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OPERATIONS ON RESOLUTIONS 
AND THE REVERSE ADAMS SPECTRAL SEQUENCE 

DAVID BLANC 

ABSTRACT. We describe certain operations on resolutions in abelian categories, 
and apply them to calculate part of a reverse Adams spectral sequence, going 
"from homotopy to homology", for the space K(Z/2, n). This calculation is 
then used to deduce that there is no space whose homotopy groups are the 
reduction mod 2 of 7l*Sr. 

As another application of the operations we give a short proof of T. Y. Lin's 
theorem on the infinite projective dimension of all nonfree a-modules. 

1. INTRODUCTION 

In [B1] we described a Hurewicz spectral sequence going "from homotopy 
to homology": that is, for any connected space X and abelian group G, a 
spectral sequence converging to H* (X; G), whose E2-term is isomorphic to 
certain derived functors of the H-algebra of X-i.e., of the graded group 7rzX, 
together with the action of the primary homotopy operations on it (cf. [B1, 
?3.1.1] or [S, ?4]). 

To illustrate the operation of the spectral sequence, we here calculate the E2- 
term and differentials for X = K(Z/2, n). This particular case (which may be 
termed the reverse Adams spectral sequence) has some interest in its own right; 
for example, it may be be used to deduce the following 

Proposition 4.3.6. There is no map f: SI -- X which induces reduction mod 2 
on homotopy groups-in other words, there is no space X such that 7EcX ,v 

7TSr 0&2/2 as HI-algebras (for r > 6). 

Our main tool in this caculation are certain (noncanonical) operations on 
resolutions in abelian categories, defined in ?2. These are used to calculate part 
of the E2-term for the spectral sequence (in ?3), and turn out to be related in 
our case to the action of the Steenrod algebra (?4.3). We also show how d2 may 
be expressed in terms of Toda brackets (Proposition 4.2.4), actually calculate 
this differential in a certain range (Proposition 4.2.5), and obtain the E??-term 
in this range (Proposition 4.3.5). 
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198 DAVID BLANC 

As another application of these operations, in ?5 we give a short proof of 
T. Y. Lin's theorem [LI, L2], which states that any ur-module (of finite type) 
which is not free has infinite projective dimension. 

2. OPERATIONS ON RESOLUTIONS 

In this section we describe some general facts about resolutions of modules 
over a ring, showing how they may be constructed so as to support the action 
of a certain module of operators (depending on the ring). 

2.1. Ingredients needed. Let R be a ring with unit, and consider the category of 
(left) R-modules. Given an R-module X, we wish to construct a free resolution 
P. of X. 

2.1.1. A presentation for X. For any set S, let R(S) denote the free R-module 
generated by S. In order to construct a (noncanonical) resolution in the usual 
way, we start with a presentation for X: that is, choose a set of generators SO 
for X, let Po = R(So), (with the obvious augmentation 9o: Po -* X); choose 
a set S1 of generators for ZO = Ker(aO), and let P1 = R(S1), with the obvious 
91: P1 -+ Po. 

By repeated choices of this kind one could construct a full resolution P. -* X. 
However, note that X is in fact determined by the sets SO and S, C R(So). 
Thus, one should be able to construct a resolution out of SO, S, C R(So), and 
"general information" about the category of R-modules. 

2.1.2. The module of relations. Write Bo for R considered as a left R-module, 
and T for its underlying set. Let B1 = R(T). There is an obvious evaluation 
map ev: B1 -* Bo; we call K = Ker(ev) the module of relations for R. 

2.2. Constructing the resolution. Given sets So and S1 C R(So), and the R- 
module K as above, one can construct a resolution P. -* X, along with a 
preferred basis Sn for each free R-module Pn , by induction on n: 

2.2.1. The induction step. We assume we are given im : Sm C R(Sm_ 1) for each 
1 < m < n, where Pm - R(Sm) and am is induced by im. The elements of 
Sn+I will be generated by a certain action of K (?2.1.2) on Sn . 

2.2.2. The action of K. This action (not everywhere defined) may be described 
as follows: given sums x = x1 + -+xk, with xi ESn, and Y=2yl +*+Ym, 
with Yj E K, the element y(x) E R(Sn) is defined whenever there are elements 
a1, ..., am in Sn-I such that each xi has the form xi = Em7I rij[aj], with 

rij E R, and elements si E R such that each yj = Ek si[rij]. Then 

y(x) = (YI + + Ym)(X1 + + Xk)- 

For example, if x = r[a], (where x E R, a E Sn1), and y = s[r], (so 
sr = O in R), then y(x) = s[r[a]] E R(Sn). 

2.2.3. The image of the action. Note that the subset of R(Sn) comprising all 
elements of the form y(x), for x = xl + + xk and y = Y1 + +Ym as 
above, is just the submodule Zn = Ker(9n) C Pn; so if we choose Sn+1 to be a 
set of R-module generators for this submodule, we may set Pn+i = R(Sn+i) to 
complete the induction step. 
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2.3. The example of 7r.-modules. We would like to consider the 2-primary sta- 
ble homotopy ring ir = 7E3 (SO; 2). However, in order to get a complete de- 
scription we consider instead its algebraic 6-skeleton (cf. [B2, ?4.2])-that is, 
R = gf (6) is the augmented graded Z-algebra generated by ? and v (in dimen- 
sion 1 and 3 resp.), subject to the relations 26 = 0, 4v = 13, IV = VU = 0, 
and 2v2 = -O. 

2.3.1. Convention on notation. It is convenient to use a a single lower case Latin 
letter to represent the generators of R(T) (which are themselves elements of T, 
the underlying set of R. We shall generally use the letter corresponding to the 
usual Greek letter, or to a number, and let tildes represent their powers-viz.: 

t = [2], h = [?I], h = [62], n = [v], n = [v2],.... 

2.3.2. A description of K. Even for this ring the module of relations K (?2.1.2) 
is quite large; however, for the application we have in mind we need only con- 
sider the following elements: 7[2], 2[Q], v[Q], v2[2]; also, the elements arising 
from the relation 4v =13 

A - (2v)[2] (-2)[1], B -ef 2[2v] (-2)[ ], C - (2v)[2] -742]; 

and those arising from the commutativity of R: 

df def 2[V] D - 2[v] - v[2], E - v[v2] + 

(There are also relations among the elements of K-e.g., B - A = 2D - 4[v] + 
2[2v].) 

2.3.3. A graphic representation. It will be useful to have a graphic representation 
for elements y = Ek si[ri] E K, in the form of diagrams as in Figure 1, 
consisting of: 

* an initial vertex (labelled y); 
* for each i, a vertex [ri] and an edge from y to it, labelled si; 
* a final vertex (labeled by the operand of y), with an edge labeled ri 

from the vertex [ri] to it. 

FA 2~~~~~ 2v eLn 

| 2V | 12 2 |-5 2 _1 | 

-~~* ~hi- o * t - o. n .0 

(a) (b) (c) (d) (e) 

FIGURE 1. Diagrams for some elements of K 
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3. CALCULATION FOR X = K(Z/2, r) 

We now wish to apply the construction described in ?2 to the Hurewicz spec- 
tral sequence of [Bi] for X = K(Z/2, r) (r > 8), in order to calculate the 
E2-term in a certain range. 

3.1. Resolving Z/2. Working in a stable "band of dependence" (cf. ?4.1 below), 
we take the ring R to be If (6) (see ?2.3 above), with the R-module X = 7tzX 
equal to Z/2 concentrated in degree 0. 

In this case we may use the notation of ?2.3 to produce a resolution P. of 
X = Z/2 as prescribed in ?2-describing the bases S, C R(S1-,) for P, = 
R(Sn) in terms of the action of K (?2.2.2), where the relevant elements of K 
were given in ?2.3.2. 

3.1.1. The resolution. We start with a presentation of X (as in ?2.1.1): S0 = 
{i}, where i (in degree 0) represents the generator of X, and 

SI = {2[i], 1[i], v[i]} c R(So) 

(cf. ?2.3.1). 
The rest of the resolution is produced by the action of K-i.e., the operations 

of ?2.3.2 just described-on this presentation. We use the graphic descriptions 
of K as in Figure 1 above to describe the resolution in Figure 2, with the pattern 
extended indefinitely by the following 

3.1.2. Convention. The set of vertices mapping into a given vertex x, in the 
recursively defined extension of Figure 2, is to be the same as the set of vertices 
mapping into that vertex X in Figure 2 itself having the same label, and with 
the same vertices mapping out, as x itself. 

This means essentially that every vertex is to have the same set of vertices 
mapping into it as the circled vertex with the same label. 

3.1.3. Note. Note that all vertices with the same name have the same set of 
arrows mapping in. For example, any vertex marked t (or t') will have arrows 
, -v, 2v and v2 mapping into it. 

However, the sets of vertices mapping into a given vertex are of two types, 
(distinguished by a prime (')): for example, the vertices mapping into plain t 
will be h', D, A, and h-as opposed to h', D, C, and h mapping into t'. 

3.1.4. Dimensions and degrees. The vertex i represents a free R-module on 
one generator in degree 0, in homological dimension 0 (i.e., i E SO). The 
homological dimension of every other generator is determined by the length of 
any (directed) path from it to i , while its degree is equal to the sum of the 
degrees of the elements labeling the edges of such a path. 

For example, the circled A is in homological dimension 2, and in degree 
3 = 12vl + 121 = 1?121 + 1?11 

Thus the graph in Figure 2 (suitably continued in all directions) describes the 
sequence of graded sets {Sn }II ?, where we collect all generators of homological 
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R] F- 2 2v ' 2 ' 2v ' 

2 2 12 

Cr 2v /,,2 , Q 1~~~~2 2 

A3 E - c 2v B 

21 1,,2 M 2 2 ,2E 

Ri 5 Q 
tu21 

2 * 
51 

21 G 

ED5 2 

1/~~~2 

2 2 ?2 

2 a 2 2 2fi 2 

B'GURE 2. A 7 grpi ecito fterslto2 2 
2 ~~~2 ,~~2 2vn1 

L~~~~~~i -v~~~~~~~~ 

2 2~~~~~~~~~~~~~~ 

2 2p vl 2v~72 

FD 2"~~~~~~~ 

v~~~~~~~~2 

Fhj-tl 2~~A 12 

FIGRE . Agrahi decritio o th reoluio 
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degree n in S,n. Morever, the edges of the graph provide us with maps in 
Sn -- R(Sn-), so that we actually get a chain complex of free graded R- 
modules, which we denote by P* . 

3.1.5 Proposition. The chain complex P*, with the obvious augmentation Po 
= R(i) -+ X, constitutes a free R-module resolution of X. 

Proof. The chain complex P. -* X is clearly acyclic; we must show each 
Sn+i C R(Sn) (described by Figure 2 as in ?3.1.4) constitutes a set of R-module 
generators for Zn = ker{an: R(Sn) - R(Sni_)} (cf. ?2.2.3). 

If Y = Ej j ai[bi,j[cj]] E R(Sn) C R(R(Sn-1)), then O9n(y) = Ej,j aibi,j[cj] 
E R(Sn-1),O sO An(Y) =O X for each i, E,jj aibi,j = O. 

Thus for each generator cj E Sn -pi.e., for each vertex in Figure 2 which is 
n - 1 edges away from i-we consider all edges bi, j mapping into c;, and we 
must check what relations E j a1bi, j 0 O hold-i.e., we want a set of elements 
Ei j ai[b ,j] E K generating all such relations. (Of course, care must be taken 
with vertices which map not only into cj!) 

This may be verified locally, at each of the 13 vertex configurations appearing 
in Figure 2. In fact, it is not hard to see that there are only 9 types of essentially 
different vertices: t, h, n, h, A, B, C, D, and E-cf. ?3.1.3. 

For example, if the vertex Cj E Sn-I is of type A (mapping into x and y, 
say), then it has the following vertices in Sn mapping in 

D 2V**F 22z 

v 2; 

* 22 

X~ *g* * 0* 0gi***t*F 

In K, we find R-module generators for the submodule of relations involving 
2, , and v are: 

1[2], (v )[2], 2[q], V [?I], t1[Zo 

D = 2[v] - v[2], A = (i2)[?,] + (2v)[2] 

(omitting (4v)[2] = 2A, 4[v] + (12)[1] = 2D +A, 8[v] = 4D + 2A, (2v)[v] = 
vD + (v2)[2] ). Taking into account the neighboring vertices, we thus obtain 
the following (circled) vertices in Sn+j -which are indeed included in Figure 2: 
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j2 
F, 

12 

2 2 2 

2 

:2v :2v:7 

Similarly for the other 8 types of vertices. E 
3.1.6. An alternative description. If we merely wish to describe the sequence of 
sets enerators for the resolution-i.e., {Sn, without the differentials, or 
"attaching maps" in: Sn -- R(Sni), a simpler description is available: 

Let M be the free bigraded associative noncommutative Z-algebra generated 
by t, h,, n n, A, B, C, D, E in bidegrees ItI = (O, 1), IhI = (1, 1), 
Inl = (3, 1), lh= (6, 1), IAI = IBI = ICI = IDI = (3, 2), and IEI = (9, 2). 

We define recursively a set L of monomials in M by 
(a) h,t,neL 
(b) zyx E L if zy E L and yx E {ht, ht, th, nh, hh, Dh, Eh, hn, An, 

Cn, th, Bh, nA, hA, AA, EA, BB, DB, tB, hC, CC, hD, hD, AD, 
CD, tE, BE}, where z is possibly empty. 

Then L is isomorphic to the bigraded set S.. of generators for P. (where 
the homological degree is second). 

(We are simply listing all the vertices in the graphical description of P. above, 
with the convention that the initial vertex in each square "multiplies on the 
right" (= acts on) the terminal vertex, and i is omitted.) 

A list of the elements of Lk, * for k < 6 is given in Table 1. 

4. APPLICATION TO THE HUREWICZ SPECTRAL SEQUENCE 

We now apply the calculation of ?3 to the Hurewicz spectral sequence. 
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00 
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4.1. The bands of dependence. In particular, we wish to make use of the "bands 
of dependence" results of [B2, ?4]) to show why the simplified stable calculation 
of ?3.1 is relevant even to the unstable spectral sequence: 

Recall that the homotopy groups of any pointed connected space X, together 
with the action of the primary homotopy operations on them (cf. [W, Chapter 
X]), form a H-algebra; and that for any abelian group G, we have a Hurewicz 
spectral sequence [B 1] converging to A* (X; G), with E2-term isomorphic to 
the derived functors of the indecomposables functor evaluated on 7r.X (cf. [B 1, 
?3.3]): 

En2t (Ln(Qt 09 G))(7r*X) 

Moreover, if X is (r - 1)-connected (r > 2), by [B2, Proposition 4.3] a 
certain band in the E2-term depends only on the algebraic k-skeleton of 7r*X: 
thus, for n > 2(t - k) + 1, we find that En2 t is determined by {7rX}k_ and 
the action of the primary homotopy operations in this range. 

4.1.1. The spectral sequence for K(Z/2, r) . This implies that if X = K(Z/2, r) 
and r > 8, we have En2 t- TorR t(Z/2, G) for n > 2(t - (r + 6)) + 1 in this 
spectral sequence, (where R = r(6), as in ?2.3). 

Note that this implies more than the obvious fact that in the stable range, 
the nonabelian derived functors on the category of fl-algebras (here, the inde- 
composables functor Q of [B 1, ?2.2.1]) are isomorphic to the corresponding 
ordinary derived functors in the category of nr-modules (here, Tor). 

4.1.2. Calculation of the E2-term. Since the resolution of Proposition 3.1.5 is 
readily seen to be a minimal one, it actually provides a explicit description of 
the E2-term in that band: 

(i) For G = Z/2, the bigraded set 5** of ?3.1.6 serves as a Z/2-vector 
space basis for the E2-term in the band in question. 

(ii) For G = Z, a basis for the E2-term in the band may be obtained from 
S** by omitting all monomials ending (on the right) in t, B, or D; 
all remaining monomials generate Z/2 summands. 

4.2. The differentials. We now recall from [S, ?2] the construction of the sim- 
plicial space V. = V. (X), used in [B 1, ?2.1] to construct the Hurewicz spectral 
sequence X (see also [Bi, ?6.2]). 

4.2.1. The cotripleY. V. is constructed by means of a cotriple % on the 
category T9 of pointed connected spaces, which assigns to each X the space 

00 00 

7(X) = V V Sk U V V ek+l 

k=1 Homy; (Sk ,X) k=1 Hom; (ek+1 ,X) 

where the (k + 1)-disc indexed by F : ek+l I X is attached to the k-sphere 
indexed by f = FIaek+1 (identifying Oek+l with Sk). 

The simplicial space V. is then defined by setting Vn = %rn+ IX, with the 
usual face and degeneracy maps induced by the obvious counit and comultipli- 
cation (cf. [G, Appendix, ?3]). 
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4.2.2. The spectral sequence. By applying the singular chains functor we obtain 
a simplicial chain complex 5.V., and taking alternating sums of the simplicial 
face maps yields a double chain complex. The spectral sequence is the usual 
one of a bicomplex, with En2 t HnhHt(V.; G), where Hh is the homology in 
the external (simplicial) direction. 

4.2.3. Notation for V.. A typical k-sphere in Vn may be then be indexed by 
a sequence of n + 1 maps, Skf. f , with each f: Wi -- Wi_ for some 

finite wedge of spheres (and disks) Wi C Vi (with Wi- I = X and Wn = Sk). 
Similarly for disks. 

Note also that each element (y) E En2,k of the Hurewicz spectral sequence 
for X, represented by a generator y of Pn, k as in ?2.3, may be represented by 
a generator of fIk(Sk. ; G) as above by choosing representatives f1 for 
the homotopy classes indexing y. (See (1) in proof of Proposition 4.2.5 below 
for an example.) 

We let [Sk] denote a singular k-simplex representing the generator of 
fk(Sk; Z), for any sphere Sk. Similarly, for any disk, let [ek+l] represent 
a generator of fk+l (ek+l , ek+ I; z). 

4.2.4. More explicit notation. We can make this notation more explicit (though 
more cumbersome) by expressing the maps f: Wi -- Wi1 as a sum of maps 
from the summands of Wi. 

For example, the element (A) E E22 r+3 (cf. ?4.1.2 and Figure 1(a) of ?2.3.1) 
is represented by 

[Sr+3 
I {2}, ( 2)l+(2v)12 

where W1 = Sl4, v 5? 2' (indexed by the entries in the vertical array), and 1k 

(k = 1, 2) denotes the inclusion of the kth sphere summand in WI. 

4.2.5 Proposition. In the Hurewicz spectral sequence for any X and G, the 
differential d2[Sk . ] (k > 2) may be represented by a sum 

n-I 

E [fo, I... fi-2, ( fi-I, fi, fi+l ), Efi+2, ..., Efn] ' 
i=l 

where (fi-I, f, f1+1) denotes some element in the Toda bracket. 

Proof. Since P. is acyclic, each composition f]i o f is nullhomotopic, so we 
may choose nullhomotopies Fi: fi-1 o f *. Let Cf: Vi eki+l -' CW denote 
the cone on a map f: Vi Ski - W, where we identify CSk with ek+l . 

A straightforward calculation (as in [B1, ?6.3]) then shows that d2[Sk i. 
may be represented by 

Z 
(-1)i+j ([ek+ fI ofi.Cfn 

O<j<i-1<n 

-f[eo, , Fj, Cf+l ..., C(fi of ) Cfn]) 
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n-I 

+~ ([e k1 e + 

E ([= fo,- fi-2, fi-fI.Fi+, Cfi+2 f,---, fi-2, FioCfi+l, Cfi+2,--- 

The first sum represents vanishing Toda brackets by [T, Proposition 1.2], while 
the second sum yields the Toda brackets we require. o 

We can use this proposition to calculate all d2-differentials inside the "band 
of dependence" of ?4.1.1: 

4.2.6 Proposition. In the Hurewicz spectral sequence for X = K(Z/2, r) (r > 8) 
with coefficients in Z or Z/2, the differential d2 may be evaluated on any 
allowable word w E Ln,t (cf ?4.1.2) for n > 2(t - r) - 6, by adding the results 
of all applicable rules in the following list: 

(i) [y(nhth)x] " 4 [y(tn)x], 

(ii) [(hn[t)x] A ] [(tn)x], (iii) [y(thnh)x] J 1 [y(tn)x] y 
(iv) [y(thnh)x] @4 )[y(ty)x] # 
(v) [(hthn)x] < 4 [(tn)x], 

2 
[yCx] if y = y0 and x :A tx', C 

( ii) [y(h t) 2 { [A] if Y =Yt y'n, and x A hx', B , 
~[yB] if y = y't,~ y'D and x 54 hx', B , 

(viii) [(hthD)x] " 4 [(An + tnt)x], 
(ix) [y(Dhth)] @ 4 [y(nA)]., 
where x, x', y, y' are any allowable words (including the empty word 0), 
subject to the stated restrictions. 

4.2.7 Examples. 
(a) d2[hn(ht)2] = [htnt] + [thht] + [hnA] by rules (i), (ii) and (vii). 
(b) d2[ththC] = 0 since none of the rules apply. 
(c) d2[(th)k+2n] - [(th)kCn] since only rule (vi) applies. 
(d) d2[hthDhth] = [Anhth] + [tntht] + [hthnA] by rules (viii) and (ix). 

4.2.8. Proof of Proposition 4.2.6. The calculation is straightforward, using Prop- 
osition 4.2.5 (which clearly implies the additivity). Since any word in the band 
in question has at most one of n, A, B, C, or D, the possible words are quite 
limited, and the only homotopy-theoretic information needed are the following 
Toda brackets: 

(1) (2, t, 2) {t12}1 (q, 2,t ) = {+2v}, V1 ,) = {V2} 

(cf. [T, Propositions 3.7, 1.4 and 5.12] respectively). We illustrate this by two 
examples: 

(a) d2[thth] = [A] (rule (v)): Note that [thth] is represented by [Sir+22] 
(where we use stable homotopy classes to denote their representatives), and 

d2[sr+2 - Sr+3 'S r+3 1 [sr+3 [i, 2, 12,,1 (i, 2,?), 2, ] +[i, (2, , ,2) 1J + i,2,(n1,2,)1) 
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(The element [SI+32 2] vanishes in El r+3 since it is indexed by a map 
Sr+2 -- K(Z/2, r) .) 

By evaluating the horizontal differential on [S+3,1 ,.] E E3 ,r+3 (cf. [B1, 
?6.2.3]), we see that [S+2 12 is homologous to [Sr+3 21; and finally [S r+Q321 
+ [2 72v] is homologous to 

[Sr+3 I7 
1 {2} 2 (2)1+(2v)12 

which is precisely [A] in the notation of ?4.2.4 above. 

(b) d2[t(ht)k+2] = [t(ht)kB] for k > 0 (rule (vii)): [t(ht)kB] is represented 
by the diagram 

2 . 2 2 

412 2v 12 2v k2 2vL J 

2~~~~~~~~~ 2- 
2 

-> -- ud**- 3 --od-8* = [ 

That is (in the notation of ?4.2.4) by 

[Sr+k+4 2]t t 

[ 7} { (2v)tl+(1 2 )12} (12)1 1+ 212 } - {(2v)il + (v12)i2 (172)1j+212 

which may be shown as above to be homologous to 

[sr+k+4 1 Sr+k+4 [Sr+k+4 
(2) Li,2,,2,... ,2, , 21 + L ,2,7,2,...,2,2v,2 i, 2,1 ,2,... 172,17,21 

+... + i,.22v,2 ?,2,i,2] + [, q, 2,2,..., ,2, ,21 

(where the indices give all possible paths from the terminal (leftmost) B to i 
in the diagram above). 

In (2), replace the last summand by the homologous [S.+k+4 221 

this is precisely the result of applying Proposition 4.2.5 to [t(ht)k+2], using (1) 
above. 

The remaining rules are shown similarly, and the only labor involved is in 
translating the results of applying Proposition 4.2.5 into a homologous allowable 
word (as in (a) above). o 

4.3. The Steenrod action. We can now calculate the El-term of the spectral 
sequence, in a certain range, and indicate how it is related to the Steenrod 
action. 

4.3.1. The cohomology spectral sequence. Clearly the Hurewicz spectral 
sequence can be dualized at the E?-level, that is, as a double complex (see 
?4.2.2) to yield a spectral sequence converging to fI* (X; G), for any abelian 
group G. Taking X = K(Z/2, r) and G = Z/2, the E2-term we obtain is 
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the vector space dual of that of ?4.1.2 above (in the band in question), and the 
differentials are dual to those of ?4.2. 

Since the spectral sequence (in the stable range) has as its E2-term the Z/2- 
cohomology of the stable homotopy ring, and it converges to the Steenrod alge- 
bra, it deserves to be called the reverse Adams spectral sequence. 

4.3.2. Multiplicative structure. As noted in [B1, ?7.2], reverse Adams spectral 
sequences for spectra have long been known (and have been calculated in a range 
by Brayton Gray and Weh-Hsiung Lin, among others). In particular, the stable 
version of the cohomology spectral sequence, with E * -Ext a (Z/2 Z/2), 
has as usual an algebra structure (cf. [A, ?4] or [M, ?3]). This agrees with the 
"product structure" defined by the operations (as in ?3.1.6 above), because both 
may be described in terms of Yoneda products (cf. [M, ?2]). 

On the other hand, the unstable cohomology spectral sequence has a different 
product, coming from the diagonal of X. The operations we use allow us to 
represent the stable multiplication in the unstable spectral sequence (although 
in the example at hand our calculations are in the stable range, so we could have 
considered the stable spectral sequence only). 

4.3.3. Extending the resolution. To calculate fjr+i(K(z/2, r); Z/2) for 0 < i < 
9, (now with r > 9), we must slightly extend the resolution of ?3.1.1 to account 
for the new generator a E XT7 subject to the relations (8u)[2], F d 2[,] - U[2]. 

We also have e E X8, (or e, Pi E 7r+8Sr if r = 8), but since e E (ti, 2, V2) 
and i E (v; t , v), they are killed by d2 . Thus we have 

4.3.4 Proposition. The EOO-term for the reverse Adams spectral sequence for 
K(Z/2, r) (r > 9), in degrees < r + 9, may be identified (modulo higher 
filtrations) with the elements of fI*(K(Z/2, r); Z/2) as in Table 2. 

Proof. Once we have applied d2 from Proposition 4.2.5 to obtain E3, a vector- 
space dimension count shows this is in fact Eoo in the range in question. To 
identify the Steenrod structure, it is enough to identify the algebra generators 
t, h, n and D, (using the stable multiplicative structure of ?4.3.2)-which 
may be done by comparison with other spaces such as K(Z, r), Sr U . er+l, 
sr Uv er+l . (It is unclear which element survives in El 9, though the group is 
evidently Z/2.) o 

4.3.5. Remark on the Steenrod structure. We have chosen to use cohomology, 
and to write the elements of fI*(K(z/2, r); Z/2) in terms of Sq1, Sq2, and 
Sq4 in order to underline the relation between the Steenrod action and the 
operators we have used to describe our resolution (and thus the E2-term ). 

Note that the relationship between the Steenrod action and our operators 
holds also unstably, and thus does not depend on the (stable) multiplicative 
structure of ?4.3.2; in fact there are obvious unstable analogues in a certain 
range). Unfortunately, this is not susceptible of any obvious generalization to 
a full ir-resolution of Z/2, even stably. 
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We can use Proposition 4.2.4 to obtain nonrealizability results for H1-algebras, 
e.g.: 

4.3.6 Proposition. There is no space X such that 7rcX _ 7r.Sr X Z/2 as LI- 
algebras (for r > 6). 

Proof. The Il-algebra M = 7r*Sr? Z/2 has a presentation So = {i}, SI = {2[i]} 
(cf. ?3.1.1). In the stable band (n > 2(t - r) + 7) the generators of a minimal 
resolution of M consist only of the words t(ht)khe (k > 0, e = 0, 1), in the 
notation of ?3.1.6 and ?4.1.2. 

If a space X with 7r*X M existed, the fundamental class in Hr(X; Z/2) 
Z/2 would represents a map f: X -- K(Z/2, r) inducing an epimorphism of 
the E2-term s in the cohomology spectral sequences . 

Since there are no possible differentials on the band in question (for X), 
and f* commutes with the squares as well as with our operations in E? of 
K(Z/2, r), we can calculate part of the Steenrod action on H*(X; Z/2) -E: 

* Hr(X; Z/2) = Z/2, generated by [i]; 
* ftr+2(X; Z/2) = O; 
* fjr+6(X; Z/2) = Z/2, generated by [thth] = Sq5' I[i]. 

Since Sq2[i] = 0, also Sq5" [i] = Sq3"1'2 = 0, so that Hf*(X; Z/2) cannot 
even exist as an V-module. o 

4.3.7. Note. A similar (unstable) calculation for ft* (K(Z/2, r); Z/2) shows 
that the proposition holds in fact for r > 3. The analogous result for odd 
primes has been proven in [B4, Theorem 8.1]. 

5. PROJECTIVE DIMENSION OF 7r-MODULES 

As another application of the operations described in ?2, we give a short 
proof of T. Y. Lin's result on the projective dimension of a-modules, which 
we restate as follows: 

5.1 Theorem (Lin, [LI, Theorem 1]): If M is a n-module offinite type which 
is not free, then M has infinite projective dimension. 

Proof. First note that any projective n-module is necessarily free (see [B3, 
Lemma 4.1] or [L2, Corollary 5.6]). Moreover, if M is a a-module (of fi- 
nite type) which is not free, this will also be true after localizing at p, for some 
prime p, so let R = nu(p) . It suffices to show that any map f: P -* M from a 
free R-module onto one which is not free supports some nontrivial operation 
(in the sense of ?2.2)-which means in particular that ker(f) is not free. 

Let s > 0 be the first degree in which M is not free, and write 

L M 

P = 3 R(ai) D (e3R(bj) E (higher degrees) 
i=1 j=l 

where jail < s and lbjb = s. 
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We may assume P is minimal among free modules mapping onto M, so 
ker(f) is (s - 1)-connected. Let K = ker(f)s 54 0, where 

m n 
K eT Z(p) (ck) eD @(Z/pri) (di). 

k=1 1=1 

(a) If n :? 0, let al E R2p-3 be the first element of order p in R; then each 
cyclic generator d1 supports an infinite "spike" of operations 

p[al[... [p[a1[pr1[d]]]] ... ]] 
(analogous to sequence of elements (th)kte just above the vanishing line in 
Table 1). This shows Tor4(M, Z/p) has nonzero elements in each homological 
dimension. 

(b) Next assume n = 0 and K (D3m Z(p)(ck) . Each Ck E Ps has the form 

L M 

Ck =E i, k (ai) + E nj, k (bj) 
i=1 j=1 

where nj,k E Ro = Z(p) (not all zero) and 4i,k E R>1. 
By the minimality of P we may assume plnj,k for all j. Since R>1 is all 

p-torsion, there is an r > 1 such that pr(4, k) = 0 for all i. Therefore, if 
a E R is an element of order pr+l, the fact that 

(P ra)4i,k 
= 0 = (pr a)fnj k 

shows that pr a acts on Ck (in the sense of ?2.2.2), so ker(f) m , R(ck)- 
and thus is not free. 

But then K supports some operation of least degree (necessarily positive), 
which yields a nontrivial element in TorR(M, Z/p). o 

This completes the induction step, and shows that Tor4(M, Z/p) actually 
has nontrivial elements in each homological dimension-so that M has infinite 
projective dimension. 

5.2. An unstable version. An unstable version of this theorem has been proved 
in [B3, Theorem 4.3]. This states that any abelian fl-algebra has projective 
dimension 0, 1, or oo, and if it is simply connected of finite type, it has 
projective dimension 0 or ox. 

The proof there also shows what changes have to be made in the stable case 
if the x-module M is not assumed to be of finite type. 

REFERENCES 

[A] J. F. Adams, On the structure and applications of the Steenrod algebra, Comment Math. Helv. 
32 (1958), 180-214. 

[BI] D. Blanc, A Hurewicz spectral sequence for homology, Trans. Amer. Math. Soc. 318 (1990), 
335-354. 

[B2] , Derivedfunctors of graded algebras, J. Pure Appl. Algebra 64 (1990), 239-262. 



OPERATIONS ON RESOLUTIONS 213 

[B3] , Abelian H-algebras and their projective dimension, Algebraic Topology-Oaxtepec 
1991 (M. C. Tangora, ed.), Contemp. Math., vol. 146, Amer. Math. Soc., Providence, R.I., 
1993, pp. 39-48. 

[B4] .., Higher homotopy operations and the realizability of homotopy groups, Proc. London 
Math. Soc. (to appear). 

[G] R. Godement, Topologie algebrique et theorie des faisceaux, Actualites Sci. Indust. 1252, Publ. 
Inst. Math. Univ. Strasbourg XIII, Hermann, Paris, 1964. 

[LI] T. Y. Lin, Homological algebra of stable homotopy ring X* of spheres, Pacific J. Math. 38 
(1971), 117-142. 

[L2] , Homological dimensions of stable homotopy modules and their geometric characteriza- 
tions, Trans. Amer. Math. Soc. 172 (1972), 473-490. 

[M] R. M. F. Moss, On the composition pairing of Adams spectral sequences, Proc. London Math. 
Soc. (3) 18 (1968), 179-192. 

[T] H. Toda, Composition methods in the homotopy groups of spheres, Princeton Univ. Press, 
Princeton, N. J., 1962. 

[S] C. Stover, A Van Kampen spectral sequence for higher homotopy groups, Topology 29 (1990), 
9-26. 

[W] G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math. No. 61, Springer- 
Verlag, Berlin and New York, 1971. 

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60208 
Current address: Department of Mathematics and Computer Science, Haifa University, Haifa, 

Israel 
E-mail address: blancOmathcs2 . haif a. ac . il 


	Article Contents
	p.197
	p.198
	p.199
	p.200
	p.201
	p.202
	p.203
	p.204
	p.205
	p.206
	p.207
	p.208
	p.209
	p.210
	p.211
	p.212
	p.213

	Issue Table of Contents
	Transactions of the American Mathematical Society, Vol. 342, No. 1, Mar., 1994
	Front Matter
	Weights for Classical Groups [pp.1-42]
	Second Order Differentiability of Convex Functions in Banach Spaces [pp.43-81]
	Separation and Coding [pp.83-106]
	Indecomposable Generalized Cohen-Macaulay Modules [pp.107-136]
	Growth Functions for Some Nonautomatic Baumslag-Solitar Groups [pp.137-154]
	On the Generalized Benjamin-Ono Equation [pp.155-172]
	Vaught's Conjecture for Varieties [pp.173-196]
	Operations on Resolutions and the Reverse Adams Spectral Sequence [pp.197-213]
	Noncharacteristic Embeddings of the n-Dimensional Torus in the (n + 2)-Dimensional Torus [pp.215-240]
	The H Corona Problem and  in Weakly Pseudoconvex Domains [pp.241-255]
	Homology and Cohomology of Π-Algebras [pp.257-273]
	Varieties of Commutative Semigroups [pp.275-306]
	Wavelets of Multiplicity r [pp.307-324]
	Harmonic Diffeomorphisms of the Hyperbolic Plane [pp.325-342]
	Smooth Extensions for Finite CW Complexes [pp.343-358]
	Best Uniform Approximation by Solutions of Elliptic Differential Equations [pp.359-374]
	A Cameron-Martin Type Quasi-Invariance Theorem for Pinned Brownian Motion on a Compact Riemannian Manifold [pp.375-395]
	Infinite Families of Isomorphic Nonconjugate Finitely Generated Subgroups [pp.397-406]
	Turán Inequalities and Zeros of Dirichlet Series Associated with Certain Cusp Forms [pp.407-419]
	Abel's Theorem for Twisted Jacobians [pp.421-433]
	Intersection Bodies and the Busemann-Petty Problem [pp.435-445]
	Back Matter



