Abelian II-Algebras and their Projective Dimension

DAVID BLANC

To Mark Mahowald on his 60th birthday

July 17, 1991

Revised: April 28, 1992

ABSTRACT. Derived functors of Π -algebras – which are algebraic models for the homotopy groups of a space, together with the action of the homotopy operations on them – serve as the E^2 -terms of a number of spectral sequences; thus the homological properties of Π -algebras are of some interest. As a first approximation we here study the properties of a simpler subcategory – that of *abelian* Π -algebras: we show that any abelian Π -algebra (simply connected, of finite type) is either free, or has infinite projective dimension.

1. Introduction

A Π -algebra is an algebraic model for the homotopy groups $\pi_{\star}X$ of a pointed space X, together with the action of the primary homotopy operations on them, in the same sense that algebras over the Steenrod algebra are models for the cohomology of a space.

Derived functors of Π -algebras serve as the E^2 -term of a number of spectral sequences; however, Π -algebras are difficult objects to study, not only because the algebra of unstable operations (i.e., the unstable homotopy groups of spheres) are not fully known, but also because the category \mathcal{P} of Π -algebras is not abelian, so the familiar tools of homological algebra are not available to work with.

¹⁹⁹¹ Mathematics Subject Classification. Primary 18G20; Secondary 55Q35.

Key words and phrases. Π -algebras, homotopy operations, projective dimension, homological algebra.

This paper is in final form and no version of it will be submitted for publication elsewhere

^{© 1993} American Mathematical Society 0271-4132/93 \$1.00 + \$.25 per page

D. BLANC

The stable analogue, which is the category π -Mod of (graded) modules over the graded stable homotopy ring $\pi = \pi_*^S S^0$, is more accessible for this reason (even though π is not fully known, either). The homological algebra of π -modules were studied by Tsau Young Lin (see [L1, L2]); his main result is that any π -module has projective dimension 0, 1, or ∞ .

In order to better understand the homological properties of Π -algebras, we start here with a simpler category - namely, that of *abelian* Π -algebras. These are intermediate between ordinary Π -algebras and π -modules in their accessibility, on the one hand, and their closeness to the homotopy category of topological spaces, on the other hand. In the category of abelian Π -algebras we prove an unstable analogue of Lin's theorems:

Theorem 4.4 Any abelian Π -algebra X has projective dimension 0, 1, or ∞ . If X is simply-connected of finite type, it is either free, or has infinite projective dimension.

In section 2 we recall the definition of Π -algebras; in section 3 we discuss abelian Π -algebras; and we prove the Theorem in section 4.

Acknowledgements: I wish to thank the referee for his comments.

2. II-algebras

Recall (e.g., from [**B1**, §3]) that a Π -algebra is a graded group, together with an action of the primary homotopy operations, satisfying all the universal relations on such operations. The motivating example is $\pi_{\star}X$, where X is a pointed connected space.

Remark 2.1. A Π -algebra X may be described explicitly as a graded group $\{X_i\}_{i=1}^{\infty}$, (with X_i abelian for $i \geq 2$), equipped with a composition operation $\alpha^{\#} : X_r \to X_k$ for each $\alpha \in \pi_k S^r$ (k > r > 1), and a Whitehead product $[,]: X_i \times X_j \to X_{i+j-1}$ for each pair $i, j \geq 1$. The Whitehead products include (cf. $[\mathbf{W}, X, \S3]$):

- $[\alpha,\xi] = \alpha^{\xi} \alpha \in X_r$, where α^{ξ} is the result of the " π_1 -action" of $\xi \in X_1$ on $\alpha \in X_r$ (r > 1);
- the commutators $[\alpha, \beta] = \alpha \beta \alpha^{-1} \beta^{-1} \in X_1$, for $\alpha, \beta \in X_1$.

If we restrict attention to the subcategory $\mathcal{P}_1 \subset \mathcal{P}$ of simply-connected Π algebras – i.e., those with $X_1 = 0$ – the universal identities on these primary operations can be described explicitly, as follows:

(a) $(\alpha \circ \beta)^{\#} = \beta^{\#} \circ \alpha^{\#}$ and $(\alpha + \beta)^{\#} = \alpha^{\#} + \beta^{\#}$ (cf. [W, X,8.1]);

(b) The Whitehead products make X into a graded Lie ring (with a shift in indices) – that is, if $x, x' \in X_{p+1}$, $y \in X_{q+1}$, and $z \in X_{r+1}$, then (cf. $[\mathbf{W}, X, \S7]$):

i.
$$[x + x', y] = [x, y] + [x', y].$$

ii.
$$[y, x] = (-1)^{pq}[x, y]$$
.
iii. $(-1)^{pr}[[x, y], z] + (-1)^{pq}[[y, z], x] + (-1)^{qr}[[z, x], y] = 0.$

(c) Hilton's formula (cf. [H1, (6.1)]):

$$\alpha^{\#}(x_1+x_2) = \alpha^{\#}x_1 + \alpha^{\#}x_2 + \sum_{j=0}^{\infty} (h_j(\alpha))^{\#}w_j(x_1,x_2)$$

where $w_j(x_1, x_2)$ is the (j+3)-rd basic iterated Whitehead product, for some choice of ordering, and $h_j(\alpha)$ is the corresponding Hilton-Hopf invariant (cf. [**W**, XI,8.5]);

(d) The Barcus-Barratt formula (cf. [**BB**, 7.4] or [**Ba**, II, §3]):

$$[\alpha^{\#}x_1, x_2] = \sum_{n=0}^{\infty} (E^{|x_2|-1}h_{j_n}(\alpha))^{\#}[x_1^{n+1}, x_2] ,$$

where $[x_1^n, x_2] = [x_1, [x_1, [\dots, [x_1, x_2] \dots]]$ is the iterated Whitehead product with $n x_1$'s, and h_{j_n} is the Hilton-Hopf invariant corresponding to the basic product $[x_1^{n-1}, x_2]$.

(For a comparison of the various definitions of the Whitehead products and Hopf invariants, and the choices of signs, see $[BoS, \S7]$.)

A non-simply connected Π -algebra has, in addition, a group X_1 (not necessarily abelian), such that for each n > 1, X_n is an X_1 -module under a " π_1 -action" commuting with compositions (cf. [**BB**, p. 68]), and satisfying the appropriate Jacobi identity with respect to the Whitehead products (cf. [**H2**]).

DEFINITION 2.2. The free Π -algebras are those which are isomorphic to π_*W , for some (possibly infinite) wedge of spheres W. More precisely, if $T = \{T_j\}_{j=1}^{\infty}$ is a graded set, and $W = \bigvee_{j=1}^{\infty} \bigvee_{x \in T_j} S_x^j$, where each S_x^j is a *j*-sphere, then we say that π_*W is the free Π -algebra generated by T, (where T is thought of as a subset of π_*W in the obvious way).

Note that even when T is not of finite type, $\pi_s W$ is a direct sum of cyclic groups for $s \ge 2$ (cf. [H1]).

DEFINITION 2.3. For any Π -algebra X, let $I(X) \subseteq X$ denote the sub- Π algebra generated by all non-trivial primary homotopy operation (in \mathcal{P}_1 : compositions and Whitehead products). The graded abelian group Q(X) = X/I(X)is called the *module of indecomposables* of X (cf. [**B1**, §2]).

3. abelian Π -algebras

The *abelian* Π -algebras may be thought of as an intermediate stage between arbitrary (unstable) Π -algebras, and modules over the stable homotopy ring:

DEFINITION 3.1. A Π -algebra $X \in \mathcal{P}$ is said to be *abelian* if it is an abelian group object – that is, if $Hom_{\mathcal{P}}(Y, X)$ has a natural abelian group structure for any $Y \in \mathcal{P}$. This is equivalent to requiring that all Whitehead products vanish

in X (cf. [**BS**, §5.1.2]): the Whitehead products must vanish in order for the natural addition operation on *Hom*-sets to be well-defined; and this suffices by virtue of Hilton's formula 2.1(c) above. The full subcategory of abelian Π -algebras is denoted $\mathcal{P}_{ab} \subset \mathcal{P}$; it is an abelian category.

Remark 3.2. Note that since the π_1 -action and the commutator are Whitehead products (§2.1), any abelian Π -algebra X splits as a direct sum of $X_{\geq 2}$ (i.e., the graded group starting in degree 2), and $K(X_1, 1)$ (i.e., a Π -algebra concentrated in degree 1), with X_1 an abelian group. Therefore, we may restrict attention to simply-connected abelian Π -algebras without losing anything of interest.

DEFINITION 3.3. For each $X \in \mathcal{P}$, let $W(X) \subset X$ be the sub- Π -algebra generated (under composition and sums) by all non-trivial generalized Whitehead products. This is an *ideal of* Π -algebras (cf. [**BS**, §5.1.1]) – that is, it is closed under Whitehead products with arbitrary elements of X – so that the graded group X/W(X) inherits a Π -algebra structure from X.

This Π -algebra will be denoted Ab(X). In fact, $Ab : \mathcal{P} \to \mathcal{P}_{ab}$ is the *abelianization* functor, so there is a natural transformation $\theta : Id \to Ab$ with the appropriate universal property.

Remark 3.4. Furthermore, there is a stabilization functor $S: \mathcal{P} \to \pi$ -Mod, which is the extension (cf. [**BS**, §2]) of the functor on free II-algebras taking $\pi_{\star}W$ to $\pi_{\star}\Omega^{\infty}\Sigma^{\infty}W$, for $W = \bigvee_{i\in I}S^{n_i}$ as in §2.2, so that $S(\pi_{\star}W) \cong \bigoplus_{i\in I}\Sigma^{n_i}\pi$. The functor S factors through Ab, and the indecomposables functor Q of §2.3 factors through S (and thus through Ab), when applied to free II-algebras.

For any *H*-space X, $\pi_{\star}X$ is an abelian Π -algebra; but there are also non-*H*-spaces with vanishing Whitehead products, whose homotopy groups thus constitute abelian Π -algebras: an example is $\pi_{\star}\mathbb{C}P^3$ (cf. [**BJS**]).

There is an interesting subcategory $\mathcal{V} \subset \mathcal{P}_{ab}$, modeled on the Π -algebras of *loop spaces* $\pi_{\star}\Omega X$: namely, those for which the only non-trivial operations are compositions with suspension elements.

(We observe that the remaining primary structure on $\pi_{\star}X \cong \pi_{\star-1}\Omega X$ – that is, the Samelson/Whitehead products, and non-suspension compositions – may be expressed in terms of *secondary* structure on $\pi_{\star}\Omega X$.)

DEFINITION 3.5. The left derived functors L_nAb of the abelianization, evaluated on a II-algebra X, perhaps deserve to be called the *homology* of X, in the spirit of $[\mathbf{Q}, \S 2]$. In $[\mathbf{DK}]$, Dwyer and Kan have given an alternative definition of the homology of X with coefficients in an arbitrary module M over the "universal enveloping algebra" E(X); when X is 1-connected and $M = \mathbb{Z}$, this homology is just the derived functors of the indecomposables functor Q of $\S 2.3$, so that in light of $\S 3.4$ the two versions of homology are related by a Grothendieck spectral sequence (cf. $[\mathbf{BS}]$).

The free objects in \mathcal{P}_{ab} are just the abelianizations of the free Π -algebras of §2.2. If we denote $Ab(\pi_{\star}S^n)$ by \mathfrak{S}^n , then $X \in \mathcal{P}_{ab}$ is free $\Leftrightarrow X \cong \bigoplus_i \mathfrak{S}^{n_i}$.

We shall sometimes write $\bigoplus_i \mathfrak{S}^{n_i} \langle a_i \rangle$, where $a_i \in \mathfrak{S}_{n_i}^{n_i}$, when we want to name the generators.

Since few non-trivial II-algebras – even free ones – are known explicitly in all dimensions, we cannot expect to compute their abelianizations explicitly, either (although of course $\mathfrak{S}_{r+k}^r \cong \pi_k^S S^0$ for $k \leq r-1$). However, the formulas of §2.1 simplify considerably in the case of spheres, since all *n*-fold iterated Whitehead products vanish in $\pi_* S^r$ for $n \geq 4$ (or $n \geq 3$, if *r* is odd) – see [**W**, ch. XI, Thm 8.8].

For example, for $\alpha \in \pi_p S^r$, $\beta \in \pi_q S^r$, the Barcus-Barratt formula (2.1d.) reads:

$$[\alpha,\beta] = (-1)^{q(p+1)+1}[\iota_r,\iota_r] \circ E^{r-1} \alpha \circ E^{p-1} \beta + (-1)^q [[\iota_r,\iota_r],\iota_r] \circ E^{2r-2} \alpha \circ E^{p-1} h_0 \beta$$

(where ι_r generates $\pi_r S^r$).

Since for r odd, $[\iota_r, \iota_r]$ has order 2, and $[[\iota_r, \iota_r], \iota_r] = 0$, we find that $2([\alpha, \beta] \circ \gamma) = 0$ for any $\gamma \in \pi_* S^{p+q-1}$ (by [W, XI, Thm 8.9]), so that $W(\pi_* S^{2k+1})$ is all of order 2 (§3.3), and thus

LEMMA 3.6. \mathfrak{S}^{2k+1} is the cohernel of $[\iota_{2k+1}, \iota_{2k+1}]_{\#} : \pi_{\star}S^{4k+1} \to \pi_{\star}S^{2k+1}$, and $2 \cdot \pi_{\star}S^{2k+1}$ maps monomorphically to \mathfrak{S}^{2k+1} , for all $k \geq 0$.

Of course, when r = 1, 3 or 7, S^r is an *H*-space, so that $\mathfrak{S}^r \cong \pi_\star S^r$ in those three cases.

One can say less about the abelianization of $\pi_{\star}S^{2k}$, in general, since $[\iota_{2k}, \iota_{2k}]$ has infinite order, and (for $k \geq 2$) also $[[\iota_{2k}, \iota_{2k}], \iota_{2k}] \neq 0$. However, we have the following

FACT 3.7.
$$\mathfrak{S}_i^2 \cong \pi_i S^2 \otimes \mathbb{Z}/2$$
 for $i > 2$, and $\mathfrak{S}_2^2 \cong \mathbb{Z}$.

PROOF. Since $[\iota_2, \iota_2] = 2\eta_2 \in \pi_3 S^2$ and $(\eta_2)_{\#} : \pi_k S^3 \xrightarrow{\cong} \pi_k S^2$ is an isomorphism for $k \geq 3$, we find that $[\alpha, \beta] = 0$ for $\alpha \in \pi_p S^2$, $\beta \in \pi_q S^2$, $(p, q \geq 3)$.

Thus $W(\pi_*S^2)$ is generated as a graded group by elements $[\iota_2, \iota_2] \circ \gamma$, for $\gamma \in \pi_k S^3$, and these are precisely $(2\eta_2) \circ \gamma = 2(\eta_2 \circ \gamma)$ by Hilton's formula (2.1c.). Therefore, $W(\pi_*S^2) = 2\pi_{>2}S^2$, so $\mathfrak{S}_i^2 \cong \pi_i S^2/2\pi_i S^2 = \pi_i S^2 \otimes \mathbb{Z}/2$ for i > 2. \Box

4. projective dimension of abelian Π -algebras

In this section we prove our main result - namely, that essentially any nonfree abelian II-algebra has infinite projective dimension. For this we need the following

LEMMA 4.1. Any projective object in \mathcal{P}_{ab} is free.

PROOF. If $P \in \mathcal{P}_{ab}$ is projective, it is a summand in a free abelian Π -algebra F, with $P \xrightarrow{i} F \xrightarrow{f} P$ such that $f \circ i = id_P$. Thus Q(P) (§2.3) is a summand of the graded free abelian group Q(F), so it is also free abelian, and one can choose compatible bases $B \subseteq C$ for $Q(P) \subseteq Q(F)$.

Lifting to $P \hookrightarrow F$, we get an isomorphism $F \cong \bigoplus_{j \in C} \mathfrak{S}^j$, with P already a direct summand $P \stackrel{i'}{\hookrightarrow} F' = \bigoplus_{j \in B} \mathfrak{S}^j$. Since $Q(i') : Q(P) \to Q(F')$ is an isomorphism, so is i'. \Box

Remark 4.2. The same fact clearly holds both for \mathcal{P} (or the category \mathcal{P}_1 of simply-connected II-algebras), and for the category π -Mod of modules over the stable homotopy ring π (cf. [L2, Cor 5.6]) – in fact, for modules over any graded ring R_* with $R_0 = \mathbb{Z}$. It is also true for the *p*-local versions of each of these categories.

PROPOSITION 4.3. For any prime p and k > 1 there is a non-zero element $\alpha \in (\mathfrak{S}_{k+n}^k)_{(p)}$, for some n > 0, such that $p \cdot \alpha = 0$ and $\alpha^{\#}\beta = 0$ for all $\beta \in (\mathfrak{S}_k^k)_{(p)}$ with t < k.

PROOF. (a) If p is odd, Serre's isomorphism

$$\begin{array}{rccccccc} \pi_{i-1}S_{(p)}^{2m-1} & \oplus & \pi_iS_{(p)}^{4m-1} & \cong & \pi_iS_{(p)}^{2m} \\ (a & , & b) & \mapsto & E(a) + [\iota_m, \iota_m]_{\#}(b) \end{array}$$

(cf. [S, IV, §5]) implies that $E: (\mathfrak{S}_{\star-1}^{2m-1})_{(p)} \xrightarrow{\cong} (\mathfrak{S}_{\star}^{2m})_{(p)}$ is an isomorphism. Therefore, $\mathfrak{S}_{(p)}^r$ has exponent $\leq p^m$ at the prime p, where m = [(r-1)/2] (=integral part), by [CMN, Cor. 1.3] & [N, Cor 4.3]. In fact, the exponent is precisely p^m , since the desuspensions of the elements of Im(J) to $\alpha_{p^{m-1}}^{(m-1)} \in \pi_{p^{m-1}q+2m}S_{(p)}^{2m+1}$ (cf. [G, Prop. 13]) yield elements of order p^m in $\mathfrak{S}_{(p)}^r$, too.

 $\begin{aligned} \pi_{p^{m-1}q+2m} S_{(p)}^{2m+1} \quad (\text{cf. [G, Prop. 13]}) \text{ yield elements of order } p^m \text{ in } \mathfrak{S}_{(p)}^r, \text{ too.} \\ \text{Thus we may choose } \alpha = p^{r-1} \alpha_{p^{r-1}}^{(r-1)} \in (\mathfrak{S}_{p^{r-1}q+2r}^k)_{(p)}, \text{ where } r = [(k-1)/2], \\ \text{and since } t < k \text{ we may assume } t \leq k-2(p-1)+1, \text{ so } (\mathfrak{S}_k^t)_{(p)} \text{ has exponent} \\ \leq p^{r-1}, \text{ and is therefore annihilated by } \alpha^\#. \end{aligned}$

(b) If p = 2, the situation is analogous: first note that Hilton's formula for the Hopf map on a composition element (cf. [H3] or [Ba, III, 6.3]):

$$H(\alpha^{\#}\beta) = H(\alpha)^{\#} (E^{r-1}\beta)^{\#} E^{n-1}\beta + \alpha^{\#} H(\beta) \qquad \alpha \in \pi_{\star} S^{r}, \ \beta \in \pi_{r} S^{n}$$

implies that for $\alpha \in \pi_{\star} S^{4n-1}_{(2)},$

(4.1)
$$H(\alpha^{\#}[\iota_{2n},\iota_{2n}]) = \alpha^{\#}H([\iota_{2n},\iota_{2n}]) = 2\alpha + H(\alpha)^{\#}[\iota_{4n-1},\iota_{4n-1}]$$

by [W, XI,Thm 8.9], since $H([\iota_{2n}, \iota_{2n}]) = 2\iota_{4n-1}$.

Thus, given any $\gamma \in \pi_q S_{(2)}^{2n}$, let $\delta = H(\gamma)^{\#}[\iota_{2n}, \iota_{2n}]$; then (4.1) implies that $H(\delta) = 2H(\gamma)$, since $H(H(\gamma)) = N \cdot j_4(\gamma)$ for some N by [**Ba**, III, 5.2] (where j_n is the *n*-th James-Hopf invariant, so $H = j_2$), and $j_4(\gamma)^{\#}[\iota_{4n-1}, \iota_{4n-1}] = 0$ by [**Ba**, III, 6.2].

Therefore, $2\gamma - \delta \in E(\pi_{q-1}S_{(2)}^{2n-1})$, and so any $\gamma \in (\mathfrak{S}_q^{2n})_{(2)}$ has $2\gamma \in E((\mathfrak{S}_{q-1}^{2n-1})_{(2)})$, which implies

(4.2)
$$exp_2 \mathfrak{S}_{(2)}^{2n} \leq 2 \cdot exp_2 \mathfrak{S}_{(2)}^{2n-1}$$

Selick has shown ([Se]) that $\pi_{>4m+k+1}S_{(2)}^{4m+k+1}$ (k = 0, 2) is annihilated by 2^{3m+k} , so by (4.2) $(\mathfrak{S}_{>4m+2k}^{4m+2k})_{(2)}$ (k = 0, 1) is annihilated by 2^{3m+k} – i.e., $(\mathfrak{S}_{>n}^{n})_{(2)}$ is annihilated by $2^{[3n/4]}$.

On the other hand, Mahowald (cf. [**M**, Thm. 8.4]) shows that for $n = 8a+b \ge 7$, there is an $\alpha_n \in \pi_\star S^n$ which suspends to the Im(J) element of order 2^{k_n} , where $k_n = 4a - 1$ for b = 0, $k_n = 4a$ for $1 \le b \le 4$, and $k_n = 4a + j$ for $4 < b = 4 + j \le 7$ - so $k_n \ge n/2 - 2$. (Note that if n is even, $\bar{\alpha}_n$ may have order 2^{k_n+1} in $\mathfrak{S}^n_{(2)}$).

Setting $\alpha'_n = 2^{k_n - 1} \bar{\alpha}_n \in \mathfrak{S}^n_{(2)}$, we see that α'_n annihilates $(\mathfrak{S}^r_{>n})_{(2)}$ for r < 2n/3 - 3. But if $2n/3 - 3 \le r < n$, any $\beta \in \pi_n S^r_{(2)}$ desuspends to $\pi_* S^{[(n+11)/3]}_{(2)}$; and since $3[(n+11)/3]/4 \le n/2 - 2$ for $n \ge 17$, we have $(\alpha'_n)^{\#}\beta = 0$. The cases n < 17 are readily checked. \Box

As in [B3, §5], the analogue for \mathcal{P}_{ab} of T.Y. Lin's result on the projective dimension of π -modules (cf. [L1, Thm 1] and [L2, Thm 4.4]) follows from this Proposition. Define an abelian Π -algebra X to be *locally cyclic* if each X_s is a direct sum of cyclic groups. (In particular, this will hold if X is either free, or of finite type).

THEOREM 4.4. Any $X \in \mathcal{P}_{ab}$ has projective dimension 0, 1, or ∞ . If X is simply-connected and locally cyclic, it has projective dimension 0 or ∞ .

PROOF. If X is an abelian II-algebra which is not free, this will also be true after localizing at some prime p; so consider the p-local version $(\mathcal{P}_{ab})_{(p)}$ of \mathcal{P}_{ab} , in which all groups have been localized at a prime p. We can also assume without loss of generality that X is simply-connected, in the light of Remark 3.2.

By induction on the homological dimension in constructing a projective resolution for X, it suffices by Lemma 4.1 to show that if $X \in (\mathcal{P}_{ab})_{(p)}$ is not free, and $f: F \to X$ is any epimorphism from a free abelian Π -algebra F, then Ker(f) is not free. (We shall indicate what fails in homological dimension 1 when X is not locally cyclic).

Let $s \ge 2$ be the first degree in which X is not free, and write

$$F = \bigoplus_{i \in I} \mathfrak{S}^{t_i} \langle a_i \rangle \oplus \bigoplus_{j \in J} \mathfrak{S}^s \langle b_j \rangle \oplus ext{(higher degrees)},$$

where $t_i < s$.

We may assume the abelian Π -algebra K = Ker(f) is (s-1)-connected (otherwise choose a smaller F). Now we must have

$$K_s \cong \bigoplus_{\gamma \in \Gamma} \mathbb{Z}_{(p)} \langle c_\gamma \rangle \oplus \bigoplus_{\delta \in \Delta} (\mathbb{Z}/p^{r_\delta}) \langle d_\delta \rangle$$

since K_s is a subgroup of F_s , which is a direct sum of cyclic $\mathbb{Z}_{(p)}$ -modules, and thus is itself a sum of cyclic modules (see [**K**, §15, Thm 17]).

If $\Delta \neq \emptyset$, K is clearly not free, so assume $\Delta = \emptyset$. We then we distinguish two cases:

(a) Let X be locally cyclic. (This is automatically guaranteed when F is in homological dimension > 0, in which case X is just the K of the previous step). Then we may assume that F is minimal, and $K_s \cong \bigoplus_{\gamma \in \Gamma} \mathbb{Z}_{(p)} \langle c_{\gamma} \rangle$, where each element $c_{\gamma} \in F_s$ has the form

$$c_{\gamma} = \sum_{i=1}^{L} \zeta_{i,\gamma}(a_i) + \sum_{j=1}^{M} n_{j,\gamma}(b_j) ,$$

with coefficients $n_{j,\gamma} \in \mathfrak{S}_s^s = \mathbb{Z}_{(p)}$ (not all zero) and $\zeta_{i,\gamma} \in \mathfrak{S}_s^{t_i}$ $(t_i < s)$.

The minimality of F implies $p|n_{j,\gamma}$ for all j. Therefore, by Proposition 4.3, there is an $\alpha \in \mathfrak{S}^s$ such that $\alpha^{\#}\zeta_{i,\gamma} = 0$ and $\alpha^{\#}n_{j,\gamma} = 0$, which again shows K = Ker(f) is not free.

(b) When F is in homological dimension 0 and is not locally cyclic, the argument fails, since one can have a short exact sequence of (s-1)-connected abelian Π -algebras:

$$0 \to K = Ker(f) \hookrightarrow F \twoheadrightarrow X \to 0$$

where X_s is a *p*-divisible $\mathbb{Z}_{(p)}$ -module and K a free abelian Π -algebra, and thus the projective dimension of X may actually be 1 (see following example).

EXAMPLE 4.5. An example of an $X \in \mathcal{P}_{ab}$ with projective dimension 1 is a *rationalized* free abelian Π -algebra, $\mathfrak{S}^r_{\mathbf{Q}}$, for $r \geq 1$ – compare [L2, Thm 5.12(4)]:

Note that the indecomposables functor $Q: \mathcal{P}_{ab} \to grAbgp$ of §2.3 has a left adjoint $F: grAbgp \to \mathcal{P}_{ab}$, which takes graded free abelian groups to free abelian II-algebras. Applying F to a presentation $\oplus_{\alpha} \mathbb{Z} \to \bigoplus_{n=1}^{\infty} \mathbb{Z} \to \mathbb{Q}$, concentrated in degree r, yields the required projective resolution of \mathfrak{S}_{Q}^{r} .

In the category \mathcal{P} of all Π -algebras, one does not have an analogous statement to Theorem 4.4. Since \mathcal{P} is not an abelian category, we must interpret the projective dimension of a Π -algebra X to mean the dimension of a free simplicial resolution of X (cf. [**B1**, §3.2.2]), where a resolution $A_{\bullet} \to X$ is $\leq n$ dimensional if $sk_nA_{\bullet} = A_{\bullet}$ (see [**B2**, §5.3.4]). Then $X = \pi_{\star}(S^{n_1} \times S^{n_2} \times$ $\ldots \times S^{n_N}$) is an example of a Π -algebra of projective dimension N. (The proof reduces to a calculation in the category of Lie rings – or equivalently, that of associative algebras over \mathbb{Z}).

Note that in this case Ab(X) is free; it may be conjectured that all simplyconnected Π -algebras of finite type with finite projective dimension have free abelianizations.

References

- [BB] W.D. Barcus & M.G. Barratt, "On the homotopy classification of the extensions of a fixed map", Trans. AMS 88 (1958) pp. 57-74.
- [BJS] M.G. Barratt, I.M. James, & N. Stein, "Whitehead products and projective spaces", J. Math. Mech. 9 (1960) pp. 813-819.
- [Ba] H.J. Baues, Commutator Calculus and Groups of Homotopy Classes, London Math. Soc. Lec. Notes Ser. 50, Cambridge U. Press, Cambridge 1981.
- [B1] D. Blanc, "A Hurewicz spectral sequence for homology", Trans. AMS 318 (1990) No. 1, pp. 335-354.
- [B2] D. Blanc, "Derived functors of graded algebras", J. Pure & Appl. Alg 64 (1990) No. 3, pp. 239-262.
- [B3] D. Blanc, "Operations on resolutions and the reverse Adams spectral sequence", Trans. AMS, (to appear).
- [BS] D. Blanc and C. Stover, "A generalized Grothendieck spectral sequence", in Adams Memorial Symposium on Algebraic Topology, Vol. I, ed. N. Ray & G. Walker, Lond. Math. Soc. Lec. Notes Ser. 175, Cambridge U. Press, Cambridge 1992, pp. 145-161.
- [BoS] J.M. Boardman & B. Steer, "On Hopf Invariants", Comm. Math. Helv. 42 (1967), pp. 180-221.
- [CMN] F.R. Cohen, J.C. Moore, & J.A. Neisendorfer, "The double suspension and exponents of the homotopy groups of spheres", Ann. of Math. 110 (1979), pp. 549-565.
- [DK] W.G. Dwyer & D.M. Kan, "Homology and cohomology of II-algebras", Preprint 1989.
- [G] B. Gray, "Unstable families related to the image of J", Proc. Camb. Phil. Soc. 96 (1984) pp. 95-113.
- [H1] P.J. Hilton, "On the homotopy groups of the union of spheres", J. Lond. Math. Soc. 30 (1955) No. 118, pp. 154-172.
- [H2] P.J. Hilton, "Note on the Jacobi identity for Whitehead products", em Proc. Camb. Phil. Soc. 57 (1961) pp. 180-182
- [H3] P.J. Hilton, "On the Hopf invariant of a composition element", J. Lond. Math. Soc. 29 (1954) pp. 165-171.
- [K] I. Kaplansky, Infinite Abelian Groups (2nd edition), U. of Michigan Press, Ann Arbor, 1969.
- [L1] T.Y. Lin, "Homological algebra of stable homotopy ring π_{\star} of spheres", *Pacific J.* Math **38** (1971) No. 1 pp. 117-142
- [L2] T.Y. Lin, "Homological dimensions of stable homotopy modules and their geometric characterizations", Trans. AMS 172 (1972) pp. 473–490.
- [M] M.E. Mahowald, "The Image of J in the EHP sequence", Ann. of Math. 116 (1982) No. 1, pp. 65-112.
- [N] J.A. Neisendorfer, "3-Primary exponents", Math. Proc. Camb. Phil. Soc. 90 (1981) Part 1, pp. 63-83.
- [Q] D.G. Quillen, "On the (co-)homology of commutative rings", in: Applications of categorical algebra, Proc. Symp. Pure Math. XVII American Mathematical Society, Providence, RI 1970 pp. 65-87.
- [Se] P. Selick, "2-Primary exponents for the homotopy groups of spheres", Topology 23 (1984) No. 1, pp. 97-99.
- [S] J.-P. Serre, "Groupes d'homotopie et classes de groupes abeliens", Ann. of Math. 58 (1953) No. 2, pp. 258-294.

[W] G.W. Whitehead, *Elements of homotopy theory*, Grad. Texts in Math. No. 61, Springer-Verlag, Berlin-New York 1971.

NORTHWESTERN UNIVERSITY Current address: The Hebrew University of Jerusalem E-mail address: blanc@huji.cs.ac.il