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ABSTRACT. Derived functors of IT-algebras - which are algebraic mod-
els for the homotopy groups of a space, together with the action of the 
homotopy operations on them - serve as the E 2-terms of a number of 
spectral sequences; thus the homological properties of IT-algebras are of 
some interest. As a first approximation we here study the properties of 
a simpler subcategory - that of abelian IT-algebras: we show that any 
abelian IT-algebra (simply connected, of finite type) is either free, or has 
infinite projective dimension. 

1. Introduction 

A IT-algebra is an algebraic model for the homotopy groups 1r*X of a pointed 
space X, together with the action of the primary homotopy operations on them, 
in the same sense that algebras over the Steenrod algebra are models for the 
cohomology of a space. 

Derived functors of IT-algebras serve as the E 2-term of a number of spectral 
sequences; however, IT-algebras are difficult objects to study, not only because 
the algebra of unstable operations (i.e., the unstable homotopy groups of spheres) 
are not fully known, but also because the category P of IT-algebras is not abelian, 
so the familiar tools of homological algebra are not available to work with. 
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40 D. BLANC 

The stable analogue, which is the category 1r-Mod of (graded) modules 
over the graded stable homotopy ring 7r= 1rf 8°, is more accessible for this 
reason (even though 1r is not fully known, either). The homological algebra of 
1r-modules were studied by Tsau Young Lin (see [Ll, L2]); his main result is 
that any 1r-module has projective dimension 0, 1, or oo. 

In order to better understand the homological properties of IT-algebras, we 
start here with a simpler category- namely, that of abelian IT-algebras. These are 
intermediate between ordinary IT-algebras and 1r-modules in their accessibility, 
on the one hand, and their closeness to the homotopy category of topological 
spaces, on the other hand. In the category of abelian IT-algebras we prove an 
unstable analogue of Lin's theorems: 

Theorem 4.4 Any abelian IT-algebra X has projective dimension 0, 1, or oo. 
If X is simply-connected of finite type, it is either free, or has infinite projective 
dimension. 

In section 2 we recall the definition of IT-algebras; in section 3 we discuss 
abelian IT-algebras; and we prove the Theorem in section 4. 

Acknowledgements: I wish to thank the referee for his comments. 

2. IT-algebras 

Recall (e.g., from [Bl, §3]) that a IT-algebra is a graded group, together 
with an action of the primary homotopy operations, satisfying all the universal 
relations on such operations. The motivating example is 1r*X, where X is a 
pointed connected space. 

Remark 2.1. A IT-algebra X may be described explicitly as a graded group 
{Xi}~ 1 , (with Xi abelian for i?:: 2), equipped with a composition operation 
a# : Xr --+ Xk for each a E 1rkSr (k > r > 1), and a Whitehead product 
[ , J : Xi x Xj --+ Xi+j-1 for each pair i,j ?:: 1. The Whitehead products 
include (cf. [W, X,§3]): 

• [a,~] = a~ - a E: Xn where a~ is the result of the "1r1-action" of 
~ E X 1 on a E Xr ( r > 1); 

• the commutators [a,,8] = a,Ba-1,8-1 E X1, for a,,8 E X1. 
If we restrict attention to the subcategory P1 C P of simply-connected IT-

algebras - i.e., those with x1 = 0 - the universal identities on these primary 
operations can be described explicitly, as follows: 

(a) (<Yo ,8)# = ,8# o a# and (a+ ,8)# =a#+ ,8# (cf. [W, X,8.1]); 

(b) The Whitehead products make X into a graded Lie ring (with a 
shiftinindices)- thatis,if x,x'EXp+l, yEXq+1, and zEXr+l, 
then (cf. [W, X,§7]): 

i. [x+x',y] = [x,y]+[x',y]. 
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ABELIAN II-ALGEBRAS AND THEIR PROJECTIVE DIMENSION 41 

ii. [y,x] = (-1)Pq[x,y]. 
iii. (-1)Pr[[x,y],z] + (-1)Pq[[y,z],x] + (-1)qr[[z,x],y] = 0. 

(c) Hilton's formula (cf. [Hl, (6.1)]): 
00 

a#(x1 + x2) = a#x1 + a#x2 + L (hj(a))#wj(x1, x2) , 
j=O 

where wj(x1, x2) is the (j + 3)-rd basic iterated Whitehead product, 
for some choice of ordering, and hj(a) is the corresponding Hilton-Hop£ 
invariant (cf. [W, XI,8.5]); 

(d) The Barcus-Barratt formula (cf. [BB, 7.4] or [Ba, II, §3]): 
00 

[a#x1,x2] = L (Eix 2 1- 1 hjJa))#[x~+l,x2], 
n=O 

where [xf, x2] = [x1, [x1, [ ... , [x1, x2] ... ] is the iterated Whitehead 
product with n X1 's, and hin is the Hilton-Hopf invariant corresponding 
to the basic product [x~- 1 , x2]. 

(For a comparison of the various definitions of the Whitehead products 
and Hopf invariants, and the choices of signs, see [BoS, §7].) 

A non-simply connected IT-algebra has, in addition, a group X 1 (not nec-
essarily abelian), such that for each n > 1, Xn is an Xrmodule under a 
"1r1-action" commuting with compositions (cf. [BB, p. 68]), and satisfying the 
appropriate Jacobi identity with respect to the Whitehead products ( cf. [H2]). 

DEFINITION 2.2. The free IT-algebras are those which are isomorphic to 7!'* W, 

for some (possibly infinite) wedge of spheres W. More precisely, if T = {Tj }~ 1 
is a graded set, and W = V';.1 V xETj S~, where each S~ is a j-sphere, then 
we say that 7!'* W is the free IT-algebra generated by T, (where T is thought of 
as a subset of 1r*W in the obvious way). 

Note that even when T is not of finite type, 1r 8 W is a direct sum of cyclic 
groups for s 2: 2 ( cf. [Hl]). 

DEFINITION 2.3. For any IT-algebra X, let I(X) ~ X denote the sub-IT-
algebra generated by all non-trivial primary homotopy operation (in P 1 : compo-
sitions and Whitehead products). The graded abelian group Q(X) =X/ I(X) 
is called the module of indecomposables of X (cf. [Bl, §2]). 

3. abelian IT-algebras 

The abelian IT-algebras may be thought of as an intermediate stage between 
arbitrary (unstable) IT-algebras, and modules over the stable homotopy ring: 

DEFINITION 3.1. A IT-algebra X E P is said to be abelian if it is an abelian 
group object - that is, if H omp (Y, X) has a natural abelian group structure for 
any YEP. This is equivalent to requiring that all Whitehead products vanish 
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42 D. BLANC 

in X (cf. [BS, §5.1.2]): the Whitehead products must vanish in order for 
the natural addition operation on Hom-sets to be well-defined; and this suffices 
by virtue of Hilton's formula 2.1 (c) above. The full subcategory of abelian 
IT-algebras is denoted Pab C P; it is an abelian category. 

Remark 3.2. Note that since the n1-action and the commutator are White-
head products (§2.1), any abelian IT-algebra X splits as a direct sum of X2': 2 

(i.e., the graded group starting in degree 2), and K(X1, 1) (i.e., a IT-algebra 
concentrated in degree 1), with X 1 an abelian group. Therefore, we may re-
strict attention to simply-connected abelian IT-algebras without losing anything 
of interest. 

DEFINITION 3.3. For each X E P, let W(X) C X be the sub-IT-algebra 
generated (under composition and sums) by all non-trivial generalized White-
head products. This is an ideal of II -algebras ( cf. [BS, §5.1.1]) - that is, it is 
closed under Whitehead products with arbitrary elements of X - so that the 
graded group XjW(X) inherits a IT-algebra structure from X. 

This IT-algebra will be denoted Ab(X). In fact, Ab : P --. Pab is the 
abelianization functor, so there is a natural transformation () : Id--. Ab with 
the appropriate universal property. 

Remark 3.4. Furthermore, there is a stabilization functor S : P --. 1r-M od, 
which is the extension ( cf. [BS, §2]) of the functor on free IT-algebras taking 1r* W 
to 7r*000 E 00 W, for w =viE! sn; as in §2.2, so that S(n*W) ~ EBiEJ En;'Tr. 

The functor S factors through Ab, and the indecomposables functor Q of §2.3 
factors through S (and thus through Ab), when applied to free IT-algebras. 

For any H-space X, n*X is an abelian IT-algebra; but there are also non-H-
spaces with vanishing Whitehead products, whose homotopy groups thus con-
stitute abelian IT-algebras: an example is 1r*CP3 (cf. [BJS]). 

There is an interesting subcategory V C Pab, modeled on the IT-algebras of 
loop spaces n*OX: namely, those for which the only non-trivial operations are 
compositions with suspension elements. 

(We observe that the remaining primary structure on n*X ~ 7r*_10X -
that is, the Samelson/Whit.ehead products, and non-suspension compositions -
may be expressed in terms of secondary structure on n*OX.) 

DEFINITION 3.5. The left derived functors LnAb of the abelianization, eval-
uated on a IT-algebra X, perhaps deserve to be called the homology of X, in 
the spirit of [Q, §2]. In [DK], Dwyer and Kan have given an alternative def-
inition of the homology of X with coefficients in an arbitrary module M over 
the "universal enveloping algebra" E(X); when X is 1-connected and M = l, 
this homology is just the derived functors of the indecomposables functor Q of 
§2.3, so that in light of §3.4 the two versions of homology are related by a 
Grothendieck spectral sequence ( cf. [BS]). 

The free objects in Pab are just the abelianizations of the free IT-algebras of 
§2.2. If we denote Ab( 1r *sn) by e;n, then X E Pab is free {::} X ~ ffii e;n;. 
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We shall sometimes write ffii 6n;(ai), where ai E 6~;, when we want to name 
the generators. 

Since few non-trivial IT-algebras - even free ones - are known explicitly 
in all dimensions, we cannot expect to compute their abelianizations explicitly, 
either (although of course 6~+k ~ 1rf 8° for k :::; r - 1). However, the 
formulas of §2.1 simplify considerably in the case of spheres, since all n-fold 
iterated Whitehead products vanish in 1r*Sr for n 2 4 (or n 2 3, if r is odd) 
- see [W, ch. XI, Thm 8.8]. 

For example, for a E 7rpSr, (3 E 7rqSr, the Barcus-Barratt formula (2.1d.) 
reads: 

(where Lr generates 7rrSr). 
Since for r odd, [tn tr] has order 2, and [[tn Lr], Lr] = 0, we find that 

2([a, (3] o 'Y) = 0 for any 'Y E 7r*SP+q-l (by [W, XI, Thm 8.9]), so that 
W(1r*S2k+ 1 ) is all of order 2 (§3.3), and thus 

LEMMA 3.6. 6 2k+l is the cokernel of [t2k+l• L2k+I]# : 1r*S4k+l ----> 1r*S2k+l, 
and 2 · 1r*S2k+ 1 maps monomorphically to 6 2k+l, for all k 2 0. 

Of course, when r = 1, 3 or 7, sr is an H-space, so that 6r ~ 1r*Sr in 
those three cases. 

One can say less about the abelianization of 1r*S2k, in general, since [t2k, t2k] 
has infinite order, and (for k 2 2) also [[t2k, t2k], t2k] =/= 0. However, we have 
the following 

FACT 3.7. 6~ ~ 1ri82 ® l/2 for i > 2, and 6~ ~ l. 

PROOF. Since [t2, t2] = 2ry2 E 1r382 and (TJ2)# : 1rkS3 ~ 7rkS2 is an 
isomorphism for k 2 3, we find that [a, /3] = 0 for a E 7rpS2 , (3 E 7rqS2 , 

(p,q 2 3). 
Thus W(1r*S2 ) is generated as a graded group by elements [t2, t2] o ')', for 

'Y E 1rkS3 , and these are precisely (2ry2 ) o 'Y = 2(ry2 o 'Y) by Hilton's formula 
(2.lc.). Therefore, W(1r*S2 ) = 21r>2S 2 , so 6~ ~ 1riS2 j21riS2 = 1riS2 ® l/2 
for i > 2. D 

4. projective dimension of abelian IT-algebras 

In this section we prove our main result - namely, that essentially any non-
free abelian IT-algebra has infinite projective dimension. For this we need the 
following 

LEMMA 4.1. Any projective object in Pab is free. 
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PROOF. If P E Pab is projective, it is a summand in a free abelian IT-algebra 
F, with P ~ F L P such that f o i = idp. Thus Q(P) (§2.3) is a 
summand of the graded free abelian group Q(F), so it is also free abelian, and 
one can choose compatible bases B ~ C for Q(P) ~ Q(F). 

Lifting to P <--t F, we get an isomorphism F ~ EBjEC (5i, with P already 

a direct summand P ~ F' = EBjEB (5i. Since Q(i') : Q(P)----> Q(F') is an 
isomorphism, so is i'. D 

Remark 4.2. The same fact clearly holds both for P (or the category P1 

of simply-connected IT-algebras), and for the category 1r-M od of modules over 
the stable homotopy ring 1r (cf. [L2, Cor 5.6]) - in fact, for modules over any 
graded ring R* with Ro = l. It is also true for the p-local versions of each 
of these categories. 

PROPOSITION 4.3. For any prime p and k > 1 there is a non-zero element 
o: E (6~+n)(p)' for some n > 0, such that p · o: = 0 and o:#f3 = 0 for all 

f3 E (6D(v) with t < k. 

PROOF. (a) If pis odd, Serre's isomorphism 

S2m-l 
1ri-l (p) 

(a 
ffi n·S4m-l 

t (p) 
b) 

(cf. [S, IV, §5]) implies that E: (6;~1 1 )(p) ~ (6;m)(p) is an isomorphism. 
Therefore, 6(p) has exponent :S pm at the prime p, where m = [(r- 1)/2] 
(=integral part), by [CMN, Cor. 1.3] & [N, Cor 4.3]. In fact, the exponent 
is precisely pm, since the desuspensions of the elements of Im(J) to o:~::::-;l E 
7rpm-lq+2mS(;)+1 (cf. [G, Prop. 13]) yield elements of order pm in 6(p)' too. 

Thus we may choose o: == pr-lo:~:=:;) E (6;r-lq+2r)(P)' where r = [(k-1)/2], 
and since t < k we may assume t :S k- 2(p -1) + 1, so (6L)(p) has exponent 
::; pr-l, and is therefore annihilated by o:#. 

(b) If p = 2, the situation is analogous: first note that Hilton's formula for 
the Hopf map on a composition element (cf. [H3] or [Ba, III, 6.3]): 

( 4.1) H(o:#[L2n, L2n]) = 0:# H([L2n, L2n]) = 2o: + H(o:)# [L4n-l, L4n-l] 

by [W, XI,Thm 8.9], since H([L2n, L2n]) = 2L4n-l· 
Thus, given any "( E nqS[:n, let 8 = H('Y)#[L2n, L2n]; then (4.1) implies that 

H(8) = 2H('Y), since H(H('Y)) = N · j 4('Y) for some N by [Ba, III, 5.2] (where 
jn is the n-th James-Hopf invariant, so H = j2), and j4('Y)#[L4n-1, L4n-l] = 0 
by [Ba, III, 6.2]. 
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Therefore, 2')'- 8 E E(nq_ 1 Sl~- 1 ), and so any I' E (6~n)( 2 ) has 2')' E 

E((6~~1 1 )( 2 )), which implies 

(4.2) 6 2n < 2 62n-1 exp2 (2) _ · exp2 (2) . 

Selick has shown ([Se]) that n> 4 m+k+lst~+k+l (k = 0, 2) is annihilated by 
23m+k, so by (4.2) (6;~~!k 2 k)( 2 ) (k = 0, 1) is annihilated by 23m+k - i.e., 
(6~n)( 2 ) is annihilated by 2[3n/4l. 

On the other hand, Mahowald ( cf. [M, Thm. 8.4]) shows that for n = 8a+b 2:: 
7, there is an an E 1r *sn which suspends to the I m( J) element of order 2kn, 
where kn = 4a- 1 for b = 0, kn = 4a for 1 ::; b::; 4, and kn = 4a + j for 
4 < b = 4 + j ::; 7 - so kn 2:: n/2- 2. (Note that if n is even, an may have 
order 2kn+l in 6(2) ). 

Setting a~ = 2kn-1an E 6(2), we see that a~ annihilates (6;n)(2) for 
r < 2n/3 - 3. But if 2n/3 - 3 ::; r < n, any (3 E 7rnS(2) desuspends to 
n*S/~)+ll)/ 3 ]; and since 3[(n + 11)/3]/4 ::; n/2- 2 for n 2:: 17, we have 
(a~)#(3 = 0. The cases n < 17 are readily checked. D 

As in [B3, §5], the analogue for Pab of T.Y. Lin's result on the projective 
dimension of 'iT-modules (cf. [Ll, Thm 1] and [L2, Thm 4.4]) follows from this 
Proposition. Define an abelian IT-algebra X to be locally cyclic if each Xs is a 
direct sum of cyclic groups. (In particular, this will hold if X is either free, or 
of finite type). 

THEOREM 4.4. Any X E Pab has projective dimension 0, 1, or oo. If X 
is simply-connected and locally cyclic, it has projective dimension 0 or oo. 

PROOF. If X is an abelian IT-algebra which is not free, this will also be true 
after localizing at some prime p; so consider the p-local version (Pab)(p) of Pab, 
in which all groups have been localized at a prime p. We can also assume 
without loss of generality that X is simply-connected, in the light of Remark 
3.2. 

By induction on the homological dimension in constructing a projective reso-
lution for X, it suffices by Lemma 4.1 to show that if X E (Pab)(p) is not free, 
and f : F ----* X is any epimorphism from a free abelian IT-algebra F, then 
K er(f) is not free. (We shall indicate what fails in homological dimension 1 
when X is not locally cyclic). 

Let s 2:: 2 be the first degree in which X is not free, and write 

iEI jEJ 

where ti < s. 
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We may assume the abelian IT-algebra K = Ker(f) is (s- I)-connected 
(otherwise choose a smaller F). Now we must have 

since Ks is a subgroup of F8 , which is a direct sum of cyclic Z(p)-modules, 
and thus is itself a sum of cyclic modules (see [K, §15, Thm 17]). 

If ~ # 0, K is clearly not free, so assume ~ = 0. We then we distinguish 
two cases: 

D 

(a) Let X be locally cyclic. (This is automatically guaranteed when F 
is in homological dimension > 0, in which case X is just the K of the 
previous step). Then we may assume that F is minimal, and Ks ~ 
ffi'"YEr Z(p)(ey}, where each element c'"Y E Fs has the form 

L M 

Cy = L (i,'"f(ai) + L nj,'"f(bj) , 
i=l j=l 

with coefficients ni,'"f E 6~ = l(p) (not all zero) and (i,'"f E 6!; 
(ti < s). 
The minimality ofF implies pjni,'"f for all j. Therefore, by Proposition 
4.3, there is an a E 6 8 such that a#(i,'"f = 0 and a#ni,'"f = 0, which 
again shows K = K er(f) is not free. 

(b) When F is in homological dimension 0 and is not locally cyclic, the 
argument fails, since one can have a short exact sequence of ( s - 1 )-
connected abelian IT-algebras: 

0---+ K = Ker(f) ~ F- X---+ 0 

where Xs is a p-divisible Z(p)-module and K a free abelian IT-algebra, 
and thus the projective dimension of X may actually be 1 {see following 
example). 

EXAMPLE 4.5. An example of an X E Pab with projective dimension 1 is 
a rationalized free abelian IT-algebra, 6'Q, for r 2:: 1 - compare [L2, Thm 
5.12{4)]: 

Note that the indecomposables functor Q : Pab ---+ grAbgp of §2.3 has a 
left adjoint F : gr Abgp --+ Pab, which takes graded free abelian groups to 
free abelian IT-algebras. Applying F to a presentation E9aZ ~ E9~= 1 Z - Q, 
concentrated in degree r, yields the required projective resolution of 6'Q. 

In the category P of all IT-algebras, one does not have an analogous statement 
to Theorem 4.4. Since P is not an abelian category, we must interpret the 
projective dimension of a IT-algebra X to mean the dimension of a free simplicial 
resolution of X {cf. [Bl, §3.2.2]), where a resolution A. ---+ X is ::; n-
dimensional if sknA. = A. (see [B2, §5.3.4]). Then X = 7r*(Sn1 X sn2 X 
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••• X snN) is an example of a IT-algebra of projective dimension N. (The proof 
reduces to a calculation in the category of Lie rings - or equivalently, that of 
associative algebras over 1). 

Note that in this case Ab(X) is free; it may be conjectured that all simply-
connected IT-algebras of finite type with finite projective dimension have free 
abelianizations. 
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