Mappings Spaces of Compact Lie Groups and p-Adic Completion Author(s): David Blanc and Dietrich Notbohm
Source: Proceedings of the American Mathematical Society, Vol. 117, No. 1 (Jan., 1993), pp. 251-258
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2159724
Accessed: 20/10/2009 11:02

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@ jstor.org.

[^0]
MAPPING SPACES OF COMPACT LIE GROUPS AND p-ADIC COMPLETION

DAVID BLANC AND DIETRICH NOTBOHM

(Communicated by Frederick R. Cohen)

Abstract

If BG, BH are the classifying spaces of compact Lie groups, with \mathbf{H} connected, then the mapping space functor $\operatorname{map}(\mathbf{B G},-)$ commutes with p-completion on $\mathbf{B H}$: i.e., for each $f: \mathbf{B G} \rightarrow \mathbf{B H}$ the component $\left(\operatorname{map}(\mathbf{B G}, \mathbf{B H})_{f}\right)_{p}^{\wedge}$ is p-complete, and is homotopy equivalent to $\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}$.

1. Introduction

In studying $\operatorname{map}(\mathbf{B G}, \mathbf{B H})$, the space of maps between the classifying spaces of two compact Lie groups, it is often useful to know whether the p-adic completion commutes with the functor $\operatorname{map}(\mathbf{B G},-)$; special cases where this occurs were used, for example, in [DZ, JMO, N2, NS]. Here we present a more general result in this direction:
1.1. Theorem. Let \mathbf{G} and \mathbf{H} be compact Lie groups, with \mathbf{H} connected; let p be a prime, and $i: \mathbf{B H} \rightarrow \mathbf{B H}_{p}^{\wedge}$ the natural inclusion. Then for any map $f: \mathbf{B G} \rightarrow \mathbf{B H}$, the corresponding component of the mapping space, $\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}$, is p-complete, and

$$
\left(\operatorname{map}(\mathbf{B G}, \mathbf{B H})_{f}\right)_{p}^{\wedge} \xlongequal{\cong} \operatorname{map}\left(\mathbf{B G}, \mathbf{B H} H_{p}^{\wedge}\right)_{i \circ f}
$$

is a homotopy equivalence.
The p-adic completion of a space \mathbf{X} that we refer to is the $\left(\mathbb{F}_{p}\right)_{\infty} \mathbf{X}$ of [BK, I, $\S 4.2$], which we denote by \mathbf{X}_{p}^{\wedge}. However, unless \mathbf{X} is nilpotent (e.g., simply-connected), \mathbf{X}_{p}^{\wedge} need not be p-complete in the sense of [BK, I, $\S 5 \&$ VII, §2], and so it enjoys few of the properties associated with completion. In particular, unless \mathbf{X}_{p}^{\wedge} is p-complete, the natural map $i: \mathbf{X} \rightarrow \mathbf{X}_{p}^{\wedge}$ will not induce an isomorphism in \mathbb{F}_{p}-homology, so \mathbf{X}_{p}^{\wedge} will not be the $H_{\star}\left(-; \mathbb{F}_{p}\right)$-localization of \mathbf{X} (cf. [BK, §2.1]) and $\left(\mathbf{X}_{p}^{\wedge}\right)_{p}^{\wedge} \nsubseteq \mathbf{X}_{p}^{\wedge}$.

In $\S 2$ we list some facts about \mathbb{Z}_{p}^{\wedge}-modules needed to prove the theorem. In $\S 3$ we recall from [JMO] the mod-p approximation for BG, using p-toral groups.

[^1]In $\S 4$ the Bousfield-Kan spectral sequence is used to prove p-completeness. The required homotopy equivalence is shown in $\S 5$.

2. Finitely generated \mathbb{Z}_{p}^{\wedge}-modules

Let \mathscr{F} denote the class of finitely generated \mathbb{Z}_{p}^{\wedge}-modules, where \mathbb{Z}_{p}^{\wedge} is the ring of p-adic integers, and let $\mathscr{F}^{\prime}=\mathscr{F} \cup\{G: G$ is a finite p-group $\}$.
2.1. Lemma. If \mathbf{X} is a connected space with $\pi_{k} \mathbf{X} \in \mathscr{F}^{\prime}$ for each $k \geq 1$, then
(1) $H_{\star}\left(\mathbf{X} ; \mathbb{F}_{p}\right)$ is of finite type, that is, $H_{k}\left(\mathbf{X} ; \mathbb{F}_{p}\right)$ is finite for each $k \geq 0$;
(2) \mathbf{X} is p-complete and \mathbb{F}_{q}-acyclic for any prime $q \neq p$, that is, $\widetilde{H}_{\star}\left(\mathbf{X} ; \mathbb{F}_{q}\right)$ $=0$.

Proof. Any $M \in \mathscr{F}$ is isomorphic to $N \otimes \mathbb{Z}_{p}^{\wedge}$, where N is a finitely generated abelian group. Thus $\mathbf{K}(M, n) \simeq \mathbf{K}(N, n)_{p}^{\wedge}$, which is p-complete (see [BK, VI, 5.2]), and so $H_{\star}\left(\mathbf{K}(M, n) ; \mathbb{F}_{p}\right)$ is of finite type for all $n \geq 1$. Therefore, if \mathbf{Y} is a simply-connected space with each $\pi_{i} \mathbf{Y} \in \mathscr{F}$, by induction on its Postnikov system, we see $H_{\star}\left(\mathbf{Y} ; \mathbb{F}_{p}\right)$ is of finite type.

Now assume $\pi_{1} \mathbf{X}=G \in \mathscr{F}^{\prime}$ and consider the universal covering fibration for \mathbf{X};

$$
\widetilde{X} \rightarrow \mathbf{X} \rightarrow \mathbf{K}(G, 1) .
$$

The action of G on the universal covering space $\widetilde{\mathbf{X}}$ makes $H_{t}\left(\widetilde{\mathbf{X}} ; \mathbb{F}_{p}\right)$ into a G-module, and one has a Leray-Cartan spectral sequence (cf. [CE, XVI, §9]), with

$$
E_{s, t}^{2} \cong H_{s}\left(G ; H_{t}\left(\widetilde{\mathbf{X}} ; \mathbb{F}_{p}\right)\right) \Rightarrow H_{t+s}\left(\mathbf{X} ; \mathbb{F}_{p}\right)
$$

Now for fixed t, let $V=H_{t}\left(\widetilde{\mathbf{X}} ; \mathbb{F}_{p}\right)$ and let $\phi: G \rightarrow \operatorname{Aut}(V)$ describe the π_{1}-action. Aut (V) is finite, and if $G \in \mathscr{F}$ then G is q-divisible for any q prime to p, so in any case $\operatorname{Im}(\phi) \subseteq \operatorname{Aut}(V)$ is a finite p-group. Thus G acts nilpotently on V (cf. [BK, II, 5.2]): that is, there is a filtration $0=V_{0} \subset V_{1} \subset$ $\cdots V_{i} \cdots \subset V_{n}=V$ of G-modules such that G acts trivially on each V_{i} / V_{i-1}.

Using the short exact sequences $0 \rightarrow V_{i-1} \rightarrow V_{i} \rightarrow V_{i} / V_{i-1} \rightarrow 0$, we see by induction on i that each $H_{s}\left(G ; V_{i}\right)$-and so in particular $H_{s}(G ; V) \cong E_{s, t}^{2}$-is finite. Thus $H_{\star}\left(\mathbf{X} ; \mathbb{F}_{p}\right)$ is of finite type.

Furthermore, because G acts nilpotently on V, by the mod- \mathbb{F}_{p} fiber lemma of [BK,II, 5.1] the universal covering (\star) remains a fibration after p-completion: $(\star)_{p}^{\wedge} \quad \tilde{\mathbf{X}}_{p}^{\wedge} \rightarrow \mathbf{X}_{p}^{\wedge} \rightarrow \mathbf{K}(G, 1)_{p}^{\wedge}$.
Since $G=\pi_{1} \mathbf{X} \in \mathscr{F}^{\prime}, \mathbf{K}(G, 1)$ is p-complete; similarly $\widetilde{\mathbf{X}} \simeq \widetilde{\mathbf{X}}_{p}^{\wedge}$ (being nilpotent, with $\pi_{k} \widetilde{\mathbf{X}} \in \mathscr{F}$). The Five Lemma, applied to the natural map from the long exact sequence of (\star) to that of $(\star)_{p}^{\wedge}$, shows $\pi_{\star} \mathbf{X} \rightarrow \pi_{\star}\left(\mathbf{X}_{p}^{\wedge}\right)$ is an isomorphism, so \mathbf{X} is p-complete. Since $\widetilde{H}_{\star} \widetilde{\mathbf{X}}=0=\widetilde{H}_{\star} \mathbf{K}(G, 1)$ for $q \neq p$ by [BK, VI, 5.6], the same holds for \mathbf{X}.
2.2. Corollary. Let \mathbf{X} be a pointed connected space such that $\pi_{k} \mathbf{X} \in \mathscr{F}$ for $k \geq 2$, and suppose that $\pi_{1} \mathbf{X}$ has a finite normal series

$$
1=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_{n}=\pi_{1} \mathbf{X}
$$

where each $G_{i} / G_{i-1} \in \mathscr{F}^{\prime}$. Then \mathbf{X} is p-complete and \mathbb{F}_{q}-acyclic for $q \neq p$.

Proof. For each $i=1, \ldots, n$, let $\quad \mathbf{X}_{i-1} \rightarrow \mathbf{X}_{i} \rightarrow \mathbf{K}\left(G_{i} / G_{i-1}, 1\right)$ be the covering fibration corresponding to the short exact sequence $1 \rightarrow G_{i-1} \rightarrow G_{i} \rightarrow$ $G_{i} / G_{i-1} \rightarrow 1$ (where $\mathbf{X}_{0}=\widetilde{\mathbf{X}}$ and $\mathbf{X}_{n}=\mathbf{X}$). As above, $\mathbf{K}\left(G_{i} / G_{i-1}, 1\right)$, and by induction also \mathbf{X}_{i-1}, are p-complete and \mathbb{F}_{q}-acyclic, with \mathbb{F}_{p}-homology of finite type. The same then holds for \mathbf{X}_{i}, too, by the covering-space argument in the proof of Lemma 2.1, and thus for \mathbf{X}.
2.3. Lemma. For $A, C \in \mathscr{F}$:
(1) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of abelian groups, then $B \in \mathscr{F}$.
(2) Any group homomorphism $f: C \rightarrow A$ is \mathbb{Z}_{p}^{\wedge}-linear.

Proof. It is enough to show that the forgetful functor induces isomorphisms

$$
\begin{equation*}
\operatorname{Ext}_{\mathbb{Z}_{\hat{p}}^{\wedge}}^{1}(C, A) \cong \operatorname{Ext}_{\mathbb{Z}}^{1}(C, A) \quad \text { and } \quad \operatorname{Hom}_{\mathbb{Z}_{\hat{p}}}(C, A) \cong \operatorname{Hom}_{\mathbb{Z}}(C, A) \tag{1}
\end{equation*}
$$

As above, write $A \cong A^{\prime} \otimes \mathbb{Z}_{p}^{\wedge}, C \cong C^{\prime} \otimes \mathbb{Z}_{p}^{\wedge}$, for finitely generated abelian groups A^{\prime}, C^{\prime}. Since Ext and Hom commute with finite direct sums, it is enough to consider cyclic C and A, that is, each either \mathbb{Z}_{p}^{\wedge} or \mathbb{Z} / p^{r} for some r.

By the Change of Rings Theorem (see [HS, IV, Theorem 12.2]) we know

$$
\operatorname{Ext}_{\mathbb{Z}_{\hat{p}}^{\wedge}}^{n}(C, A) \cong \operatorname{Ext}_{\mathbb{Z}_{\hat{p}}}^{n}\left(C^{\prime} \otimes \mathbb{Z}_{p}^{\wedge}, A\right) \cong \operatorname{Ext}_{\mathbb{Z}}^{n}\left(C^{\prime}, A\right) \quad(n \geq 0),
$$

so (1) is satisfied when C is torsion and thus $C=C^{\prime}$.
Now let $C=\mathbb{Z}_{p}^{\wedge}$.
(1) If $A=\mathbb{Z}_{p}^{\wedge}$ then $\operatorname{Ext}_{\mathbb{Z}}^{1}(C, A)=0$ by [Ha, Proposition 2.1].
(2) If $A=\mathbb{Z} / p^{r}$, tensor $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$ with \mathbb{Z}_{p}^{\wedge} to get the exact sequence $\quad 0=\operatorname{Tor}\left(\mathbb{Q} / \mathbb{Z}, \mathbb{Z}_{p}^{\wedge}\right) \rightarrow \mathbb{Z}_{p}^{\wedge} \rightarrow \mathbb{Q} \otimes \mathbb{Z}_{p}^{\wedge} \rightarrow(\mathbb{Q} / \mathbb{Z}) \otimes \mathbb{Z}_{p}^{\wedge} \rightarrow 0$. Applying $\operatorname{Ext}_{\mathbb{Z}}^{1}(-, A)$ to this, we see that $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{p}^{\wedge}, \mathbb{Z} / p^{r}\right)=0$ since $\mathbb{Z}_{p}^{\wedge} \otimes \mathbb{Q}$ is a \mathbb{Q}-vector space and $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Q}, \mathbb{Z} / p^{r}\right)=0$.

We clearly also have $\operatorname{Ext}_{\mathbb{Z}_{\hat{p}}^{\wedge}}^{1}\left(\mathbb{Z}_{p}^{\wedge}, A\right)=0$ for any A.
Finally, $\operatorname{Hom}_{\mathbb{Z}_{p}^{\wedge}}\left(\mathbb{Z}_{p}^{\wedge}, A\right) \cong A$ for any $A \in \mathscr{F}$ while $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{p}^{\wedge}, \mathbb{Z} / p^{r}\right) \cong$ \mathbb{Z} / p^{r}, so

$$
\begin{aligned}
\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{p}^{\wedge}, \mathbb{Z}_{p}^{\wedge}\right) & =\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{p}^{\wedge}, \lim _{\leftrightarrows}^{\mathbb{Z}} / p^{r}\right) \\
& \left.\cong \lim _{\longleftarrow}^{\operatorname{Hom}} \mathbb{Z}_{p}^{\wedge}, \mathbb{Z} / p^{r}\right) \cong \lim \mathbb{Z} / p^{r} \cong \mathbb{Z}_{p}^{\wedge}
\end{aligned}
$$

Thus $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{p}^{\wedge}, A\right) \cong A$ for any $A \in \mathscr{F}$, too. The required isomorphism is readily verified.

3. The mod- p approximation of BG

In order to prove Theorem 1.1 for more general \mathbf{G}, we start with the known case when \mathbf{G} is p-toral, i.e., $\pi_{0} \mathbf{G}$ is a finite p-group and the identity component of \mathbf{G} is a torus. Then we have
3.1. Lemma. If \mathbf{P} is a p-toral group and \mathbf{H} is a connected compact Lie group, then for any $f: \mathbf{B P} \rightarrow \mathbf{B H},\left(\operatorname{map}(\mathbf{B P}, \mathbf{B H})_{f}\right)_{p}^{\wedge} \rightarrow \operatorname{map}\left(\mathbf{B P}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}$ is a homotopy equivalence.

This is contained in [JMO, Theorem 3.2]; we give an outline of the proof:
By [N1, Theorem 1.1], $f \simeq B \rho$ for some homomorphism $\rho: \mathbf{P} \rightarrow \mathbf{H}$; let $\mathbf{C}(\rho)$ denote its centralizer. The homomorphism $\mathbf{C}(\rho) \times \mathbf{P} \rightarrow \mathbf{H}$ passes to classifying spaces and has an adjoint $\mathbf{B C}(\rho) \rightarrow \operatorname{map}(\mathbf{B P}, \mathbf{B H})_{B \rho}$, or if we first complete,

$$
\mathbf{B C}(\rho)_{p}^{\wedge} \rightarrow \operatorname{map}\left(\mathbf{B P}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ B \rho} .
$$

The first map induces an $H_{\star}\left(-; \mathbb{F}_{p}\right)$-isomorphism by [N1], and so a homotopy equivalence after completion (see [BK, I, 5.5]), while the second is shown in [JMO, loc. cit.] to be a homotopy equivalence.
3.2. Remark. Since $\mathbf{C}(\rho)$ is compact and $\pi_{0} \mathbf{C}(\rho)$ is a finite p-group (cf. [JMO, Proposition A.4]), the homotopy groups $\pi_{k}\left(\boldsymbol{\operatorname { m a p }}\left(\mathbf{B P}, \mathbf{B H}_{p}^{\wedge}\right)_{i o B \rho}\right)$ are finitely generated \mathbb{Z}_{p}^{\wedge}-modules for $k \geq 2$ and a finite p-group for $k=1$.

We now recall some results of Jackowski, McClure, and Oliver on the mod-p approximation of BG:

For any compact Lie group \mathbf{G}, let $\mathscr{O}_{p}(\mathbf{G})$ denote the full subcategory of the orbit category $\mathcal{O}(\mathbf{G})$ whose objects are homogenous spaces \mathbf{G} / \mathbf{P} where \mathbf{P} is a p-toral group and whose morphisms are G-maps. In [JMO, 1.3], Jackowski, McClure, and Oliver define a full subcategory $\mathscr{R}_{p}(\mathbf{G}) \subset \mathscr{O}_{p}(\mathbf{G})$ (containing \mathbf{G} / \mathbf{P} only for certain " p-stubborn" \mathbf{P} 's), which has the property that

$$
\underset{\mathscr{R}_{p}(G)}{\text { holim }} \mathbf{E G} \times \mathbf{G}(\mathbf{G} / \mathbf{P}) \rightarrow \mathbf{B G}
$$

is a $H_{\star}\left(-; \mathbb{F}_{p}\right)$-isomorphism. Here holim denotes the homotopy direct limit of [BK, XII, §2], and EG $\times_{\mathbf{G}}(\mathbf{G} / \mathbf{P}) \cong \overrightarrow{\mathbf{E G} / \mathbf{P}} \simeq \mathbf{B P}$.

Recall from $[\mathrm{BK}, \mathrm{I}, \S 4]$ that for any space \mathbf{X}, the p-completion is obtained as the total space (i.e., homotopy inverse limit) of a certain cosimplicial space: $\mathbf{X}_{p}^{\wedge} \stackrel{\text { def }}{=} \operatorname{Tot}(\underset{\sim}{\mathbb{F}} \mathbf{p} \mathbf{X})^{\bullet}$, where each space $(\underset{\sim}{\mathbb{F}} \mathbf{p})^{k}$ is homotopy equivalent to an $\mathbb{F}_{p^{-}}$ GEM, i.e., a product of $\mathbf{K}\left(\mathbb{F}_{p}, n_{i}\right)$'s. Therefore, for any space \mathbf{Z}, we have

$$
\operatorname{map}\left(\mathbf{Z}, \mathbf{X}_{p}^{\wedge}\right)=\operatorname{map}\left(\mathbf{Z}, \operatorname{Tot}\left(\underset{\sim}{\mathbb{F}_{p}} \mathbf{X}\right)^{\bullet}\right) \cong \operatorname{Tot}\left(\boldsymbol { \operatorname { m a p } } \left(\mathbf{Z},\left(\underset{\sim}{\left.\left.\left.\mathbb{F}_{p} \mathbf{X}\right)^{\bullet}\right)\right)}\right.\right.\right.
$$

(see [BK, XI, 4.4, 7.6]), so the space of maps into a p-completion is the total space of a cosimplicial \mathbb{F}_{p}-GEM, too.

Now if $f: \mathbf{Y} \rightarrow \mathbf{Z}$ is an $H_{\star}\left(-; \mathbb{F}_{p}\right)$-isomorphism, it induces a homotopy equivalence $\operatorname{map}\left(\mathbf{Z}, \mathbf{K}\left(\mathbb{F}_{p}, n\right)\right) \xrightarrow{f^{*}} \operatorname{map}\left(\mathbf{Y}, \mathbf{K}\left(\mathbb{F}_{p}, n\right)\right)$, and so $\operatorname{map}\left(\mathbf{Z},(\underset{\sim}{\mathbb{F}} \mathbf{X} \mathbf{X})^{k}\right)$ $\xrightarrow{f^{*}} \boldsymbol{\operatorname { m a p }}\left(\mathbf{Y},(\underset{\sim}{\mathbb{F}} \mathbf{X})^{k}\right)$ is a homotopy equivalence for each $k \geq 0$. Therefore, by [BK, XI, 5.6] the same is true for the Tot's, and thus $\operatorname{map}\left(\mathbf{Z}, \mathbf{X}_{p}^{\wedge}\right) \xrightarrow{f^{*}} \boldsymbol{\operatorname { m a p }}\left(\mathbf{Y}, \mathbf{X}_{p}^{\wedge}\right)$ is a homotopy equivalence. Since

$$
\boldsymbol{\operatorname { m a p }}\left(\underset{\longrightarrow}{\operatorname{holim}} \mathbf{Y}_{i}, \mathbf{X}\right)=\underset{\longleftrightarrow}{\operatorname{holim}} \operatorname{map}\left(\mathbf{Y}_{i}, \mathbf{X}\right)
$$

for any diagram $\left\{\mathbf{Y}_{i}\right\}$ (cf. [BK, XII, 4.1]), we have a natural homotopy equivalence

$$
\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right) \rightarrow \underset{\mathscr{R}_{p}(G)}{\operatorname{holim}} \operatorname{map}\left(\mathbf{E G} / \mathbf{P}, \mathbf{B H}_{p}^{\wedge}\right) .
$$

Thus, if we restrict a map $f: \mathbf{B G} \rightarrow \mathbf{B H}$ to $\mathbf{B P} \hookrightarrow \mathbf{B G}$ (for some \mathbf{G} / \mathbf{P} in $\mathscr{R}_{p}(\mathbf{G})$), we see that

$$
\begin{equation*}
\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f} \rightarrow \underset{\mathscr{R}_{p}(G)}{\text { holim }} \operatorname{map}\left(\mathbf{E G} / \mathbf{P}, \mathbf{B H}_{p}^{\wedge}\right)_{\left.i \circ f\right|_{\mathrm{BP}}} \tag{2}
\end{equation*}
$$

is the inclusion of a component (the homotopy inverse limit need not be connected!).

4. Cosimplical spaces

Let sk $\mathscr{R}_{p}(\mathbf{G})$ be a skeleton of $\mathscr{R}_{p}(\mathbf{G})$, that is, a full subcategory of $\mathscr{R}_{p}(\mathbf{G})$, containing a single representative of each isomorphism type of its objects. This is a finite category, since $\mathscr{R}_{p}(\mathbf{G})$ has finitely many isomorphism types of objects, and finitely many morphisms between them (cf. [JMO, Proposition 1.6]).

Given a map $f: \mathbf{B G} \rightarrow \mathbf{B H}$ as above, consider the finite diagram of spaces

$$
\underline{\mathbf{X}}=\left\{\mathbf{X}_{\mathbf{P}}\right\}_{\mathbf{G} / \mathbf{P} \in \operatorname{sk} \mathscr{R}_{p}(\mathbf{G})}, \quad \text { where } \mathbf{X}_{\mathbf{P}}=\operatorname{map}\left(\mathbf{B P}, \mathbf{B} \mathbf{H}_{p}^{\wedge}\right)_{\left.i \circ f\right|_{\mathbf{B P}}} .
$$

By cosimplicial replacement (see [BK, XI, §5]) we obtain a cosimplicial space \mathbf{Y}^{\bullet}, with

$$
\mathbf{Y}^{n}=\prod_{\mathbf{G} / \mathbf{P}_{t_{0}} \rightarrow \cdots \rightarrow \mathbf{G} / \mathbf{P}_{t_{n}}} \mathbf{X}_{\mathbf{P}_{t_{0}}}
$$

(where the product, over all possible sequences of n composable morphisms in sk $\mathscr{R}_{p}(\mathbf{G})$, is finite $)$, such that $\operatorname{holim}_{\text {sk }}^{\mathscr{R}_{p}(\mathbf{G})}\left\{\mathbf{X}_{\mathbf{P}}\right\} \cong \operatorname{Tot} \mathbf{Y}^{\bullet}$.

Now if \mathbf{Z}^{\bullet} is the cosimplicial replacement of the analogous infinite diagram of $\mathbf{X}_{\mathbf{P}}$'s for the full category $\mathscr{R}_{p}(\mathbf{G})$, then the equivalence of categories sk $\mathscr{R}_{p}(\mathbf{G}) \hookrightarrow \mathscr{R}_{p}(\mathbf{G})$ (with noncanonical inverse $\mathscr{R}_{p}(\mathbf{G}) \rightarrow$ sk $\mathscr{R}_{p}(\mathbf{G})$) induces a homotopy equivalence $\operatorname{Tot} \mathbf{Y}^{\bullet} \xlongequal{\cong} \operatorname{Tot} \mathbf{Z}^{\bullet}$, so that up to homotopy the natural map of (2) above is the inclusion of one component in Tot \mathbf{Y}^{\bullet} :

$$
\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f} \hookrightarrow \underset{\mathscr{R}_{p}(G)}{\operatorname{holim}^{(G)}}\left\{\mathbf{X}_{\mathbf{P}}\right\} \simeq \operatorname{Tot} \mathbf{Y}^{\bullet}
$$

We choose a basepoint $y_{0} \in \operatorname{Tot} \mathbf{Y}^{\bullet}$ corresponding to the map $i \circ f$.
4.1. Lemma. For any $f: \mathbf{B G} \rightarrow \mathbf{B H}$, the space $\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}$ is p complete and \mathbb{F}_{q}-acyclic for $q \neq p$.

Proof. Consider the Bousfield-Kan spectral sequence for \mathbf{Y}^{\bullet} as above (more precisely, for the component of y_{0} in $\operatorname{Tot}^{\bullet}$ (cf. [B2, §2])) with $E_{2}^{s, t} \cong$ $\pi^{s} \pi_{t} \mathbf{Y}^{\bullet}$.

For $t \geq 2$, the construction of \mathbf{Y}^{\bullet} and Remark 3.2 imply that $\pi_{t} \mathbf{Y}^{s} \in \mathscr{F}$ and all the cosimplicial morphisms of $\pi_{t} \mathbf{Y}^{\bullet}$ are \mathbb{Z}_{p}^{\wedge}-linear by Lemma 2.3(b); hence $E_{2}^{s, t} \in \mathscr{F}$. For $t=1, E_{2}^{0,1}$ is a subgroup of $\pi_{1} \mathbf{Y}^{0} \cong \Pi \pi_{1} \mathbf{X}_{\mathbf{P}}$, and so is itself a finite p-group by Remark 3.2.

Moreover, if $t \geq 2$, the differentials $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$ are homomorphisms, and thus \mathbb{Z}_{p}^{\wedge}-linear, for $t>s \geq 0$. Therefore, $E_{r}^{s, t} \in \mathscr{F}$ for $r \leq \infty$,
if $t>s \geq 0$ or $t=s \geq r$. For $t=1$ we have $E_{r}^{0,1} \subseteq E_{r-1}^{0,1} \subseteq E_{2}^{0,1} \quad$ (cf. [B2, $\S 2.4]$), so $E_{r}^{0,1}$ is a finite p-group.
, Since $E_{2}^{s, t} \cong \lim _{\rightleftarrows}^{\mathscr{R}_{p}(G)}{ }^{s} \pi_{t} \underline{\mathbf{X}}$ by [BK, XI, 7.1], Lemma 4.2 below, applied to the functors

$$
\pi_{t}\left(\mathbf{E G} \times{ }_{\mathbf{G}}-\right): \mathscr{R}_{p}(\mathbf{G}) \rightarrow \mathbb{Z}_{p}^{\wedge}-\operatorname{Mod}
$$

shows that there is an N such that $E_{2}^{s, t}=0$ for $s>N$ and $t \geq 2$.
This in turn implies the complete convergence of the spectral sequence (see [B2, §4.5]): thus, for each $t \geq 1$ there is a finite tower of epimorphisms

$$
\pi_{t}\left(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_{0}\right) \cong Q_{N} \pi_{t} \rightarrow \cdots Q_{s} \pi_{t} \rightarrow Q_{s-1} \pi_{t} \rightarrow \cdots Q_{0} \pi_{t} \rightarrow Q_{-1} \pi_{t}=1
$$

where $Q_{s} \pi_{t}=\operatorname{im}\left\{\pi_{t}\left(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_{0}\right) \rightarrow \pi_{t}\left(\operatorname{Tot}_{s} \mathbf{Y}^{\bullet}, y_{0}\right)\right\} \quad(\mathrm{cf} .[\mathrm{BK}, \mathrm{IX}, \S 5.3])$, and for each $s \geq 0$ there is a short exact sequence

$$
1 \rightarrow E_{\infty}^{s, s+t} \rightarrow Q_{s} \pi_{t} \rightarrow Q_{s-1} \pi_{t} \rightarrow 1
$$

Now for $t \geq 2$ we have $E_{\infty}^{s, s+t} \in \mathscr{F}$. Therefore, Lemma 2.3(a) implies (by induction on s) that $Q_{s} \pi_{t} \in \mathscr{F}$ for all s, and so $\pi_{t}\left(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_{0}\right)$ is in \mathscr{F}, too.

For $t=1$ we obtain a finite normal series

$$
0=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{N} \triangleleft G_{N+1}=\pi_{1}\left(\operatorname{Tot} \mathbf{Y}^{\bullet}, y_{0}\right),
$$

where $G_{i} / G_{i-1}=E_{\infty}^{N-i+1, N-i+2}$ is in \mathscr{F} for $1 \leq i \leq N$ and $G_{N+1} / G_{N}=E_{\infty}^{0,1}$ is a finite p-group. Thus Corollary 2.2 applies, and the component of y_{0} in Tot \mathbf{Y}^{\bullet} is p-complete, and \mathbb{F}_{q}-acyclic for $q \neq p$.

The following lemma appeared in an earlier version of [JMO].
4.2. Lemma. If \mathbf{G} is any compact Lie group and p a prime, there is an N such that for any contravariant functor

$$
F: \mathscr{R}_{p}(\mathbf{G}) \rightarrow \mathbb{Z}_{p}^{\wedge}-\operatorname{Mod}
$$

we have $\lim _{\leftrightarrows}^{\mathscr{R}_{p}(G)} \underset{ }{s} F=0$ for $s>N$.
Proof. The homotopy direct limit $E \mathscr{R}_{p}(\mathbf{G})=$ holim $_{\mathscr{R}_{p}(G)} \mathbf{G} / \mathbf{P}$ is a G-space, and $\underset{\leftarrow}{\text { holim }} \mathscr{R}_{p}(G) F \cong H_{\mathbf{G}}^{s}\left(E \mathscr{R}_{p}(\mathbf{G}) ; F\right)$ for all $s \geq 0$ by [JMO, Theorem 1.7]. Here $\overleftrightarrow{H_{\mathbf{G}}^{*}(-; F)}$ denotes equivariant cohomology with the functor F as coefficient system (see [I, 2.2]).

By [JMO, Proposition 1.2, Theorem 2.14], there exists a finite dimensional G-complex \mathbf{X} with finitely many orbit types and a $\mathbf{G}-\mathbb{F}_{p}$-isomorphism $f: \mathbf{X} \rightarrow$ $E \mathscr{R}_{p}(\mathbf{G})$; that is, a G-equivariant map f such that $f^{\mathbf{H}}: \mathbf{X}^{\mathbf{H}} \rightarrow\left(E \mathscr{R}_{p}(\mathbf{G})\right)^{\mathbf{H}}$ is an $H_{\star}\left(-; \mathbb{F}_{p}\right)$-isomorphism on \mathbf{H}-fixed point sets for any $\mathbf{H} \subseteq \mathbf{G}$.

Since each $H_{k}\left(\left(E \mathscr{R}_{p}(\mathbf{G})\right)^{\mathbf{H}} ; \mathbb{Z}\right)$ is finitely generated (see [JMO, Proposition 1.1]), $f^{\mathbf{H}}$ is in fact an isomorphism in \mathbb{Z}_{p}^{\wedge}-homology for each \mathbf{H}, and therefore f is a $\mathbf{G}-\mathbb{Z}_{p}^{\wedge}$-homology isomorphism; by [JMO, A.13] this implies that $H_{\mathbf{G}}^{\star}\left(E \mathscr{R}_{p}(\mathbf{G}) ; F\right) \cong H_{\mathbf{G}}^{\star}(\mathbf{X} ; F)$ for any \mathbb{Z}_{p}^{\wedge}-module valued coefficient system.

Now one can filter \mathbf{X} by \mathbf{G}-skeleta $\mathbf{X}_{0} \subset \mathbf{X}_{1} \subset \cdots \subset \mathbf{X}_{i} \subset \cdots \subset \mathbf{X}_{k}=\mathbf{X}$ so that $\mathbf{X}_{i} / \mathbf{X}_{i-1}$ contains a single orbit type $\mathbf{G} / \mathbf{P}_{i}$. If N is the dimension of \mathbf{X}, by induction on the \mathbf{X}_{i} one then shows (as in the proof of [JMO, A.13]) that $H_{\mathbf{G}}^{s}(\mathbf{X} ; F)=0$ for $s>N$.

5. The homotopy equivalence

For a connected compact Lie group \mathbf{H}, consider the arithmetic square

(see [BK,VI, 8.1]), where $\mathbf{X}^{\wedge}=\Pi \mathbf{X}_{p}^{\wedge}$ is the product over all primes p of the p-completions and $\mathbf{X}_{\mathbb{Q}}$ is the \mathbb{Q}-localization.

Without loss of generality, $i_{\mathbb{Q}}$ is a fibration and (3) is a pullback diagram, so both horizontal maps have the same fiber \mathbf{F}. Since \mathbf{H} is compact and $\mathbf{B H}_{\mathbb{Q}}$, $\left(\mathbf{B H}^{\wedge}\right)_{\mathbb{Q}}$ are rational H-spaces, they are even-dimensional rational GEMs (that is, products of even-dimensional rational Eilenberg-MacLane spaces) and \mathbf{F} is an odd-dimensional rational GEM.

For any map $f: \mathbf{B G} \rightarrow \mathbf{B H}$ (where \mathbf{G} is a compact Lie group), (3) induces another pullback diagram

As for any compact Lie group, $H^{2 k-1}(\mathbf{B G} ; \mathbb{Q})=0$ for all $k \geq 1$ (cf. [Bo, Theorem 19.1]). Since $\mathbf{F} \simeq \Pi \mathbf{K}\left(\mathbb{Q}, 2 r_{i}-1\right)$ is an odd-dimensional rational GEM, $\operatorname{map}(\mathbf{B G}, \mathbf{F})$ is an odd-dimensional rational GEM, too, by a direct calculation of its homotopy groups. In particular, $\operatorname{map}(\mathbf{B G}, \mathbf{F})$ is connected, and \mathbb{F}_{p}-acyclic for any prime p.

Thus $\operatorname{map}(\mathbf{B G}, \mathbf{F})$ is the fiber of $\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{\mathbb{Q}}\right)_{c} \rightarrow \operatorname{map}\left(\mathbf{B G},\left(\mathbf{B H} \mathbf{H}^{\wedge}\right)_{\mathbb{Q}}\right)_{c}$, where c is the constant map. Because $\mathbf{B H}_{\mathbb{Q}}$ is an H-space and $i_{\mathbb{Q}}$ is an H map, this is in fact the fiber for all components and thus for the two horizontal maps in (4).

Therefore, applying the q-completion functor to the top fibration sequence in the diagram

$$
\operatorname{map}(\mathbf{B G}, \mathbf{F}) \rightarrow \operatorname{map}(\mathbf{B G}, \mathbf{B H})_{f} \rightarrow \operatorname{map}\left(\mathbf{B G}, \mathbf{B} \mathbf{H}^{\wedge}\right)_{i \circ f},
$$

we get another fibration (by [BK, II, 5.2]):

$$
\operatorname{map}(\mathbf{B G}, \mathbf{F})_{q}^{\wedge} \rightarrow\left(\operatorname{map}(\mathbf{B G}, \mathbf{B H})_{f}\right)_{q}^{\wedge} \xrightarrow{g}\left(\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}^{\wedge}\right)_{i \circ f}\right)_{q}^{\wedge},
$$

with g a homotopy equivalence (since the fiber is contractible).
Finally, Lemma 4.1 implies that $\left(\boldsymbol{m a p}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}\right)_{q}^{\wedge}$ is homotopy equivalent to $\left(\operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}\right)$ for $q=p$, and is contractible for $q \neq p$, so we get the desired homotopy equivalence

$$
\left(\operatorname{map}(\mathbf{B G}, \mathbf{B H})_{f}\right)_{p}^{\wedge} \xlongequal{\cong} \operatorname{map}\left(\mathbf{B G}, \mathbf{B H}_{p}^{\wedge}\right)_{i \circ f}
$$

This completes the proof of Theorem 1.1.

References

$[\mathrm{Bo}] \rightarrow \mathrm{A}$. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.
[B1] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133-150.
[B2] -, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989), 54-104.
[BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
[CE] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956.
[DZ] W. Dwyer and A. Zabrodski, Maps between classifying spaces, Algebraic Topology (Barcelona 1986), Lecture Notes in Math., vol. 1298, Springer-Verlag, Berlin and New York, 1989, pp. 106-1 19.
[Ha] \rightarrow D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391.
[HS] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, Berlin and New York, 1971.
[I] S. Illman, Equivariant singular homology and cohomology. I, Mem. Amer. Math. Soc. 156 (1975).
[JMO] S. Jackowski, J. E. McClure, and R. Oliver, Homotopy classification of self-maps of BG via G-actions, Aarhus Universitet Preprint Series, vol. 25, 1990.
[N1] D. Notbohm, Maps between classifying spaces, Math Z. 207 (1991), 229-257.
[N2] , Maps between classifying spaces and applications, Math. Gott. Heft 20 (1991).
[NS] D. Notbohm and L. Smith, Fake Lie groups and maximal tori. I, II, Math. Ann. 288 (1990), 637-661, 663-673.

Department of Mathematics, Northwestern University, Evanston, Illinois 60208
Current address, D. Blanc: Department of Mathematics, The Hebrew University, 91904 Jerusalem, Israel

Current address, D. Notbohm: SFB 170, Mathematisches Institut, 3400 Göttingen, Germany

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Received by the editors July 20, 1990 and, in revised form, April 30, 1991.
 1980 Mathematics Subject Classification (1985 Revision). Primary 55R35, 55P60; Secondary 55P35.

 Key words and phrases. Mapping space, Lie group, completion.

