

Definition: An object B ∈ B is called S-acyclic if (LnS)B = 0 for
n > 0, and (L0S)B ∼= SB (with the obvious map).

4.4 Theorem. Let C
T
→ B

S
→ A be covariant functors, C, B

CUGA’s, and A any concrete category. Suppose that TF is S-acyclic for
every free F ∈ C. Then for every C ∈ C there is a Grothendieck spectral
sequence with

E2
s,t

∼= (LsS̄t)(L∗T )C ⇒ (Ls+t(S ◦ T ))C.

Proof: In fact we show that the theorem holds for any C• ∈ sC (rather
than just C• = c(C)•). We may assume C• ∈ sC is free; then it suffices
to produce an object W• and a map f : W• → TC• in sB such that
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(a) W• is cofibrant,

(b) f : W• → TC• is a weak equivalence,

(c) Sf : SW• → (ST )C• is also a weak equivalence,

since then we can proceed as in the proof of Theorem 4.3. Such a W• may
be obtained by a diagonal construction, as follows.

(I) Recall that if f : X• → Y• is a map of simplicial sets such that for each

l ≥ 0, the inclusion
•

∆[l]•
il
→֒ ∆[l]• has the LLP (see §2.2.1) with

respect to f , then f is a weak equivalence (in fact, a trivial fibration –
cf. [Q1, II,§1]).

(II) Let ∆[m]•×̃∆[l]• denote the bisimplicial set with (∆[m]•×̃∆[l]•)s,t =

∆[m]s × ∆[l]t, and similarly (∆[m]•×̃
•

∆ [l]•)s,t = ∆[m]s×
•

∆ [l]t.
Assume that a map f : X•• → Y•• of bisimplicial sets has the property

that, for all m, l ≥ 0, the map im,l : ∆[m]•×̃
•

∆[l]• →֒ ∆[m]•×̃∆[l]•
has the LLP with respect to f . Then fm,• : Xm,• → Ym,• is a weak
equivalence (of simplicial sets) for each m ≥ 0, by (I).

(III) Now for any Y•• ∈ ssB we may use the “small object” construction
of [Q1, II,§3] to obtain an object Z•• with a map f : Z•• → Y•• as
follows:

Define Z•• to be the direct limit of a sequence 0 = Z0
•• →֒ . . . Zn−1

•• →֒
Zn

•• . . . of cofibrant objects in ssB with compatible maps fn : Zn
•• →

Y••, which are defined inductively by the pushout diagrams

∐

D F (∆[m]•×̃
•

∆[l]•)
-

∐

D gd
Zn−1

••

?

∐

D F (im,l)

∐

D F (∆[m]•×̃∆[l]•)
?

Zn
••

-

PO

where the coproducts are taken over the set D = Dn of all commutative
diagrams of the form:

F (∆[m]•×̃
•

∆[l]•)
-gd

Zn−1
••

?

F (im,l)

F (∆[m]•×̃∆[l]•)
?

fn−1

Y••
-hd

(d)
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for all m, l (in all degrees k, in the graded case).

Using the adjointness of F and U (§2.1.2), one sees that each im,l, for
all m, l (and k), has the LLP with respect to the underlying map of

f : Z•• → Y••, so that Zm,•

w.e.
≃ Ym,• for each m ≥ 0, by (II).

Applying the construction of (III) to Y•• = ce(TC•)• ∈ sB, we obtain

such a Z••. We claim that the diagonal W•

Def
= ∆Z•• has properties (a)-(c)

above:
First, note that W• = ∆Z•• is free (and thus cofibrant) in sB, by

construction – so it satisfies (a). Next, we have Zm,•

w.e.
≃ Ym,• = c(TCm)•

for each m ≥ 0, and thus

πsπ
e
t Z••

∼= πsπ
e
t Y•• =

{

πsTC• if t = 0
0 if t > 0 ,

so the Quillen spectral sequence (cf. [Q3]) shows W• = ∆Z••

w.e.
≃ ∆Y•• = TC•

– i.e., (b) holds.
Moreover, each Zm,• ∈ sB is also free, by construction, so it is a resolution

of TCm, and thus (§2.2.4) πsSZm,• = (LsS)(TCm) (= 0, for s > 0 by
the assumption of S-acyclicity). Thus the Quillen spectral sequence for

SZ•• ∈ ssA shows that SW• = S∆Z••
∼= ∆SZ••

w.e.
≃ STC• – so (c) holds,

too. Therefore, W• → TC• has the required properties, which completes
the proof of the Theorem. �

4.4.1 remark

When B and A are abelian and S is additive, then (§3.2.4) S̄∗ may be iden-
tified with S (applied dimensionwise), and one has the classical Grothendieck
spectral sequence of [Gr, Thm. 2.4.1].

Note however that while C can be any abelian category with enough pro-
jectives (in which case we require that TP be S-acyclic for any projective
P ∈ C), B must actually be a CUGA, since the construction of §4.1.1 de-
pends on the existence of free objects. Of course, if B is any abelian category
with enough projectives, the standard construction of the resolution of TC•

in ccB ≃ ssB (cf. [HS, VIII, §9]) can be used instead.

5 appendix: homotopy group objects for sC

To illustrate some of the structure of C-Π-algebras, we here show that the
homotopy groups of a simplicial object X• ∈ sC actually take value in C,
and are abelian in dimensions≥ 1.
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5.1 abelian objects in C

In the case of CUGA’s, abelian objects have a convenient explicit description:

5.1.1 operations

For any CUGA C, we fix a subset Ω of the semi-groupoid of all operations W ,
not including the group operation of the Gk’s, which (together with these
group operations) generates W . Let Ω′ denote the subset of W consisting
of the n-ary operations ω(x, y, . . .) ∈ Ω with n ≥ 2, together with the

“operation commutators” [ω, i](x1, . . . xi−1, x, y, xi+1, . . . , xn)
Def
=

ω(x1,...,xi−1, x, xi+1,...,xn)ω(x1,...,xi−1, y, xi+1,...,xn)ω(x1,...,xi−1, xy, xi+1,...,xn)−1

for all ω ∈ Ω, 1 ≤ i ≤ n.
(For ω(x) = x−1, the inverse operation of the underlying group structure,

this is just the group commutator: [ω, 1](x, y) = x−1y−1xy).

We shall assume that the operations in Ω are pointed in the sense that
they vanish if at least one operand is 0. This is then true of Ω′, too.

5.1.2 ideals

In this situation we call a sub-algebra X ⊆ Y an ideal of Y if for each
θ ∈ Ω′ and y1, . . . , yn ∈ Y , we have θ(y1, . . . , yn) ∈ X if yj ∈ X for some
1 ≤ j ≤ n. Thus in particular, GkX ⊳ GkY for every k ≥ 0, and the
quotient graded group Y/X is an object of C. For example, Ker(f) is an
ideal of X for any f : X → Y .

5.1.3 abelian objects

An object A in a CUGA C is called abelian if HomC(X, A) has a natural
abelian group structure for any X ∈ C. We denote by Cab the full subcat-
egory of abelian objects in C. Equivalently, A is abelian iff there are in C
“abelian group object structure maps”: µ : A×A → A (group operation),
ν : A → A (inverse), and η : ⋆ → A (identity), fitting into the obvious
commutative diagrams.

Since C is a CUGA, any A ∈ C has an underlying group structure, which
takes the form of “group structure maps” on the underlying (graded) set of
A, viz.: µ̄ : A × A → A, ν̄ : A → A, and η̄ : ⋆ → A – again fitting into
suitable commutative diagrams.

It is straightforward to verify that if A has “abelian group object structure
maps” µ, ν, and η as above, then µ̄, ν̄, and η̄ must equal µ, ν, and η
respectively, as maps of graded sets. Conversely, if the given group structure
maps µ̄, ν̄, and η̄ can be lifted to C (i.e., are in the image of the faithful
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functor U of §2.1.2), then the liftings will be “abelian group object structure
maps”.

It is also readily verified that if the operations Ω′ act trivially on an
object A in C, then µ̄, ν̄, and η̄ in fact lift to C, so A is abelian – and
conversely, Ω′ must act trivially on any abelian A ∈ C.

5.1.4 abelianization

For any X ∈ C, let P (X) ⊂ X be the sub-algebra generated by the image
of X under Ω′. This an ideal of X, and the graded group Ab(X) = X/P (X)
thus lies in C.

Note that Ab(X) lies in Cab, since Ω′ acts trivially on it. In fact,
Ab(X) is the abelianization of X – i.e., any map from X into B ∈ Cab

factors uniquely through the natural map X → Ab(X).

5.1.5 examples

In most of the examples of §2.1.1, Cab is just a category of graded R-modules,
for suitable rings R, with other operations trivial.

When C = Kp, then Cab is a suitable category of unstable modules over
the mod-p Steenrod algebra Ap, with trivial multiplication: For p = 2,
(K2)ab = ΣU = the category of A2-modules with Sqix = 0 for |x| ≤ i. For
p > 2, (Kp)ab = V = the category of Ap-modules with P ix = 0 for |x| ≤ 2i
(cf. [Mi, §1]).

Abelian Π-algebras, and the category (Π-Alg)ab, are discussed in [B3].

5.2 homotopy group objects over C

A simplicial object X• over any concrete category C has homotopy groups
π⋆X• – namely, those of the underlying simplicial set. In our case, since
X• has the underlying structure of a simplical group, these are defined to be
the homology of the (not necessarily abelian) chain complex {N⋆X•, ∂} (cf.
[May, §17]), where

NnX• =
⋂

1≤j≤n

ker{dj : Xn → Xn−1} ⊂ Xn, and ∂n = d0|NnX•
for each n ≥ 0.

5.2.1 Lemma. For any CUGA C and X• ∈ sC, πkX• ∈ Cab ⊂ C for
all k ≥ 1, and π0X• ∈ C.

Proof: The image of d0 : Nk+1X• → NkX• is an ideal (§5.1.2) in ZkX• =
Ker(∂n), since if x = d0x

′ for some x′ ∈ Nk+1X•, then for any ω ∈
Ω and x, y, . . . ∈ ZkX• we have ω(x, y, . . .) = d0(ω(x′, s0y, s0 . . .)) and
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di(ω(x′, s0y, s0 . . .)) = 0 for i ≥ 1 (because C is pointed). Thus πkX• ∈ C
for all k ≥ 0.

Now let k ≥ 1: for any operation ω ∈ Ω′ and x, y, . . . ∈ ZkX•, let
c = ω(s0x, s0y, s0 . . .) · ω(s0x, s1y, s0 . . .)−1; then d0c = ω(x, y, . . .), and
djc = 0 for j ≥ 1. Thus any element of P (ZkX•) is a boundary in NkX•,
so πkX• = Ab(πkX•) is an abelian object in C (§5.1.3). �

5.2.2 Corollary. For any functor T : C′ → C, the 0-th derived functor
of T takes values in C, and higher derived functors take values in Cab.
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