@AMS

AMERICAN MATHEMATICAL SOCIETY
www.ams.urg

A Hurewicz Spectral Sequence for Homology

Author(s): David A. Blanc

Source: Transactions of the American Mathematical Society, Vol. 318, No. 1 (Mar., 1990), PP-
335-354

Published by: American Mathematical Society

Stable URL: http://www.jstor.org/stable/2001242

Accessed: 23/09/2008 04:15

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher ?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Transactions of the American Mathematical Society.

http://www.jstor.org


http://www.jstor.org/stable/2001242?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ams

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 318, Number 1, March 1990

A HUREWICZ SPECTRAL SEQUENCE FOR HOMOLOGY

DAVID A. BLANC

ABSTRACT. For any connected space~X and ring R, we describe a first-quad-
rant spectral sequence converging to H.(X; R) , whose EZ2-term depends only on
the homotopy groups of X and the action of the primary homotopy operations
on them. We show that (for simply connected X ) the EZ-term vanishes below
a line of slope 1/2; computing part of the E2-term just above this line, we
find a certain periodicity, which shows, in particular, that this vanishing line is
best possible. We also show how the differentials in this spectral sequence can
be used to compute certain Toda brackets.

1. INTRODUCTION

1.1. A Hurewicz spectral sequence. We describe here, for any pointed con-
nected space X and ring R, a first-quadrant spectral sequence, first proposed by
H. Miller, which converges strongly to the reduced homology of X with coeffi-
cients in R.

1.1.1. The E*-term. For R = Z, the E%-term of this spectral sequence is iso-
morphic to the derived functors of a certain “indecomposables” functor on the
homotopy algebra of X (§3.12), which takes n X to the graded group Q(n X),
defined to be the quotient of 7 X by the subgroup of elements which are in the
image of a “nontrivial” primary homotopy operation (see §2.2.1 below).

1.1.2. The Hurewicz homomorphism. For any space X, the Hurewicz homo-
morphism 4 : 7, X — H,(X;Z) factors through the “indecomposables” Q(7 X);
for R = Z, the edge homomorphism of the spectral sequence, E 2,* — fI* X3z,
may be identified with this graded homomorphism Q(n X) — 171* (X;Z) from
the “indecomposables” to homology (see §2.2.3 below).

1.2. Statement of results. We prove two types of results about the Hurewicz
spectral sequence:

1.2.1 Vanishing results. We show that the E’-term of the spectral sequence
has a vanishing line of slope 1/2, which depends on the connectivity of X and
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336 D. A. BLANC

the coefficients R ; we also calculate part of the E 2_term above these lines for
any 2-connected space X. More specifically, we show:

(i) If R is any ring and X is (r — 1)-connected for r > 3, then in the
Hurewicz spectral sequence for X with coefficients in R we have E,f,k =0 for

n>2k—r)+1.1f r=2,then E;, =0 for n>2k-2.

(ii) If X is (r— 1)-connected (r > 3), then E; , = Tor(n,X,R) and E, , =
Tor(Tor(n,X,Z/2),R) for n=2(k—-r)+12>3. Taking R=Z/2=nX, e.g,
we see that the vanishing line of (i) is best possible.

(iii) If R € Q (the rationals) and X is (r — 1)-connected (r > 3), then
Ei)k=0 for n>2(k—r). If r=2, then Ei,k=0 for n > 2k - 3.

(iv) If RC Q and X is (r—1)-connected (r > 3), then Eéyr =7, X®R and

Ei,k = Tor(n,X,Z/2)® R for n = 2(k —r) > 2. This shows that the vanishing
line of (iii) is also best possible.

1.2.2. Secondary operations. We also illustrate the fact that the differentials
in the spectral sequence are related to secondary homotopy information by
computing a certain Toda bracket:

For the Moore space X = 3'~'RP? (r > 4), we have n X = Z/2 (with
generator « ), and =z, ,X = Z/4 (with generator #). We shall make use of
a differential in the spectral sequence for X to give a new proof of the well-
known fact that f is in the Toda bracket («,2, n,)Ccn,.,X,where n . €n S’
denotes the suspended Hopf map.

r+2 r+1

Organization. In §2 we set up the spectral sequence, and identify the edge
map with the Hurewicz homomorphism. In §3 we describe the category of .
IT-algebras, recall the definition of derived functors in this context, and identify
the E’-term of the spectral sequence with the derived functors of “indecompos-
ables.” In §4 we derive the vanishing lines of 1.2(i) and (iii), by constructing a
suitable free resolution for 7 X, and in §5 a calculation shows that these van-
ishing lines are best possible (as in 1.2(ii) and (iv)). In §6 a differential in the
spectral sequence for I 'RP? is used to compute the Toda bracket of §1.2.2.
Finally, in §7 we mention two related spectral sequences.
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2. THE SPECTRAL SEQUENCE

In this section we set up the Hurewicz spectral sequence for any space X
and ring R (§2.1) and justify its name by identifying its edge map with the
Hurewicz homomorphism (§2.2).
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2.1. Setting up the spectral sequence. Let .7, be the category of connected
pointed CW-complexes; we shall denote the objects of .7, by boldface variables
X,Y,...).

2.1.1. Resolution of a space. In [18, §2], C. Stover constructed, for any X €
., a functorial simplicial resolution of X by wedges of spheres—that is, a
simplicial space VX, together with an augmentation d, : ;X — X, having the
following properties:

(a) Each ¥, X is a pointed CW-complex which is homotopy equivalent to a
wedge of spheres.

(b) Each degeneracy map 5 VX — V, . X is an inclusion of CW-
complexes.

(c) For each k > 1, the homotopy groups of the simplicial group =, V.X
(obtained by applying the functor 7z, dimensionwise to each space in V.X)
vanish in dimensions > 1, and the augmentation induces an isomorphism
ny(m, V.X) = X.

In particular, this implies that the realization AV.X of the simplicial space
VX (cf. [17, §1]) is homotopy equivalent to X.

2.1.2. A bisimplicial R-module. For any ring R, let RS denote the functor
which assigns to a pointed topological space X the simplicial R-module of its
singular chains with coefficients in R—that is, the free simplicial R-module
on the singular complex SX, with basepoint * = 0. Note that 7, (RSX) =
H,(X;R) forall k>0 [12, §2].

Applying this dimensionwise to the simplicial space VX, we get a bisimpli-
cial R-module RSV.X; its diagonal diag(RSV.X) is homotopy equivalent to
RS(AV.X) and thus to the simplicial R-module RSX.

2.1.3. The spectral sequence. Now we define the Hurewicz spectral sequence
for the space X, with coefficients in R, to be the Quillen spectral sequence of
the bisimplicial R-module RSVX (see [16]); it has E. , = iz, (RSV.X) and
converges to the associated graded R-module of the homotopy of the diagonal:
n,,,(diag(RSV.X)). Thus, the Hurewicz spectral sequence converges to the
reduced homology of X with coefficients in R, since =, (diag(RSV.X)) =
n,.(RSX)=H  (X;R) (by §2.1.2).

2.2. Indecomposables and the Hurewicz homomorphism. We now identify the
first column of the E’-term of this spectral sequence as a functor of 7, X and
relate it to the Hurewicz homomorphism:

2.2.1. Indecomposables. For any space X, the graded group 7 X = {nkX}Z‘; |
has a graded subgroup P(7n X), generated by all elements which are in the im-
age of a nontrivial primary homotopy operation (i.e., any homotopy operation
which vanishes in homology). Thus, P(z X) is generated by:

(a) compositions «ao{ € x, X, for a€n X and {em,S", k>r>1;
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(b) Whitehead products (cf. [19, Chapter X, §3])—that is
e elements of the form [a,B]len X, forany a € n,X and
Ben X, p,q>1;

p+g—1

e clements of the form of

—aenX, foraenX (r>1) and
§ €, X (where o® denotes the result of the action of ¢ on a);
e commutators [a, 8] =afa B € n, X, for o, € X.
The quotient graded group Q(n,X) = 7, X/P(n,X) will be called the inde-
composables of n X. Note that Q(n,X) in degree 1 is simply the Abelianization
of n,X—so that Q(n,X) is actually a graded Abelian group.

2.2.2. The column Eg’*. For an n-sphere S", the graded group Q(n,S") is
isomorphic to nnS" = Z in degree n and vanishes in degrees # n. Thus, if
W has the homotopy type of a wedge of spheres, Hilton’s theorem [4, Theorem
A] implies that we have an isomorphism of graded Abelian groups: Q(7n,W) =
H (W;Z).

Combining this with the fact that V. X is a resolution of X, in the sense
of §2.1.1, we readily see that the Oth column of the E’-term of the spectral
sequence for X with R = Z may be identified with the indecomposables of
. X. ‘

A similar argument shows that for any ring R and space X € 7, in the
Hurewicz spectral sequence for X with coefficients in R we have an isomor-
phism of graded R-modules Ez,* = Q(n,X) ® R between the Oth column of

the E’-term and the “ R-indecomposables” of 7 X.

2.2.3. The Hurewicz homomorphism. For any space X, the Hurewicz homo-
morphism (considered as a morphism of graded groups 4: 7. X — H, (X;Z))
vanishes on P(n X) C n (X), so that it factors through a graded homomor-
phism 4: Q(n,X) — H, (X;Z). It may be verified that the edge homomorphism
of the integral Hurewicz spectral sequence—that is, the composition Ezy* —»
Ep, < H_ (X;Z)—is equal to this homomorphism A: Q(n,X) — H/(X;Z)
under the identification E; , = O(n,X).

Thus the Oth filtration on 171* (X;Z), given by E(‘)"’3 , » 1s precisely the image of
the Hurewicz homomorphism—the (graded) subgroup of all spherical elements.

2
3. THE E°-TERM AS DERIVED FUNCTORS

We now give a description of the E 2_term of the Hurewicz spectral sequence
in terms of derived functors (§3.3), after first reviewing the definitions of the
category of Il-algebras (§3.1) and of non-Abelian derived functors (§3.2).

3.1. Il-algebras. We recall the definition of the category of Il-algebras, whose
objects are modeled on the homotopy groups of a space, together with the action
of all primary homotopy operations on them:
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3.1.1. Definition. Let hoJ, denote the homotopy category of connected
pointed CW-complexes, and let IT C ho7, be the full subcategory whose ob-
jects are finite wedges of spheres (one for each homotopy type). A Il-algebra is
then defined to be a contravariant functor Y : Il — Sets, which takes coprod-
ucts to products.

Equivalently, we can think of a Il-algebra Y as a graded group {n} Y};’:l

(where we write n; Y for Y(S’)), together with an action of the set of primary
homotopy operations which satisfies all universal relations on such operations.
We denote the category of Il-algebras by Il-Alg.

Forany I-algebra Y we let |Y| denote the least k < oo for which 7, X # 0.
If |Y| >k, we say that Y is k-connected.

3.1.2. Free Il-algebras. Let m_ be the functor which assigns to a pointed con-
nected space X its homotopy Il-algebra n X—ie., n X = {n jX};il , with the
given action of the homotopy operations. The free Il-algebras are those which
are isomorphic to 7, W, for some (possibly infinite) wedge of spheres W € .7, :

More precisgly, let T be a graded set {7,}7°,, and let W=V, Vier, S/,
where each Si is a j-sphere. Then we say that n, W is the free Il-algebra
generated by T. We shall consider each element x € T, to be an element
of n W, by identifying it with that generator of = W which represents the
inclusion Si =W,

3.2. Nonabelian derived functors. We now recall Quillen’s definition of derived
functors in our context—see [14, part II, §4] and [15, §2]:

3.2.1. Free simplicial TI-algebras. A simplicial IT-algebra A, is called free iff
for each n > 0 there is a graded set 7" C A, such that A4, is the free II-
algebra generated by T" (§3.1.2), and each degeneracy map s A, — A,

takes T" to T""'. The sequence T°,T', ... will be called a set of generators
for A4, .

3.2.2. Free simplicial resolutions. We define a free simplicial resolution of a II-
algebra Y to be a free simplicial IT-algebra A, together with an augmentation
d,: A, — Y, such that for each k > 1

(a) the homotopy groups of the simplicial group n;( A, vanish in dimensions
n>1;

(b) the augmentation induces an isomorphism no(n;A,) = n,’(Y.

3.2.3. Example. For any space X € 7, the resolution VX — X of §2.1.1
clearly gives rise to a free simplicial resolution n_V.X of the Il-algebra 7 X.

3.2.4. Definition of derived functors. Let &/ be an Abelian category and T : II-
Alg — & afunctor. The nth left derived functor of T is the functor L, (T) :II-
Alg — &/ , which assigns to a IT-algebra Y the object L (T)Y ==n, (TA)e L,
where A, — Y is any free simplicial resolution of Y. (As usual, different
resolutions yield equivalent derived functors.)
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3.3. The E’-term. For each IT-algebra Y, we have the graded Abelian group
of its indecomposables, Q(Y) = {Qk(Y)}i":l , defined as in §2.2.1. Thus for
any ring R we have a functor Q,(—) ® R :II-Alg — R-Mod for every k > 1.

As noted in §3.2.3, for any space X the free simplicial IT-algebra 7 VX
is a free simplicial resolution of the IT-algebra 7, X. On the other hand, by
§2.2.2 and §2.1.1(a), we know that nZRSI/jX = H,(VX;R) is isomorphic to
the simplicial R-module Q, (%, VX)® R.

Thus, by Definitions 2.1.3 and 3.2.4, the kth row of the E’-term of the
Hurewicz spectral sequence for X with coefficients in R may be identified
with the derived functors of Q, (-) ® R, evaluated on 7, X:

2 - N
E, , =n,mRSVX=7(Q,(n,VX)®R) = L (0,(-) ® R)n,X.

4. VANISHING RESULTS

As we have just seen, each row in the E’-term of the Hurewicz spectral
sequence for a space X can be identified with certain derived functors evaluated
on the Il-algebra # X. In this section we show that, for 2-connected X, the
E’-term has the vanishing lines of §1.2.1(i) and (iii), by showing that the derived
functors of Q, vanish beyond a certain point:

4.1. Theorem. Let k > r >3, andlet Y be an (r — 1)-connected 1l-algebra;
then (L,Q,)Y =0 for n>2k —r). If k >r =2, then (L,Q,)Y =0 for
n>2k-3.

Applying the universal coefficients theorem for homology, we obtain the fol-
lowing
4.1.1. Corollary. For k >r, and Y as above, we have
(i) For any ring R,
n>2k-ry+1 ifr>3,
L J®R)Y =0
(G @R) for{n>2k—2 ifr=2.
(i) If RCQ, then
n>2k-r) ifr>3,
L (Q,(-)®R)Y =0 for {

n>2k—-1 ifr=2.

Theorem 4.1 is proved in §4.2, using a certain resolution 4, — Y described
in Proposition 4.2.2 below. After some remarks on constructing resolutions in
§4.3, the proof of the proposition is outlined in §4.4 and completed in §4.5.

4.2. Proof of Theorem 4.1. In order to calculate the derived functors of Q,
evaluated on Y, any free simplicial resolution 4, — Y can be used; we wish
to describe a particular one, for which we need the following definitions:

4.2.1. Basic M-algebras. Given a free simplicial IT-algebra A4, and a set of
generators TO, T , ... as in §3.2.1, we define the nth basic II-algebra for
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A., denoted Zn , to be the sub-free Il-algebra of A4, generated by the non-

degenerate elements in 7" .
A sequence Ay, A,,...,A4,, ... of basic Il-algebras for a free simplicial II-

algebra A, is called a CW-basis for A, (cf. [7, §5.1]) iff for each nz 0 we

have d. |A =0 for 1 <j < n. We call the morphism d =d ‘An+| nel — A,
the attachmg map for A ne1 - With these definitions we have the following

4.2.2. Proposition. Let Y be an (r — 1)-connected M-algebra (r > 2); then

Y has a free simplicial resolution A, —Y , witha CW-basis Ay, A,, ..., such
that
(a) foreach n>0 wehave n <2-(|4,|—r)+1 if r >3, and n < 2|4,|-2
if r=2

(b) for n=2(k—r)+1,if r >3 (respectively n =2k -2, if r=2), the
attaching map d,, : Z — A in degree k, is a monomorphism into
n;An—l

4.2.3. Proof of the theorem. Let Y be an (r—1)-connected Il-algebra (r > 2),
and for k >rlet N=2(k—-r)+1if r>3 (or N=2k-2 if r=2).

(I) Take 4, — Y to be the resolution of Proposition 4.2.2, and let B, =
Q,A.; by Definition 3.2.4 we have (L,Q,)Y = =, B,. Now recall that for a
simplicial Abelian group such as B, , we have the associated normalized chain-
complex {NB,,0}, where for each n >0 we let

NB,= () ker{d,:B,—~B,_}CB,, and 08, =d|y;;
1<j<n
then n, B, = H (NB,) (cf. [12, §17]).

Moreover, if DB, denotes the subgroup of B, generated by the degenerate
elements, we have NB, N DB, =0 (cf. [12, Corollary 22.2]).

(IT) In the free simplicial IT-algebra A4, we can write each A4, as a coproduct
of A, with the images of the 4, ’s (for 0 < m < n) under various degeneracy
maps (see §4.5.1 below). However, the functor Q,, when restricted to the
subcategory of free II-algebras, clearly preserves coproducts; also, it vanishes
on any k-connected Il-algebra. Since k < |Zn| for n > N=2k-r)+1 by
Proposition 4.2.2(a), we have B, = DB, , so that (I) implies NB, = 0, and
thus (L,Q,)Y == B = H (NB,)=0 for n> N.

(IIT) Note that if f: X — Y is a map between two (k — 1)-connected free
IT-algebras which is a monomorphism in degree k (k > 2), then Q, f is a
monomorphism, too (cf. §2.2.2). Now for B = Q, 4, wehave B, = B&DB,,.
However, by 4.2.2(b) d_o: ZN — A,_, is a monomorphism in degree k into
the (k — 1)-connected free Il-algebra A, _, ; therefore, Q, (d,|; olz,) = (G dy)lz
is a monomorphism Thus by (I) we see that B, has no N-cycles $O that
(LyQ)Y =rnyB . =0. O

4.3. Constructmg free simplicial resolutions. To prove Proposition 4.2.2, we
wish to construct a suitable free simplicial resolution 4, — Y. Now a free

n—1’
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simplicial Il-algebra A4, with CW-basis ZO,ZI , ... may be constructed by a
process analogous to that of attaching cells in building up a CW-complex:

4.3.1. Normalized cycles. For any simplicial IT-algebra 4., we have the usual
normalization process, which yields chains and cycles (as defined in [13] for
simplicial groups): in particular, the n-cycles Il-algebra of A, is the sub-II-
algebra of 4, defined by

ZA,= () ker{d,: 4, —A4,_}.
0<y<n
4.3.2. CW-construction. By analogy with CW-complexes, we can construct
a free simplicial IT-algebra by an inductive process, in which we assume we
are given an free simplicial IT-algebra A., and obtain a new free simplicial
I-algebra A’ by “attaching” a free Il-algebra A4 in dimension n, by means of
an attaching map d,: A — A4, (cf. [8, §3]).

For the simplicial identities to hold in the simplicial IT-algebra A so ob-
tained, we require that d, satisfy d;o d, =0 for 0 < j < n—that is, that
JO: A— A, factor through ZA, — A, . Note that a free simplicial Il-algebra
is completely determined by specifying a CW-basis, together with the attaching
maps.

4.3.3. Identifying resolutions. In particular, one can show that an free simpli-
cial Il-algebra A,, with a CW-basis Zo ,Zl , ... and an augmentation 4, —
Y, is a free simplicial resolution of Y (Definition 3.2.2) iff for all n > -1,
the attaching map d,: 4,,, — A4, factors through an epimorphism d,: 4,,,
ZA, (whereweset ZA_ =A_,=Y).

4.3.4. N-resolutions. If condition 4.3.3 is satisfied only for 0 < n < N, we._
call A, — Y an N-resolution. As in §3.2.2, this is equivalent to requiring that
for each k > 1, the simplicial group 7, 4. has homotopy groups 7 j(n;(A,) =0
for 1 < j < N, and that the augmentation induces an isomorphism no(n,'(A,) =
n;\, Y.

4.4. Construction of the resolution. Given an (r — 1)-connected Il-algebra Y
(r > 2), we now construct a free simplicial resolution 4, — Y, along with a
given CW -basis Zo ,Zl , ..., as required in Proposition 4.2.2. For simplicity
suppose first that r > 3.

4.4.1. An inductive construction. The free simplicial IT-algebra A, is con-
structed by induction on n > —1. At the nth stage we assume we have an aug-

mented free simplicial I-algebra A" — Y, with CW-basis 4,,4,,...,4,,0,
..., satisfying the following hypotheses:
(i) A" is an n-resolution of Y (Definition 4.3.4);
(ii) for each m >0 we have m <2-(|4,|-r)+1;
(iii) for m = 2(k—r)+1 < n the attaching map d,: 4,, — A", in degree

. . . ! —
k , is a monomorphism into 7, A, .
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Af’+l is then constructed as in §4.3.2 by suitable choice of the free Il-algebra
A, and attaching map d,: 4,,, — A, . We start the induction with Z A:: =
AT =Y and 47' =0.

Finally, set A4, = U:io A" ; the induction hypotheses clearly ensure that A,
will satisfy the requirements of Proposition 4.2.2. Note that we have A4 n= A:’"

for m > n; in particular, we shall write 4, for 4. In fact, A7 will just be
the n-skeleton, in the usual sense, of A4, .

4.4.2. The inductive condition. By §4.3.4, all we need in order for A" so
constructed to be an (n + 1)-resolution is that the attaching map d,: 4,,, -
Z A, = ZA, be an epimorphism. Thus we may choose 4, so that |4
1ZA4,.

Therefore, in order to get an A4 satisfying the requirements 4.4.1(i) and
(ii), it suffices to show that the following holds:

n+l|=

n+1

(1) n<2-(Z4,]-r)

(since we can then let Zn . be the free Il-algebra on the underlying set of
Z A, , with the obvious attaching map).

Thus we are interested in the connectivity of the n-cycles Il-algebra. Now
foreach n>0,let ZA, = A,NZA, =Ker{d,: 4, —» A,_,}; it turns out that
these “cycles with nondegenerate support” have the following property:

4.4.3. Lemma. Let r >3, andlet A, be a free simplicial I1-algebra with CW -
basis Ay, A,, ..., such that for each m >0 we have m <2-(|4, |—r)+1 (as
in 4.4.1(ii)). Then for n>2(t—r) >0 we have n,ZA, =m,ZA, .

4.4.4. The two-step construction. Given this lemma, we can now describe the
construction of A4, as required in Proposition 4.2.2, proceeding two steps at a
time:

Let n =2m — 1 and assume the augmented free simplicial IT-algebra 4" —
Y has been chosen, satisfying condition (1) for n, as well as the induction
hypotheses of §4.4.1.

(I) The first step is immediate, given (1): we can obviously choose an (m +
r — 1)-connected free IT-algebra A,,, which has an epimorphism d,: 4, —

Z A4, , asin §4.4.2—and so obtain the free simplicial Il-algebra AMY satisfying
§4.4.1(i)-(ii).
(IT) Note that by Definition 3.1.2, 4, , ==, (V}2, ., Vr, S’) for some graded

set T, so that n:n +r2n 41 1s isomorphic to the free Abelian group generated by
T Now consider the Il-algebra ZA4, . Using Lemma 4.4.3, we see that

m+r* - -
. ZA n. ZA . Cn A . isfree Abelian. This allows us to choose

Tm+r n+1 = m+r n+l = “m+r n+l
A4,,, as follows:
Let K be a basis for the free Abelian group 7’ ZA and let B be the

m+r n+l?

free Il-algebra generated by the graded set S, where S, =K and §, =9
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for i # m+r (cf. §3.1.2). There is an obvious map f: B — ZA,,,, with
n:n+rf: n:n+,B — ”m+rZAn+1 an isomorphism.
Let Z' denote the (m +r r)-connected Il-algebra obtained from ZA4, , by

setting nm +ZA4,,, equal to 0; choose an (m + r)-connected free Il-algebra C
which has an epimorphism g: C - Z', as in §4.4.2.

Now let 4 as2 = BILC; we have a morphlsm d A — ZA,, induced
by f and g this is an eplmorphlsm since 7’ dO is surjective for each j >
1. Moreover, since nm +rd nm Ay, — A4, +1 1s an isomorphism, we have

0= 7zm+,ZAn+2 = m+rZAn+2 (using Lemma 4.4.3), so that hypotheses of
§4.4.1(i)—(iii) hold for n+ 2, too.

4.5. Proof of Lemma 4.4.3. The remainder of this section is devoted to the proof
of Lemma 4.4.3. We first need the following

4.5.1.  Explicit description. If A, is a free simplicial IT-algebra with CW -basis
A A ..., then each 4, can be described explicitly as a coproduct of basic
l'[-algebras, as follows (compare [12, p. 95(i)]):
Foreach n>0 and 0< A< n, let J denote the set of all sequences of
A nonnegative integers i, < i, < -+ < [, (z,1 < n), with 5, = S, 08,08,
the corresponding A-fold degeneracy. (We allow A =0, with the corresponding
=1id.) Then

2) - 4,= [T II 4.-
0<A<n I€H,
where for I € Jj‘l," , the copy of Zn—l indexed by I is in the image of the
A-fold degeneracy s, , in the obvious sense.
Thus given A. as above, for each n > 0 we can write: A4, = oek, Xo s
where each X is in the image of some 1 -fold degeneracy (l >0). In thlS
situation we have the following

4.5.2. Lemma Assume that 1] X, is a subcoproduct of the above A, =
ek, X, which satisfies

q

(3) dn—=2,)<n.

1=1
Then for some 0 < j < n, each X, (1<i<gq) isintheimage of s;.
4.5.3. Proof. Let M =(m,) bethe g xn mgtrix with
B { 0 if Xa, is in the image of Si
Y 1 otherwise.

Then each X, is in the image of at least /1 of the n possible degeneracy
maps s, : 4, | — A, , so there are at most (n A ) entries of 1 in the ith row
of M . But then condition (3) implies there is some column of 0’s in M —i.e.,
that all the Xm ’s have some common direction of degeneracy. O



A HUREWICZ SPECTRAL SEQUENCE FOR HOMOLOGY 345

4.5.4. Completion of proof. We now apply Lemma 4.5.2 to prove Lemma
4.4.3:

One can use (2) of §4.5.1 to write A4, as a coproduct of copies of the first
n+ 1 basic H-algebras of 4.: A4, =[[oc,c, e, 4

By hypothesis 4.4.1(ii), for each 4 we have

n—i-

(4) (n=A)+2r—1<2-14, ,|.

Using Hilton’s theorem [4, Theorem A] applied to the coproduct (2), we have
a direct-sum decomposition of 7,4, , so that any y € n,ZA4, C m,A, can be
written as a sum y = )7, , with each y, an element of some summand in this
decomposition:

Thatis, 7, € n;(Z - I_IA ) where each A _a is one of the coprod-
uct-summands of (2) and thus is in the image of some A “fold degeneracy (4, >
0) . Moreover, we know that

q
(5) Z(gn—ﬂ_l)ﬁt_l, where 2t < n +2r.

=1

Combining (4) and (5), we find that if g > 2 we have

zq:(n —A)<n
i=1

(since r > 3), so that by Lemma 4.5.3, y, is degenerate. Therefore, every
nondegenerate y,—for which necessarily ¢ = 1—is in n'Z and so is itself
an n-chain (by the definition of a CW-basis—§4.2.1). Slnce yEZm, A is in
particular an n-chain, this implies that the sum of the degenerate y,’s 1s also
an n-chain.

However, ¢t > r > 2, so that B, = n;A, is a simplicial Abelian group and
NB,NDB, =0 (see 4.2.3(I)). Thus the sum of the degenerate 7, s must vanish,
and we can assume ¢ = 1, 4, = 0 for each summand 7, in y. This implies
that yen An , as required. D

With the obvious modifications in Lemma 4.4.3 for the case r = 2, this
completes the proof of Proposition 4.2.2.
5. A CALCULATION

In this section we calculate the derived functors of the functors Q, of §3.3
just above the vanishing lines of Theorem 4.1, to show:

5.1. Theorem. For r > 3, let Y be an (r — 1)-connected -algebra. Then
(L,Q,)Y =Y, and for n=2(k —r) > 2 we have (L,Q,)Y = Tor(r,Y ,Z/2).
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Again, by the universal coefficients theorem we have the following:

5.1.1. Corollary. Let r and Y be as above; then
(i) for any ring R, we have L,(Q,(-) ® R)Y = Tor(n:Y,R), and if n =
2(k —r)+12>3, we have

L,(Q,(-)® R)Y = Tor(Tor(z.Y,Z/2),R).

(i) If RC Q, we have Ly(Q,(-)®R)Y = n;Y®R, andif n=2k-r)>2,
we have

L,(Q,(-)®R)Y =Tor(nY,Z/2)®R.

This shows that the vanishing results of Corollary 4.1.1 are the best possible
for these rings—at least for 2-connected Il-algebras—as claimed in §1.2(ii) and
(iv). (Note also that part (i) of the corollary, together with 4.1.1(i), implies
4.1.1(ii) for r > 3.)

The theorem is proved in §5.2, using an explicit construction of a free sim-
plicial resolution in §5.3.

5.2. Proof of Theorem 5.1. In order to calculate the derived functors, we need
the following partial description of a specific resolution for Y :

5.2.1. Proposition. Let Y be an (r — 1)-connected Il-algebra (r > 3), and
let

0-HLG—-72Y—-0 and 0—L%K - Tor(nY,Z/2) — 0

be presentations of the respective Abelian groups (with G, H, K, L free
Abelian). There there are a free simplicial resolution A, — Y with CW-
basis Ay, A, ... and free W-algebras B, and C, for each m > 0 such
that A,, =B, 11C, and
(i) for each k >r and m = 2(k —r), the free -algebras B, and B,
are generated by graded sets concentrated in degree k—that is, each is
the homotopy I-algebra of a wedge of k-spheres;
(ii) the attaching map JO|E,,,+1 factors through B, — A, for each m>0;
(iii) there are isomorphisms f: nLFO = F and g: 7z:_B-l = H such that
fomdy=iog;
(iv) for each m = 2(k —r) > 0, there are isomorphisms f: nf{ﬁm =~ K and
g:m B, | =L suchthat fo T (dolg, ) =Jog;
(v) r+1<|Cyl, and for each m >0, we have m <2-(|C, | —r);
(vi) for m = 2(k —r) — 1 > 1, the attaching map a70|5m+| , when projected
onto ?m , Is a monomorphism in degree k .

5.2.2. Proof of the Theorem. Let A, — Y be the resolution of Proposition
5.2.1. By 5.2.1(iii) and (v), it is clear that

(L,Q,)Y = n,Q,A. = Cok{i: H— G} =7Y.
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To calculate (L,Q,)Y =n,Q, A, for n=2(k —r)>2, by 5.2.1(ii) and (v)
we need only consider the “ k-spheres” of
_Bn+l i—O’Fn L—’P-n an =Zn ‘_ig An—l :
However, by 5.2.1(vi), Q,(dylg,) is a monomorphism, as in §4.2.3(III), while
dylg, factors through B, | by ZZ.I(ii),_so that Q, (dyl ) =0 by 5.2.1().
Thus we need only consider B, , — B, — 0 in degree k, and by 5.2.1(iv)
and §2.2.2 we therefore have

7,0, A. = Cok{j: K — L} = Tor(z,Y ,Z/2). O
5.3. Proof of Proposition 5.2.1. Given an (r — 1)-connected II-algebra Y, with

r > 3, the resolution 4, — Y described in Proposition 5.2.1 is constructed (as
in §4.4) by induction on the skeleta, two steps at a time:

5.3.1. Beginning the induction. We start the induction with k = r, choosing
FO , _B-l to satisfy 5.2.1(i) and (iii). Because r > 3, by the argument of §4.5.4 we
can also choose 60 , ?l satisfying 5.2.1(v), with the free simplicial II-algebra
obtained at this stage being a 1-resolution. Since r > 3, we have 7, HS” =7/2;
thus

”:+ 1ZB,

, ' i, =5 '
Ker{m,, (dy): 7, B, = 7, By}

Ker{(i®Z/2): GR Z/2 — F ® Z/2} = Tor(n.Y ,Z/2)

1

asin §5.2.£.

5.3.2. The inductive step. Now foreach k > r,let n = 2(k—r)+1, and assume
Ay,A,,...,4, and the B, s and C,,’s have been chosen so that (i)-(vi) of
the proposition are satisfied for 0 <m < n.

Note that (i) and (iv) imply that condition 4.4.1(ii) of §4.4 holds—i.e., for
each n >0, we have n < 2-(|4,| - r) + 1, so that Lemma 4.4.3 applies. In
fact, setting ZB, = ZA, N B, , we have the following
5.3.3. Lemma. Assume that requirements 5.2.1(i) and (v) hold for 0 < m <
n=2%k-r)+1;then m ZA, = n, ZB,®F, where F is a free Abelian
group
5.3.4. Proof of Lemma 5.3.2. Since r > 3, we can use the argument of §4.5.4
to show that

nll"+lZAn S n;<+l(Bn it C") = 7[1,<+an @ n;<+lCn :

Nowlet 7, ,ZA4, <= =, (B,1IC,) % x,,,C, be the inclusion and projection,
respectively. Then we have a short exact sequence of Abelian groups

0— Ker(poi) —m,,,ZA, — Im(poi)—0.

By 5.2.1(v) we have [C,| > k + 1, so that m;,,C, is a free Abelian group.
Thus F = Im(p o i) is free Abelian, too—and the sequence splits. Clearly
., ZB,=Ker(poi),sothat m  ZA, = ., ZB,®F , as required. O
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5.3.5. Completing the induction. For n = 2(k—r)+1 > 3, we use assumptions
5.2.1(i) and (iv) to see that as in 5.3.1:

m,,ZB,= Ker{(j®Z/2): K®Z/2— L®Z/2}
= Tor(Tor(n,Y ,Z/2),Z/2) = Tor(n,Y ,Z/2).

Lemmas 5.3.2 and 4.4.3 then allow us to choose d,: B,,, — B, satisfying
5.2.1(i) and (iv), as wellas C,,, and C, , satisfying 5.2.1(v) and (vi). This
completes the proof of Proposition 5.2.1.

6. DIFFERENTIALS IN THE SPECTRAL SEQUENCE

We now illustrate the fact that the differentials in the Hurewicz spectral se-
quence depend on higher-order homotopy information by using one to compute
a certain Toda bracket for =" 'RP’.

In §6.1 we calculate the derived functors of Q, on the Il-algebra n,2 " 'RP’
and find a nonvanishing differential in the E*-term. In §6.2 we recall the con-
struction of VX and use it to give an explicit description of the differential
in §6.3. Throughout this section R = Z, and all homology is with integral
coefficients.

6.1. A calculation for n*):'-,l RP’. Let X denote the Z/2-Moore space

"~ 'RP? , with r > 4. The first three nonvanishing rows in the E*term of
the Hurewicz spectral sequence for X may then be calculated as follows:

6.1.1. Il-algebra structure. The Il-algebra structure of n X in the first three
nontrivial degrees in given by:

(i) nX=7Z/2, generated by an element a;
(i) =, ,X=Z/2, generated by aon,;
(i) =, ,X=7Z/4, generated by an element B, with 28 =aon, o1, , .

r+1
r+2
(This may be computed using [5, 6], for example).

6.1.2. Notation for free Il-algebras. Recall (§3.1.1) that II denotes the ho-
motopy category finite wedges of spheres, and let # C II-Alg denote the full
subcategory of free Il-algebras (§3.1.2). The functor n,:J, — II-Alg, when
restricted to II, induces an equivalence of categories between Il and & (cf.
[10, IV, 4]). We can thus describe free II-algebras and their morphisms in terms
of spheres and homotopy classes of maps between them.

In particular, we shall write sk = T, S* for the free IT-algebra generated by a
graded set having a single element in degree k. For k > 3 we let 1, denote the
generator of n;( +1Sk =, HSk =~ Z/2, as well as the corresponding morphism
Sk+l R Sk .

6.1.3. A partial resolution. We are interested in the resolution of the Il-algebra
n, X only in degrees < r+2. In the above notation, we can partially describe a
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C W -basis for a resolution 4, — Y as follows (omitting all “spheres” S with
k>r+2 )' subscripts indicate the simplicial dimension:
(i) 4y =S} IS[?, with the augmentation d,: 4, — ¥ induced by a on
S'O) and j on S 2 , respectively.
(i) 4,=5,1 Sr+2 The attaching map d,: 4, — 4,, restricted to S, ,
is a map of degree 2 S(l) — S , while on S(1) it is the sum of a map
of degree 2 S’+2 — S’+2 and the map 7,01,,,: S/ — So)

(1)
(it) 4 _S(’;)',wnh dy: A — A, given by n,: S} = 8.
(iv) 4 —S(’;)',thh d,: A, — A, given by a map of degree 2 S(’3+)l — S

(2)
(v) n—O in degrees §r+2 n>4.
6.1.4. The E*-term. Using this resolution, it is easy to calculate the first three

nonvanishing rows of Ei % = (L,0,)n,X for the Hurewicz spectral sequence
of X, as follows:

r+2| z/2 0 0 0
r+1 0 0 Z/2 0

' r| z/2 0 0 0
k o 1 2 3

6.1.5. A differential. The spectral sequence converges to the reduced integral
homology of the Moore space X where HX=7Z/2 and HX =0 for i #r.
Therefore, the differential d°: E — E?

0.r4+2 is necessarily nontrivial (and so
an isomorphism).

2 Jr+1

6.1.6. E§r+2. By §2.2.1, we know that the nonzero element of EO 2 = =7/2
may be represented by the generator f € n, ,X, modulo the subgroup of #, ,X
generated by the single “composable” aon,on,  =2-f, so that the indeter-

minacy is just in the choice of the generator g for Z/4=n,  ,X.

6.2. The simplicial space V. X. We now recall the construction of VX from
[18, §2], and introduce some notation:

6.2.1. The cotriple 7”. VX is constructed by means of a cotriple 7": 7, —
., which assigns to each pointed connected space X € 7, the space

-V vV suV oy

n=1Hom 7, (8" X) n=1 Hom j, (e"+! X)

For each n > 1, choose a fixed homeomorphism ¢: 8(e"+l) ~ S" between

the boundary_of the (n + 1)-disc and the n-sphere. The (n + 1)-disc indexed
by F:e""' = X is then attached by ¢ to the n-sphere S” indexed by f =
F,

() ell+] .
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The counit of 77, a natural transformation ¢: 7° — id 7 » 18 given by the
“evaluation on the index” map &y: 7°(X) — X. This maps the sphere S" ¢

7/(X) indexed by f € Hom,, (S",X) into the space X by the map f, and
similarly for discs.

6.2.2. V.X. The simplicial space V.X is then defined by setting VX =
%"“X, with the usual face and degeneracy maps induced by the counit and
comultiplication of the cotriple (cf. [2, I, §4.1]).

To avoid confusion, the face and degeneracy maps of VX will be consid-
ered to be “horizontal” (by analogy with the bisimplicial set S¥.X) and will be
marked with a superscript # (e.g., djh ).

6.2.3. Notation for V.X. To describe some of the spheres of VX, we can use
the following notation:

For any map f € HomZ (S” ,X), we denote the n-sphere in VX indexed
by f by S?f). Similarly, if F € Hom, (""", X) is a nullhomotopy of [, we
denote the corresponding (n+1)-discin V,X by e?F)l , so that S/ Uez”)l C VpX.

In certain special cases, we can also use such a notation for the spheres of V X
(n>1): if themap g:S" — V,X factors through the inclusion S" — VX,
we denote the m-sphere of VX corresponding to g by a double 1ndex S
and so on.

In such cases, the face maps of V.X have a particularly simple description.

For example, the face map d VX — VX on ng) is Just f: S’

(f.8)°

(f.8)

S — VX, while d is given by a homeomorphism S - S( fog) VOX.
Other face maps on such spheres are also included by sultable ‘compositions of
indices.”

6.3. The differential 4>. We now want to understand the nontrivial differential
of §6.15:

6.3.1. The double complex. Recall from §2.1.3 that our spectral sequence is the
Quillen spectral sequence of the bisimplicial Abelian group ZSV.X. If K isthe
functor which takes a simplicial Abelian group to its associated chain complex
[11, p. 235], then applying K twice to ZSVX yields a double chain complex
C.. = K(ZSVX), and our spectral sequence is isomorphic to the usual spectral

sequence of this double complex [3, Chapter XV, §6], with Efl K = H,'l' H,f C..

6.3.2. E2 ,+1 - In the notation of §6.2.3, we have the following spheres in V. X:

Choose some map a: S” — X representing the element o € n,(X); as above,

we denote by S{a) the corresponding r-sphere in V,X. Similarly, let S(a o C

V,X correspond toamap ¢: S — S: — V,X of degree 2, and let st V,X

(a,t,h)
s ,lr) — V,X representing 1, € 7, S,

correspond to a map A: S 1)

-
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The generator of H p +|C 22r a =Z)2 may then be represented by
the element 1.0 €C, | = E2 41> Where g €S Sa . is asingular (r+1)-

r+1
simplex representing a generator of Hr +le:', -

6.3.3. A diagram chase. With this description, we need only the usual diagram

chase to calculate the differential of §6.1.5:
(i) The horizontal differential o H G = Hr +1C, . 1s given as the alter-
nating sum of the horizontal face maps, so that by §6.2. 3 we have:

8"(1-0) = (d}(0) — d!(0) + di(0)) = (h,(0)) — (0} + (¢,

with o’ € S, 87, and ¢” €S, S/, being singular (r+ 1)-simplices
representing generators in homology, and 4, (o) € S, +lS(a @ singular (r + 1)-
simplex representing the generator 7, € 7 S/

r+l1~(a,t) *
(ii) Since HrHS @y =0, thecycle 4 (o) € ZS, S/ . has a singular (r+2)-
chain y € ZS

r+1~(a,t)
1250 With 8°(y) = h,(a).
Furthermore, aot: Sfaot) — X (representing 2a € 7, X)) is nullhomotopic, so
that the sphere S(aot C VX indexed by aot has various (r+ 1)-discs attached
to it, corresponding to all possible nullhomotopies of aot: let F: et =X be

one such nullhomotopy, and e:;)l C V,X the corresponding (r + 1)-disc.

We can threrefore extend the map 4: S, — S'

(aot ,h)
) f;:zc,l C VX is attached to S(ao, - In particular, we have a

singular (r + 2)-simplex { € S +2e F Ch) with 8°(1-{) = ¢', which represents
2 1
a generator of H, (e ey > Staot i) -
Similarly, since [to A] = 2n, =0€m, HS’ , we can choose a nullhomotopy
G:et' - Si) for toh; let 02:20) C V,X be the corresponding (r + 2)-disc.

We have a smgular (r 4+ 2)-simplex (' €S, +2ef;20) with 8°({') = ¢” . Thus

' (y—C+0y=(h(o)—c +o"y=0"(1-0) e H C.

r+1

(aor) tO@MAp Ch: e(F ch

e where e

(iii) Finally, d*(c) € E?

342 18 represented in

CO Jr+2 = E2 RE

by 3h(7 —¢+{'), where 8" = dg —d:’ .
By §6.2.3 we have 8"(y) = 7,(y) — y'; but neither of the (r + 2)-chains
t(y) €LZS S , and y € ZS S| contributes anything to H_V.X, for

r+2 r+2%(aot) r+2°0
dimensional reasons.

Also, 8"(¢) = (Ch),(¢) — &, where (Ch), (c) €S,,,S,

r+2~(aot)
nothing to H, _,(V,X), and & € § +2e FoCh) represents a generator of

- r+2 r+l
Hr+2( (FoCh) ’S aotoh)) :

again contributes
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Similarly, 8"({') = G,(¢')~¢', with G,({’) in S,,,

77 / r+2 . 7 r+2 r+1
to H,,VX,and ¢ €, ,e,.5 again a generator of H, (€06 >S0r0n)) -
+ 2

Now, since the two (r + 2)-cells €72, and e ">. are both attached to
/ (FoCh) (aoG)
the same (r + 1)-sphere Sgo'toh) C V,X, they together form an (r + 2)-sphere
S crx (though not one of those explicitly included in the definition of
(b) 0

VoX =7'(X) in §6.2.1). Here b: S X represents the element in the Toda
bracket

Sfa) contributing nothing

(bl €{a,2,n,)Cm, ,X

r+2
which is determined by the maps a, ¢, # (representing the homotopy classes
a, 2, n, respectively) and the nullhomotopies F:aot~0, G:toh~0.

Thus the part of a" (y—¢+¢') which does not vanish in H_,V,X represents

r+2°0
a homology generator (a(b)) €H, +2SU;)2 , SO in Eé 2 EH L,V X we have

@"(r -+ 1)) =€~ &) =(o,) € H,,,V,X.

Since we know that dz(a) =(pf) e Eg,r +2 (86.1.5), we conclude that the genera-

tor g of m, +2}:’_IRP2 = Z/4 is in the Toda bracket (a,2,n,) (with the same
indeterminacy as in the choice of generator for Z/4, by §6.1.6).

7. RELATED SPECTRAL SEQUENCES

We now note the existence of two related spectral sequences: one for any
generalized homology theory (§7.1) and one a “Kunneth spectral sequence” for
the smash of two spectra (§7.2).

-~

7.1. Generalized homology theories. First, we can generalize the Hurewicz spec-
tral sequence for ordinary homology H, to any reduced generalized homology
theory k, , to obtain

7.1.1. A generalized Hurewicz spectral sequence. Let X € .7, be a pointed con-
nected space, and V. X the augmented simplicial space of §2.1.1, with AV X ~
X. The realization AV.X has a filtration by subcomplexes AOV,X c Al VX..-C
AV X, where A"V X is the realization of the n-skeleton of the simplicial space
VX (cf. [17, §5]).

Applying the generalized homology functor k, to this filtration, we obtain
a spectral sequence abutting to kK, AVX = k X, with Erz,s = 7w k,VX, as in
[17, Proposition 5.1]. The spectral sequence converges strongly to k X if k, is
connective.

7.1.2. The E*-term as derived Sunctors. Recall from §6.1.2 that the functor
n,: II — % induces an equivalence of categories between II, the homotopy
category of finite wedges of spheres, and . C II-Alg, the full subcategory of
free Tl-algebras. Thus, we can describe a functor on # (noncanonically) by
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specifying it on I1. Moreover, we only need a functor defined on .# in order
for the derived functors to be defined for all Il-algebras, by §3.2.4.

In particular, for any generalized homology theory k, each of the functors
kj: hoJ, — Abgp defines a functor l~<j: F — Abgp; as in §3.3, the E’-term
of the above generalized Hurewicz spectral sequence may be described in terms
of derived functors: , X

E, = nnij:X = Ln(kj)n*X.
Thus, if k,_ is connective, the proof of Theorem 4.1 carries over to yield a

similar vanishing line for the E’-term. If the coefficients k, (pt) are torsion
free, Corollary 4.1.1(ii) also applies.

7.2. A stable spectral sequence. It should be pointed out that a stable version
of the Hurewicz spectral sequence has long been known: in [9, Theorem 4.8],
T.Y. Lin describes a Kiinneth spectral sequence for the smash of two spectra,
as follows:

Let m, denote the stable homotopy ring of spheres: n, = n*SO , and let
X, Y be two spectra, with Y connected. Then there is a spectral sequence
converging to 7 (X AY), with Erz,s = Tor™" (z, X ,n,Y) (cf. [1, p. 7]). Thus,
if Y is a spectrum corresponding to a connective homology theory k,, this
gives us a spectral sequence converging to k X , whose E’-term depends only
on k, and the a_-module structure of 7 X .
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