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Foreword

Geometry has come a long way from the time of Euclid, Pythagoras and Archimedes.
Many developments in the subject have accompanied revolutions in ways of think-
ing about and describing our world. The creation of the calculus by Newton and
Leibniz was married to analytic descriptions of geometric forms, gravitational
forces and motions of planets. The realisation of non-Euclidean geometries by
Lobachevsky, Bolyai and Gauss lead to abstract descriptions of geometries of sur-
faces and Riemann’s introduction of the concept of manifold. The consequent di-
minishing of the central role of coordinates accompanied Einstein’s relativity theo-
ries. Similar ideas from Hamilton’s reformulation of mechanics lead to Poincaré’s
fundamental ideas in dynamics.

Formalisation and extension of such concepts result in the fascinating interplay
between tensorial geometry and symmetries. This provides foundational building
blocks for theoretical models in physics, but has also become an essential part of the
modern treatment of statistical models, engineering design and a significant arena
for analysis.

This is a mathematical subject that is under continual development and spectac-
ular advances based on these ideas are still being made. Of most popular recent
note is Perelman’s resolution of the Poincaré conjecture and the resulting proof of
Thurston’s geometrisation conjecture for three-manifolds.

For those wishing to make good use of these ideas and concepts, there are a
number of excellent texts. However, an exposition of theory is often not enough
and there is always limited space for demonstrating hands-on computations. In con-
trast to many others, this book is centred around providing a useful set of worked
examples, carefully designed to help develop the reader’s skills and intuition in a
systematic way.

This new edition adds fresh examples and extends the reference material. It stays
within the general scope of the first edition, but also provides welcome material on
new topics, detailed in the Preface, most notably in the area of symplectic geometry
and Hamiltonian dynamics. The student or teacher of a course in modern differential
geometry will find this a valuable resource.

Andrew SwannAarhus University
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Foreword to the First Edition

A famous Swiss professor gave in Basel a student’s course on “Riemann surfaces.”
After a couple of lectures a student asked him, “Professor, until now you did not give
an exact definition of a Riemann surface.” The professor answered, “Concerning
Riemann surfaces, the main thing is to UNDERSTAND them, not to define them.”

This episode really happened. The student’s objection was necessary and rea-
sonable. From a formal viewpoint, it is, of course, necessary to start as soon as
possible with strict definitions. But the answer of the professor also has a substan-
tial background. Namely, the pure definition of a Riemann surface—as a complex
1-dimensional complex analytic manifold—does absolutely nothing contribute to a
real understanding. It takes really a long time to understand what a Riemann surface
is.

This example is typical for the objects of global analysis—manifolds with struc-
tures. On the one hand, there are complex concrete definitions, but on the other hand,
these do not automatically exhibit what they really mean, what we can do with them,
which operations they really admit, how rigid this all is. Hence there arises the nat-
ural question: How to submit a deeper understanding, what is the best—or at least a
good—way to do this?

One well-known way for this is to underpin the definitions, theorems and con-
structions by hierarchies of examples, counterexamples and exercises. Their choice,
construction and logical order is for any teacher in global analysis an interesting,
important and fun creating task.

This workbook is a really succeeded attempt to submit to the reader by very
clever composed series of exercises and examples covering the whole area of mani-
folds, Lie groups, fibre bundles and Riemannian geometry a deep understanding and
feeling.

The choice and order of the examples and exercises will be extraordinarily help-
ful and useful for any student or teacher of manifolds and differential geometry.

Jürgen EichhornGreifswald University
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Preface

As stated in the Preface to the first edition, this book intends to provide material
for the practical side of standard courses on analysis and algebra on differentiable
manifolds at a middle level, corresponding to advanced undergraduate and graduate
years. The exercises focus on Lie groups, fibre bundles, and Riemannian geometry.
Aims, approach and structure of the book remain largely the same as in the first
edition. In the present edition, the number of figures is 68.

The prerequisites are linear and multilinear algebra, calculus of several variables,
various concepts of point–set topology, and some familiarity with linear algebraic
groups, the topology of fibre bundles, and manifold theory.

We would like to express our appreciation to the authors of some excellent books
as those which appear in the references in chapters. These books have served us
as a source of ideas, inspiration, statements and sometimes of results. We strongly
recommend these books to the reader.

We introduce now a brief overview of the contents.
Chapters 1 to 6 contain 412 solved problems, sorted according to the aforemen-

tioned topics and in almost the same vein, notations, etc., as in the first edition,
but 39 problems of the first edition have been deleted and 76 new problems have
been added in the present edition. The first section of each chapter gives a selection
of those definitions and theorems whose terminology, with ample use throughout
the book, could be misleading due to the lack of universal acceptance. However, we
should like to insist on the fact that we do not claim that this is any kind or part of a
book on the theory of differentiable manifolds.

We now underline some of the changes in this edition.
Unlike the first edition of the book, in the present edition the Einstein summation

convention is not used.
We consider in Sect. 1.3 (and only there) differentiable structures defined on sets,

analysing what happens when one of the properties of being Hausdorff or second
countable fails to hold. We thus try to elicit in the reader a better understanding of
the meaning and importance of these two properties.

In Chap. 1 of the present edition, we have added, as an instructive example, a
problem where we prove in detail that the manifold of affine straight lines of the
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xii Preface

plane, the 2-dimensional real projective space RP2 minus a point, and the infinite
Möbius strip are diffeomorphic.

In Chap. 4, two new problems have been added in the section concerning the ex-
ponential map, where the simply connected Lie group corresponding to a given Lie
algebra is obtained. The section devoted to the adjoint representation, contains six
new problems concerning topics such as Weyl group, Cartan matrix, Dynkin dia-
grams, etc. Similarly, the section devoted to Lie groups of transformations has been
increased in ten new application problems in symplectic geometry, Hamiltonian me-
chanics, and other related topics. Finally, we have added in the section concerning
homogeneous spaces two problems on homogeneous spaces related to the excep-
tional Lie group G2.

The section on characteristic classes in Chap. 5 includes two new problems on
the Godbillon–Vey class in the present edition. Moreover, the last section, devoted to
almost symplectic manifolds, Hamilton’s equations, and the relation with principal
U(1)-bundles, contains five new problems, including topics as Hamiltonian vector
fields.

In the present edition, the section of Chap. 6 concerning Riemannian connec-
tions has been enlarged, including six new problems on almost complex structures.
The section on Riemannian geodesics also includes four new problems on spe-
cial metrics. Moreover, a completely new section is devoted to a generalisation of
Gauss’ Lemma. The section on homogeneous Riemannian and Riemannian sym-
metric spaces contains two new problems about general properties of homogeneous
Riemannian manifolds and two new problems on specific three-dimensional Rie-
mannian spaces. Furthermore, a short novel section deals with some properties of
the energy of Hopf vector fields. The section on left-invariant metrics on Lie groups
contains in particular two new problems: One gives in a detailed way the structure of
the Kodaira–Thurston manifold; and the other furnishes the de Rham cohomology
of a specific nilmanifold.

Chapter 7 offers an expanded 56-page long collection of formulae and tables
concerning frequent spaces and groups in differential geometry. Many of them do
not actually appear in the problems, but having them collected together may prove
useful as an aide-mémoire, even to teachers and researchers.

At the end of the references to each chapter, several books (or papers) appear that
have not been explicitly cited, but such that they have inspired several ideas of the
chapter and/or are very useful references.

All in all, we hope that this new edition of the book will again render a good
service to practitioners of differential geometry and related topics.

We acknowledge the anonymous referees for their thorough, enlightening and
suggestive reports; their invaluable suggestions and corrections have contributed to
improve several aspects of contents as well as presentation of the book.

Our hearty thanks to Professor José A. Oubiña for his generous help and
wise advices. We are also indebted to Mrs. Dava Sobel and Professors William
M. Boothby, José C. González-Dávila, Sigurdur Helgason, A. Montesinos Amilibia,
Kent E. Morrison, John O’Connor, Peter Petersen, Edmund F. Robertson, Waldyr



Preface xiii

A. Rodrigues, Jr., Chris M. Wood, and John C. Wood who kindly granted us per-
mission to reproduce here some of their nice and interesting texts, results and con-
structions.

We are indebted to Donatas Akmanavičius and his team for their careful editing.
We are also indebted to José Ignacio Sánchez García for his excellent work on

the graphics.
Our special thanks to Andrew Swann, who kindly accepted our invitation to write

the Foreword.

Pedro M. Gadea
Jaime Muñoz Masqué

Ihor V. Mykytyuk

Madrid, Spain

L’viv, Ukraine



From the Preface to the First Edition

This book is intended to cover the exercises of standard courses on analysis and
algebra on differentiable manifolds at a middle level, corresponding to advanced
undergraduate and graduate years, with specific focus on Lie groups, fibre bundles
and Riemannian geometry. It will prove of interest for students in mathematics and
theoretical physics, and in some branches of engineering.

It is not intended as a handbook on those topics, in the form of problems, but
merely as a practical complement to the courses, often found on excellent books,
like those cited in the bibliography.

The prerequisites are linear and multilinear algebra, calculus on several variables
and various concepts of point–set topology.

The first six chapters contain 375 solved problems sorted according to the afore-
mentioned topics. These problems fall, “grosso modo,” into four classes:

(i) Those consisting of mere calculations, mostly elementary, aiming at checking
a number of notions on the subjects.

(ii) Problems dedicated to checking some specific properties introduced in the de-
velopment of the theory.

(iii) A class of somewhat more difficult problems devoted to focusing the attention
on some particular topics.

(iv) A few problems introducing the reader to certain questions not usually ex-
plained. The level of these problems is quite different, ranging from those han-
dling simple properties to others that need sophisticated tools.

Throughout the book, differentiable manifolds, functions, and tensors fields are as-
sumed to be of class C∞, mainly to simplify the exposition. We call them, indis-
criminately, either differentiable or C∞.

Similarly, manifolds are supposed to be Hausdorff and second countable, though
a section is included analysing what happens when these properties fail, aimed at a
better understanding of the meaning of such properties.

The Einstein summation convention is used.
Chapter 7 provides a selection of the theorems and definitions used throughout

the book, but restricted to those whose terminology could be misleading for the
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xvi From the Preface to the First Edition

lack of universal acceptance. Moreover, to solve some types of problems, certain
definitions and notations should be precisely fixed; recalling the exact statement of
some theorems is often convenient in practice as well. However, this chapter has by
no means the intention of being either a development or a digest of the theory.

Chapter 8 offers a 42-page long collection of formulae and tables concerning
spaces and groups frequent in differential geometry. Many of them are used through-
out the book; others are not, but they have been included since such a collection
should be useful as an aide-mémoire, even for teachers and researchers. As in
Chap. 7, no effort to be exhaustive has been attempted.

We hope the book will render a good service to teachers and students of differ-
ential geometry and related topics. While no reasonable effort has been spared to
ensure accuracy and precision, the attempt of writing such a book necessarily will
contain misprints, and probably some errors. (. . . ) In the corrected reprint published
by Springer in 2009, we corrected a couple of dozens of typos, slightly modified the
statement of Problem 1.1.13, and changed the proof of Problem 5.3.6(2).

Pedro M. Gadea
Jaime Muñoz Masqué

Ihor V. Mykytyuk

Madrid, Spain

L’viv, Ukraine
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Chapter 1
Differentiable Manifolds

Abstract After recalling some definitions and results on the basics of smooth man-
ifolds, this chapter is devoted to solve problems including (but not limited to) the
following topics: Smooth mappings, critical points and critical values, immersions,
submersions and quotient manifolds, construction of manifolds by inverse image,
tangent bundles and vector fields, with integral curves and flows. Functions and
other objects are assumed to be of class C∞ (also referred to either as ‘differen-
tiable’ or ‘smooth’), essentially for the sake of simplicity. Similarly, manifolds are
assumed to be Hausdorff and second countable, though we have included a sec-
tion that analyses what happens when one of these properties fails to hold. We thus
try to elicit in the reader a better understanding of the meaning and importance of
such properties. On purpose, we have sprinkled this first chapter with many exam-
ples and figures. As an instructive example, we prove in detail that the manifold
of affine straight lines of the plane, the 2-dimensional real projective space RP2

minus a point, and the infinite Möbius strip are diffeomorphic. As important and
non-trivial examples of differentiable manifolds, the real projective space RPn and
the real Grassmannian Gk(R

n) are studied in detail.

Lines of latitude and longitude began crisscrossing our worldview in an-
cient times, at least three centuries before the birth of Christ. By A. D. 150,
the cartographer Ptolemy had plotted them on the twenty-seven maps of his
first world atlas.

DAVA SOBEL, Longitude, Walker & Company, New York, 2007, pp. 2–3.
(With kind permission from the author and from Walker & Company publish-
ers.)

A differentiable manifold is generally defined in one of two ways; as a
point set with neighborhoods homeomorphic with Euclidean space En, coör-
dinates in overlapping neighborhoods being related by a differentiable trans-
formation (. . . ) or as a subset of En, defined near each point by expressing
some of the coördinates in terms of the others by differentiable functions (. . . ).
The first fundamental theorem is that the first definition is no more general
than the second (. . . )

P.M. Gadea et al., Analysis and Algebra on Differentiable Manifolds,
Problem Books in Mathematics, DOI 10.1007/978-94-007-5952-7_1,
© Springer-Verlag London 2013
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2 1 Differentiable Manifolds

HASSLER WHITNEY, “Differentiable Manifolds,” Ann. of Math. 37
(1936), no. 3, p. 645. (With kind permission from the Annals of Mathematics.)

1.1 Some Definitions and Theorems on Differentiable Manifolds

Definitions 1.1 Let M be a topological space. A covering of M is a collection of
open subsets of M whose union is M . A covering {Uα}α∈A of M is said to be locally
finite if each p ∈ M has a neighbourhood (an open subset of M containing p) which
intersects only finitely many of the sets Uα .

A Hausdorff space M is called paracompact if for each covering {Uα}α∈A of M

there exists a locally finite covering {Vβ}β∈B which is a refinement of {Uα}α∈A (that
is, each Vβ is contained in some Uα). It is known that a locally compact Hausdorff
space which has a countable base is paracompact.

A locally Euclidean space is a topological space M such that each point has a
neighbourhood homeomorphic to an open subset of the Euclidean space R

n. In par-
ticular, such a space is locally compact and paracompact. If ϕ is a homeomorphism
of a connected open subset U ⊂ M onto an open subset of Rn, then U is called a
coordinate neighbourhood; ϕ is called a coordinate map; the functions xi = t i ◦ ϕ,
where t i denotes the ith canonical coordinate function on R

n, are called the coordi-
nate functions; and the pair (U,ϕ) (or the set (U,x1, . . . , xn)) is called a coordinate
system or a (local) chart. An atlas A of class C∞ on a locally Euclidean space M

is a collection of coordinate systems {(Uα,ϕα) : α ∈ A} satisfying the following two
properties:

(i)
⋃

α∈A Uα = M ;
(ii) ϕα ◦ ϕ−1

β is C∞ on ϕβ(Uα ∩ Uβ) for all α,β ∈ A.

A differentiable structure (or maximal atlas) F on a locally Euclidean space M

is an atlas A = {(Uα,ϕα) : α ∈ A} of class C∞, satisfying the above two proper-
ties (i) and (ii) and moreover the condition:

(iii) The collection F is maximal with respect to (ii), that is, if (U,ϕ) is a coor-
dinate system such that ϕ ◦ ϕ−1

α and ϕα ◦ ϕ−1 are C∞ on ϕα(U ∩ Uα) and
ϕ(U ∩ Uα), respectively, then (U,ϕ) ∈ F .

A topological manifold of dimension n is a Hausdorff, second countable, locally
Euclidean space of dimension n. A differentiable manifold of class C∞ of dimension
n (or simply differentiable manifold of dimension n, or C∞ manifold, or smooth n-
manifold) is a pair (M,F ) consisting of a topological manifold M of dimension n,
together with a differentiable structure F of class C∞ on M .

The differentiable manifold (M,F ) is usually denoted by M , with the under-
standing that when one speaks of “the differentiable manifold” M one is considering
the locally Euclidean space M with some given differentiable structure F .

Let M and N be differentiable manifolds, of respective dimensions m and n.
A map Φ : M → N is said to be C∞ provided that for every coordinate system
(U,ϕ) on M and (V ,ψ) on N , the composite map ψ ◦ Φ ◦ ϕ−1 is C∞.
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A diffeomorphism Φ : M → N is a bijective C∞ map such that the inverse map
Φ−1 is also C∞.

The tangent space TpM to M at p ∈ M is the space of real derivations of the
local algebra C∞

p M of germs of C∞ functions at p, i.e. the R-linear functions
X : C∞

p M → R such that

X(fg) = (Xf )g(p) + f (p)Xg, f,g ∈ C∞
p M.

Let C∞M denote the algebra of differentiable functions of class C∞ on M . The
differential map at p of the C∞ map Φ : M → N is the map

Φ∗p : TpM → TΦ(p)N, (Φ∗pX)(f ) = X(f ◦ Φ), f ∈ C∞N.

Theorem 1.2 (Partition of Unity) Let M be a manifold and let {Uα}α∈A be a locally
finite covering of M . Assume that each closure Uα is compact. Then there exists a
system {ψα}α∈A of differentiable functions on M such that

(a) Each ψα has compact support contained in Uα ;
(b) ψα � 0 and

∑
α∈A ψα = 1.

Definition 1.3 A parametrisation of a surface S in R
3 is a homeomorphism

x : U ⊂ R
2 −→ V ∩ S,

where U is an open subset of R2 and V stands for an open subset of R3, such that
x∗p : R2 → R

3 is injective for all p ∈ U .

Remark 1.4 In the present book, we use parametrisations of surfaces from open
subsets of R2 (or other Rn to parametrise n-dimensional smooth manifolds) in or-
der to make them consistent with the fact that the coordinate neighbourhoods de-
fined in Definitions 1.1 above are open subsets of the relevant surface (or smooth
n-manifold).

Moreover, for the sake of simplicity, we usually give only a parametrisation,
although it is necessary almost always to give more parametrisations to cover the
surface (or other spaces). This should be understood in each case.

Definitions 1.5 The stereographic projection from the north pole N = (0, . . . ,0,1)

(resp., south pole S = (0, . . . ,0,−1)) of the sphere

Sn =
{
(
x1, . . . , xn+1) ∈R

n+1 :
n+1∑

i=1

(
xi
)2 = 1

}

onto the equatorial plane xn+1 = 0 is the map sending p ∈ Sn \ {N} (resp., p ∈
Sn \ {S}) to the point where the straight line through N (resp., S) and p intersects
the plane xn+1 = 0.
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The inverse of the stereographic projection is the map from xn+1 = 0 to Sn \ {N}
(resp., p ∈ Sn \ {S}) sending the point q in the plane xn+1 = 0 to the point where
the straight line through q and N (resp., S) intersects Sn.

Other stereographic projections can be defined. For instance, that defined as
above but for the sphere

Sn =
{
(
x1, . . . , xn+1) ∈ R

n+1 :
n∑

i=1

(
xi
)2 + (

xn+1 − 1
)2 = 1

}

,

from the north pole N = (0, . . . ,0,2) onto the plane xn+1 = 0. The inverse map is
defined analogously to the previous case.

Definitions 1.6 Let Φ : M → N be a C∞ map. A point p ∈ M is said to be a
critical point of Φ if Φ∗ : TpM → TΦ(p)N is not surjective. A point q ∈ N is said
to be a critical value of Φ if the set Φ−1(q) contains a critical point of Φ .

Let f ∈ C∞M . A point p ∈ M is called a critical point of f if f∗p = 0. If we
choose a coordinate system (U,x1, . . . , xn) around p ∈ M , this means that

∂f

∂x1
(p) = · · · = ∂f

∂xn
(p) = 0.

The real number f (p) is then called a critical value of f . A critical point is called
non-degenerate if the matrix

(
∂2f

∂xi∂xj
(p)

)

is non-singular. Non-degeneracy does not depend on the choice of coordinate sys-
tem.

If p is a critical point of f , then the Hessian Hf of f at p is a bilinear func-
tion on TpM defined as follows. If u,w ∈ TpM and a vector field X ∈ X(M) (see
Definitions 1.17) satisfies Xp = u, then

Hf (u,w) = w(Xf ).

The index of f at a critical point p is the index of its Hessian H
f
p .

Definitions 1.7 A subset S of Rn is said to have measure zero if for every ε > 0,
there is a covering of S by a countable number of open cubes C1,C2, . . . , such that
the Euclidean volume

∑∞
i=1 v(Ci) < ε.

A subset S of a differentiable n-manifold M has measure zero if there exists a
countable family (U1, ϕ1), (U2, ϕ2), . . . of charts in the differentiable structure of M

such that ϕi(Ui ∩ S) has measure zero in R
n for every i = 1,2, . . . .

Theorem 1.8 (Sard’s Theorem) Let Φ : M → N be a C∞ map. Then the set of
critical values of Φ has measure zero.
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Definitions 1.9 Let Φ : M → N be a C∞ map. Then:

(i) Φ is an immersion if Φ∗p is injective for each p ∈ M .
(ii) The pair (M,Φ) is a submanifold of N if Φ is a one-to-one immersion. If M

is a subset of N and the inclusion map of M in N is a one-to-one immersion,
then it is said that M is a submanifold of N .

(iii) Φ is an embedding if Φ is a one-to-one immersion which is also a homeomor-
phism into, that is, the induced map Φ : M → Φ(M) is open when Φ(M) is
endowed with the topology inherited from that of N .

(iv) Φ is an submersion if Φ∗p is surjective for all p ∈ M .

Definition 1.10 Let Φ : M → N be a C∞ map, with dimM = m, dimN = n, and
let p ∈ M . If (U,ϕ), (V ,ψ) are coordinate systems around p and Φ(p), respec-
tively, and Φ(U) ⊂ V , then one has a corresponding expression for Φ in local co-
ordinates, i.e.

Φ̃ = ψ ◦ Φ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ).

The rank of Φ at p is defined to be the rank of Φ∗p , which is equal to the rank of
the Jacobian matrix

(
∂f i

∂xj

(
ϕ(p)

)
)

, i = 1, . . . , n, j = 1, . . . ,m,

of the map

Φ̃
(
x1, . . . , xm

)= (
f 1(x1, . . . , xm

)
, . . . , f n

(
x1, . . . , xm

))
,

expressing Φ in local coordinates.

Theorem 1.11 (Theorem of the Rank) Let Φ : M → N be a C∞ map, with dimM

= m, dimN = n, and rankΦ = r at every point of M . If p ∈ M , then there ex-
ist coordinate systems (U,ϕ), (V ,ψ) as above such that ϕ(p) = (0, . . . ,0) ∈ R

m,
ψ(Φ(p)) = (0, . . . ,0) ∈R

n, and Φ̃ = ψ ◦ Φ ◦ ϕ−1 is given by

Φ̃
(
x1, . . . , xm

)= (
x1, . . . , xr ,0, . . . ,0

)
.

Moreover, we can assume ϕ(U) = Cm
ε (0), ϕ(V ) = Cn

ε (0), with the same ε, where
Cn

ε (0) denotes the cubic neighbourhood centred at 0 ∈R
n of edge 2ε.

Theorem 1.12 (Inverse Map Theorem) Let

f = (
f 1, . . . , f n

) : U → R
n

be a C∞ map defined on an open subset U ⊆ R
n. Given a point x0 ∈ U , assume

∂(f 1, . . . , f n)

∂(x1, . . . , xn)
(x0) 
= 0.

Then there exists an open neighbourhood V ⊆ U of x0 such that:
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(i) f (V ) is an open subset of Rn;
(ii) f : V → f (V ) is one-to-one;

(iii) f −1 : f (V ) → V is C∞.

Theorem 1.13 (Implicit Map Theorem) Denote the coordinates on R
n × R

m by
(x1, . . . , xn, y1, . . . , ym). Let U ⊆ R

n ×R
m be an open subset, and let

f = (
f 1, . . . , f m

) : U → R
m

be a C∞ map. Given a point (x0, y0) ∈ U , assume:

(i) f (x0, y0) = 0;
(ii)

∂(f 1, . . . , f m)

∂(y1, . . . , ym)
(x0, y0) 
= 0.

Then, there exist an open neighbourhood V of x0 in R
n and an open neighbourhood

W of y0 in R
m such that V × W ⊂ U , and there exists a unique C∞ map g : V →

R
m, such that for each (x, y) ∈ V × W :

f (x, y) = 0 ⇔ y = g(x).

Theorem 1.14 (Implicit Map Theorem for Submersions) Consider a submersion
π : M → N . Then, for every q ∈ imπ , the fibre π−1(q) is a closed submanifold of
M and dimπ−1(q) = dimM − dimN .

Definition 1.15 Let ∼ be an equivalence relation in M , and let π : M → M/∼ be
the quotient map. Endow M/∼ with the quotient topology τ , i.e.

U ∈ τ ⇔ π−1(U) is open in the topology of M.

The quotient manifold of M modulo ∼ is said to exist if there is a (necessarily
unique) differentiable manifold structure on M/∼ such that π is a submersion.

The following criterion is often used to construct quotient manifolds:

Theorem 1.16 (Theorem of the Closed Graph) Let ∼ be an equivalence relation in
M and let N ⊂ M × M be the graph of ∼, that is,

N = {
(p, q) ∈ M × M : p ∼ q

}
.

The quotient manifold M/∼ exists if and only if the following two conditions hold
true:

(i) N is a closed embedded submanifold of M × M .
(ii) The restriction π : N → M to N of the canonical projection pr1 : M ×M → M

onto the first factor is a submersion.
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Definitions 1.17 Let M be a differentiable n-manifold with differentiable struc-
ture F . Let

T M =
⋃

p∈M

TpM.

There is a natural projection π : T M → M , given by π(v) = p for any v ∈ TpM .
Let (U,ϕ) = (U,x1, . . . , xn) ∈ F . Define ϕ̃ : π−1(U) →R

2n by

ϕ̃(v) = ((
x1 ◦ π

)
(v), . . . ,

(
xn ◦ π

)
(v),dx1(v), . . . ,dxn(v)

)
,

for all v ∈ π−1(U). Then the collection of such (π−1(U), ϕ̃) determines on T M a
differentiable structure F̃ with which T M is called the tangent bundle over M .

A vector field along a curve γ : [a, b] → M in the differentiable manifold M is
a C∞ map X : [a, b] → T M satisfying π ◦ X = γ . A vector field X on M is a C∞
section X : M → T M . If f ∈ C∞U , then Xf is the function on U whose value at
p ∈ M is Xpf . The vector fields on M are usually identified to the derivations of
C∞ functions, that is, to the R-linear maps X : C∞M → C∞M such that X(fg) =
(Xf )g + f (Xg). The (C∞M)-module of vector fields on M is denoted by X(M).

If X and Y are vector fields on M , the Lie bracket [X,Y ] of X and Y is the vector
field on M defined by

[X,Y ]p(f ) = Xp(Yf ) − Yp(Xf ), p ∈ M.

One has the following geometric interpretation of the bracket of two vector fields
[4, vol. I, Proposition 1.9].

Proposition 1.18 Let X and Y vector fields on the differentiable manifold M . If X

generates a local one-parameter group of local transformations ϕt , then

[X,Y ]p = lim
t→0

1

t

(
Yp − (ϕt∗Y)p

)
, p ∈ M.

Let X ∈ X(M). A C∞ curve γ in M is said to be an integral curve of X if

γ ′(t0) = γ∗
(

d

d t

∣
∣
∣
∣
t0

)

= Xγ(t0).

Definitions 1.19 A vector field is said to be complete if each of its maximal integral
curves is defined on the entire real line R.

The flow or 1-parameter group of a complete vector field X on M is the map

ϕ : M ×R → M

(p, t) �→ ϕt (p),

where t �→ ϕt (p) is the maximal integral curve of X with initial point p.
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Definitions 1.20 Let Φ : M → N be a C∞ map. The vector fields X ∈ X(M), Y ∈
X(N), are said to be Φ-related if

Φ∗Xp = YΦ(p), p ∈ M,

i.e.

Φ∗ ◦ X = Y ◦ Φ.

Let Φ : M → N be a diffeomorphism. Given X ∈ X(M), the vector field image
Φ · X of X is defined by

(Φ · X)p = Φ∗(XΦ−1(p)).

That is, Φ · X is a shortening for the section Φ∗ ◦ X ◦ Φ−1 of T N .

Proposition 1.21 Let vector fields Xj ∈ X(M) and Yj ∈ X(N), j = 1,2, be Φ-
related with respect the map Φ : M → N . Then their brackets [X1,X2] ∈ X(M)

and [Y1, Y2] ∈ X(N) are also Φ-related vector fields, i.e.

Φ∗ ◦ [X1,X2] = [Y1, Y2] ◦ Φ.

1.2 C∞ Manifolds

Problem 1.22 Prove that the function ϕ : R → R, ϕ(s) = s3, defines a C∞ differ-
entiable structure on R different from the usual one (that of the atlas {(R, idR)}).

Solution Since ϕ−1(s) = 3
√

s, ϕ is a homeomorphism, so that {(R, ϕ)} is trivially
an atlas for R, with only one chart.

To see that the differentiable structure defined by {(R, ϕ)} is not the usual one,
we must see that the atlases {(R, ϕ)} and {(R, idR)} are not equivalent, i.e. that
{(R, ϕ), (R, idR)} is not a C∞ atlas on R. In fact, although ϕ ◦ id−1

R
= ϕ is C∞, the

map idR ◦ϕ−1 = ϕ−1 is not differentiable at 0.
Let Rϕ (resp., Rid) be the topological manifold R with the differentiable structure

defined by the atlas {(R, ϕ)} (resp., {(R, idR)}). Then, the map ϕ : Rϕ → Rid is a
diffeomorphism. In fact, its representative map id◦ϕ ◦ ϕ−1 : R → R is the identity
map.

Problem 1.23 Prove that if h : Rn → R
n is a homeomorphism, then the atlas

{(Rn,h)} defines the usual differentiable structure on R
n (that defined by the at-

las {(Rn, idRn)}) if and only if h and h−1 are differentiable.

Solution If h : Rn → R
n is a homeomorphism such that the atlas {(Rn,h)} defines

the usual differentiable structure on R
n, then h = h ◦ id−1

Rn and h−1 = idRn ◦h−1 are
differentiable. And conversely.
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Problem 1.24 For each real number r > 0, consider the map ϕr : R → R, where
ϕr(t) = t if t � 0 and ϕr(t) = rt if t � 0. Prove that the atlases {(R, ϕr )}r>0 de-
fine an uncountable family of differentiable structures on R. Are the corresponding
differentiable manifolds diffeomorphic?

Solution For each r > 0, ϕr is a homeomorphism, but ϕr and ϕ−1
r are differentiable

only when r = 1 (ϕ1 = idR). Thus {(R, ϕr)}, for fixed r 
= 1, is an atlas defining a
differentiable structure different from the usual one. Moreover we have

(
ϕr ◦ ϕ−1

s

)
(t) =

{
t if t � 0,

(r/s)t if t � 0.

So, if r 
= s, then ϕr ◦ ϕ−1
s is not differentiable. Consequently, the atlases {(R, ϕr)}

and {(R, ϕs)} define different differentiable structures and thus {(R, ϕr)}r>0 defines
a family of different differentiable structures on R.

All of them are diffeomorphic, though. In fact, given two differentiable man-
ifolds Rϕr1

and Rϕr2
defined from the differentiable structures obtained from the

atlases {(R, ϕr1)} and {(R, ϕr2)}, respectively, a diffeomorphism ϕ : Rϕr1
→ Rϕr2

is given by the identity map for t � 0 and by t �→ (r1/r2)t for t � 0. Indeed, the
representative map ϕr2 ◦ ϕ ◦ ϕ−1

r1
is the identity map.

Problem 1.25 Consider the open subsets U and V of the unit circle S1 of R2 given
by

U = {
(cosα, sinα) : α ∈ (0,2π)

}
, V = {

(cosα, sinα) : α ∈ (−π,π)
}
.

Prove that A = {(U,ϕ), (V ,ψ)}, where

ϕ : U → R, ϕ(cosα, sinα) = α, α ∈ (0,2π),

ψ : V → R, ψ(cosα, sinα) = α, α ∈ (−π,π),

is an atlas on S1.

Solution One has U ∪ V = S1 (see Fig. 1.1). The maps ϕ and ψ are homeomor-
phisms onto the open subsets (0,2π) and (−π,π) of R, respectively, hence (U,ϕ)

and (V ,ψ) are local charts on S1.
The change of coordinates ψ ◦ ϕ−1, given by

ϕ(U ∩ V )
ϕ−1

→ U ∩ V
ψ→ ψ(U ∩ V )

α �→ (cosα, sinα) �→
{

α if α ∈ (0,π),

α − 2π if α ∈ (π,2π),

is obviously a diffeomorphism. Thus A is an atlas on S1.
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Fig. 1.1 An atlas on S1 with
two charts

Fig. 1.2 An atlas on S1 with
four charts

Problem 1.26 Prove:

(i) A = {(U1, ϕ1), (U2, ϕ2), (U3, ϕ3), (U4, ϕ4)}, where

U1 = {
(x, y) ∈ S1 : x > 0

}
, ϕ1 : U1 → R, ϕ1(x, y) = y,

U2 = {
(x, y) ∈ S1 : y > 0

}
, ϕ2 : U2 → R, ϕ2(x, y) = x,

U3 = {
(x, y) ∈ S1 : x < 0

}
, ϕ3 : U3 → R, ϕ3(x, y) = y,

U4 = {
(x, y) ∈ S1 : y < 0

}
, ϕ4 : U4 → R, ϕ4(x, y) = x,

is an atlas on the unit circle S1 in R
2.

(ii) A is equivalent to the atlas given in Problem 1.25.

Solution

(i) We have S1 = ⋃
i Ui , i = 1,2,3,4 (see Fig. 1.2), and each ϕi is a homeomor-

phism onto the open subset (−1,1) of R, thus each (Ui, ϕi) is a chart on S1.
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Fig. 1.3 Stereographic projections of S1

The change of coordinates ϕ1 ◦ ϕ−1
2 , given by

ϕ2(U1 ∩ U2) = (0,1) → U1 ∩ U2 → ϕ1(U1 ∩ U2) = (0,1)

t �→ (
t,
√

1 − t2
) �→

√
1 − t2,

is a C∞ map, since 1 − t2 > 0. Actually it is a diffeomorphism. The other
changes of coordinates are also C∞, as it is easily proved, thus A is a C∞
atlas on S1.

(ii) To prove that the two atlases are equivalent, one must consider the changes of
coordinates whose charts belong to different atlases. For example, for ϕ ◦ ϕ−1

1
we have ϕ1(U ∩ U1) = (−1,0) ∪ (0,1), and the change of coordinates is given
by

ϕ1(U ∩ U1) → U ∩ U1 → ϕ(U ∩ U1) =
(

0,
π

2

)

∪
(

3π

2
,2π

)

t �→ (√
1 − t2, t

) �→ α = arcsin t,

which is a diffeomorphism of these intervals.
One can prove the similar results for the other cases.

Problem 1.27 Consider the set {(UN,ϕN), (US,ϕS)}, where

UN = {
(x, y) ∈ S1 : y 
= 1

}
, US = {

(x, y) ∈ S1 : y 
= −1
}
,

ϕN and ϕS being the stereographic projection (with the x-axis as image) from the
north pole N and the south pole S of the sphere S1, respectively (see Fig. 1.3).

(i) Prove that {(UN,ϕN), (US,ϕS)} is a C∞ atlas on S1.
(ii) Prove that the corresponding differentiable structure coincides with the differ-

entiable structure on S1 obtained in Problem 1.26.
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Solution

(i) The maps ϕN : UN → R and ϕS : US →R, given by

ϕN(x, y) = x

1 − y
, ϕS(x, y) = x

1 + y
,

respectively, are homeomorphisms. The inverse map ϕ−1
N is given by

ϕ−1
N

(
x′)= (x, y) =

(
2x′

1 + x′2
,
x′2 − 1

1 + x′2

)

.

As for the change of coordinates

ϕS ◦ ϕ−1
N : ϕN(UN ∩ US) = R \ {0} → ϕS(UN ∩ US) = R \ {0},

one has (ϕS ◦ϕ−1
N )(t) = 1/t , which is a C∞ function on its domain. The inverse

map is also C∞. Thus, {(UN,ϕN), (US,ϕS)} is a C∞ atlas on S1.
(ii) Consider, for instance,

U2 = {
(x, y) ∈ S1 : y > 0

}
, ϕ2 : U2 → (−1,1), ϕ2(x, y) = x.

We have

ϕN ◦ ϕ−1
2 : (−1,0) ∪ (0,1) → (−∞,−1) ∪ (1,∞)

t �→ t/
(
1 −

√
1 − t2

)
,

which is C∞ on its domain. Similarly, the inverse map ϕ2 ◦ ϕ−1
N , defined by

ϕN(UN ∩ U2) = (−∞,−1) ∪ (1,∞) → ϕ2(UN ∩ U2) = (−1,0) ∪ (0,1)

s �→ 2s/
(
1 + s2),

is also C∞. As one has a similar result for the other charts, we conclude.

Problem 1.28

(i) Define an atlas for the sphere

S2 = {
(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1
}
,

using the stereographic projection with the equatorial plane as image plane.
(ii) Generalise this construction to Sn, n � 3.

Solution

(i) Let us cover the sphere S2 with the open subsets

UN = {
(x, y, z) ∈ S2 : z < a

}
, US = {

(x, y, z) ∈ S2 : z > −a
}
,
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Fig. 1.4 Stereographic
projections of S2 onto the
equatorial plane

for 0 < a < 1. One can consider the equatorial plane as the image plane of the
charts of the sphere (see Fig. 1.4).

We define ϕN : UN →R
2 as the stereographic projection from the north pole

N = (0,0,1) and ϕS : US → R
2 as the stereographic projection from the south

pole S = (0,0,−1). If x′, y′ are the coordinates of ϕN(p), with p = (x, y, z),
we have:

ϕN : UN → R
2

(x, y, z) �→ (
x′, y′)=

(
x

1 − z
,

y

1 − z

)

.

Similarly,

ϕS : US → R
2

(x, y, z) �→ (
x′′, y′′)=

(
x

1 + z
,

y

1 + z

)

.

One has

ϕN(UN) = ϕS(US) = B
(
0,1/(1 − a)

)⊂ R
2.

Since the cases z = 1 or z = −1, respectively, have been dropped, ϕN and ϕS

are one-to-one functions onto an open subset of R
2. As a calculation shows,

ϕ−1
N is given by

ϕ−1
N

(
x′, y′)=

(
2x′

1 + x′2 + y′2
,

2y′

1 + x′2 + y′2
,
x′2 + y′2 − 1

1 + x′2 + y′2

)

.

If p ∈ UN ∩ US , p′ = ϕN(p), and p′′ = ϕS(p), denoting by x′, y′ the coordi-
nates of p′ and by x′′, y′′ the coordinates of p′′, we deduce that

(
x′′, y′′)= (

ϕS ◦ ϕN
−1)(x′, y′)=

(
x′

x′2 + y′2 ,
y′

x′2 + y′2

)

.

Hence ϕS ◦ ϕN
−1 is a diffeomorphism.
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(ii) For arbitrary n, with the conditions similar to the ones for S2, we have

Sn =
{
(
x1, . . . , xn+1) ∈ R

n+1 :
n+1∑

i=1

(
xi
)2 = 1

}

,

UN = {(
x1, . . . , xn+1) ∈ Sn+1 : xn+1 
= 1

}
,

US = {(
x1, . . . , xn+1) ∈ Sn+1 : xn+1 
= −1

}
,

ϕN : UN → R
n

(
x1, . . . , xn+1) �→

(
x1

1 − xn+1
, . . . ,

xn

1 − xn+1

)

,

ϕS : US → R
n

(
x1, . . . , xn+1) �→

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)

,

ϕ−1
N

(
y1, . . . , yn

)= (
x1, . . . , xn+1)

=
(

2y1

1 +∑
i (y

i)2
, . . . ,

2yn

1 +∑
i (y

i)2
,

∑
i (y

i)2 − 1

1 +∑
i (y

i)2

)

.

So

(
ϕS ◦ ϕ−1

N

)(
y1, . . . , yn

)=
(

y1
∑

i (y
i)2

, . . . ,
yn

∑
i (y

i)2

)

= y

|y|2 ,

and similarly
(
ϕN ◦ ϕ−1

S

)(
y1, . . . , yn

)= y

|y|2 ,

which are C∞ in ϕN(UN ∩ US) = R
n \ {0}.

Notice that with the stereographic projections, the number of charts is equal
to two, which is the lowest possible figure, since Sn is compact.

Problem 1.29 Define an atlas on the cylindrical surface

M = {
(x, y, z) ∈ R

3 : x2 + y2 = r2,0 < z < h
}
,

where h, r ∈ R
+.

Solution We only need to endow the circle S1(r) = {(x, y) ∈ R
2 : x2 + y2 = r2}

with an atlas. In fact, let (U,ϕ), (V ,ψ) be an atlas as in Problem 1.25. This means
that U,V are open subsets of S1(r) ⊂ R

2 such that S1(r) = U ∪V , and ϕ : U →R,
ψ : V → R are diffeomorphisms. Then U × (0, h), V × (0, h) are open subsets of
M and one defines an atlas on M by

A = {(
U × (0, h),ϕ × id

)
,
(
V × (0, h),ψ × id

)}
.
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Fig. 1.5 Charts for the
cylindrical surface

In fact, the map

(ψ × id) ◦ (ϕ × id)−1 : ϕ(U ∩ V ) × (0, h) → ψ(U ∩ V ) × (0, h)

is a diffeomorphism, as it follows from the obvious formula

(ψ × id) ◦ (ϕ × id)−1 = (
ψ ◦ ϕ−1)× id.

This construction is only an example of the general way of endowing a product
of two manifolds with a differentiable structure. In fact, one can view M as the
Cartesian product of S1(r) by an open interval.

Problem 1.30

(i) Define an atlas on the cylindrical surface defined as the quotient space A/∼,
where A denotes the rectangle [0, a] × (0, h) ⊂ R

2, a > 0, h > 0, with the
topology inherited from the usual one of R2, and ∼ stands for the equivalence
relation (0, y) ∼ (a, y), where (0, y), (a, y) ∈ A.

(ii) Relate this construction to the one in Problem 1.29.

Remark As for the fact that every subset of a topological space can be equipped with
the subspace topology in which the open subsets are the intersections of the open
subsets of the larger space with the given subset, see, for instance, [3, p. 55, 10].

Solution

(i) Denote by [(x, y)] the equivalence class of (x, y) modulo ∼. Let c, d, e, f ∈R

be such that 0 < c < e < f < d < a. We define (see Fig. 1.5) the charts (U,ϕ),
(V ,ψ) taking U = {[(x, y)] : c < x < d}, V = V1 ∪ V2, where

V1 = {[
(x, y)

] : 0 � x < e
}
, V2 = {[

(x, y)
] : f < x � a

}
,

ϕ : U → R
2, ϕ([(x, y)]) = (x, y), and

ψ : V → R
2

[
(x, y)

] �→
{

(x + a, y) if (x, y) ∈ V1,

(x, y) if (x, y) ∈ V2.



16 1 Differentiable Manifolds

Fig. 1.6 The infinite Möbius
strip

It is obvious that ϕ : U → ϕ(U) and ψ : V → ψ(V ) are homeomorphisms. The
change of coordinates ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is given by

(
ψ ◦ ϕ−1)(x, y) =

{
(x + a, y) if (x, y) ∈ ϕ(U ∩ V1),

(x, y) if (x, y) ∈ ϕ(U ∩ V2),

which is trivially a diffeomorphism.
(ii) Let

ϕ : A = [0, a] × (0, h) → R
3, ϕ(α, z) =

(

r cos
2πα

a
, r sin

2πα

a
, z

)

,

0 � α � a, 0 < z < h, r = a/2π.

From the very definition of ϕ it follows that ϕ(A) = M , where M ⊂ R
3

is the submanifold defined in Problem 1.29. Then it is easily checked that
ϕ(α, z) = ϕ(α′, z′) if and only if (α, z) ∼ (α′, z′). Hence ϕ induces a unique
homeomorphism ϕ̂ : A/∼ → M such that ϕ̂ ◦ p = ϕ, where p : A → A/∼ is
the quotient map.

Problem 1.31 Define the infinite Möbius strip M as the topological quotient of
[0,1]×R by the equivalence relation ∼ which identifies the pairs (0, y) and (1,−y)

(see Fig. 1.6), with the topology inherited from the usual one of R2. Show that M

admits a structure of C∞ manifold consistent with its topology.

Solution Let p : [0,1] ×R → M = ([0,1] ×R)/∼ be the quotient map. Consider
the two open subsets of M given by

U = (
(0,1) ×R

)
/∼, V = (([0,1/2) ∪ (1/2,1])×R

)
/∼.

Every point z ∈ U can be uniquely written as z = p(x, y), with (x, y) ∈ (0,1) ×R

and we can define a homeomorphism ϕ : U → ϕ(U) ⊂ R
2 by setting ϕ(z) = (x, y).
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We also define ψ : V → ψ(V ) ⊂ R
2 as follows: Set z = p(x, y) with (x, y) ∈

([0,1/2) ∪ (1/2,1]) ×R. Then,

ψ(z) =
{

(x + 1,−y) if x < 1/2,

(x, y) if x > 1/2.

The definition makes sense as ψ(p(0, y)) = ψ(p(1,−y)) = (1,−y), for all y ∈ R.
It is easily checked that ψ induces a homeomorphism between V and the open
subset (1/2,3/2) × R ⊂ R

2. The change of coordinates ϕ ◦ ψ−1 : ψ(U ∩ V ) →
ϕ(U ∩ V ), that is,

ϕ ◦ ψ−1 : ((1/2,1) ∪ (1,3/2)
)×R → (

(0,1/2) ∪ (1/2,1)
)×R,

is given by

(
ϕ ◦ ψ−1)(x, y) =

{
(x, y) if 1/2 < x < 1,

(x − 1,−y) if 1 < x < 3/2,

which is a C∞ map. Similarly, the change of coordinates

ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ),

that is,

ψ ◦ ϕ−1 : ((0,1/2) ∪ (1/2,1)
)×R → (

(1/2,1) ∪ (1,3/2)
)×R,

is given by

(
ψ ◦ ϕ−1)(x, y) =

{
(x + 1,−y) if 0 < x < 1/2,

(x, y) if 1/2 < x < 1,

which also is a C∞ map.

Problem 1.32

(i) Consider the circle in R
3 given by x2 + y2 = 4, z = 0, and the open segment

PQ in the yz-plane in R
3 given by y = 2, |z| < 1. Move the centre C of PQ

along the circle and rotate PQ around C in the plane Cz, so that when C goes
through an angle u, PQ has rotated an angle u/2. When C completes a course
around the circle, PQ returns to its initial position, but with its ends changed
(see Fig. 1.7).

The surface so described is called the Möbius strip.
Consider the two parametrisations

x(u, v) = (
x(u, v), y(u, v), z(u, v)

)

=
((

2 − v sin
u

2

)

sinu,

(

2 − v sin
u

2

)

cosu,v cos
u

2

)

,

0 < u < 2π, −1 < v < 1,
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Fig. 1.7 The Möbius strip

x′(u, v) = (
x′(u, v), y′(u, v), z′(u, v)

)

=
((

2 − v′ sin

(
π

4
+ u′

2

))

cosu′,

−
(

2 − v′ sin

(
π

4
+ u′

2

))

sinu′, v′ cos

(
π

4
+ u′

2

))

,

π/2 < u′ < 5π/2, −1 < v′ < 1.

Prove that the Möbius strip with these parametrisations is a 2-dimensional
manifold.

(ii) Relate this manifold to the one given in Problem 1.31.

The relevant theory is developed, for instance, in do Carmo [2].

Solution

(i) The coordinate neighbourhoods corresponding to the parametrisations cover the
Möbius strip. The intersection of these coordinate neighbourhoods has the two
connected components

U1 = {
x(u, v) : π < u < 2π

}
, U2 = {

x(u, v) : 0 < u < π
}
,

and the changes of coordinates are given on U1 and U2, respectively, by

{
u′ = u − π

2
,

v′ = v,

⎧
⎨

⎩

u′ = u + 3π

2
,

v′ = −v,

which are obviously C∞.
(ii) Let ϕ : [0,2π] × (−1,1) →R

3 be the map given by

ϕ(u, v) =
((

2 − v sin
u

2

)

sinu,

(

2 − v sin
u

2

)

cosu,v cos
u

2

)

.
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Note that the restriction of ϕ to (0,2π) × (−1,1) coincides with the first
parametrisation. Moreover, it is easy to see that imϕ coincides with the Möbius
strip.

Let α : [0,1] × R → [0,2π] × (−1,1) be the homeomorphism given by
α(s, t) = (2πs, (2/π) arctan t). Set ψ = ϕ ◦ α. Let (s1, t1), (s2, t2) ∈ [0,1] ×R

be two distinct points such that ψ(s1, t1) = ψ(s2, t2). As ϕ is a parametrisation
when restricted to (0,2π) × (−1,1), the assumption implies that

(s1, t1), (s2, t2) ∈ ∂
([0,1] ×R

)= ({0} ×R
)∪ ({1} ×R

)
.

As (s1, t1) 
= (s2, t2), either (s1, t1) ∈ {0} × R and (s2, t2) ∈ {1} × R, or vice
versa. In the first case, ψ(0, t1) = ψ(1, t2) means

ϕ
(
0, (2/π) arctan t1

)= ϕ
(
2π, (2/π) arctan t2

)
.

So
(
0,2, (2/π) arctan t1

)= (
0,2,−(2/π) arctan t2

)
,

that is, t1 + t2 = 0. The other case is similar. This proves that the equivalence
relation associated to ψ coincides with the equivalence relation ∼ defined in
Problem 1.31.

Problem 1.33 Let T 2 be a torus of revolution in R
3 with centre at (0,0,0) ∈ R

3

and let a : T 2 → T 2 be defined by a(x, y, z) = (−x,−y,−z). Let K be the quotient
space under the equivalence relation p ∼ a(p), p ∈ T 2, and let π : T 2 → K denote
the map π(p) = {p,a(p)}. Assume T 2 is covered by parametrisations xα : Uα →
T 2 such that

xα(Uα) ∩ (a ◦ xα)(Uα) = ∅,

where each Uα is an open subset of R2.
Prove that K is covered by the parametrisations (Uα,π ◦ xα) and that the corre-

sponding changes of coordinates are C∞.
K is called the Klein bottle (see Fig. 1.8).

The relevant theory is developed, for instance, in do Carmo [2].

Solution The subsets (π ◦ xα)(Uα) cover K by assumption. Each of them is open
in K as

π−1((π ◦ xα)(Uα)
)= xα(Uα) ∪ a

(
xα(Uα)

)

and xα(Uα), a(xα(Uα)) are open subsets of T 2. Moreover, each map π ◦ xα :
Uα → K is a parametrisation (that is, it is one-to-one) by virtue of the condition
xα(Uα) ∩ (a ◦ xα)(Uα) = ∅. Finally, the changes of coordinates are C∞. In fact, let

p ∈ domain
(
(π ◦ xβ)−1 ◦ (π ◦ xα)

)
.
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Fig. 1.8 The Klein bottle

Then p ∈ Uα and (π ◦ xα)(p) ∈ (π ◦ xβ)(Uβ); hence either xα(p) ∈ xβ(Uβ) or
xα(p) ∈ (a ◦ xβ)(Uβ). In the first case, one has

(π ◦ xβ)−1 ◦ (π ◦ xα) = x−1
β ◦ xα

on a neighbourhood of p; and in the second one, we have

(π ◦ xβ)−1 ◦ (π ◦ xα) = (a ◦ xβ)−1 ◦ xα,

on a neighbourhood of p. Since a is a diffeomorphism, (π ◦ xβ)−1 ◦ (π ◦ xα) is a
diffeomorphism on a neighbourhood of p. Thus, it is C∞.

Problem 1.34 Define an atlas on the topological space M(r × s,R) of all the real
matrices of order r × s.

Solution The map ϕ : M(r × s,R) →R
rs defined by

ϕ(aij ) = (a11, . . . , a1s, . . . , ar1, . . . , ars),

is one-to-one and surjective. Now endow M(r × s,R) with the topology for which
ϕ is a homeomorphism. So, (M(r × s,R), ϕ) is a chart on M(r × s,R), whose
domain is all of M(r × s,R). The change of coordinates is the identity, hence it is a
diffeomorphism. So, A = {(M(r × s,R), ϕ)} is an atlas on M(r × s,R).

1.3 Differentiable Structures Defined on Sets

In the present section, and only here, we consider differentiable structures defined
on sets.

Let S be a set. An n-dimensional chart on S is an injection of a subset of S onto
an open subset of R

n. A C∞ atlas on S is a collection of charts whose domains
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Fig. 1.9 The “Figure Eight”
defined by (E,ϕ)

cover S, and such that if the domains of two charts ϕ,ψ overlap, then the change of
coordinates ϕ ◦ ψ−1 is a diffeomorphism between open subsets of Rn.

Hence, the manifold is not supposed to be a priori a topological space. It has the
topology induced by the differentiable structure defined by the C∞ atlas (see [1,
2.2]).

Problem 1.35 Consider E = {(sin 2t, sin t) ∈R
2 : t ∈R} (the Figure Eight).

(i) Prove that {(E,ϕ)}, where ϕ : E →R is the injection of E onto an open inter-
val of R, defined by ϕ(sin 2t, sin t) = t , t ∈ (0,2π) (see Fig. 1.9), is an atlas on
the set E. Here E has the topology inherited from its injection in R.

(ii) Prove that, similarly, {(E,ψ)}, where ψ : E → R, ψ(sin 2t, sin t) = t , t ∈
(−π,π), is an atlas on the set E.

(iii) Do the two atlases define the same differentiable structure on E?

Remark Notice that the “Figure Eight” is not endowed with the topology inherited
from R

2 as, in this case, it would not be a differentiable manifold. Instead, we endow
it with the topology corresponding to its differentiable structure obtained from the
atlases above. (Notice that the arguments here are similar to those given in studying
the sets in Problems 1.43, 1.44 below).

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution

(i) ϕ is an injective map from E onto the open interval (0,2π) of R, whose domain
is all of E. Consequently, {(E,ϕ)} is an atlas on E.

(ii) Similar to (E,ϕ).
(iii) The two atlases define the same differentiable structure if (E,ϕ) belongs to

the structure defined by (E,ψ) and conversely. That is, the maps ψ ◦ ϕ−1 and
ϕ ◦ ψ−1 must be C∞. We have

ψ ◦ ϕ−1 : ϕ(E) = (0,2π) → E → ψ(E) = (−π,π)

t �→ (sin 2t, sin t) �→ ψ̃(sin 2t, sin t),
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Fig. 1.10 The Noose

where

ψ̃(sin 2t, sin t) =

⎧
⎪⎨

⎪⎩

t, t ∈ (0,π),

0, t = π,

ψ(sin(2t − 4π), sin(t − 2π)) = t − 2π, t ∈ (π,2π).

Thus, ψ ◦ ϕ−1 is not even continuous and the differentiable structures defined
by these atlases are different.

Notice that the topologies induced on E by the two C∞ structures are
also different: Consider, for instance, the open subsets ϕ−1(Uπ) and ψ−1(U0),
where Uπ and U0 denote small neighbourhoods of π and 0, respectively.

Problem 1.36 Consider the subset N of R2 (the Noose) defined (see Fig. 1.10) by

N = {
(x, y) ∈R

2 : x2 + y2 = 1
}∪ {

(0, y) : 1 < y < 2
}
.

(i) Prove that the function

ϕ: N → R

(sin 2πs, cos 2πs) �→ s if 0 � s < 1,

(0, s) �→ 1 − s if 1 < s < 2,

is a chart that defines a C∞ structure on N .
(ii) Prove that the function

ψ : N → R

(sin 2πs, cos 2πs) �→ 1 − s if 0 < s � 1,

(0, s) �→ 1 − s if 1 < s < 2,
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Fig. 1.11 An example of set
with a C∞ structure

also defines a C∞ structure on N .
(iii) Prove that the two structures above are different.

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution

(i) Obviously ϕ : N → (−1,1) is a one-to-one map. Endow N with the unique
topology τa making ϕ a homeomorphism. Thus, the atlas {(N,ϕ)}, with the
single chart ϕ, defines a C∞ structure in N .

Notice that if N is endowed with the topology inherited from that of R2,
then ϕ is not continuous at the point (0,1).

(ii) Proceed similarly to (i).
(iii) If (N,ψ) is assumed to belong to the structure defined from (N,ϕ), then ψ ◦

ϕ−1 : (−1,1) → (−1,1) would be C∞, but it is not even continuous.

Problem 1.37 Consider the sets

U = {
(s,0) ∈R

2 : s ∈R
}
, V = {

(s,0) ∈ R
2 : s < 0

}∪ {
(s,1) ∈R

2 : s > 0
}
,

and the maps

ϕ : U →R, ϕ(s,0) = s,

ψ : V →R, ψ(s,0) = s, ψ(s,1) = s,

γ : V →R, γ (s,0) = s3, γ (s,1) = s3.

(i) Prove that {(U,ϕ), (V ,ψ)} defines a C∞ structure on the set M = U ∪ V (see
Fig. 1.11).

(ii) Is (V , γ ) a chart in the previous differentiable structure?

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution

(i) The maps ϕ and ψ are injective, and we have ϕ(U) = R, ψ(V ) = R \ {0},
which are open subsets of R. Moreover, both ϕ ◦ ψ−1 and ψ ◦ ϕ−1 are the
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Fig. 1.12 Two charts which
do not define an atlas

identity map on ψ(U ∩ V ) = (−∞,0) = ϕ(U ∩ V ), and ϕ(U ∩ V ), ψ(U ∩ V )

are open subsets of R. Hence A = {(U,ϕ), (V ,ψ)} is a C∞ atlas on M .
(ii) The map γ is injective, and γ (V ) = R \ {0}, γ (U ∩ V ) = (−∞,0), are open

subsets of R. Moreover, the maps γ ◦ ϕ−1, ϕ ◦ γ −1, γ ◦ ψ−1, and ψ ◦ γ −1 are
C∞ maps. Thus, γ is, in fact, a chart of the above differentiable structure.

Problem 1.38 Let

S = {
(x,0) ∈ R

2 : x ∈ (−1,+1)
}∪ {

(x, x) ∈ R
2 : x ∈ (0,1)

}
.

Let

U = {
(x,0) : x ∈ (−1,+1)

}
, ϕ : U → R, ϕ(x,0) = x,

V = {
(x,0) : x ∈ (−1,0]}∪ {

(x, x), x ∈ (0,1)
}
,

ψ : V → R, ψ(x,0) = x, ψ(x, x) = x

(see Fig. 1.12). Is A = {(U,ϕ), (V ,ψ)} an atlas on the set S?

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution We have S = U ∪ V . Furthermore ϕ and ψ are injective maps onto the
open subset (−1,+1) of R. Thus (U,ϕ) and (V ,ψ) are charts on S. However, one
has ϕ(U ∩ V ) = ψ(U ∩ V ) = (−1,0], which is not an open subset of R. Thus A is
not an atlas on S.

Problem 1.39 Consider on R
2 the subsets

E1 = {
(x,0) ∈R

2 : x ∈ R
}
, E2 = {

(x,1) ∈R
2 : x ∈ R

}
.

Define on E = E1 ∪ E2 an equivalence relation ∼ by

(x1,0) ∼ (x2,0) ⇐⇒ x1 = x2,

(x1,1) ∼ (x2,1) ⇐⇒ x1 = x2,

(x1,0) ∼ (x2,1) ⇐⇒ x1 = x2 < 0.
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Fig. 1.13 A set with a C∞ atlas, whose induced topology is not Hausdorff

The classes of the quotient set S = E/∼ are represented by the elements (x,0) for
x < 0, and the elements (x,0) and (x,1) for x � 0 (see Fig. 1.13). Prove that S

admits a C∞ atlas, but S is not Hausdorff with the induced topology.

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution Denote by [(x, y)] the class of (x, y). We can endow S with a manifold
structure by means of the charts (U1, ϕ1) and (U2, ϕ2), where

U1 = {[
(x,0)

] : x ∈R
}
, U2 = {[

(x,0)
] : x < 0

}∪ {[
(x,1)

] : x � 0
}
,

ϕ1
([

(x,0)
])= x, ϕ2

([
(x,0)

])= ϕ2
([

(x,1)
])= x.

One has U1 ∪ U2 = S. Furthermore, ϕ1(U1) = R, ϕ2(U2) = R are open sets and

ϕ1 ◦ ϕ−1
2 : (−∞,0) → U1 ∩ U2 → (−∞,0)

x �→ [
(x,0)

] �→ x

is a diffeomorphism. Hence S admits a C∞ atlas.
Nevertheless, the induced topology is not Hausdorff. The points [(0,1)] and

[(0,0)] do not admit disjoint open neighbourhoods. In fact, if U is an open sub-
set of S containing [(0,0)], then ϕ1(U ∩ U1) must be an open subset of R. But
[(0,0)] ∈ U ∩ U1, hence ϕ1(U ∩ U1) is an open subset of R that contains 0, thus
it contains an interval of the form (−α,α), with α > 0. Therefore, {[(x,0)] : −α <

x < 0} ⊂ U . Similarly, an open subset V of S containing [(0,1)] can have a subset
of the form {[(x,0)] : −β < x < 0, β > 0}. Thus U and V cannot be disjoint.

Problem 1.40 Let S be the subset of R
2 which consists of all the points of the

set U = {(s,0)}, s ∈ R, and the point (0,1). Let U1 be the set obtained from U

replacing the point (0,0) by the point (0,1). We define the maps

ϕ : U → R, ϕ(s,0) = s, ϕ1 : U1 →R,

{
ϕ1(s,0) = s, s 
= 0,

ϕ1(0,1) = 0.

Prove that {(U,ϕ), (U1, ϕ1)} is a C∞ atlas on S, but S is not Hausdorff with the
induced topology.
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Fig. 1.14 The straight line
with a double point

Solution U ∪ V = S, ϕ and ϕ1 are injective maps in R, and the changes of coor-
dinates ϕ ◦ ϕ−1

1 and ϕ1 ◦ ϕ−1 are both the identity on the open subset R \ {0}. So,
these two charts define a C∞ atlas on S.

Let V be a neighbourhood of (0,0) and W a neighbourhood of (0,1) in S. Then
ϕ(U ∩V ) and ϕ1(U1 ∩W) are open subsets of R containing 0, and so they will also
contain some point a 
= 0. The point (a,0) belongs to V ∩ W , hence the topology
of S is not Hausdorff.

Problem 1.41 Consider the set S obtained identifying two copies L1 and L2 of the
real line except at a point p ∈ R (see Fig. 1.14). Prove that S admits a C∞ atlas but
it is not Hausdorff with the induced topology.

Solution Take the usual charts on L1 and L2, i.e. the identity map on R. Then
S = L1 ∪ L2, and the change of coordinates on the intersection L1 ∩ L2 is C∞
as it is the identity map. Nevertheless, the points p1 ∈ L1 and p2 ∈ L2, where pi ,
i = 1,2, stands for the representative of p in Li , are obviously not separable.

Problem 1.42 Let S = R × R, where in the first factor we consider the discrete
topology, in the second factor the usual topology, and in S the product topology.
Prove that S admits a C∞ atlas and that S does not satisfy the second axiom of
countability but it is paracompact.

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution For each t ∈ R, let Lt = {(t, y) : y ∈ R} = {t}×R, which is an open subset
of S. The map ϕt : Lt → R, ϕt (t, y) = y, is a homeomorphism, hence {(Lt , ϕt )}t∈R
is a C∞ atlas on S such that if s 
= t then Lt ∩ Ls = ∅. So S is a locally Euclidean
space of dimension 1 which admits a differentiable structure. The topological space
S has uncountable connected components; thus it is not second countable with the
induced topology. The space S is paracompact. In fact, S is Hausdorff as a product
of Hausdorff spaces and if {Uα}α∈A is an open covering of S, then, for some fixed t ,
{Uα ∩ Lt }α∈A is an open covering of Lt (which is paracompact since it is home-
omorphic to R with the usual topology) which admits a locally finite refinement
{V t

λ}λ∈Λ. Thus {V t
λ}λ∈Λ,t∈R is a locally finite refinement of {Uα}α∈A.

One could alternatively argue that S is paracompact since each connected com-
ponent of S is second countable.
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Fig. 1.15 The cone is not a
locally Euclidean space
because of the origin

Fig. 1.16 Two tangent
circles are not a locally
Euclidean space

Problem 1.43 Consider the cone S = {(x, y, z) ∈ R
3 : x2 +y2 = z2} (see Fig. 1.15)

with the topology induced by the usual one of R3. Prove that the algebraic manifold
S is not even a locally Euclidean space.

Solution The point (0,0,0) ∈ S does not have a neighbourhood homeomorphic to
an open subset of R

2. In fact, if such a homeomorphism h : U → V between an
open neighbourhood U of 0 = (0,0,0) in S and an open subset V of R2 is assumed
to exist, then, for small enough ε > 0, the open disk B(h(0), ε) of centre h(0) and
radius ε would be contained in V . Now, if we drop the point h(0) in B(h(0), ε)

the remaining set is connected. So it suffices to see that if we drop 0 in any of its
neighbourhoods, the set U \ {0} is not connected. In fact, U \ {0} = U+ ∪U−, where

U+ = {
(x, y, z) ∈ U : z > 0

}
, U− = {

(x, y, z) ∈ U : z < 0
}
,

so U+ ∩ U− = ∅, and U+ and U− are open subsets in the induced topology. Hence
S is not even a locally Euclidean space.

Problem 1.44 Let S be the topological space defined by the union of the two circles
in R

2 with radius 1 and centres (−1,0) and (1,0), respectively (see Fig. 1.16), and
the topology inherited from that of R2. Is S a locally Euclidean space?

Solution No, as none of the connected neighbourhoods in S of the point of tangency
(0,0) is homeomorphic to an open subset of R. In fact, let V be a neighbourhood of
(0,0) in S inside the unit open ball centred at the origin. If such a neighbourhood V
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were homeomorphic to R, then V \ {(0,0)} and R \ {0} would be homeomorphic;
but this is not possible, as V \ {(0,0)} has at least four connected components and
R \ {0} has only two.

Problem 1.45 Let S be a set with a C∞ atlas and consider the topological space S

with the induced topology.

(i) Is S locally compact, locally connected and locally connected by arcs as a
topological space? Does it satisfy the first axiom of countability? Does it satisfy
the separation axiom T1?

(ii) Does it satisfy the separation axiom T2? And the second axiom of countability?
(iii) Does it satisfy the separation axiom T3? Is S a regular topological space? Is S

pseudometrizable? Does it satisfy all separations axioms Ti? Is S paracompact?
Can it have continuous partitions of unity?

(iv) Does S satisfy the properties mentioned in (iii) if we constrain it to be T2 and
to satisfy the second axiom of countability?

Hint Consider:

1. Urysohn’s Theorem: If S verifies the second axiom of countability, then it is
equivalent for S to be pseudometrizable and to be regular.

2. Stone’s Theorem: If S is pseudometrizable, then it is paracompact.

Solution

(i) S being locally Euclidean, it is locally compact, locally connected, locally con-
nected by arcs, and satisfies the first axiom of countability.

S satisfies the separation axiom T1. In fact, let p and q be different points
of S. If they belong to the domain of some chart (U,ϕ) of S, we can choose dis-
joint open subsets V1,V2 of Rn (assuming dimS = n), contained in ϕ(U), and
such that ϕ(p) ∈ V1, ϕ(q) ∈ V2. Since ϕ is continuous, ϕ−1(V1) and ϕ−1(V2)

are disjoint open subsets of S containing p and q , respectively. If p and q do
not belong to the domain of a given chart of S, there must be a chart whose
domain U1 contains p but not q , and one chart whose domain U2 contains q

but not p.
Notice that U1 and U2 are open subsets of S.

(ii) It does not necessarily satisfy the separation axiom T2, as it can be seen in
the counterexamples given in Problems 1.39, 1.40, 1.41. It does not necessar-
ily satisfy the second axiom of countability, as the counterexample given in
Problem 1.42 proves.

(iii) Not necessarily, since S is not necessarily T2.
(iv) Yes, as we have:

(a) S is locally compact, as it follows from (i). As S is also T2, it is T3 and
hence regular.

(b) By Urysohn’s Theorem, S is pseudometrizable.
(c) S being pseudometrizable and T2, it satisfies all the separation axioms.
(d) S being pseudometrizable, it is paracompact by Stone’s Theorem.
(e) S being paracompact, it admits continuous partitions of unity.
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1.4 Differentiable Functions and Mappings

Problem 1.46 Consider the map

f : R2 → R, (x, y) �→ x3 + x y + y3 + 1.

(i) Compute the map f∗ : TpR
2 → Tf (p)R.

(ii) Which of the points (0,0), ( 1
3 , 1

3 ), (− 1
3 ,− 1

3 ), is f∗ injective or surjective at?

Solution

(i)

f∗
(

∂

∂x

∣
∣
∣
∣
p

)

= ∂f

∂x
(p)

∂

∂t

∣
∣
∣
∣
f (p)

= (
3x2 + y

)
(p)

∂

∂t

∣
∣
∣
∣
f (p)

,

f∗
(

∂

∂y

∣
∣
∣
∣
p

)

= ∂f

∂y
(p)

∂

∂t

∣
∣
∣
∣
f (p)

= (
x + 3y2)(p)

∂

∂t

∣
∣
∣
∣
f (p)

.

(ii)

f∗
(

∂

∂x

∣
∣
∣
∣
(0,0)

)

= 0 · ∂

∂t

∣
∣
∣
∣
1
, f∗

(
∂

∂y

∣
∣
∣
∣
(0,0)

)

= 0 · ∂

∂t

∣
∣
∣
∣
1
,

hence f∗(0,0) is neither surjective nor injective.

f∗
(

∂

∂x

∣
∣
∣
∣
( 1

3 , 1
3 )

)

= 2

3

∂

∂t

∣
∣
∣
∣ 32

27

= f∗
(

∂

∂y

∣
∣
∣
∣
( 1

3 , 1
3 )

)

,

hence f∗( 1
3 , 1

3 )
is surjective, but not injective.

f∗
(

∂

∂x

∣
∣
∣
∣
(− 1

3 ,− 1
3 )

)

= 0 · ∂

∂t

∣
∣
∣
∣ 28

27

= f∗
(

∂

∂y

∣
∣
∣
∣
(− 1

3 ,− 1
3 )

)

,

hence f∗(− 1
3 ,− 1

3 )
is neither surjective nor injective.

Problem 1.47 Let

f : R2 → R
2, (x, y) �→ (

x2 − 2y,4x3y2),

g : R2 →R
3, (x, y) �→ (

x2y + y2, x − 2y3, y ex
)
.

(i) Compute f∗(1,2) and g∗(x,y).
(ii) Find g∗((4 ∂

∂x
− ∂

∂y
)(0,1)).

(iii) Calculate the conditions that the constants λ, μ, ν must satisfy for the vector
(

λ
∂

∂x
+ μ

∂

∂y
+ ν

∂

∂z

)

g(0,0)

to be the image of some vector by g∗.
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Solution

(i)

f∗(1,2) ≡
(

2 −2
48 16

)

, g∗(x,y) ≡
⎛

⎝
2x y x2 + 2y

1 −6y2

yex ex

⎞

⎠ .

(ii)

g∗
((

4
∂

∂x
− ∂

∂y

)

(0,1)

)

≡
⎛

⎝
0 2
1 −6
1 1

⎞

⎠
(

4
−1

)

=
⎛

⎝
−2
10
3

⎞

⎠

g(0,1)

≡
(

−2
∂

∂x
+ 10

∂

∂y
+ 3

∂

∂z

)

(1,−2,1)

.

(iii) Since

g∗(0,0) ≡
⎛

⎝
0 0
1 0
0 1

⎞

⎠ ,

the image by g∗ of T(0,0)R
2 is the vector subspace of T(0,0,0)R

3 of vectors of
type (0,μ, ν).

Remark f∗ cannot be injective at any point since dimR
2 > dimR.

Problem 1.48 The elements of R
4 can be written as matrices of the form A =( x z

y t

)
. Let A0 = ( cos θ − sin θ

sin θ cos θ

)
. Let Tθ : R4 →R

4 be the differentiable transformation
defined by Tθ (A) = A0A.

(i) Calculate Tθ ∗.
(ii) Compute Tθ ∗X, where X = cos θ ∂

∂x
− sin θ ∂

∂y
+ cos θ ∂

∂z
− sin θ ∂

∂t
.

Solution

(i)

Tθ ∗ =

⎛

⎜
⎜
⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞

⎟
⎟
⎠ .

(ii) It is immediate that Tθ ∗X = ∂
∂x

+ ∂
∂z

. The result can also be obtained consider-
ing that if

X = λ1
∂

∂x
+ λ2

∂

∂y
+ λ3

∂

∂z
+ λ4

∂

∂t
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is a vector field on R
4, then Tθ ∗X = A0A, where A = (

λ1 λ3
λ2 λ4

). We thus have

Tθ ∗X ≡
(

cos θ − sin θ

sin θ cos θ

)(
cos θ cos θ

− sin θ − sin θ

)

=
(

1 1
0 0

)

≡ ∂

∂x
+ ∂

∂z
.

Problem 1.49 Let E be the “Figure Eight” with its differentiable structure given
by the global chart (sin 2s, sin s) �→ s, s ∈ (0,2π) (see Problem 1.35). Consider the
vector v = (d/ds)0 tangent at the origin p = (0,0) to E and let j : E → R

2 be the
canonical injection of E in R

2.

(i) Compute j∗v.
(ii) Compute j∗v if E is given by the chart (sin 2s, sin s) �→ s, s ∈ (−π,π).

Solution

(i) The origin p corresponds to s = π , so

j∗p ≡
(

∂ sin 2s
∂s

0
0 ∂ sin s

∂s

)

s=π

=
(

2
−1

)

.

As v = d
ds

|p , we have

j∗pv ≡
(

2
−1

)

(1) =
(

2
−1

)

≡ 2
∂

∂x

∣
∣
∣
∣
p

− ∂

∂y

∣
∣
∣
∣
p

.

(ii) We now have

j∗p ≡
(

∂ sin 2s
∂s

∂ sin s
∂s

)

s=0

=
(

2
1

)

,

so j∗pv = 2 ∂
∂x

|p + ∂
∂y

|p .

Problem 1.50 Consider the parametrisation (see Remark 1.4)

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ, 0 < θ < π, 0 < ϕ < 2π,

of S2. Let f : S2 → S2 be the map induced by the automorphism of R3 with matrix
⎛

⎝

√
2/2 0

√
2/2

0 1 0
−√

2/2 0
√

2/2

⎞

⎠ .

Consider the coordinate neighbourhood

U = {
(x, y, z) ∈ S2 : x + z 
= 0

}
.

Compute f∗( ∂
∂θ

|p) and f∗( ∂
∂ϕ

|p) for p ≡ (θ0, ϕ0) ∈ U such that f (p) also belongs
to U .
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Solution This parametrisation can be described by saying that we have a chart Φ

from U to an open subset of A = (0,π) × (0,2π) with

Φ−1(u, v) = (sinu cosv, sinu sinv, cosu), u, v ∈ A,

and that we call

θ = u ◦ Φ, ϕ = v ◦ Φ,

where u and v are the coordinate functions on A. Then we need to compute
f∗((∂/∂θ)p) and f∗((∂/∂ϕ)p), where p ∈ U . As f (p) ∈ U , we have

f∗
(

∂

∂θ

∣
∣
∣
∣
p

)

=
(

∂(θ ◦ f )

∂θ

)

(p)
∂

∂θ

∣
∣
∣
∣
f (p)

+
(

∂(ϕ ◦ f )

∂θ

)

(p)
∂

∂ϕ

∣
∣
∣
∣
f (p)

=
(

∂(θ ◦ f ◦ Φ−1)

∂u

)
(
Φ(p)

) ∂

∂θ

∣
∣
∣
∣
f (p)

+
(

∂(ϕ ◦ f ◦ Φ−1)

∂u

)
(
Φ(p)

) ∂

∂ϕ

∣
∣
∣
∣
f (p)

,

f∗
(

∂

∂ϕ

∣
∣
∣
∣
p

)

=
(

∂(θ ◦ f )

∂ϕ

)

(p)
∂

∂θ

∣
∣
∣
∣
f (p)

+
(

∂(ϕ ◦ f )

∂ϕ

)

(p)
∂

∂ϕ

∣
∣
∣
∣
f (p)

=
(

∂(θ ◦ f ◦ Φ−1)

∂v

)
(
Φ(p)

) ∂

∂θ

∣
∣
∣
∣
f (p)

+
(

∂(ϕ ◦ f ◦ Φ−1)

∂v

)
(
Φ(p)

) ∂

∂ϕ

∣
∣
∣
∣
f (p)

.

(�)

Now,

(
θ ◦ f ◦ Φ−1)(u, v)

= (θ ◦ f )(sinu cosv, sinu sinv, cosu)

= θ

(√
2

2
(sinu cosv + cosu), sinu sinv,

√
2

2
(− sinu cosv + cosu)

)

= arccos

(√
2

2
(− sinu cosv + cosu)

)

,

(
ϕ ◦ f ◦ Φ−1)(u, v) = arctan

(√
2

sinu sinv

sinu cosv + cosu

)

.

(Notice that, since x + z 
= 0 on U , the function arctan is well-defined on U .)
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Then, we obtain by calculating and substituting the four partial derivatives in (�)
above:

f∗
(

∂

∂θ

∣
∣
∣
∣
p

)

= sin θ0 + cos θ0 cosϕ0
√

1 + sin2 θ0 sin2 ϕ0 + sin 2θ0 cosϕ0

∂

∂θ

∣
∣
∣
∣
f (p)

+
√

2 sinϕ0

1 + sin2 θ0 sin2 ϕ0 + sin 2θ0 cosϕ0

∂

∂ϕ

∣
∣
∣
∣
f (p)

,

f∗
(

∂

∂ϕ

∣
∣
∣
∣
p

)

= − sin θ0 sinϕ0
√

1 + sin2 θ0 sin2 ϕ0 + sin 2θ0 cosϕ0

∂

∂θ

∣
∣
∣
∣
f (p)

+
√

2(sin2 θ0 + 1
2 sin 2θ0 cosϕ0)

1 + sin2 θ0 sin2 ϕ0 + sin 2θ0 cosϕ0

∂

∂ϕ

∣
∣
∣
∣
f (p)

.

1.5 Critical Points and Values

Problem 1.51 Consider the map

ϕ : R3 → R
2,

(
x1, x2, x3) �→ (

y1, y2)= (
x1x2, x3).

(i) Find the critical points of ϕ.
(ii) Let S2 be the unit sphere of R3. Find the critical points of ϕ|S2 .

(iii) Find the set C of critical values of ϕ|S2 .
(iv) Does C have zero measure?

The relevant theory is developed, for instance, in Milnor [7].

Solution

(i) The Jacobian matrix ϕ∗ = (
x2 x1 0
0 0 1

)
has rankϕ∗ < 2 if and only if x1 = x2 = 0,

that is, the set of critical points of ϕ is the x3-axis.
(ii) Consider the charts defined by the parametrisation

x1 = sinu cosv, x2 = sinu sinv, x3 = cosu,

for u ∈ (0,π), v ∈ (0,2π) and u ∈ (0,π), v ∈ (−π,π) (see Remark 1.4). We
have

y1 = 1

2
sin2 u sin 2v, y2 = cosu.

So we can write

(ϕ|S2)∗ ≡
(

1
2 sin 2u sin 2v sin2 u cos 2v

− sinu 0

)

;

thus rank(ϕ|S2)∗ < 2 if and only if either sinu = 0 or cos 2v = 0.
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Fig. 1.17 The set of critical
points of ϕ|S2

We have sinu 
= 0 in both charts. In the first chart, we have cos 2v = 0
for v = π/4, 3π/4, 5π/4, 7π/4. In the second chart, one has cos 2v = 0 for
v = −3π/4,−π/4,π/4,3π/4. The sets of respective critical points coincide:
They are the four half-circles in Fig. 1.17 excluding the poles, due to the
parametrisation. Now, we must add the poles as they are critical points of ϕ

by virtue of (i) above.
Hence, the set of critical points of ϕ|S2 is given by the meridians corre-

sponding to v = π/4,3π/4,5π/4,7π/4.
(iii) Since sin 2v = ±1 for v = π/4,3π/4,5π/4,7π/4, the set of critical values of

ϕ|S2 is

C =
{
(
y1, y2) : y1 = ±1

2
sin2 u,y2 = cosu

}

,

that is, the parabolas

2y1 + (
y2)2 = 1, 2y1 − (

y2)2 = −1.

Note that the images of the poles are included.
(iv) A subset S of an n-manifold M has measure zero if it is contained in a count-

able union of coordinate neighbourhoods Ui such that, ϕi being the corre-
sponding coordinate map, ϕi(Ui ∩ S) ⊂ R

n has measure zero in R
n. This is

the case for C ⊂ R
2, as it is a finite union of 1-submanifolds of R2.

Problem 1.52

(i) Let N = {(x, y) ∈ R
2 : y = 0} and M = R

2. We define f : M → R by
f (x, y) = y2. Prove that the set of critical points of f |N is the intersection
with N of the set of critical points of f .

(ii) Let N = {(x, y) ∈ R
2 : x2 + y2 = 1} and M = R

2. We define f : M → R by
f (x, y) = x2 + y2. Is the set of critical points of f |N the same as the one of f ?

Solution

(i) The set of critical points of f is N and f |N is the zero map. Thus all the points
of N are critical for f |N .
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(ii) No. In this case, the set of critical points of f reduces to the origin, but f |N = 1,
so all the points of N are critical.

Problem 1.53 Find the critical points and the critical values of the map f : R3 →
R

2, (x, y, z) �→ (x + y2, y + z2).

Solution We have f∗ ≡ ( 1 2y 0
0 1 2z

)
. Since rankf∗ = 2, f has no critical points, hence

it has no critical values.

Problem 1.54 Consider the function

f : R3 → R, (x, y, z) �→ x siny + y sin z + z sinx.

(i) Prove that (0,0,0) is a non-degenerate critical point of f .
(ii) Calculate the index of f at (0,0,0).

Solution

(i)

f∗(0,0,0) ≡ (siny + z cosx, x cosy + sin z, y cos z + sinx)(0,0,0) = (0,0,0).

Thus rankf∗(0,0,0) = 0, so (0,0,0) is a critical point. The Hessian matrix of f

at (0,0,0) is

H
f

(0,0,0) =
⎛

⎝
−z sinx cosy cosx

cosy −x siny cos z

cosx cos z −y sin z

⎞

⎠

(0,0,0)

=
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ .

Since detHf

(0,0,0) = 2 
= 0, the point (0,0,0) is non-degenerate.

(ii) The index of f at (0,0,0) is the index of H
f

(0,0,0), that is, the number of negative
signs in a diagonal matrix representing the quadratic form 2(x y + x z + y z)

associated to H
f

(0,0,0). Applying the Gauss method of decomposition in squares,
one has

2x y + 2x z + 2y z = 2
(
(x + z)(y + z) − z2)

= 2

(
1

4
(x + y + 2z)2 − 1

4
(x − y)2 − z2

)

= 1

2
(x + y + 2z)2 − 1

2
(x − y)2 − 2z2.

As two negative signs appear, the index of f at (0,0,0) is 2.

Problem 1.55 Consider the C∞ manifold R
n and a submanifold L given by a vec-

tor subspace of Rn with dimL� n − 1. Prove that L has zero measure.
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Fig. 1.18 The graph of the
map t �→ (t2, t3)

Solution Let dimL = k � n − 1. Consider the map

f : Rk →R
n, f

(
x1, x2, . . . , xk

)= xiei,

where {ei} is a basis of L. By virtue of Sard’s Theorem, f (Rk) = L has zero mea-
sure.

Problem 1.56 Let M1 and M2 be two C∞ manifolds. Give an example of differen-
tiable mapping f : M1 → M2 such that all the points of M1 are critical points and
the set of critical values has zero measure.

Solution Let f : M1 → M2 defined by f (p) = q , for every p ∈ M1 and q a fixed
point of M2. Then the rank of f is zero, hence all the points of M1 are critical. On
the other hand, the set of critical values reduces to the point q , and the set {q} has
obviously zero measure.

1.6 Immersions, Submanifolds, Embeddings
and Diffeomorphisms

Problem 1.57 Prove that the C∞ map

Ψ : R → R
2, t �→ (x, y) = (

t2, t3)

(see Fig. 1.18) is not an immersion.

Solution

rankΨ = rank

(
∂x

∂t

∂y

∂t

)

= rank
(
2t 3t2)=

{
1 if t 
= 0,

0 if t = 0.

For t = 0, we have rankΨ = 0 < dimR = 1, thus Ψ is not an immersion. Let us
consider Ψ∗t0 in detail, as a map between tangent vector spaces. We have

Ψ∗: Tt0R → TΨ (t0)R
2

λ
d

d t

∣
∣
∣
∣
t0

�→ Ψ∗
(

λ
d

d t

∣
∣
∣
∣
t0

)
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and

Ψ∗
(

λ
d

d t

∣
∣
∣
∣
t0

)

= λ

(
∂(x ◦ Ψ )

∂t
(t0)

∂

∂x

∣
∣
∣
∣
Ψ (t0)

+ ∂(y ◦ Ψ )

∂t
(t0)

∂

∂y

∣
∣
∣
∣
Ψ (t0)

)

= λ

(

2t0
∂

∂x

∣
∣
∣
∣
Ψ (t0)

+ 3t2
0

∂

∂y

∣
∣
∣
∣
Ψ (t0)

)

≡ (
2λt0,3λt2

0

)

=

⎧
⎪⎨

⎪⎩

(0,0) ∈ T(0,0)R
2 ∀λ if t0 = 0,

(0,0) ∈ TΨ (t0)R
2 if λ = 0,


= (0,0) ∈ TΨ (t0)R
2 if t0, λ 
= 0.

That is, Ψ∗(T0R) = (0,0) ∈ T(0,0)R
2. The whole tangent space T0R is mapped

by Ψ∗0 onto only one point of the tangent space T(0,0)R
2.

Problem 1.58 Let M = {(x, y) ∈R
2 : x2 + y2 < 1}. Define a C∞ map by

f : M → R
2, (x, y) �→

(
y

1 − x2 − y2
, ex2

)

.

(i) Find the set S of points p of M at which f∗p is injective.
(ii) Prove that f (S) is an open subset of R2.

Solution

(i) One has

rankf∗ < 2 ⇐⇒ 2x ex2 1 − x2 + y2

(1 − x2 − y2)2
= 0

⇐⇒ x = 0 or 1 = x2 − y2.

Since 1 > x2 + y2, we have 1 > x2 − y2, so S = M \ {(0, y) : −1 < y < 1}.
(ii) Consider the subset {(0, y) : −1 < y < 1} of M . We have

f
({

(0, y) : −1 < y < 1
})=

{(
y

1 − y2
,1

)}

= (−∞,∞) × {1} ⊂ R
2.

Thus f (M) = {(x, y) ∈R
2 : 1 � y < e}, hence

f (S) = {
(x, y) ∈R

2 : 1 < y < e
}
,

which is an open subset of R2.

Problem 1.59 Let Rid and Rϕ be the C∞ manifolds defined, respectively, by the
differentiable structures obtained from the atlases {(R, id)} and {(R, ϕ)} on R, where
ϕ : R →R, ϕ(t) = t3. Prove that Rid and Rϕ are diffeomorphic (see Problem 1.22).
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Solution To prove that Rid and Rϕ are diffeomorphic, we only have to give a map
Φ such that its representative Ψ in the diagram

R
Φ−−−−→ R

id

⏐
⏐
#

⏐
⏐
#ϕ

R
Ψ−−−−→ R

be a diffeomorphism. Let Φ(t) = 3
√

t . One has Ψ (t) = ϕ ◦ Φ ◦ id−1(t) = t .

Problem 1.60 Consider the map f : R2 → R
2 \ {(0,0)} defined by x = eu cosv,

y = eu sinv.

(i) Prove that the Jacobian matrix determinant of f does not vanish at any point
of the plane.

(ii) Can f be taken as a local coordinate map on a neighbourhood of any point?
(iii) Is f a diffeomorphism?
(iv) Given a point p0 = (u0, v0), give an example of a maximal open neighbour-

hood of p0 on which we can take f as a local coordinate map.

Solution

(i) Notice that x2 +y2 = e2u > 0; so that f (u, v) ∈R
2 \{(0,0)} for all (u, v) ∈R

2.
We have

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

=
(

eu cosv −eu sinv

eu sinv eu cosv

)

,

hence ∂(x, y)/∂(u, v) = e2u > 0 for all (u, v) ∈ R
2.

(ii) By (i), f is a local diffeomorphism at every point of R2. So f can be taken as
a local coordinate map on a neighbourhood of every point.

(iii) The map f is not a diffeomorphism as it is not injective. We have f (u, v) =
f (u′, v′) if and only if u = u′ and v − v′ = 2kπ , k ∈ Z. In fact, from the
relations

eu cosv = eu′
cosv′, eu sinv = eu′

sinv′,

we obtain e2u = e2u′
, and so u = u′. Then one has cosv = cosv′, sinv = sinv′,

hence the difference between v and v′ is an integer multiple of 2π .
(iv) The points having the same image as p0 are the ones of the form (u0, v0 +

2kπ), k ∈ Z. The nearest ones to p0 are (u0, v0 ± 2π). Hence such a neigh-
bourhood is R× (v0 − π,v0 + π).

Problem 1.61 Let V be a finite-dimensional real vector space. Consider the open
subset E of EndR V defined by

E = {
T ∈ EndR V : det(I + T ) 
= 0

}
,
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where I denotes the identity endomorphism.

(i) Prove that the map

f : E → EndR V, T �→ (I − T )(I + T )−1,

is an involution of E .
(ii) Consider on E the differentiable structure induced by EndR V . Prove that

f : E → E is a diffeomorphism.

Solution

(i) If T ∈ E , then I + f (T ) = 2I (I + T )−1 ∈ E . Hence

det
(
I + f (T )

)= det
(
2I (I + T )−1)= 2dimV /det(I + T ) 
= 0.

It is easily checked that f (f (T )) = T .
(ii) The map f is C∞. In fact, the entries of f (T ) can be expressed as rational

functions of the entries of T . As f −1 = f , we conclude.

Problem 1.62 Prove that the function

f : R2 → R
2, f (x, y) = (

x ey + y, x ey − y
)
,

is a C∞ diffeomorphism.

Solution Solving the system

x ey + y = x′, x ey − y = y′,

in x and y, we conclude that the unique solution is

x = x′ + y′

2e(x′−y′)/2
, y = x′ − y′

2
;

hence the map is one-to-one. Let us see that both f and f −1 are C∞. We have

f : (x, y) �→ (
x ey + y, x ey − y

)
, f −1 : (x, y) �→

(
x + y

2
e(y−x)/2,

x − y

2

)

.

Since the components of f and f −1 and their derivatives of any order are elemen-
tary functions, f and f −1 are C∞. Thus f is a C∞ diffeomorphism.

Problem 1.63 Let ϕ : R3 → R
3 be the map defined by

x′ = e2y + e2z, y′ = e2x − e2z, z′ = x − y.

Find the image set ϕ(R3) and prove that ϕ is a diffeomorphism from R
3 to ϕ(R3).
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Solution Solving, one has

x = z′ + y, x′ = e2y + e2z, y′ = e2z′
e2y − e2z,

and so

e2y = x′ + y′

1 + e2z′ , e2z = x′e2z′ − y′

1 + e2z′ .

Hence it must be x′ > 0, x′ + y′ > 0, x′e2z′
> y′.

Thus,

ϕ
(
R

3)= {
(x, y, z) ∈R

3 : x > 0, x + y > 0, x e2z > y
}
.

The map ϕ is injective, since the above formulae give the unique point (x, y, z)

having (x′, y′, z′) as its image by ϕ.
In order to see that ϕ is a diffeomorphism from R

3 to ϕ(R3), it suffices to prove
that the determinant of its Jacobian matrix Jϕ never vanishes. We have

detJϕ = det

⎛

⎝
0 2e2y 2e2z

2e2x 0 −2e2z

1 −1 0

⎞

⎠= −4
(
e2y+2z + e2x+2z

) 
= 0.

Problem 1.64 Consider the C∞ function f : R3 →R
3 defined by

f (x, y, z) = (x cos z − y sin z, x sin z + y cos z, z).

Prove that f |S2 is a diffeomorphism from the unit sphere S2 onto itself.

Solution For each (x, y, z) ∈ S2, one has f (x, y, z) ∈ S2, so that (f |S2)(S2) ⊂ S2.
Furthermore, given (u, v,w) ∈ S2, we have to prove that there exists (x, y, z) ∈ S2

such that f (x, y, z) = (u, v,w), that is,

x cos z − y sin z = u, x sin z + y cos z = v, z = w.

Solving this system in x, y, z, we have

x = u cosw + v sinw, y = −u sinw + v cosw, z = w.

These equations are the ones of the components of the inverse function of f |S2 ,
which is clearly C∞, hence f |S2 is a diffeomorphism.

Problem 1.65 Let {(E,ϕ)} and {(E,ψ)} be the atlases on the “Figure Eight” built
in Problem 1.35. Exhibit a diffeomorphism between the differentiable manifolds Eϕ

and Eψ defined by the differentiable structures obtained from the atlases {(E,ϕ)}
and {(E,ψ)}, respectively.

The relevant theory is developed, for instance, in Brickell and Clark [1].
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Solution Let

f : Eϕ → Eψ, f (sin 2s, sin s) = (
sin 2(s − π), sin(s − π)

)
.

Since (ψ ◦ f ◦ ϕ−1)(s) = s − π , it follows that f is a diffeomorphism.

Problem 1.66 Let (N,ϕ), (N,ψ) be the atlases on the “Noose” built in Prob-
lem 1.36. Exhibit a diffeomorphism between the differentiable manifolds Nϕ and
Nψ defined, respectively, by the differentiable structures obtained from the atlases
{(N,ϕ)} and {(N,ψ)}.

The relevant theory is developed, for instance, in Brickell and Clark [1].

Solution The map f : (N,ϕ) → (N,ψ), (x, y) �→ (−x, y), mapping a point to its
symmetric with respect to the y-axis, is a diffeomorphism. One has

(−1,1)
ϕ−1

−→ (N,ϕ)
f−→ (N,ψ)

ψ−→ (−1,1)

s �−→ ϕ−1(s) �−→ f
(
ϕ−1(s)

) �−→ s.

In fact,

ϕ−1(s) =
{

(0,1 − s) if − 1 < s < 0,

(sin 2πs, cos 2πs) if 0 � s < 1,

f
(
ϕ−1(s)

)=
{

(0,1 − s) if − 1 < s < 0,

(sin 2π(1 − s), cos 2π(1 − s)) if 0 � s < 1,

and
(
ψ ◦ f ◦ ϕ−1)(s) = s, s ∈ (−1,1).

Problem 1.67 The aim of the present problem is to prove that the manifold of affine
straight lines of the plane, the 2-dimensional real projective space minus a point, and
the infinite Möbius strip are diffeomorphic. Explicitly:

(a) Let M denote the set of affine straight lines of the plane, that is,

M = {
r(a, v) : a, v ∈R

2, v 
= 0
}
,

where

r(a, v) = {a + tv : t ∈ R} ⊂ R
2

is the (affine) straight line of R2 determined by a and v.
Consider, for each p ∈R

2, the set

Up = {L ∈ M : p /∈ L}, Ap = R
2\{p}, ϕp : Up → Ap,

where ϕp(L), for L ∈ Up , is the foot of the perpendicular from p to L (see
Fig. 1.19, left).
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Fig. 1.19 Charts for the
affine straight lines

(b) Let P0 denote the punctured projective space, that is, RP2\{π(0,0,1)}, where

π : R3\{0} → RP2

stands for the natural map sending a point to its equivalence class (see Prob-
lem 1.81).

Let π(w) ∈ P0. Then w is a non-zero vector of R3, which is not parallel to
the axis z; hence the plane orthogonal to w through the point (0,0,1) intersects
the plane xy (which we shall identify with R

2) in a straight line, that is in a
point of M , which we shall denote by f (π(w)). We thus have a map from P0
to the set of affine straight lines of the plane,

f : P0 → M,

which is well-defined since f (π(w)) only depends on the direction determined
by w, that is, on π(w).

Moreover, let

V1 = {
π(w1,w2,w3) : w1 
= 0

}
, ψ1

(
π(w1,w2,w3)

)=
(

w2

w1
,
w3

w1

)

,

V2 = {
π(w1,w2,w3) : w2 
= 0

}
, ψ2

(
π(w1,w2,w3)

)=
(

w1

w2
,
w3

w2

)

,

if π(w1,w2,w3) belongs to either V1 or V2, respectively. Then (cf. Prob-
lem 1.81), the set {(Vi,ψ1)}, i = 1,2, is an atlas for P0.

(c) Let M̃ denote the infinite Möbius strip, defined, as in Problem 1.31 above, as the
infinite strip [0,π] ×R under the identification (0, t) ≡ (π,−t) for all t ∈R.

Consider the one-to-one map h between M̃ and P0 defined as follows. Let
μ : [0,π] ×R → M̃ be the natural projection, so that μ(α, t) = {(α, t)} for α ∈
(0,π), and μ(0, t) = μ(π,−t) = {(0, t), (π,−t)}, and define

h: M̃ −→ P0

μ(α, t) �−→ h
(
μ(α, t)

)= π(cosα, sinα, t).

This map is well-defined. This is obvious if α ∈ (0,π), and

h
(
μ(0, t)

)= π(1,0, t), h
(
μ(π,−t)

)= π(−1,0,−t) = π(1,0, t).
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Then:

1. Prove that
{
(Up,ϕp)

}
p∈R2

with Up and ϕp as given in (a), is an atlas on M .
2. Prove, by using the atlas given in part 1, that the map f in (b) is a diffeomorphism

from M to P0.
3. Prove that one can endow M̃ with a structure of differentiable manifold by means

of the bijective map h given in (c), which becomes so a diffeomorphism.

Hint (to (a)) According to [5, p. 17], if a collection of couples (Ui, ϕi) (i describing
a certain set of indices) on a set X is given such that:

(i) Any Ui is a subset of X and X =⋃
Ui .

(ii) Any ϕi is a bijection of Ui on an open subset ϕi(Ui) of Rn, and for all i, j , the
set ϕi(Ui ∩ Uj ) is an open subset of Rn,

(iii) For any pair i, j , the map ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj ) → ϕj (Ui ∩ Uj ) is a diffeo-

morphism,

then X admits a unique structure of topological space such that any Ui is an open
subset and the maps ϕi are homeomorphisms.

Solution

1. Given a point x ∈ Ap , that is, different from p, there exists only one straight line
perpendicular to the segment px passing through x. This straight line is precisely
ϕ−1

p (x). This proves that ϕp is bijective. Since obviously Ap is an open subset of

R
2 and

⋃
p∈R2 Up = M , it only rests to check the differentiability of the changes

of charts to verify that
{
(Up,ϕp)

}
p∈R2

is an atlas.
To check it, let p,q ∈ R

2, p 
= q (see Fig. 1.19, right). We have

Up ∩ Uq = {L ∈ M : p /∈ L, q /∈ L}.

To see that ϕp(Up ∩ Uq), which is the domain of the map ϕq ◦ ϕ−1
p , is an open

subset of Ap , we shall prove that its complementary is a closed subset. Let x

be a point in its complementary subset, that is, such that x does not belong to
the domain of ϕq ◦ ϕ−1

p . Then, either x does not belong to the domain of ϕ−1
p ,

which is Ap , that is, x = p; or contrarily x 
= p, but ϕ−1
p (x) does not belong to

the domain of ϕq , that is, to Uq . But this happens if and only if q ∈ ϕ−1
p (x), that

is, q belongs to the straight line through x perpendicular to the segment xp, that
is, if and only if x sees the segment pq under a π/2 angle. So x belongs to the
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Fig. 1.20 Change of charts
for the affine straight lines

circle Cpq with diameter being the segment pq . Summarising, either x = p (so
also x ∈ Cpq ), or x 
= p and x ∈ Cpq ; in short, x ∈ Cpq . Since Cpq is a closed

subset of R2, we have proved that ϕp(Up ∩ Uq) is an open subset of Ap .
It only remains to prove the differentiability of the map ϕq ◦ ϕ−1

p . To this end,

let J : R2 → R
2 denote the rotation of angle π/2, expressed by

J (a, b) = (−b, a),

and suppose that x /∈ Cpq . Then

ϕ−1
p (x) = r

(
x,J (x − p)

)
,

so
(
ϕq ◦ ϕ−1

p

)
(x) = ϕq

(
r
(
x,J (x − p)

))
.

Denote this point simply by m (see Fig. 1.20). Since m belongs to the straight
line r(x, J (x − p)), we can put

m = x + tJ (x − p),

with t such that 〈q − m,J (x − p)〉 = 0. Hence, since J is an isometry, we get

t = 〈q − x,J (x − p)〉
〈x − p,x − p〉 ,

(
ϕq ◦ ϕ−1

p

)
(x) = x + 〈q − x,J (x − p)〉

〈x − p,x − p〉 J (x − p),

which is C∞, for the scalar product is a polynomial in the components of its fac-
tors, so the components of (ϕq ◦ϕ−1

p )(x) are rational functions of the components
of x.

Consequently, we have proved that {(Up,ϕp)}p∈R2 is an atlas on M , which is
thus a 2-dimensional C∞ manifold when endowed with the differentiable struc-
ture corresponding to the given atlas.

2. We have seen that f is well-defined. Conversely, each point L ∈ M , that is, each
straight line in the plane xy, determines with the point (0,0,1) ∈ R

3 a plane
which cannot be parallel to the plane xy, so its normal straight line π(w) is
not parallel to (0,0,1). In other words, π(w) = f −1(L), so proving that f is a
bijective map.
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Let us compute f and f −1. Let L = r(a, v) ∈ M . The plane of R
3 con-

taining L and passing through the point (0,0,1) must be parallel to the di-
rector vector of L, which is (v,0), and also to the vector (a,0) − (0,0,1) =
(a,−1), (where we use the notation (x, b) ∈ R

3, for x = (x1, x2) ∈ R
2, to de-

note the point (x1, x2, b)). Since these two vectors are linearly independent, we
have

f −1(L) = f −1(r(a, v)
)= π

(
(v,0) ∧ (a,−1)

)= π(−v2, v1,−v2a1 + v1a2)

= π
(
Jv, 〈Jv, a〉).

Conversely, let

π(w) = π(w1,w2,w3) ∈ P0

and, to be short, write w̄ = (w1,w2) ∈ R
2, so that w = (w̄,w3). If f (π(w)) =

r(a, v), we should have

π(w̄,w3) = π
(
Jv, 〈Jv, a〉).

We put Jv = w̄, that is v = −J w̄, so one should have

w3 = 〈Jv, a〉 = 〈w̄, a〉.

As 〈w̄, w̄〉 
= 0, for in the opposite case π(w) /∈ P0, we can get that condition
letting simply

a = w3w̄

〈w̄, w̄〉 ,

that is,

f
(
π(w)

)= f
(
π(w̄,w3)

)= r

(
w3w̄

〈w̄, w̄〉 ,−J w̄

)

,

which is the expression we looked for.
Now consider one of the charts of M ,

ϕp : Up → Ap,

and compute

(
ϕp ◦ f ◦ ψ−1

1

)
(x), x = (x1, x2) ∈ R

2 in its domain.

We have ψ−1
1 (x) = π(1, x1, x2). Hence

f
(
ψ−1

1 (x)
)= r

(
x2(1, x1)

1 + x2
1

, (x1,−1)

)

.
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Now, f (ψ−1
1 (x)) belongs to the domain Up of ϕp if and only if the straight

line

r

(
x2(1, x1)

1 + x2
1

, (x1,−1)

)

does not contain p. That is, x does not belong to the domain of the map ϕp ◦ψ−1
1

if and only if p belongs to that straight line, i.e. if

p − x2(1, x1)

1 + x2
1

is parallel to (x1,−1), or equivalently, if and only if it is orthogonal to J (x1,−1),
or even if and only if

〈

p − x2(1, x1)

1 + x2
1

, (1, x1)

〉

= 0.

This equation is polynomial in the components of x, so that the set of points
satisfying the condition is a closed subset of R2, as we wanted. Suppose then
that x belongs to the domain of ϕp ◦ f ◦ ψ−1

1 , which, as we have just shown, is
an open subset of R2. Then

(
ϕp ◦ f ◦ ψ−1

1

)
(x)

can be written as a + tv, where

a = x2(1, x1)

1 + x2
1

, v = (x1,−1),

and t such that 〈p − (a + tv), v〉 = 0, that is,

(
ϕp ◦ f ◦ ψ−1

1

)
(x) = a + 〈p − a, v〉

〈v, v〉 v.

All the expressions involved in this formula through a and v are polynomial in
the components of x, so the map

ϕp ◦ f ◦ ψ−1
1

is of class C∞. The proof for ϕp ◦ f ◦ ψ−1
2 is similar, hence f is C∞.

Differentiability of f −1 is easier to prove. Let x = (x1, x2) ∈ Ap , such that
x 
= p. We have

(
f −1 ◦ ϕ−1

p

)
(x) = f −1(r

(
x,J (x − p)

))= π
(
p − x, 〈x,p − x〉)

= π
(
p1 − x1, p2 − x2, 〈x,p − x〉),
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which belongs to the domain of, say, ψ1, if and only if p1 
= x1, that is, the do-
main of ψ1 ◦ f −1 ◦ ϕ−1

p is the open subset {(x1, x2) ∈ R
2 : x1 
= p1}. For this

open subset we have

(
ψ1 ◦ f −1 ◦ ϕ−1

p

)
(x) =

(
p2 − x2

p1 − x1
,
〈x,p − x〉
p1 − x1

)

,

clearly showing the differentiability of that map; the proof for ψ2 is similar, so
we have proved that f −1 also is a differentiable map, that is, that

f : P0 → M

is a diffeomorphism.
3. The map h is surjective, for if π(w) = π(w̄,w3) ∈ P0, one should have w̄ 
= 0.

We can thus normalise the representative element, letting

π(w) = π

(
w̄

|w̄| ,
w3

|w̄|
)

.

As w̄/|w̄| is a unitary vector, there exists only one α ∈ [0,2π) such that

w̄

|w̄| = (cosα, sinα),

so that

π(w) = π

(

cosα, sinα,
w3

|w̄|
)

.

If α ∈ (0,π), we have

π(w) = h

(

μ

(

α,
w3

|w̄|
))

;

if α ∈ (π,2π), we have

h

(

μ

(

α − π,− w3

|w̄|
))

= π

(

− cosα,− sinα,− w3

|w̄|
)

= π

(

cosα, sinα,
w3

|w̄|
)

= π(w);

if α = 0, then

π(w) = π

(

1,0,
w3

|w̄|
)

= h

(

μ

(

0,
w3

|w̄|
))

;
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finally, if α = π , then

π(w) = π

(

−1,0,
w3

|w̄|
)

= h

(

μ

(

π,
w3

|w̄|
))

.

In other words, h is surjective. It is also injective, for if

h
(
μ(α, t)

)= h
(
μ(β, s)

)
,

we have

π(cosα, sinα, t) = π(cosβ, sinβ, s).

As the two first coordinates of these representative elements constitute uni-
tary vectors, and these have to be a multiple of each other, we necessarily
have

(cosα, sinα, t) = ±(cosβ, sinβ, s);
hence, as α,β ∈ [0,π], either α = β and t = s; or α = 0, β = π, t = −s, and so
μ(α, t) = μ(β, s); or α = π,β = 0, t = −s, and so μ(α, t) = μ(β, s). The map
h is injective hence bijective.

So, one can indeed endow M̃ with a structure of differentiable mani-
fold by means of the bijective map h, which thus becomes a diffeomor-
phism.

Problem 1.68 Prove that the map

p : R → S1, t �→ (cos 2π t, sin 2π t),

is a covering map.

Solution We must prove:

(i) p is C∞ and surjective.
(ii) For each x ∈ S1, there exists a neighbourhood U of x in S1 such that p−1(U) =⋃

Ui , i ∈ I , where the Ui are disjoint open subsets of R such that, for each
i ∈ I , p : Ui → U is a diffeomorphism.

Now, (i) is immediate. Moreover p is a local diffeomorphism.
As for (ii), let y ∈R; then

p : (y − π,y + π) → S1 ∖{p(y + π)
}

is a diffeomorphism and

p−1(S1 ∖{p(y + π)
})=

⋃

k∈Z

(
y + (2k − 1)π, y + (2k + 1)π

)
.

Of course, one can take smaller intervals as domains of the diffeomorphisms.
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Problem 1.69 Consider the curves:

(a) σ : R → R
2

t �→ (
t, |t |),

(b) σ : R → R
2

t �→ (
t3 − 4t, t2 − 4

)
,

(c) σ : R → R
3

t �→ (cos 2πt, sin 2πt, t),

(d) σ : R → R
2

t �→ (cos 2πt, sin 2πt),

(e) σ : (1,∞) → R
2

t �→
(

1

t
cos 2πt,

1

t
sin 2πt

)

,

(f) σ : (1,∞) → R
2

t �→
(

1 + t

2t
cos 2πt,

1 + t

2t
sin 2πt

)

,

(g) σ : R → R
2

t →
(

2 cos

(

t − π

2

)

, sin 2

(

t − π

2

))

,

(h) σ : R → R
2

t �→
(

2 cos

(

f (t) − π

2

)

, sin 2

(

f (t) − π

2

))

,

where f (t) denotes a monotonically increasing C∞ function on −∞ < t < ∞ such
that f (0) = π , limt→−∞ f (t) = 0 and limt→∞ f (t) = 2π (for instance, f (t) =
π + 2 arctan t).

(i) σ : R → R
2

t �→
{

(1/t, sinπ t) if 1 � t < ∞,

(0, t + 2) if − ∞ < t � −1,

where in addition one smoothly connects, for −1 � t � 1, the two curves σ |(−∞,−1]
and σ |[1,∞) with a C∞ curve.

1. Is σ an immersion in (a)? (resp., in (b), (d), (g))?
2. Is σ an injective immersion in (b) (resp., in (d), (g), (h), (i))?
3. Is σ an embedding in (c)? (resp., in (e), (f), (h), (i))?

The relevant theory is developed, for instance, in Warner [8].
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Fig. 1.21 (a) σ is not an immersion. (b) σ is a non-injective immersion

Fig. 1.22 (c) σ is an embedding. (d) σ is a non-injective immersion

Solution

(a) σ is not an immersion, as it is not a differentiable map at the origin (see
Fig. 1.21).

We recall that

σ ′(t0) = σ∗t0

(
d

d t

∣
∣
∣
∣
t0

)

,

that is, σ ′(t0) is the image of the canonical vector at t0 ∈R.
(b) σ is a differentiable map, and since σ ′(t) = (3t2 − 4,2t) 
= (0,0) for all t , the

map σ is an immersion. But for t = ±2, it has a self-intersection, so it is not an
injective immersion.

(c) σ is an immersion, as

σ ′(t) = (−2π sin 2π t,2π cos 2π t,1) 
= (0,0,0), t ∈R.

It is trivially injective and since the map σ : R → σ(R) is open, σ is an embed-
ding (see Fig. 1.22).
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Fig. 1.23 (e) σ is an embedding. (f) σ is an immersion

(d) σ is an immersion since

σ ′(t) = (−2π sin 2π t,2π cos 2π t) 
= (0,0)

for all t , but σ is obviously not injective. Nevertheless, σ(R) is an embedded
submanifold. (See Problems 1.25 and 1.71.)

(e) σ is an immersion, as

σ ′(t) =
(

− 1

t2
cos 2π t − 2π

t
sin 2π t,− 1

t2
sin 2π t + 2π

t
cos 2π t

)

= (0,0)

if and only if each component vanishes or, equivalently, the square of each com-
ponent, or even the sum of those squares vanishes, that is, (1/t4) + 4π2/t2 = 0,
or 1+4t2π2 = 0, which leads us to a contradiction. Since σ : (1,∞) → σ(1,∞)

is an injective and open map, it follows that σ is an embedding (see Fig. 1.23).
(f) σ is an immersion, as

σ ′(t) =
(

−cos 2π t

2t2
− t + 1

t
π sin 2π t,− sin 2π t

2t2
+ t + 1

t
π cos 2π t

)

= (0,0)

if and only if the sum of the squares of the components vanishes, that is, if
(1/4t4) + ((t + 1)π/t)2 = 0, or 1 + 4t2(t + 1)2π2 = 0, which leads us to a
contradiction. Finally, σ is an embedding, as σ : (1,∞) → σ(1,∞) is an open
injective map.

(g) The image is a “Figure Eight”, whose image makes a complete circuit starting
at the origin as t goes from 0 to 2π , in the sense shown in Fig. 1.24(g). The
curve is an immersion, as

σ ′(t) =
(

−2 sin

(

t − π

2

)

,2 cos 2

(

t − π

2

))


= (0,0)

for all t ; but it is not an injective immersion since σ({0,±2π,±4π, . . .}) =
{(0,0)}.
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Fig. 1.24 (g) σ is an immersion. (h) σ is an injective immersion but not an embedding

Fig. 1.25 (i) σ is not an
embedding

(h) We have a “Figure Eight” as in (g), but the curve now passes through (0,0) only
once. Though it is an injective immersion, it is not an embedding, as the “Figure
Eight” is compact and R is not (see Fig. 1.24(h)).

(i) σ is an injective immersion. It is not an embedding: In fact, take a point p on
the vertical segment {0} × (−1,+1) of the graph of the curve. Then an open
neighbourhood of p in that vertical interval is never the intersection of an open
neighbourhood of p in R

2 with the graph of the curve (see Fig. 1.25, where
the C∞ curve connecting σ |(−∞,−1] and σ |[1,∞) is dotted).

Problem 1.70 Prove that the map

ϕ: R
3 −→ R

3

(x, y, z) �−→ (
x3 − 3x z2 + yz, y − 3x z, z

)

is a harmonic map and a homeomorphism of R3 whose Jacobian vanishes on the
plane x = 0.
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Solution Since the Laplacian on the Euclidean space R
3 is

Δ = − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
,

we have

Δϕ = Δ
(
x3 − 3x z2 + yz, y − 3x z, z

)= (
Δ
(
x3 − 3x z2 + yz

)
, Δ(y − 3x z), Δz

)

= (0,0,0),

so ϕ is indeed a harmonic map.
Its inverse map ϕ−1 is easily seen to be

(x, y, z) �−→ (
3
√

x − yz, y + 3z 3
√

x − yz, z
)
,

from which it follows that ϕ is a homeomorphism.
Finally, one has for its Jacobian,

det

⎛

⎝
3x2 − 3z2 z −6x z + y

−3z 1 −3x

0 0 1

⎞

⎠= 3x2,

which obviously vanishes on x = 0.

Remark H. Lewy proved in [6] that a one-to-one harmonic map R
2 →R

2 has non-
vanishing Jacobian. The previous example, due to J.C. Wood [9], and which can be
modified for n > 3, proves that Lewy’s Theorem [6] fails for n � 3.

1.7 Constructing Manifolds by Inverse Image. Implicit Map
Theorem

Problem 1.71 Prove that the sphere Sn is a closed embedded submanifold of Rn+1.

Solution The map f : Rn+1 → R, f (x1, . . . , xn+1) =∑n+1
i=1 (xi)2, is trivially C∞

and has rank constant and equal to 1 on R
n+1 \ {0}. Since Sn = f −1(1), Sn is a

closed embedded submanifold of Rn+1.

Problem 1.72 Prove that each of the functions f : R3 →R defined by:

(a) f (x, y, z) = x2 + y2 − z2 − 1, (b) f (x, y, z) = x2 − y2 − z2 − 1,

defines a structure of differentiable manifold on f −1(0). The corresponding man-
ifolds are called one-sheet and two-sheet hyperboloids, respectively. Find in each
case a finite atlas defining its C∞ structure.



54 1 Differentiable Manifolds

Fig. 1.26 An atlas with one
chart for the one-sheet
hyperboloid

Solution In the case (a), the rank of the Jacobian matrix of f is zero if and only if
x = y = z = 0, but (0,0,0) /∈ f −1(0). Thus the one-sheet hyperboloid is an embed-
ded submanifold of R3.

In the case (b), one proceeds as in (a), now with the Jacobian matrix J =
diag (2x,−2y,−2z). Thus the two-sheet hyperboloid is a C∞ submanifold of R3.

As for the atlas, we prove below that the one-sheet hyperboloid is diffeomorphic
to R

2 \ {0} and hence it suffices to consider only one chart. This fact can be visual-
ized by the map ϕ onto the plane z = 0 mapping each point p of the hyperboloid to
the intersection ϕ(p) with that plane of the straight line parallel to the asymptotic
line by the meridian passing through the point (see Fig. 1.26).

Notice that there is another choice, mapping the points of the hyperboloid with
z < 0 to the interior of the disk x2 + y2 < 1 minus the origin, and the points with
z > 0 to the points with x2 + y2 > 1.

The equations of ϕ are given by

x′ = x

(

1 − z√
1 + z2

)

, y′ = y

(

1 − z√
1 + z2

)

,

and, as a computation shows, the inverse map ϕ−1 is given by

x = x′2 + y′2 + 1

2(x′2 + y′2)
x′, y = x′2 + y′2 + 1

2(x′2 + y′2)
y′, z = 1 − x′2 − y′2

2
√

x′2 + y′2
.

To have an atlas in the case (b), one needs at least two charts, as after finding x, y

or z in the equation x2 − y2 − z2 − 1 = 0, none of them is uniquely defined. Let
H = f −1(0). Then the charts (U1, ϕ1), (U2, ϕ2), given by

U1 = {
(x, y, z) ∈ H : x > 0

}
, ϕ1 : U1 → R

2, ϕ1(x, y, z) = (y, z),

U2 = {
(x, y, z) ∈ H : x < 0

}
, ϕ2 : U2 → R

2, ϕ2(x, y, z) = (y, z),

obviously define an atlas for the manifold.

Problem 1.73 Let H be the two-sheet hyperboloid defined as in Problem 1.72.
By using the charts defined there and proceeding directly, prove that the natural
injection j : H → R

3 has rank 2 at every point.



1.7 Constructing Manifolds by Inverse Image. Implicit Map Theorem 55

Solution Take the atlas in Problem 1.72(b). We have U1 = ϕ−1
1 (R2), U2 =

ϕ−1
2 (R2), and the corresponding coordinate functions in R

3 are given by the in-
clusion j : H = U1 ∪ U2 → R

3, so that

j ◦ ϕ−1
1 : R

2 → R
3

(y, z) �→ (√
1 + y2 + z2, y, z

)
,

j ◦ ϕ−1
2 : R

2 → R
3

(y, z) �→ (−√1 + y2 + z2, y, z
)
.

We have

rank j∗p =
{

rank(j ◦ ϕ−1
1 )∗(y,z) if p ∈ U1, (y, z) = ϕ1(p),

rank(j ◦ ϕ−1
2 )∗(y,z) if p ∈ U2, (y, z) = ϕ2(p),

that is,

rank j∗p = rank

⎛

⎜
⎝

y√
1+y2+z2

z√
1+y2+z2

1 0
0 1

⎞

⎟
⎠= 2,

rank j∗p = rank

⎛

⎜
⎝

−y√
1+y2+z2

−z√
1+y2+z2

1 0
0 1

⎞

⎟
⎠= 2,

if p ∈ U1, (y, z) = ϕ1(p), and p ∈ U2, (y, z) = ϕ2(p), respectively.

Problem 1.74 Prove that the subset H of the Euclidean space R
3 of all the points

(x, y, z) of R3 satisfying x3 + y3 + z3 − 2x y z = 1 admits a C∞ 2-manifold struc-
ture.

Solution The map

f : R3 → R, f (x, y, z) = x3 + y3 + z3 − 2x y z − 1,

is C∞ and its Jacobian matrix is

J = (
3x2 − 2y z 3y2 − 2x z 3z2 − 2x y

)
,

which vanishes only if (x, y, z) = (0,0,0). In fact, multiplying the identities

3x2 = 2y z, 3y2 = 2x z, 3z2 = 2x y,

we get 27x2y2z2 = 8x2y2z2, from which x y z = 0. If x 
= 0 then by the first of the
three equations above we would have the absurd y 
= 0, z 
= 0. Thus x = 0. By the
same reason, one has y = z = 0; but (0,0,0) /∈ H .
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Problem 1.75 Prove that the subset M of the Euclidean space R3 which consists of
all the points (x, y, z) of R

3 satisfying

x2 − y2 + 2x z − 2y z = 1, 2x − y + z = 0,

admits a structure of C∞ 1-manifold.

Solution The functions

f1(x, y, z) = x2 − y2 + 2x z − 2y z − 1, f2(x, y, z) = 2x − y + z,

are C∞ functions. The rank of the Jacobian matrix of f1, f2 with respect to x, y, z,
is less than 2 if and only if x − 2y − z = 0, but the points satisfying this equation do
not belong to M = f −1(0).

Problem 1.76 Prove that, if F : Rn−1 → R is any differentiable function on R
n−1,

then the function f : Rn →R defined on R
n by

f
(
x1, . . . , xn

)= F
(
x1, . . . , xn−1)− xn,

defines a structure of C∞ manifold on f −1(0). Prove that this manifold is diffeo-
morphic to R

n−1. Illustrate the result considering the C∞ manifolds on R
3 thus

determined by the functions f : R3 →R given by

(a) f (x, y, z) = x2 + y2 − z, (b) f (x, y, z) = x2 − y2 − z,

which are examples of paraboloids: Elliptic (of revolution) in the case (a), and hy-
perbolic in the case (b).

Solution The rank of the Jacobian matrix of f is 1 everywhere, thus f −1(0) ad-
mits a structure of C∞ manifold. Furthermore, it suffices to consider the chart
(f −1(0), ϕ), where

ϕ : f −1(0) →R
n−1, ϕ

(
x1, . . . , xn

)= (
x1, . . . , xn−1).

In the particular case of the paraboloids, taking into account the previous consid-
erations, it is clear that:

Case (a): It is only necessary to consider the chart (U,ϕ) with

U = f −1(0), ϕ : f −1(0) → R
2, ϕ(x, y, z) = (x, y).

Case (b): Proceed as in (a).

Problem 1.77 Let F : Rn → R be any homogeneous polynomial function (with
degree no less than one) with at least one positive value. Prove that the function
f : Rn →R, f (x) = F(x) − 1, defines on f −1(0) a structure of C∞ manifold.
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Solution The Jacobian matrix of f is

Jf =
(

∂F

∂x1
· · · ∂F

∂xn

)

.

If degF = 1, then at least one of the elements (∂F/∂xi)(p) does not vanish.
If degF = r > 1 and the matrix ((∂F/∂xi)(p)) is zero at a point p =

(x1, . . . , xn), then F(p) is also zero at that point. In fact, since F is homogeneous
of degree r one has

rF (p) = x1 ∂F

∂x1
(p) + · · · + xn ∂F

∂xn
(p).

Thus f (p) = F(p) − 1 = −1, hence on f −1(0) the Jacobian matrix Jf does not
vanish. That is, rankJf = 1 on f −1(0), so that f −1(0) is a submanifold of R

n.
Notice that f −1(0) is not empty as if F has a positive value, then it also takes all
the positive values, since F(tp) = t rF (p).
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Problem 1.78 Let f : R3 → R be given by f (x, y, z) = x2 + y2 − 1.

(i) Prove that C = f −1(0) is an embedded 2-submanifold of R3.
(ii) Prove that a vector

v =
(

a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

)

(0,1,1)

is tangent to C if and only if b = 0.
(iii) If j : S1 →R

2 is the inclusion map, prove that j × idR : S1 ×R →R
3 induces

a diffeomorphism from S1 ×R to C.

Solution

(i) f is a differentiable map and rankf∗ = rank(2x 2y 0). Hence the rank of f is
1 at every point except at {(0,0, z) : z ∈R}, but these points do not belong to C.
Thus, by virtue of the Implicit Map Theorem for Submersions 1.14 (f is a sub-
mersion in some neighbourhood of C), C is a closed embedded submanifold
of R3 and dimC = dimR

3 − dimR = 2.
(ii) Given v ∈ TpR

3, p ∈ C, one has v ∈ TpC if and only if v(f ) = 0, but v(f ) =
(2ax + 2by)(0,1,1) = 2b, thus v ∈ TpC if and only if b = 0.

(iii) im(j × idR) = C, as (x, y) ∈ S1 if and only if x2 + y2 = 1, or similarly
(x, y, z) ∈ C, for all z ∈ R. Hence F = j × idR : S1 × R → R

3 is a differ-
entiable map (as it is a product of differentiable maps) that can be factorized
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by C, which is an embedded submanifold of R3. That is, there exists a differ-
entiable map f0 that makes commutative the diagram

S1 ×R
j×idR−→ R

3

f0 ↘ ↗ i

C

where i denotes the embedding of C in R
3. On the other hand, j × idR is

also an embedding, since j is. Thus the map f −1
0 that makes commutative the

diagram

C
i−→ R

3

f −1
0 ↘ ↗ j × idR

S1 ×R

is C∞. Thus f0 is a diffeomorphism.

Problem 1.79 Let ϕ : R3 → R
2 be the map given by

u = x2 + y2 + z2 − 1, v = ax + by + cz, a, b, c ∈ R, a2 + b2 + c2 = 1.

(i) Find the points at which ϕ is a submersion.
(ii) Find ϕ−1(0).

(iii) Find the points where ϕ is not a submersion, and its image.

Solution

(i)

rankϕ∗ = rank

(
2x 2y 2z

a b c

)

= 2

at the points (x, y, z) in which the vector (x, y, z) is not a multiple of (a, b, c).
Hence ϕ is a submersion on R

3 \ 〈(a, b, c)〉, where 〈(a, b, c)〉 denotes the
straight line generated by (a, b, c).

(ii) Let (a, b, c)⊥ denote the plane through the origin orthogonal to the vector
(a, b, c). Then:

ϕ−1(0) = {
(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1, ax + by + cz = 0
}

= S2 ∩ (a, b, c)⊥.

(iii) The map ϕ is not a submersion at the points of 〈(a, b, c)〉, whose image is

ϕ
(〈a, b, c〉)= {(

λ2 − 1, λ
)}⊂ R

2 = {
(u, v) ∈R

2 : u = v2 + 1
}
.

Problem 1.80 Consider the differentiable map ϕ : R4 → R
2 given by

u = x2 + y2 + z2 + t2 − 1, v = x2 + y2 + z2 + t2 − 2y − 2z + 5.
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(i) Find the set of points of R4 where ϕ is not a submersion, and its image.
(ii) Calculate a basis of kerϕ∗(0,1,2,0).

(iii) Calculate the image by ϕ∗ of (1,0,2,1) ∈ T(1,2,0,1)R
2 and the image by ϕ∗ of

(du + 2dv)(−1,5) ∈ T ∗
(−1,5)R

2, choosing the point (0,0,0,0) in ϕ−1((−1,5)).

Solution

(i) ϕ is not a submersion at the points of R4 where

rankϕ∗ = rank

(
2x 2y 2z 2t

2x 2y − 2 2z − 2 2t

)

< 2.

Hence, the set is

A = {
(x, y, z, t) ∈R

4 : x = 0, y = z, t = 0
}
.

Therefore,

ϕ(A) = {
(u, v) ∈ R

2 : u = 2λ2 − 1, v = 2λ2 − 4λ + 5, λ ∈ R
}
.

(ii) We have ϕ∗ : T(0,1,2,0)R
4 → T(4,4)R

2. Every vector X ∈ T(0,1,2,0) is of the type

X = λ1
∂

∂x

∣
∣
∣
∣
p

+ λ2
∂

∂y

∣
∣
∣
∣
p

+ λ3
∂

∂z

∣
∣
∣
∣
p

+ λ4
∂

∂t

∣
∣
∣
∣
p

,

where p = (0,1,2,0). Since ϕ∗(0,1,2,0) ≡ ( 0 2 4 0
0 0 2 0

)
, we have

ϕ∗(0,1,2,0)X ≡ (2λ2 + 4λ3)
∂

∂u

∣
∣
∣
∣
(4,4)

+ 2λ3
∂

∂v

∣
∣
∣
∣
(4,4)

.

If X ∈ kerϕ∗p , we deduce λ2 = λ3 = 0. Thus

kerϕ∗p =
{

λ
∂

∂x

∣
∣
∣
∣
p

+ μ
∂

∂t

∣
∣
∣
∣
p

: λ,μ ∈R

}

and { ∂
∂x

|p, ∂
∂t

|p} is a basis of kerϕ∗p .
(iii) ϕ∗(1,2,0,1)(1,0,2,1) = 4 ∂

∂u
|(5,7). Let p = (0,0,0,0), so ϕ(p) = (−1,5) and

ϕ∗
(−1,5)(du + 2 dv) = −4(dy + dz)(0,0,0,0).

Problem 1.81 We define an equivalence relation ∼ in the open subset Rn+1 \ {0}
by the condition that two vectors of Rn+1 \ {0} are equivalent if they are propor-
tional. The quotient space RPn = (Rn+1 \ {0})/∼ is the real projective space of
dimension n.

(i) Prove that, giving RPn the quotient topology induced by the previous equiva-
lence relation, it is Hausdorff.
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(ii) Let [x1, . . . , xn+1] be the equivalence class in RPn of (x1, . . . , xn+1) ∈ R
n+1 \

{0}. For each i = 1,2, . . . , n + 1, let Ui be the subset of points [x1, . . . , xn+1]
of RPn such that xi 
= 0. Prove that the functions ϕi : Ui → R

n defined by

ϕi

([
x1, . . . , xn+1])=

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)

are homeomorphisms and that the changes of coordinates ϕij = ϕi ◦ ϕ−1
j are

differentiable. Hence the systems (Ui, ϕi), i = 1,2, . . . , n + 1, define an atlas
on the space RPn.

(iii) Prove that the projection map

π : R
n+1 \ {0} → RPn

(
x1, . . . , xn+1

) �→ [
x1, . . . , xn+1

]

is a submersion. Hence RPn is a quotient manifold of Rn+1 \ {0}.

Solution

(i) The relation ∼ is open, i.e. given the open subset U ⊂ R
n+1 \ {0}, then

[U ] =⋃
x∈U [x] is an open subset of (Rn+1 \ {0})× (Rn+1 \ {0}). In fact, since

U is open, so is Uλ = {λx : x ∈ U}, λ 
= 0 being fixed, and [U ] = ⋃
λ
=0 Uλ.

Moreover, the graph of ∼ is the subset

Γ = {
(x,λx) : λ ∈R \ {0}, x ∈ R

n+1 \ {0}}

of (Rn+1 \ {0}) × (Rn+1 \ {0}). The subset Γ is closed, as if (xn, λnxn) �→
(x, y) then (λn) is bounded. Thus it has a convergent subsequence (λnk

). Let
λ = limk→∞ λnk

. Then

y = lim
n→∞λnxn = lim

k→∞λnk
xnk

= λx.

So (x, y) ∈ Γ . We conclude that the quotient space is Hausdorff.
(ii) It is obvious that the functions ϕi are homeomorphisms. As for the changes of

coordinates

ϕij = ϕi ◦ ϕ−1
j : ϕj (Ui ∩ Uj ) → ϕi(Ui ∩ Uj ),

we clearly have for i < j :

ϕj (Ui ∩ Uj ) = {(
t1, . . . , tn

) ∈R
n : t i 
= 0

}
.

Furthermore,

ϕ−1
j

(
t1, . . . , tn

)= [
t1, . . . , tj−1,1, tj , . . . , tn

]
.
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So, for (t1, . . . , tn) ∈ ϕj (Ui ∩Uj) we have ϕ−1
j (t1, . . . , tn) as above and more-

over

ϕij

(
t1, . . . , tn

)=
(

t1

t i
, . . . ,

t i−1

t i
,
t i+1

t i
, . . . ,

tj−1

t i
,

1

t i
,

tj

t i
, . . . ,

tn

t i

)

= (
x1, . . . , xn

)
.

The equations

x1 = t1

t i
, . . . , xi−1 = t i−1

t i
, xi = t i+1

t i
, . . . , xj−2 = t j−1

t i
,

xj−1 = 1

t i
, xj = t j

t i
, . . . , xn = tn

t i
,

correspond to differentiable functions on Uij .
(Note that we have supposed i < j , which is not restrictive.)

(iii) R
n+1 \ {0} is an open submanifold of Rn+1. Using the identity chart on R

n+1 \
{0} and an arbitrarily fixed chart ϕi as in (ii) above on Ui ⊂ RPn, the projection
map π has on π−1(Ui) (where xi 
= 0) the representative map

ϕi ◦ π ◦ id−1: π−1(Ui) → R
n

(
x1, . . . , xn+1) �→

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)

,

which is easily seen to have rank n. Since i is arbitrary, π is a submersion, thus
concluding.

Problem 1.82 Construct an atlas on the real projective space RPn considered as the
quotient space of the sphere Sn by identification of antipodal points. Prove that the
projection map π : Sn → RPn is a submersion. Hence RPn is a quotient manifold
of Sn.

Hint Use the atlas given by the 2n + 2 open hemispheres defined by the coordinate
axes, and the canonical projections.

Solution As we know, RPn is the quotient space of the subspace R
n+1 \ {0} of

R
n+1, by the relation ∼ given by x ∼ y if there exists λ ∈R \ {0} such that x = λy.

The projection π : Rn+1 \ {0} → RPn is an open mapping. On Sn the relation above
reduces to x ∼ ±x, that is, [x] = {x,−x} for every x ∈ Sn. Hence on Sn the above
relation corresponds to the antipodal identification.

Consider the restriction to Sn of the projection π , that we continue denoting by
π : Sn → RPn, π(x) = [x], and which is still open and surjective. In fact, given
[x] ∈ RPn, then x/|x| ∈ Sn and π(x/|x|) = π(x) = [x]. Hence, RPn can be con-
sidered (as a topological space) as the quotient space of Sn obtained by identifying
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antipodal points. From which it follows, since π : Sn → RPn is continuous, that
RPn is compact and connected.

Notice that if U ⊂ Sn is contained in an open hemisphere and x ∈ U , then
−x /∈ U , hence π |U : U → π(U) is injective; that is, π |U is a homeomorphism.
This property allows us to construct an atlas on RPn from an atlas on Sn whose
coordinate domains are contained in open hemispheres of Sn. For instance, the atlas
consisting in the 2n + 2 open hemispheres defined by the coordinate hyperplanes
and the canonical projections. Let, for instance, V +

i = {x ∈ Sn : xi > 0}, and

h+
i : V +

i → R
n

(
x1, . . . , xn+1) �→ (

x1, . . . , xi−1, xi+1, . . . , xn+1).

We then define in RPn, Vi = π(V +
i ) and ϕ+

i = h+
i ◦ (π |V +

i
)−1 : Vi →R

n. The map

ϕ+
i is a homeomorphism, since it is a composition of homeomorphisms. Consider-

ing V −
i = {x ∈ Sn : xi < 0}, it follows that π(V +

i ) = π(V −
i ) = Vi and the similar

homeomorphism is ϕ−
i = h−

i ◦ (π |V −
i

)−1 : Vi → R
n. Notice that ϕ−

i (Vi) = ϕ+
i (Vi),

but ϕ−
i 
= ϕ+

i ; in fact, we have ϕ−
i ([x]) = −ϕ+

i ([x]). Since ϕ−
i = −ϕ+

i (they differ
by the diffeomorphism t → −t of Rn), we shall forget the charts (Vi, ϕ

−
i ), and we

shall consider only the charts (Vi, ϕ
+
i ), i = 1, . . . , n + 1. If i 
= j , then Vi ∩ Vj 
= ∅,

and moreover,

ϕ+
i ◦ (ϕ+

j

)−1 : ϕ+
j (Vi ∩ Vj ) → ϕ+

i (Vi ∩ Vj )

is given by

ϕ+
i ◦ (ϕ+

j

)−1 = h+
i ◦ (π |V +

i
)−1 ◦ (π |V +

j
) ◦ (h+

j

)−1

= h+
i ◦ (π−1 ◦ π

)∣
∣
V +

i ∩V +
j

◦ h+
j

−1

= h+
i ◦ (h+

j

)−1
,

which is differentiable since it is a change of coordinates in Sn, known to be differ-
entiable. By the constructions above, for a given i, the projection map π has locally
the representative map

ϕ+
i ◦ (π |V +

i
) ◦ (h+

i

)−1 : h+
i

(
V +

i

)→ ϕ+
i (Vi),

which is the identity map, so having rank n. Since i is arbitrary, π is a submersion,
and we have finished.

Problem 1.83 (The Real Grassmannian as a Quotient Manifold) Let

M ⊂ R
n × (k)· · · ×R

n
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be the subset of k-tuples (v1, . . . , vk) of linearly independent vectors of R
n. Let

GL(k,R) act on M on the right by (v1, . . . , vk) · A = (v′
1, . . . , v

′
k), where

v′
j =

k∑

i=1

ai
j vi, A = (

ai
j

) ∈ GL(k,R), i, j = 1, . . . , k.

Prove:

(i) M is an open subset of Rn × (k)· · · ×R
n.

(ii) If ∼ is the equivalence relation induced by this action, then the quotient man-
ifold M/∼ exists and can be identified to the Grassmannian Gk(R

n) of all k-
planes in R

n.

Solution

(i) Let us denote by xi
j , 1 � i � n, 1 � j � k, the natural coordinates on R

n × (k)· · ·×
R

n. Given (v1, . . . , vk) ∈ M , we write

X =
⎛

⎜
⎝

x1
1(v1, . . . , vk) · · · x1

k (v1, . . . , vk)
...

...

xn
1 (v1, . . . , vk) · · · xn

k (v1, . . . , vk)

⎞

⎟
⎠ , (�)

that is, xi
j (v1, . . . , vk) is the ith component of the column vector vj .

Let Δi1...ik , 1 � i1 < · · · < ik � n, denote the determinant of the k×k subma-
trix of (�) defined by the rows i1, . . . , ik . The subset M is open, as it is defined
by the inequality

∑

1�i1<···<ik�n

Δ2
i1...ik

> 0.

(ii) Let ((xi
j ), (y

r
s )), i, r = 1, . . . , n; j, s = 1, . . . , k, be the natural coordinates on

the product manifold M × M , and let za
b , a, b = 1, . . . , k, be the entries of a

matrix in GL(k,R).
The graph G of ∼ is the image of the differentiable map

ϕ : M × GL(k,R) → M × M, ϕ(X,Z) = (X,XZ).

The graph G is closed in M × M , as it follows by taking into account that a
pair ((v1, . . . , vk), (w1, . . . ,wk)) ∈ M × M belongs to G if and only if wi ∈
〈v1, . . . , vk〉, 1 � i � k, and that every vector subspace of Rn is a closed subset.
Hence, by applying the Theorem of the Closed Graph 1.16, we only need to
prove that G is an embedded submanifold.

Certainly, ϕ is injective as ϕ(X,Z) = ϕ(X′,Z′) means X = X′, XZ = X′Z′,
and since rankX = k, the latter equation implies Z = Z′.
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Next we prove that ϕ : M × GL(k,R) → G is a homeomorphism. Assume

lim
h→∞ϕ(Xh,Zh) = lim

h→∞(Xh,XhZh) = (X,Y ).

Hence limh→∞ Xh = X. As G is closed in M × M , there exists Z ∈ GL(k,R)

such that Y = XZ. We only need to prove that limh→∞ Zh = Z. Set Xh =
(v1,h, . . . , vk,h), X = (v1, . . . , vk). As the vectors v1, . . . , vk are linearly inde-
pendent, we can complete them up to a basis (v1, . . . , vk, vk+1, . . . , vn) in R

n.
Let

vj,h =
k∑

i=1

ai
j,hvi +

n∑

i=k+1

bi
j,hvi, 1 � j � k, (��)

be the expression of vj,h in this basis. As limh→∞ vj,h = vj , we obtain
limh→∞ ai

j,h = δij , for i, j = 1, . . . , k, and limh→∞ bi
j,h = 0, for k + 1 � i � n,

1 � j � k. Set X̂ = (vk+1, . . . , vn), and let Ah, Bh be the matrices of sizes k×k,
(n − k) × k, respectively, given by

Ah = (
ai
j,h

)i=1,...,k

j=1,...,k
, Bh = (

bi
j,h

)k+1�i�n

1�j�k
.

Then, (��) can be rewritten as Xh = XAh + X̂Bh; hence

XhZh = XAhZh + X̂BhZh,

and passing to the limit, we obtain

XZ = X lim
h→∞(AhZh) + X̂ lim

h→∞(BhZh).

Taking components we have Z = limh→∞(AhZh) and limh→∞(BhZh) = 0.
Since Ah goes to the k × k identity matrix Ik = (δij ) as h → ∞, we can con-
clude.

Let us compute ϕ∗. We have

ξ i
j = ϕ∗

(
∂

∂xi
j

∣
∣
∣
∣
(X,Z)

)

=
(

∂

∂xi
j

+
k∑

s=1

zs
j

∂

∂yi
s

)

(X,XZ)

,

ζ a
b = ϕ∗

(
∂

∂za
b

∣
∣
∣
∣
(X,Z)

)

=
n∑

r=1

xr
a

∂

∂yr
b

∣
∣
∣
∣
(X,XZ)

,

where 1 � i � n and j, a, b = 1, . . . , k.
We claim that the tangent vectors ξ i

j , ζ a
b , are linearly independent for every

(X,Z) ∈ M × GL(k,R). In fact, if

n∑

i=1

k∑

j=1

λi
j ξ i

j +
k∑

a,b=1

μa
b ζ a

b = 0, (� � �)
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for some scalars λi
j ,μ

a
b , then by applying the equation (� � �) to the function

xi
j , we obtain λi

j = 0. Hence, this equation reduces to

k∑

a,b=1

μa
b

n∑

r=1

xr
a

∂

∂yr
b

∣
∣
∣
∣
(X,XZ)

= 0,

or else,

n∑

r=1

k∑

b=1

(
k∑

a=1

xr
aμ

a
b

)
∂

∂yr
b

∣
∣
∣
∣
(X,XZ)

= 0.

Hence
⎛

⎜
⎝

x1
1 · · · x1

k
...

...

xn
1 · · · xn

k

⎞

⎟
⎠

⎛

⎜
⎝

μ1
1 · · · μ1

k
...

...

μk
1 · · · μk

k

⎞

⎟
⎠= 0.

As rank(xi
j ) = k, the previous equality implies (μa

b) = 0.
Finally, let us show that M/∼ can be identified to the Grassmannian. We

have a natural surjective map

Ψ : M → Gk

(
R

n
)
, Ψ (v1, . . . , vk) = 〈v1, . . . , vk〉.

We have dim〈v1, . . . , vk〉 = k as v1, . . . , vk are linearly independent. Moreover,

Ψ (v1, . . . , vk) = Ψ
(
v′

1, . . . , v
′
k

)= V

if and only if {v1, . . . , vk} and {v′
1, . . . , v

′
k} are two bases of V . Hence there

exists A ∈ GL(k,R) such that (v′
1, . . . , v

′
k) = (v1, . . . , vk) · A, thus proving that

the fibres of Ψ are exactly the orbits of GL(k,R).

Problem 1.84 Let π : M → N be a differentiable map. Prove that π is a submersion
if and only if it admits local sections through each point, i.e. for every q0 = π(p0),
p0 ∈ M , there exist an open neighbourhood V of q0 in N , and a differentiable map
σ : V → M such that (see Fig. 1.27):

(i) σ(q0) = p0;
(ii) π ◦ σ = idV .

Solution From (ii) we have π∗p0 ◦ σ∗q0 = idTq0N . Since the identity map is surjec-
tive, π∗ : Tp0M → Tq0N is surjective. Conversely, if π is a submersion at p0, by the
Theorem of the Rank 1.11, there exist local coordinates (x1, . . . , xm), (y1, . . . , yn),
centred at p0, q0 in M , N , respectively, such that yi ◦ π = xi , 1 � i � n. Notice
that m � n, as π is a submersion. Hence we can define a map σ on the domain of
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Fig. 1.27 A local section σ

of a submersion π : M → N

(y1, . . . , yn) by setting

xi ◦ σ =
{

yi if 1 � i � n,

0 if n + 1 � i � m.

Then, for every i = 1, . . . , n, we have

yi ◦ (π ◦ σ) = (
yi ◦ π

) ◦ σ = xi ◦ σ = yi,

thus proving that σ is a local section of π .

Problem 1.85 Let M,N be smooth manifolds and let S ↪→ N be an embedded
submanifold. A smooth map f : M → N is said to intersect S transversally at a
point x ∈ S if either:

(i) f (x) /∈ S, or
(ii) f (x) ∈ S and Tf (x)N = f∗(TxM) + Tf (x)S.

The map f is said to intersect S transversally if f intersects S transversally at
every point.

Prove: If f intersects S transversally, then

1. f −1(S) is an embedded submanifold of M .
2. The codimension of f −1(S) in M equals that of S in N .
3. For every x ∈ f −1(S), there is an exact sequence of vector spaces,

0 → Tx

(
f −1(S)

)→ TxM → Tf (x)N/Tf (x)S → 0.

Solution Let us fix a point x ∈ M such that f (x) ∈ S. As the questions are local,
we can assume N = R

m, and also that S is defined by the equations yq+1 = · · · =
ym = 0, where (y1, . . . , yq, yq+1, . . . , ym) is a coordinate system on N defined
around f (x). Hence dimS = q , or equivalently, codimS = m − q . Let π : N =
R

m = R
q ×R

m−q →R
m−q be the projection onto the last m − q components. The

composite mapping π ◦ f is submersive at each point in f −1(S) as, by applying π∗
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Fig. 1.28 The tangent vector
field σ ′ to a curve σ as a
curve in T M

to both sides of the formula

Tf (x)N = f∗(TxM) + Tf (x)S,

one obtains that

Tπ(f (x))R
m−q = π∗(Tf (x)N) = (π ◦ f )∗(TxM),

because the tangent vectors in Tf (x)S go to zero according to the equations for the
submanifold S.

Consequently, the differentials (dx(y
q+1 ◦f ), . . . ,dx(y

m ◦f )) are linearly inde-
pendent and hence, f −1(S) is locally defined by the equations

yq+1 ◦ f = 0 = · · · = ym ◦ f = 0,

thus proving parts 1 and 2 (as codimf −1(S) = m − q), and part 3 also follows by
simply taking dimensions in the short sequence in the statement.

1.9 The Tangent Bundle

Problem 1.86 Prove that if σ is a C∞ curve in the C∞ manifold M , then the
tangent vector field σ ′ is a C∞ curve in the tangent bundle T M .

Solution Given a C∞ curve σ : R → M , the tangent vector field σ ′ is, by defini-
tion, a map that we can write as

σ ′ = σ∗ ◦ d

d t
: R → T M,

where d/d t denotes the canonical vector field on R and hence it can be considered
as a curve in T M (see Fig. 1.28), so that for a coordinate neighbourhood U ⊂ M
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with coordinate functions x1, . . . , xn, one has

σ∗
(

d

d t

∣
∣
∣
∣
s

)

=
n∑

i=1

d(xi ◦ σ)

d t
(s)

∂

∂xi

∣
∣
∣
∣
σ(s)

.

Thus,

σ ′(s) =
(
(
x1 ◦ σ

)
(s), . . . ,

(
x1 ◦ σ

)
(s),

d(x1 ◦ σ)

d t
(s), . . . ,

d(xn ◦ σ)

d t
(s)

)

.

The coordinate functions {xi} and σ are C∞. Hence the composition xi ◦ σ is
C∞ for each i = 1, . . . , n; and the functions d(xi ◦ σ)/d t , which are coordinate
functions on the open subset π−1(U) of T M , are also C∞.

Problem 1.87 Assume that the manifold M admits a basis {X1, . . . ,Xn} for the
(C∞M)-module X(M) of C∞ vector fields on M .

Prove that the map

M ×R
n F→ T M =

⋃

p∈M

TpM

(
p,a1, . . . , an

) �→ F
(
p,a1, . . . , an

)=
∑

i

aiXi

∣
∣
p

∈ TpM

is a diffeomorphism, that is, that T M is then trivial.

Remark Compare with Problem 2.18.

Solution To begin with, we prove that for every p ∈ M , the tangent vectors
X1|p, . . . ,Xn|p are linearly independent and hence they are a basis of TpM . Let
(U,x1, . . . , xn) be a coordinate system defined on an open neighbourhood U of p,
and let f ∈ C∞M be a function such that:

(a) f = 1 on an open neighbourhood V ⊂ U .
(b) suppf ⊂ U .

Then f ∂/∂xi defines a global vector field. Hence there exists an n × n matrix
with entries f h

i ∈ C∞M such that f ∂/∂xi =∑
h f h

i Xh. Evaluating at p, we obtain
that

(
∂/∂xi

)
p

=
∑

h

f h
i (p)Xh

∣
∣
p
. (�)

Moreover, as (∂/∂x1)p, . . . , (∂/∂xn)p is a basis of TpM , there exist scalars λi
h

such that Xh|p = ∑
i λ

i
h(∂/∂xi)p , and substituting this expression into (�), we

obtain (∂/∂xj )p = ∑
h f h

j (p)λi
h(∂/∂xi)p . As {(∂/∂xi)p} is a basis, we conclude

f h
j (p)λi

h = δi
j , thus proving that the matrix (f h

j (p)) is invertible.



1.9 The Tangent Bundle 69

Moreover,

(i) F is injective, as if

F
(
p,a1, . . . , an

)= F
(
p′, ā1, . . . , ān

)
,

it follows that p = p′. Furthermore,
∑

i a
iXi |p = ∑

i ā
iXi |p , from which,

since the Xi |p are a basis of TpM , we have ai = āi for every i = 1, . . . , n.
(ii) F is surjective, since each v ∈ TpM is of the form v = λiXi |p , that is, v =

F(p,λ1, . . . , λn).
(iii) F is differentiable. In fact, let (U,ϕ) be a chart around p ∈ M , with ϕ =

(x1, . . . , xn), and consider the associated chart (π−1(U),Φ) in T M , where

π : T M → M, v �→ π(v) = p, v ∈ TpM,

that is,

π−1(U)
Φ−→ ϕ(U) ×R

n

v =
n∑

i=1

λi ∂

∂xi

∣
∣
∣
∣
p

�−→ Φ(v) = (
ϕ(p),λ1, . . . , λn

)
.

Now, as X1, . . . ,Xn are C∞ vector fields, we have Xi |U = ∑n
j=1 f

j
i

∂
∂xj ,

where f
j
i : U → R are C∞ functions. Hence, given t = (t1, . . . , tn) ∈ ϕ(U)

such that ϕ(p) = (t1, . . . , tn), one has

(
Φ ◦ F ◦ (ϕ × idRn)−1)(t1, . . . , tn, a1, . . . , an

)

= (Φ ◦ F)
(
p,a1, . . . , an

)= Φ
(
aiXi

∣
∣
p

)

= Φ

(
n∑

j=1

aif
j
i

(
ϕ−1(t)

) ∂

∂xj

∣
∣
∣
∣
ϕ−1(t)

)

=
(

t1, . . . , tn,
∑

i

aif 1
i

(
ϕ−1(t)

)
, . . . ,

∑

i

aif n
i

(
ϕ−1(t)

)
)

.

Thus Φ ◦ F ◦ (ϕ × idRn)−1 is C∞, hence F is C∞.
Moreover F−1 is C∞. In fact,

(
(ϕ × idRn) ◦ F−1 ◦ Φ−1)(t1, . . . , tn, λ1, . . . , λn

)

= (
(ϕ × idRn) ◦ F−1)

(
n∑

i=1

λi ∂

∂xi

∣
∣
∣
∣
ϕ−1(t)

)

= (
(ϕ × idRn) ◦ F−1)

(∑

i,j

λi f̃
j
i

(
ϕ−1(t)

)
Xj

∣
∣
ϕ−1(t)

)
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= (ϕ × idRn)

(

ϕ−1(t),
∑

i

λi f̃ 1
i

(
ϕ−1(t)

)
, . . . ,

∑

i

λi f̃ n
i

(
ϕ−1(t)

)
)

=
(

t1, . . . , tn,
∑

i

λi f̃ 1
i

(
ϕ−1(t)

)
, . . . ,

∑

i

λi f̃ n
i

(
ϕ−1(t)

)
)

,

where (f̃ i
j ) = (f i

j )−1. Hence (ϕ × idRn) ◦ F−1 ◦ Φ−1 is C∞ and thus F−1

is C∞.

Problem 1.88 Let j : S2 → R
3 be the natural inclusion map. Prove that the map

j∗ : T S2 → T R
3 is an embedding.

Solution Let U = R
3 \ {(0,0,0)}. As j (S2) ⊂ U , we have j∗T S2 ⊂ T U , and since

U is open in R
3, it suffices to prove that j∗ : T S2 → T U is an embedding. Consider

the map

ϕ : U → S2 ×R
+, ϕ(x) =

(
x

|x| , |x|
)

.

Then, ϕ is a diffeomorphism whose inverse map is ϕ−1(y,λ) = λy, λ ∈ R
+, y ∈ S2.

One has (ϕ ◦ j)(y) = (y,1), for all y ∈ S2. Hence ϕ∗ ◦ j∗ = (ϕ ◦ j)∗ establishes a
diffeomorphism between T S2 and T (S2 × {1}) ⊂ T S2 × TR

+. As ϕ∗ is a diffeo-
morphism we conclude that j∗ is a diffeomorphism between T S2 and the closed
submanifold ϕ−1(T (S2 × {1})) ⊂ T U .

1.10 Vector Fields

Problem 1.89 Consider the vector fields

X = x y
∂

∂x
+ x2 ∂

∂z
, Y = y

∂

∂y
,

on R
3 and the map f : R3 → R, f (x, y, z) = x2y. Compute:

(i) [X,Y ](1,1,0); (ii) (f X)(1,1,0);
(iii) (Xf )(1,1,0); (iv) f∗(X(1,1,0)).

Solution

(i)

[X,Y ](1,1,0) =
(

−y x
∂

∂x

)

(1,1,0)

= − ∂

∂x

∣
∣
∣
∣
(1,1,0)

.
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(ii)

(f X)(1,1,0) = f (1,1,0)X(1,1,0) =
(

∂

∂x
+ ∂

∂z

)

(1,1,0)

.

(iii)

(Xf )(1,1,0) = X(1,1,0)f =
(

∂f

∂x

)

(1,1,0) = 2.

(iv)

f∗(X(1,1,0)) ≡
(

∂f

∂x

∂f

∂y

∂f

∂z

)

(1,1,0)

⎛

⎝
1
0
1

⎞

⎠= 2
d

d t

∣
∣
∣
∣
1
,

where t denotes the canonical coordinate on R.

Problem 1.90 Write in cylindrical coordinates the vector field on R
3 defined by

X = 2
∂

∂x
− ∂

∂y
+ 3

∂

∂z
.

Solution The change from cylindrical coordinates (ρ, θ, z) to Cartesian coordinates
is x = ρ cos θ , y = ρ sin θ , z = z. The Jacobian matrix of this transformation is

A =
⎛

⎝
cos θ −ρ sin θ 0
sin θ ρ cos θ 0

0 0 1

⎞

⎠ .

The field X is written in cylindrical coordinates as

X = f1(ρ, θ, z)
∂

∂ρ
+ f2(ρ, θ, z)

∂

∂θ
+ f3(ρ, θ, z)

∂

∂z
.

Therefore,
⎛

⎝
cos θ −ρ sin θ 0
sin θ ρ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
f1
f2
f3

⎞

⎠=
⎛

⎝
2

−1
3

⎞

⎠ .

Hence

X = (2 cos θ − sin θ)
∂

∂ρ
− 2 sin θ + cos θ

ρ

∂

∂θ
+ 3

∂

∂z
.

Problem 1.91 Find the tangent space at the point p = (1,1,1) to the surface S in
R

3 defined by the equation f ≡ x3 − y3 + x y z − x y = 0.

Solution One has

df = (
3x2 + y z − y

)
dx + (−3y2 + x z − x

)
dy + xy dz.

So, (df )p = (3 dx − 3 dy + dz)p .
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If

X =
(

λ1
∂

∂x
+ λ2

∂

∂y
+ λ3

∂

∂z

)

p

is a vector tangent to S, then df (X) = 0, and conversely. So, at (1,1,1) we must
have λ3 = −3λ1 + 3λ2. Hence,

Xp = λ1
∂

∂x

∣
∣
∣
∣
p

+ λ2
∂

∂y

∣
∣
∣
∣
p

+ (−3λ1 + 3λ2)
∂

∂z

∣
∣
∣
∣
p

= λ1

(
∂

∂x
− 3

∂

∂z

)

p

+ λ2

(
∂

∂y
+ 3

∂

∂z

)

p

,

so the vectors ( ∂
∂x

− 3 ∂
∂z

)p and ( ∂
∂y

+ 3 ∂
∂z

)p are a basis of the tangent space to S at
(1,1,1).

Problem 1.92 Let f : R3 → R be the C∞ function defined by f (x, y, z) = x2 +
y2 − 1, which defines a differentiable structure on S = f −1(0). Consider the vector
fields on R

3:

(a) X = (
x2 − 1

) ∂

∂x
+ x y

∂

∂y
+ x z

∂

∂z
; (b) Y = x

∂

∂x
+ y

∂

∂y
+ 2x z2 ∂

∂z
.

Are they tangent to S?

Hint If p ∈ S and X ∈ TpR
3, X is tangent to the submanifold S if and only if

Xf = 0.

Solution

(a)

Xf = (
x2 − 1

)∂f

∂x
+ x y

∂f

∂y
+ x z

∂f

∂z
= 2x

(
x2 + y2 − 1

)
.

Thus if p = (x, y, z) ∈ S, Xpf = 0. Hence X is tangent to S.
(b) Yf = 2x2 + 2y2. If p = (x, y, z) ∈ S, then Ypf = 2, so Y is not tangent to S.

Problem 1.93 Find the tangent plane to the one-sheet hyperboloid H ≡ x2 + y2 −
z2 = 1 at a generic point of itself.

Solution Consider the parametrisation (see Remark 1.4) given by

x = coshu sinv, y = coshu cosv, z = sinhu, u ∈R, v ∈ (0,2π).

We have on the hyperboloid:

∂

∂u
= sinhu sinv

∂

∂x
+ sinhu cosv

∂

∂y
+ coshu

∂

∂z
,
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∂

∂v
= coshu cosv

∂

∂x
− coshu sinv

∂

∂y
,

that is, ∂/∂u and ∂/∂v are respectively the restrictions to the hyperboloid of the
vector fields on R

3 \ {0} given by

X = x z
√

x2 + y2

∂

∂x
+ y z
√

x2 + y2

∂

∂y
+
√

x2 + y2 ∂

∂z
, Y = y

∂

∂x
− x

∂

∂y
.

Hence, for p = (x0, y0, z0) ∈ H ,

TpH =
{

λ
∂

∂u

∣
∣
∣
∣
p

+ μ
∂

∂v

∣
∣
∣
∣
p

, λ,μ ∈R

}

= {aXp + bYp : a, b ∈ R}

=
{(

a
x0z0

√
x2

0 + y2
0

+ by0

)
∂

∂x

∣
∣
∣
∣
p

+
(

y0z0
√

x2
0 + y2

0

− bx0

)
∂

∂y

∣
∣
∣
∣
p

+ a

√
x2

0 + y2
0

∂

∂z

∣
∣
∣
∣
p

, a, b ∈R

}

.

Problem 1.94 Show that the vector fields X, Y , Z given by

Xp =
(

−y
∂

∂x
+ x

∂

∂y
− t

∂

∂z
+ z

∂

∂t

)

p

,

Yp =
(

−z
∂

∂x
+ t

∂

∂y
+ x

∂

∂z
− y

∂

∂t

)

p

,

Zp =
(

−t
∂

∂x
− z

∂

∂y
+ y

∂

∂z
+ x

∂

∂t

)

p

,

where p ∈ S3 = {(x, y, z, t) ∈R
4 : x2 + y2 + z2 + t2 = 1}, define a global paralleli-

sation of S3.

Solution The vector fields are tangent to S3, as 〈Xp,Np〉 = 〈Yp,Np〉 = 〈Zp,Np〉
= 0, where Np denotes the outward-pointing unit normal vector to S3 at p,

Np =
(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ t

∂

∂t

)

p

,

and 〈 · , ·〉 denotes the Euclidean product of TpR
4 ≡ R

4.
Furthermore, the fields are linearly independent, as

rank

⎛

⎝
−y x −t z

−z t x −y

−t −z y x

⎞

⎠< 3

if and only if p = (0,0,0,0) /∈ S3.
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The fields X, Y , Z are the restriction to S3 of the fields written similarly on R
4,

which are C∞ on R
4. Since S3 is an embedded submanifold in R

4, the vector fields
given on S3 are C∞ on S3.

Problem 1.95 Give a C∞ non-vanishing vector field on the sphere S2n+1.

Solution We have S2n+1 = {p = (x1, . . . , x2n+2) ∈R
2n+2 :∑2n+2

i=1 (xi)2 = 1}.
The vector field X defined by

Xp = −x2 ∂

∂x1

∣
∣
∣
∣
p

+ x1 ∂

∂x2

∣
∣
∣
∣
p

+ · · · − x2n+2 ∂

∂x2n+1

∣
∣
∣
∣
p

+ x2n+1 ∂

∂x2n+2

∣
∣
∣
∣
p

,

where p ∈ S2n+1, is tangent to S2n+1. In fact, it is clearly orthogonal to the normal
vector

Np =
2n+2∑

i=1

xi ∂

∂xi

∣
∣
∣
∣
p

at p with respect to the Euclidean product 〈 · , ·〉 of R2n+2. Moreover, X is C∞ since
the functions xi , i = 1, . . . ,2n + 2, are C∞. Hence X ∈ X(S2n+1).

Problem 1.96 Find the general expression for X ∈ X(R2) in the following cases:

(i) [ ∂
∂x

, X] = X and [ ∂
∂y

, X] = X;

(ii) [ ∂
∂x

+ ∂
∂y

, X] = X.

Hint (to (ii)) Take new coordinates u = 1
2 (x + y), v = 1

2 (x − y).

Solution

(i) Let X = a(x, y) ∂
∂x

+ b(x, y) ∂
∂y

. Then,

[
∂

∂x
, X

]

= ∂a(x, y)

∂x

∂

∂x
+ ∂b(x, y)

∂x

∂

∂y
= X,

[
∂

∂y
, X

]

= ∂a(x, y)

∂y

∂

∂x
+ ∂b(x, y)

∂y

∂

∂x
= X,

from which

∂a(x, y)

∂x
= a(x, y),

∂b(x, y)

∂x
= b(x, y), (�)

∂a(x, y)

∂y
= a(x, y),

∂b(x, y)

∂y
= b(x, y). (��)

Solving, from (�) we have

a(x, y) = Af (y)ex, b(x, y) = Bg(y)ex.
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Substituting these expressions in (��), one has

f ′(y) = f (y), g′(y) = g(y),

from which f (y) = Cey , g(y) = Dey . Hence

a(x, y) = Eex+y, b(x, y) = F ex+y,

and

X = ex+y

(

E
∂

∂x
+ F

∂

∂y

)

.

(ii) Taking u and v as in the hint, we have ∂
∂u

= ∂
∂x

+ ∂
∂y

, and one can write X =
a(u, v) ∂

∂u
+ b(u, v) ∂

∂v
. We have

[
∂

∂u
, X

]

= ∂a(u, v)

∂u

∂

∂u
+ ∂b(u, v)

∂u

∂

∂v
= X,

from which

∂a(u, v)

∂u
= a(u, v),

∂b(u, v)

∂u
= b(u, v).

Hence, as in (i) above, we have a(u, v) = f (v)eu, b(u, v) = g(v)eu. So

X = f

(
1

2
(x − y)

)

e(x+y)/2
(

∂

∂x
+ ∂

∂y

)

+ g

(
1

2
(x − y)

)

e(x+y)/2
(

∂

∂x
− ∂

∂y

)

,

that is,

X = e(x+y)/2
{

h

(
1

2
(x − y)

)
∂

∂x
+ k

(
1

2
(x − y)

)
∂

∂y

}

,

for arbitrary C∞ functions h, k.

Problem 1.97 Consider the two vector fields on R
n+1 defined by

e0 = ∂0, e1 =
∑

α

fα

(
xi
)
∂α,

where ∂0 = ∂/∂x0 and

∂α = ∂/∂xα, 1 � α � n, fα

(
xi
)= fα

(
x0, . . . , xn

)
, 0 � i � n.

We define recursively er = [e0, er−1], 2 � r � n. Then:

(i) Compute er in terms of the vector fields ∂α .
(ii) Find functions fα(xi), such that e0, . . . , en are linearly independent.

Solution

(i) e2 = [∂0,
∑

α fα(xi)∂α] =∑
α ∂0(fα(xi))∂α .
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We proceed by induction: Suppose er =∑
α ∂r−1

0 (fα(xi))∂α ; then,

er+1 = [∂0, er ] =
∑

α

[
∂0, ∂

r−1
0

(
fα

(
xi
))

∂α

]=
∑

α

∂0
(
∂r−1

0

(
fα

(
xi
)))

∂α

=
∑

α

∂r
0

(
fα

(
xi
))

∂α.

(ii) Take fα(xi) = (x0)α−1. Then

e0 = ∂0,

e1 =
∑

α

fα

(
xi
)
∂α =

∑

α

(
x0)α−1

∂α = ∂1 + x0∂2 + · · · + (
x0)n−1

∂n,

e2 =
∑

α

∂0
(
fα

(
xi
))

∂α =
∑

α

∂0
((

x0)α−1)
∂α =

∑

α

(α − 1)
((

x0)α−2)
∂α

= ∂2 + 2x0∂3 + 3
(
x0)2

∂4 + · · · + (n − 1)
(
x0)n−2

∂n,

e3 =
∑

α

∂2
0

(
fα

(
xi
))

∂α =
∑

α

(α − 1)(α − 2)
(
x0)α−3

∂α,

. . .

en =
∑

α

(α − 1)(α − 2) . . . (α − n + 1)
(
x0)α−n

∂α = (n − 1)! ∂n.

1.10.1 Integral Curves

Problem 1.98 Is every vector field on the real line R complete?

Solution Let

X = x2 ∂

∂x
∈X(R).

The integral curves are the solutions of the equation x′(t) = x2(t), i.e. x′(t)/
x2(t) = 1, whose solution is x(t) = −1/(t + A). The integral curve through x0
verifies x(0) = x0, hence x0 = −1/A, thus it is the curve

x(t) = x0

1 − tx0
,

which is not defined for t = 1/x0, so X is not complete.

Problem 1.99 Compute the integral curves of the vector field on R
3 given by

X = y
∂

∂x
+ y

∂

∂y
+ 2

∂

∂z
.
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Solution The tangent vector at a point p of an integral curve γ of the vector field
X coincides with the value of X at p.

Let γ (t) = (x(t), y(t), z(t)). Hence, γ ′(t) = (x′(t), y′(t), z′(t)), where

dx

d t
= y,

dy

d t
= y,

dz

d t
= 2,

from which the integral curves are of the type γ (t) = (Aet + B,Aet ,2t + C) and
the curve passing through (x0, y0, z0) for t = 0 is

γ (t) = (
x0 + y0

(
et − 1

)
, y0et , 2t + z0

)
.

Problem 1.100 For each of the following vector fields find its integral curves and
study whether it is complete or not:

(i) X = ∂

∂x
∈X

(
R

2 \ {0}); (ii) X = ∂

∂y
+ ex ∂

∂z
∈ X(R3);

(iii) X = e−x ∂

∂x
; (iv) X = y

∂

∂x
, Y = x2

2

∂

∂y
, [X,Y ];

(v) X = x
∂

∂x
; (vi) X = y

∂

∂x
− x

∂

∂y
.

The last four vector fields belong to X(R2).

Solution

(i) The integral curves are the solutions of the system

x′(t) = 1, y′(t) = 0;
thus,

x(t) = t + A, y(t) = B,

and the integral curve of X through a given point (x0, y0) is

x(t) = t + x0, y(t) = y0.

If x0 > 0, the maximal integral curve through (x0,0) is defined only for the
interval (−x0,+∞). Hence X is not complete.

(ii) The integral curves are the solutions of the system

x′(t) = 0, y′(t) = 1, z′(t) = ex(t);
thus,

x(t) = A, y(t) = t + B, z(t) = eAt + C.
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The integral curve of X through (x0, y0, z0) is

x(t) = x0, y(t) = t + y0, z(t) = ex0 t + z0,

which is defined for t ∈ R, so X is complete.
(iii) The integral curves are the solutions of the system

ex(t)x′(t) = 1, y′(t) = 0;
thus,

ex(t) = t + A, y(t) = B;
that is,

x(t) = log(t + A), y(t) = B.

The integral curve of X through (x0, y0) is

x(t) = log
(
t + ex0

)
, y(t) = y0.

X is not complete as this curve is only defined for t ∈ (−ex0 ,+∞).
(iv) The integral curves of X are the solutions of the system

x′(t) = y(t), y′(t) = 0.

The integral curve through (x0, y0) is x(t) = y0t + x0, y(t) = y0. Hence, X is
complete.

Similarly, for Y we have

x′(t) = 0, y′(t) = x2(t)

2
.

Hence x(t) = x0. So y′(t) = 1
2x2

0 and thus y(t) = 1
2x2

0 t + y0. Hence, Y is com-
plete.

As for

[X,Y ] = xy
∂

∂y
− x2

2

∂

∂x
,

we have the system

x′(t) = −x2(t)

2
, y′(t) = y(t)x(t).

As in Problem 1.98, we obtain

x(t) = 2x0

x0t + 2
.
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Fig. 1.29 Integral curves of
the vector field
X = y ∂/∂x − x ∂/∂y

So we have y′(t)/y(t) = 2x0/(x0t + 2), thus logy(t) = 2 log(x0t + 2) +
logB . Since y(0) = y0 it follows that y0 = 4B . Therefore,

y(t) = y0

4
(x0t + 2)2.

Hence [X,Y ] is not complete as its integral curve is not defined for t = −2/x0.
(v) The integral curves are the solutions of the system

x′(t) = x(t), y′(t) = 0.

Hence the integral curve through (x0, y0) is

x(t) = x0et , y(t) = y0.

The graph is a horizontal half-line on R
2 of exponential speed, with x ∈

(−∞,0) or (0,+∞) depending on either x0 < 0 or x0 > 0, respectively. The
graph is the point (0, y0) if x0 = 0. X is complete.

(vi) The integral curves are the solutions of the system

x′(t) = y(t), y′(t) = −x(t).

That is,

x(t) = A sin t + B cos t, y(t) = −B sin t + A cos t.

As x(0) = x0 = B , y(0) = y0 = A, the integral curve through (x0, y0) is

x(t) = y0 sin t + x0 cos t, y(t) = −x0 sin t + y0 cos t.

Since x2(t)+ y2(t) = x2
0 + y2

0 , the integral curves are the circles with centre at
the origin (see Fig. 1.29). The vector field is complete.
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1.10.2 Flows

Problem 1.101 For each t ∈R, consider the map ϕt : R2 → R
2 given by

(x, y) �→ ϕt (x, y) = (x cos t + y sin t,−x sin t + y cos t).

(i) Prove that ϕt is a 1-parameter group of transformations of R2.
(ii) Calculate the associated vector field X.

(iii) Describe the orbits.
(iv) Prove that X is invariant by ϕt , that is, that ϕt∗Xp = Xϕt (p).

Solution

(i) Each ϕt is trivially C∞. Furthermore,
(a) ϕ0(x, y) = (x, y), thus ϕ0 = idR2 .
(b)

(ϕt ◦ ϕs)(x, y) = ϕt (x cos s +y sin s,−x sin s +y cos s)

= (
x cos(s + t)+y sin(s + t),−x sin(s + t)+y cos(s + t)

)

= ϕt+s(x, y).

(ii) We have X = λ1
∂
∂x

+ λ2
∂
∂y

, with

λ1(x, y) = d

d t

∣
∣
∣
∣
t=0

(x cos t + y sin t) = y,

λ2(x, y) = d

d t

∣
∣
∣
∣
t=0

(−x sin t + y cos t) = −x,

that is, X = y ∂
∂x

− x ∂
∂y

.

(iii) The orbit through p = (x0, y0) is the image of the map R → R
2 given by

t �→ (x0 cos t + y0 sin t,−x0 sin t + y0 cos t),

that is, a circle centred at the origin and passing through p = (x0, y0). If p =
(0,0), the orbit reduces to the point p.

(iv) If p = (x0, y0), then

Xϕt (p) = (−x0 sin t + y0 cos t)
∂

∂x

∣
∣
∣
∣
ϕt (p)

− (x0 cos t + y0 sin t)
∂

∂y

∣
∣
∣
∣
ϕt (p)

.

Hence

ϕt∗Xp ≡
(

cos t sin t

− sin t cos t

)(
y0

−x0

)

≡ Xϕt (p).
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Problem 1.102 Let T M be the tangent bundle over a differentiable manifold M .
Let ϕ : R× T M → T M defined by ϕ(t,X) = etX.

(i) Prove that ϕ is a 1-parameter group of transformations of T M .
(ii) Calculate the vector field Y on T M associated to ϕ.

(iii) Prove that Y is invariant under ϕ.

Solution

(i) Let ϕt : T M → T M , X �→ etX. Obviously ϕ0 = idT M . Furthermore,

(ϕt ◦ ϕs)X = ϕt

(
esX

)= es+tX = ϕt+sX,

so ϕt ◦ ϕs = ϕt+s .
Let us see that ϕ is differentiable. Pick (t0,X0) ∈ R × T M . Let π de-

note the canonical projection from T M to M . Let p = π(X0) ∈ M and
(U,ψ = (x1, . . . , xn)) be a coordinate system on a neighbourhood of p. Let
(π−1(U),Ψ ) be the chart in T M built from (U,ψ), that is,

Ψ = (ψ × idRn) ◦ τ : π−1(U) → ψ(U) ×R
n,

with τ : π−1(U) → U ×R
n, where

τ

((

λ1 ∂

∂x1
+ · · · + λn ∂

∂xn

)

x

)

= (
x,λ1, . . . , λn

)
.

Let us denote Ψ = (x1, . . . , xn, y1, . . . , yn). Then, given Z0 ∈ TqM , q ∈ U ,
such that

Ψ (Z0) = ( (
x1 ◦ π

)
(Z0), . . . ,

(
xn ◦ π

)
(Z0), y

1(Z0), . . . , y
n(Z0)

)

= (
x1(q), . . . , xn(q), y1(Z0), . . . , y

n(Z0)
)= (

a1, . . . , an, b1, . . . , bn
)
,

we have, taking on R the chart (R, idR):

(
Ψ ◦ ϕ ◦ (idR ×Ψ )−1)(t, a1, . . . , an, b1, . . . , bn

)

= (Ψ ◦ ϕ)(t,Z0) = Ψ
(
etZ0

)

= (
x1(q), . . . , xn(q), et y1(Z0), . . . , et yn(Z0)

)

= (
a1, . . . , an, et b1, . . . , et bn

)
.

Hence ϕ is differentiable.
(ii) Let Y be the vector field generated by ϕ. Let X0 ∈ T M and p = π(X0)

and consider as before the charts (U,ψ) in p, with ψ = (x1, . . . , xn) and
(π−1(U),Ψ ) in X0, with Ψ = (x1, . . . , xn, y1, . . . , yn).
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Then Y : T M → T T M has at X0 the expression

YX0 =
n∑

i=1

(

YX0

(
xi
) ∂

∂xi

∣
∣
∣
∣
X0

+ YX0

(
yi
) ∂

∂yi

∣
∣
∣
∣
X0

)

.

As Y is generated by ϕ, one has

YX0

(
xi
)= d

d t

∣
∣
∣
∣
t=0

(
xi
(
ϕ(t,X0)

))
, YX0

(
yi
)= d

d t

∣
∣
∣
∣
t=0

(
yi
(
ϕ(t,X0)

))
.

Thus

YX0

(
xi
)= d

d t

∣
∣
∣
∣
t=0

(
xi
(
etX0

))= d

d t

∣
∣
∣
∣
t=0

(
xi(p)

)= 0,

YX0

(
yi
)= d

d t

∣
∣
∣
∣
t=0

(
et yi(X0)

)= yi(X0).

So YX0 =∑n
i=1 yi(X0)

∂
∂yi |X0 , hence Y =∑n

i=1 yi ∂
∂yi .

(iii) It suffices to prove that (ϕt∗)X0 YX0 = YetX0 . We know that

YetX0 = et
n∑

i=1

yi(X0)
∂

∂yi

∣
∣
∣
∣
etX0

.

On the other hand,

ϕt

(
a1, . . . , an, b1, . . . , bn

)= (
a1, . . . , an, et b1, . . . , et bn

)
,

so that the matrix associated to ϕt∗ is
( In 0

0 et In

)
.

Since YX0 = (0, . . . ,0, y1(X0), . . . , y
n(X0)), we have

(ϕt∗)X0(YX0) =
(

In 0
0 et In

)
t
(
0, . . . ,0, y1(X0), . . . , yn(X0)

)

= (
0, . . . ,0, et y1(X0), . . . , et yn(X0)

)= YetX0 ,

as expected.

1.10.3 Transforming Vector Fields

Problem 1.103 Consider the projection p : R2 → R, (x, y) �→ x. Find the condi-
tion that a vector field on R

2 must verify to be p-related to some vector field on R.

Solution Let

X = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
∈X

(
R

2).
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In order for X to be p-related to some vector field on R, it must happen that for each
couple of points (x0, y0), (x1, y1) ∈ R

2 such that p(x0, y0) = p(x1, y1) one has

p∗
((

a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

)

(x0,y0)

)

= p∗
((

a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

)

(x1,y1)

)

.

(�)
Since for the given pair of points we have x0 = x1, we can write such a couple of
points in the form (x, y0), (x, y1), and we have

p∗
(

∂

∂x

∣
∣
∣
∣
(x,y0)

)

= p∗
(

∂

∂x

∣
∣
∣
∣
(x,y1)

)

= d

d t

∣
∣
∣
∣
x

,

p∗
(

∂

∂y

∣
∣
∣
∣
(x,y0)

)

= p∗
(

∂

∂y

∣
∣
∣
∣
(x,y1)

)

= 0,

where t is the canonical coordinate on R. Substituting in (�), we obtain the condition
we are looking for: a(x, y0) = a(x, y1), for all x, y0, y1.

Problem 1.104 Let M = {(x, y) ∈ R
2 : x > 0} be endowed with the natural differ-

entiable structure as an open subset of R2, and let f : M → R, (x, y) �→ x.

(i) Prove that X(x,y) ≡ (x/r3, y/r3), where r = √
x2 + y2, is a C∞ vector field

on M .
(ii) Is X f -related to a vector field on R?

Solution

(i) The functions M → R, given by (x, y) �→ x/
√

(x2 + y2)3, and (x, y) �→
y/
√

(x2 + y2)3, are C∞ on M .
(ii) No, as if X were f -related to a vector field on R, then (as in Problem 1.103) it

would be f∗Xp = f∗Xp′ if p = (x0, y0), p′ = (x0, y
′
0), y0 
= y′

0, and this is not
the case, as it is proved below.

The matrix associated to f∗ with respect to the bases {∂/∂x, ∂/∂y} and
{d/d t}, that is, the Jacobian matrix of idR ◦f ◦ id−1

M , is (1 0). Consequently,
if p = (x0, y0) ∈ M , we have

f∗Xp = x0
√

(x2
0 + y2

0)3

d

d t

∣
∣
∣
∣
x0

.

Hence f∗Xp 
= f∗Xp′ .

Problem 1.105 Consider the 2-torus T 2 = S1 × S1. Consider the submersion

f : R2 → T 2, f
(
θ, θ ′)= (

eθ i, eθ ′i),

and a vector field X ∈ X(R2). Under which condition is X f -projectable onto a
vector field Y on T 2?
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Fig. 1.30 A vector field on
R

2 inducing a vector field
on T 2

Solution It is immediate that the condition is f∗(X(θ+2kπ,θ ′+2k′π)) = f∗(X(θ,θ ′)).
Equivalently, X must be invariant under the action of Z2 on R

2 defined by (k, k′) ·
(θ, θ ′) = (θ + 2kπ, θ ′ + 2k′π) (see Fig. 1.30).

Problem 1.106 Let f : M → N be a C∞ map and X and Y be f -related C∞ vector
fields. Prove that f maps integral curves of X into integral curves of Y .

Solution For the integral curve of X through p ∈ M , σ : (−ε, ε) → M , one has

(a) σ is C∞; (b) σ(0) = p;

(c) σ∗
(

d

d t

∣
∣
∣
∣
t0

)

= Xσ(t0), for all t0 ∈ (−ε, ε).

Then the map f ◦ σ : (−ε, ε) → N satisfies:

(i) f ◦ σ is differentiable as a composition of differentiable maps.
(ii) (f ◦ σ)(0) = f (p).

(iii)

(f ◦ σ)∗
(

d

d t

∣
∣
∣
∣
t0

)

= (f∗σ(t0) ◦ σ∗t0)

(
d

d t

∣
∣
∣
∣
t0

)

= f∗σ(t0)

(

σ∗t0

(
d

d t

∣
∣
∣
∣
t0

))

= f∗(Xσ(t0))

= Y(f ◦σ)(t0) (X and Y are f -related).

That is, f ◦ α is the integral curve of Y passing through f (p).

Problem 1.107 Let ϕ : M → N be a diffeomorphism between the C∞ mani-
folds M and N . Given X ∈ X(M), the vector field image ϕ · X of X is defined
by

(ϕ · X)x = ϕ∗(Xϕ−1(x)).
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Prove:

(i) In fact, ϕ · X ∈ X(N).
(ii) ϕ · [X,Y ] = [ϕ · X,ϕ · Y ], X,Y ∈X(M).

Solution

(i) From the definition of ϕ∗, it is immediate that the image of a vector is a vector.
Moreover, ϕ · X is C∞, which follows from

ϕ · X = ϕ∗ ◦ X ◦ ϕ−1.

Further, we have, denoting by πT M (resp., πT N ) the projection map of the tan-
gent bundle over M (resp., N ), that πT N ◦ (ϕ · X) = id. In fact,

πT N ◦ ϕ∗ ◦ X ◦ ϕ−1 = ϕ ◦ πT M ◦ X ◦ ϕ−1 = ϕ ◦ ϕ−1 = id.

(ii) From the definition of ϕ · X it follows that (ϕ · X)f = X(f ◦ ϕ) ◦ ϕ−1. Hence,
for any p ∈ N , one has

(
ϕ · [X,Y ])

p
f = [X,Y ]ϕ−1(p)(f ◦ ϕ)

= Xϕ−1(p)

(
Y(f ◦ ϕ)

)− Yϕ−1(p)

(
X(f ◦ ϕ)

)

= Xϕ−1(p)

(
(ϕ · Y)(f ) ◦ ϕ

)− Yϕ−1(p)

(
(ϕ · X)(f ) ◦ ϕ

)

= (ϕ · X)p
(
(ϕ · Y)f

)− (ϕ · Y)p
(
(ϕ · X)f

)= [ϕ · X,ϕ · Y ]pf.

Problem 1.108 Let f : R → R, x �→ ex . Find the vector field image f · ∂/∂x.

Solution The Jacobian of f is ex . We have, for any fixed x0, that
(

f · ∂

∂x

)

x0

= f∗
(

∂

∂x

∣
∣
∣
∣
f −1(x0)

)

= f∗
(

∂

∂x

∣
∣
∣
∣
logx0

)

=
(

x
∂

∂x

)

x0

.

Hence

f · ∂

∂x
= x

∂

∂x
.

Problem 1.109 Let π : M → N be a surjective submersion of manifolds such that
the set π−1(q) is a compact connected set for each point q ∈ N . Suppose that the
vector fields X ∈ X(M) and Y ∈ X(N) are π -related, i.e. π∗pXp = Yπ(p) for all
p ∈ M .

Prove that the vector fields X and Y are complete or incomplete simultaneously.

Solution Since the vector fields X and Y are π -related, for any integral curve Γ (t)

of X its image γ (t) = π(Γ (t)) is an integral curve of Y , i.e. Y is complete if X is
complete.
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Suppose now that the vector field Y is complete. Choose a point p̃ ∈ M . Let
γ (t), t ∈ [0, T ], 0 < T < ∞, be any integral curve of Y such that γ (0) = π(p̃). It is
evident that the set γ ([0, T ]) ⊂ N is compact (as a continuous image of a compact
set). To solve the problem we will prove first that its preimage π−1(γ ([0, t])) is a
compact subset of M .

Indeed, using the well-known Whitney Embedding Theorem, we can sup-
pose that M is an embedded submanifold of R

l for some l ∈ N; in particular,
the topology on M is induced by the standard topology on R

l . Suppose that
the set π−1(γ ([0, T ])) is not compact. Then the set either π−1(γ ([0, T /2])) or
π−1(γ ([T/2, T ])) is not compact. So that there exists a sequence of compact sets

[0, T ] = [a0, b0] ⊃ [a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [an, bn] ⊃ · · ·
such that each set An = π−1(γ ([an, bn])) is not compact. There exists a unique
common point t0 =⋂

n∈N[an, bn]. Put q0 = γ (t0). Since the set π−1(q0) is compact
(in M and, consequently, in R

l), there exists an open ball B in R
l containing this set

and such that the intersection of this set with the sphere S = ∂B is empty. Now we
prove that An ∩S 
= ∅. To this end assume that An ∩S = ∅, i.e. An ⊂ (Rl \{B̄})∪B .
But each (closed) set An is not compact, i.e. is unbounded in R

l and thus An ∩ (Rl \
{B̄}) 
= ∅. Also An ∩ B 
= ∅ as π−1(q0) ⊂ An ∩ B . Taking into account that the set
γ ([an, bn]) is connected and the map π is open (an image of each open subset is
open), we obtain that the set

π(An ∩ B) ∩ π
(
An ∩ (

R
l \ {B̄}))

is not empty, i.e. it contains some point q ′ for which

π−1(q ′)∩ B 
= ∅ and π−1(q ′)∩ (
R

l \ {B̄}) 
= ∅.

Also by assumption,

π−1(q ′)⊂ An ⊂ (
R

l \ {B̄})∪ B.

But the set π−1(q ′) is connected, thus we are led to a contradiction. Thus there
exists a point pn ∈ S ∩ An. By compactness of the (closed) set S ∩ M ⊂ M , some
subsequence {pnk

} ⊂ {pn} converges to a point p̄ ∈ S ∩ M . By continuity of π

and γ , the sequence
{
π(pnk

) = γ (tnk
)
}
, tnk

∈ [ank
, bnk

],
converges to the point π(p̄) = γ (t0) = q0. But p̄ ∈ S and π−1(q0) ∩ S = ∅, which
is a contradiction, i.e. the set π−1(γ ([0, T ])) is compact.

Since the vector field X is smooth, for each point p ∈ M there exists a neighbour-
hood U of p, a positive number ε ∈ R and a local 1-parameter group φt : U → M

of X defined for all t ∈ (−ε, ε). Since the set π−1(γ ([0, T ])) is compact, there
exists a finite covering {Uk}, k = 1, . . . , n, of it, with corresponding groups φk

t ,
t ∈ (−εk, εk). In other words, for each point p ∈ π−1(γ ([0, T ])) there exists the
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integral curve Γ (t), Γ (0) = p of X defined for all t ∈ (−ε0, ε0), where ε0 =
min{ε1, . . . , εn}.

Consider now the point p̃ (recall that π(p̃) = γ (0)) and the integral curve
Γb : [0, b] → M of X such that Γ (0) = p̃ and 0 < b. Since the vector fields X

and Y are π -related, we have that

π
(
Γ (t)

)= γ (t) if 0 � t � min{b,T }.
If b < T , then Γ (b) ∈ π−1(γ ([0, T ])) and, consequently, as we remarked above,
the extension Γb+(ε0/2) exists. Thus there exists the integral curve ΓT which is an
extension of Γb . Since T is arbitrary, the vector field X is complete.

References

1. Brickell, F., Clark, R.S.: Differentiable Manifolds. Van Nostrand Reinhold, London (1970)
2. do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood

Cliffs (1976)
3. Gaal, S.A.: Point Set Topology. Dover, New York (1999)
4. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vols. I, II. Wiley Classics

Library. Wiley, New York (1996)
5. Lang, S.: Introduction aux Variétés Différentiables. Dunod, Paris (1967). Trad. J. Rogalski.
6. Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am.

Math. Soc. 42(10), 689–692 (1936)
7. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1969)
8. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in

Mathematics. Springer, Berlin (2010)
9. Wood, J.C.: Lewy’s theorem fails in higher dimensions. Math. Scand. 69(2), 166 (1992)

Further Reading

10. Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. AMS Chelsea Publishing, Providence
(2001)

11. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd
revised edn. Academic Press, New York (2002)

12. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer, Berlin (2004)
13. Godbillon, C.: Géométrie Différentielle et Mécanique Analytique. Hermann, Paris (1969)
14. Hicks, N.J.: Notes on Differential Geometry. Van Nostrand Reinhold, London (1965)
15. Lee, J.M.: Manifolds and Differential Geometry. Graduate Studies in Mathematics. Am. Math.

Soc., Providence (2009)
16. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218.

Springer, New York (2012)
17. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press,

New York (1983)
18. Spivak, M.: Differential Geometry, vols. 1–5, 3rd edn. Publish or Perish, Wilmington (1999)
19. Sternberg, S.: Lectures on Differential Geometry, 2nd edn. AMS Chelsea Publishing, Provi-

dence (1999)
20. Tu, L.W.: An Introduction to Manifolds. Universitext. Springer, Berlin (2008)



Chapter 2
Tensor Fields and Differential Forms

Abstract After providing some definitions and results on tensor fields and differen-
tial forms, this chapter deals with some aspects of general vector bundles, including
the ‘cocycle approach’; other topics are: Tensors and tensor fields, exterior forms,
Lie derivative and the interior product; calculus of differential forms and distribu-
tions. Some examples related to manifolds studied in the previous chapter are also
present, such as the infinite Möbius strip, considered as a vector bundle, and the tau-
tological bundle over the real Grassmannian. Certain problems intend to make the
reader familiar with computations of vector fields, differential forms, Lie derivative,
the interior product, the exterior differential, and their relationships. Other group of
problems tries to develop practical abilities in computing integral distributions and
differential ideals.

L’algorithme du Calcul différentiel absolu, c’est à dire l’instrument
matériel des méthodes (. . . ) se trouve tout entier dans une remarque due a
M. Christoffel (. . . ) Mais les méthodes mêmes et les avantages, qu’ils présen-
tent, ont leur raison d’être et leur source dans les rapports intimes, que les lient
à la notion de variété à n dimensions, qui nous devons aux génies de Gauss
et de Riemann. D’après cette notion une variété Vn est définie intrinséque-
ment dans ses propriétés métriques par n variables indépendants et par toute
une classe de formes quadratiques des différentielles de ces variables, dont
deux quelconques son transformables l’une en l’autre par une transformation
ponctuelle. Par conséquence une Vn reste invariée vis-à-vis de toute transfor-
mation de ses coordonnées. La Calcul differentiel absolu, en agissant sur des
formes covariantes ou contrevariants au ds2 de Vn pour en dériver d’autres de
même nature, est lui aussi dans ses formules et dans ses résultats indépendent
du choix des variables indépendantes. Étant de la sorte essentiellement attaché
à Vn, il est l’instrument naturel de toutes les recherches, qui ont pour object
une telle variété, ou dans lesquelles on rencontre comme élément caractéris-
tique une forme quadratique positive des différentielles de n variables ou de
leurs dérivées.1

1The algorithm of absolute differential Calculus, that is, the material instrument of the methods
(. . . ) is fully included in a remark by Mr. Christoffel (. . . ) But the methods themselves and their

P.M. Gadea et al., Analysis and Algebra on Differentiable Manifolds,
Problem Books in Mathematics, DOI 10.1007/978-94-007-5952-7_2,
© Springer-Verlag London 2013
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GREGORIO RICCI-CURBASTRO AND TULLIO LEVI-CIVITA, Méthodes
de calcul differentiel absolu et leurs applications, Math. Annalen 54 (1900),
no. 1–2, 127–128. (With kind permission from Springer.)

However Einstein realised his problems: ‘If all accelerated systems are
equivalent, then Euclidean geometry cannot hold in all of them.’ Einstein then
remembered that he had studied Gauss’ theory of surfaces as a student and
suddenly realised that the foundations of geometry have physical significance.
He consulted his friend [and mathematician] Grossmann who was able to tell
Einstein of the important developments of Riemann, Ricci (Ricci-Curbastro)
and Levi-Civita. Einstein wrote: ‘. . . in all my life I have not laboured nearly
so hard, and I have become imbued with great respect for mathematics, the
subtler part of which I had in my simple-mindedness regarded as pure luxury
until now.’ In 1913 Einstein and Grossmann published a joint paper where
the tensor calculus of Ricci and Levi-Civita is employed to make further ad-
vances. Grossmann gave Einstein the Riemann–Christoffel tensor which, to-
gether with the Ricci tensor which can be derived from it, were to become the
major tools in the future theory. Progress was being made in that gravitation
was described for the first time by the metric tensor but still the theory was
not right. (. . . ) It was the second half of 1915 that saw Einstein finally put the
theory in place. Before that however he had written a paper in October 1914
nearly half of which is a treatise on tensor analysis and differential geometry.
This paper led to a correspondence between Einstein and Levi-Civita in which
Levi-Civita pointed out technical errors in Einstein’s work on tensors. Einstein
was delighted to be able to exchange ideas with Levi-Civita whom he found
much more sympathetic to his ideas on relativity than his other colleagues.

JOHN O’CONNOR AND EDMUND F. ROBERTSON, Article General Rel-
ativity, in ‘The MacTutor History of Mathematics archive,’ School of Math-
ematics and Statistics, University of St. Andrews, Scotland. (With kind per-
mission from the authors.)

advantages have their foundation and their source in the intimate links they have with the notion
of n-dimensional manifold, which we owe to the geniuses of Gauss and Riemann. According
to this notion, a manifold Vn is intrinsically defined with respect to its metric properties by n

independent variables and by a full class of quadratic forms of the differentials of these variables,
such that any two may be mutually transformed by a pointwise transformation. Consequently, a Vn

remains invariant under any transformation of its coordinates. The absolute differential Calculus,
dealing with covariant or contravariant forms of the ds2 of Vn, in order to obtain other ones of the
same nature, is itself independent of the choice of independent variables inside its formulas and its
results. Being so essentially linked to Vn, it is a natural tool of all the researches on such a manifold
(. . . ) or one meets positive quadratic differential forms and their derivatives.”
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2.1 Some Definitions and Theorems on Tensor Fields
and Differential Forms

Definitions 2.1 Let ξ = (E,π,M) be a locally trivial bundle with fibre F over M .
A chart on ξ is a pair (U,Ψ ) consisting of an open subset U ⊂ M and a diffeomor-
phism Ψ : π−1(U) → U × F such that pr1 ◦ Ψ = π , where pr1 : U × F → U is the
first projection map. Ψ is called a trivialisation of ξ over U .

Let V be real vector space of finite dimension n, and let ξ = (E,π,M) be a lo-
cally trivial bundle of fibre V . A structure of vector bundle on ξ is given by a family
A = {(Uα,Ψα)} of charts on ξ satisfying:

(i) Uα is an open covering of the base space M .
(ii) For each pair (α,β) such that Uα ∩ Uβ �= ∅, one has

(
Ψβ ◦ Ψ −1

α

)
(p, v) = (

p,gβα(p)v
)
, (p, v) ∈ (Uα ∩ Uβ) × V,

where gαβ is a C∞ map from Uα ∩ Uβ to the group GL(V ) of automorphisms
of V .

(iii) If A ′ ⊃ A is a family of charts on ξ satisfying properties (i), (ii) above, then
A ′ = A .

Such a bundle ξ = (E,π,M,A ), or simply ξ = (E,π,M), is called a (real)
vector bundle of rank n. The C∞ maps gαβ : M → GL(V ) are called the changes of
charts of the atlas A .

Proposition 2.2 The changes of charts of a vector bundle have the property (called
the cocycle condition)

gαγ (p)gγβ(p) = gαβ(p), p ∈ Uα ∩ Uβ ∩ Uγ .

Definition 2.3 Two vector bundles of rank n are said to be equivalent if they are
isomorphic and have the same base space B .

One has the following converse to Proposition 2.2:

Theorem 2.4 Let U = {Uα} be an open covering of a differentiable manifold M ,
and let V be a finite-dimensional real vector space. Let gαβ : M → GL(V ), Uα ∩
Uβ �= ∅, be a family of C∞ maps satisfying the cocycle condition in Proposition 2.2.
Then there exists a real vector bundle ξ = (E,π,M,A ), unique up to equivalence,
such that the maps gαβ are the changes of charts of the atlas A .

Definition 2.5 The family (Uα,gαβ) is said to be a GL(V )-valued cocycle on M

subordinated to the open covering U .

Definitions 2.6 Let T r
s (M) be the set of tensor fields of type (r, s) on a differen-

tiable manifold M and write T (M) = ⊕∞
r,s=0 T r

s (M). A derivation D of T (M)

is a map of T (M) into itself satisfying:
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(i) D is linear and satisfies

DX(T1 ⊗ T2) = DXT1 ⊗ T2 + T1 ⊗ DXT2, X ∈ X(M), T1, T2 ∈ T (M).

(ii) DX is type-preserving: DX(T r
s (M)) ⊂ T r

s (M).
(iii) DX commutes with every contraction of a tensor field.

Let ΛrM be the space of differential forms of degree r on the n-manifold M ,
that is, skew-symmetric covariant tensor fields of degree r . With respect to the ex-
terior product, Λ∗M = ⊕n

r=0 ΛrM is an algebra over R. A derivation (resp. anti-
derivation) of Λ∗M is a linear map of Λ∗M into itself satisfying

D(ω1 ∧ ω2) = Dω1 ∧ ω2 + ω1 ∧ Dω2, ω1,ω2 ∈ Λ∗M
(
resp. D(ω1 ∧ ω2) = Dω1 ∧ ω2 + (−1)rω1 ∧ Dω2, ω1 ∈ ΛrM, ω2 ∈ Λ∗M.

)

A derivation or anti-derivation D of Λ∗M is said to be of degree k if it maps ΛrM

into Λr+kM for every r .

Theorem 2.7 (Exterior Differentiation) There exists a unique anti-derivation

d : Λ∗M → Λ∗M

of degree +1 such that:

(i) d2 = 0.
(ii) Whenever f ∈ C∞M = Λ0M , df is the differential of f .

Definitions 2.8 Fix a vector field X on M and let ϕt be the local one-parameter
group of transformations associated with X. Let Y be another vector field on M .
The Lie derivative of Y with respect to X at p ∈ M is the vector (LXY)p defined
by

(LXY)p = lim
t→0

Yp − ϕt∗Yϕ−1
t (p)

t
= − d

dt

∣∣∣∣
t=0

(ϕt∗Yϕ−1
t (p)

).

The Lie derivative of a differential form ω with respect to X at p is defined by

(LXω)p = lim
t→0

ωp − ϕ∗−t (ωϕt (p))

t
. (2.1)

The Lie derivative of a tensor field T of type (r, s) with respect to X at p is
defined by

(LXT )p = − d

dt

∣∣∣∣
t=0

(ϕt · T )p,

where the dot denotes, for an arbitrary diffeomorphism Φ of M ,
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Φ · (X1 ⊗ · · · ⊗ Xr ⊗ θ1 ⊗ · · · ⊗ θs)

= Φ · X1 ⊗ · · · ⊗ Φ · Xr ⊗ (
Φ−1)∗

θ1 ⊗ · · · ⊗ (
Φ−1)∗

θs,

Xi ∈X(M), θj ∈ Λ1M .
In particular, the action of Φ on a differential form θ ∈ Λ1M is given by

(Φ · θ)p = θΦ−1(p) ◦ (
Φ−1)

∗ = ((
Φ−1)∗

θ
)
p
, p ∈ M.

For each X ∈ X(M), the interior product with respect to X is the unique anti-
derivation i of degree −1 defined by iXf = 0, f ∈ C∞M , and iXθ = θ(X), θ ∈
Λ1M . We shall use sometimes, to avoid confusion, ι instead of i to denote the
interior product.

Theorem 2.9 Let X ∈X(M). Then:

(i) LXf = Xf , f ∈ C∞M .
(ii) LXY = [X,Y ], Y ∈X(M).

(iii) LX maps Λ∗M to Λ∗M , and it is a derivation which commutes with the exte-
rior differentiation d.

(iv) On Λ∗M , we have

LX = iX ◦ d + d ◦ iX,

where iX denotes the interior product with respect to X.

Proposition 2.10 Let ϕt be a local one-parameter group of local transformations
generated by a vector field X on M . For any tensor field T on M , we have

ϕs · (LXT ) = −
(

d

dt
(ϕt · T )

)

t=s

.

In particular, LXT = 0 if and only if ϕt · T = T for all t .

Definitions 2.11 Let m,n be integers, 1 � m � n. An m-dimensional distribution
D on an n-dimensional manifold M is a choice of an m-dimensional subspace Dp

of TpM for each p ∈ M . D is C∞ if for each p ∈ M , there are a neighbourhood
U of p and m vector fields X1, . . . ,Xm on U which span D at each point in U .
A vector field is said to belong to (or lie in) the distribution D if Xp ∈ Dp for
each p ∈ M . Then one writes X ∈ D . A C∞ distribution is called involutive (or
completely integrable) if [X,Y ] ∈ D whenever X and Y are vector fields lying in D .

A submanifold (N,ψ) of M is an integral manifold of a distribution D on M if

ψ∗(TqN) = Dψ(q), q ∈ N.

Definitions 2.12 Let D be an r-dimensional C∞ distribution on M . A differential
s-form ω is said to annihilate D if, for each p ∈ M ,

ωp(v1, . . . , vs) = 0, v1, . . . , vs ∈ Dp.
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A differential form ω ∈ Λ∗M is said to annihilate D if each of the homogeneous
parts of ω annihilates D . Let

I (D) = {
ω ∈ Λ∗M : ω annihilates D

}
.

A function f ∈ C∞M is said to be a first integral of D if df annihilates D . An
ideal I ⊂ Λ∗M is called a differential ideal if it is closed under exterior differenti-
ation d, that is, dI ⊂ I .

Proposition 2.13 A C∞ distribution D on M is involutive if and only if the ideal
I (D) is a differential ideal.

Theorem 2.14 (Frobenius’ Theorem) Let D be an (n − q)-dimensional, involutive,
C∞ distribution on the n-dimensional manifold M . Let p ∈ M . Then through p

there passes a unique maximal connected integral manifold of D , and every con-
nected integral manifold of D through p is contained in the maximal one.

Definitions 2.15 In the conditions of Theorem 2.14 it is said that the involutive
distribution D defines a foliation, M is said to be a foliated manifold, the unique
maximal connected integral manifold of D through each point is called a leaf of the
foliation, and the foliation is said to be of codimension q .

Definition 2.16 A codimension q foliation F on a differentiable manifold M of di-
mension n is a collection of disjoint, connected, (n − q)-dimensional submanifolds
of M (the leaves of the foliation), whose union is M , and such that for each point
p ∈ M , there is a chart (U,ϕ) containing p such that each leaf of the foliation inter-
sects U in either the empty set or a countable union of (n − q)-dimensional slices
of the form xn−q+1 = cn−q+1, . . . , xn = cn. More formally, a foliation F consists
of a covering U of M by charts (Ui, ϕi) such that on each intersection Ui ∩ Uj , the
changes of charts Φij = ϕj ◦ ϕ−1

i are of the form

Φij

(
x1, . . . , xq, xq+1, . . . , xn

) = (
ϕij

(
x1, . . . , xq

)
,ψij

(
x1, . . . , xq, xq+1, . . . , xn

))

with

ϕij : Rq → R
q, ψij : Rn → R

n−q .

2.2 Vector Bundles

Problem 2.17 Let (E,π,M) be a C∞ vector bundle with fibre F
n, where F =

R,C or H. Prove that the homotheties

h : F× E → E, (λ, y) �→ h(λ, y) = λy,

are C∞.
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Solution Let U be an open subset of M . Let ϕ : π−1(U) → U ×F be a trivialisation
of (E,π,M), that is, a fibre-preserving diffeomorphism linear on the fibres, and ϕ a
chart, that is, a diffeomorphism of the open subset EU = π−1(U) of E onto U ×F

n,
linear on the fibres.

Then, h|U is the composition map

F× EU
idF×ϕ−→ F× U × F

n h′−→ U × F
n ϕ−1

−→ EU

(λ, y) �−→ (λ,p, x) �−→ (p,λx) �−→ λy.

Since ϕ is a diffeomorphism and h′ is C∞, the map h|U is C∞.

Problem 2.18 Show that for a C∞ vector bundle ξ = (E,π,M) with fibre R
n,

triviality is equivalent to the existence of n C∞ global sections, linearly independent
at each point.

Solution Let {ei} be the canonical basis of Rn. If we have a global trivialisation

E
u−−−−→ M ×R

n

π

⏐
⏐�

⏐
⏐�pr1

M
id−−−−→ M

then we have sections ẽi of M × R
n given by ẽi = (id, ei). Thus, we have sections

ξi of E defined by ξi = u−1 ◦ ẽi , which are linearly independent because u−1 is an
isomorphism on each fibre.

Conversely, if ξi are such linearly independent sections of E, we define the triv-
ialisation u by u(α) = (π(α),α1, . . . , αn) with α = ∑

i α
iξi(π(α)) ∈ E. Its inverse

map is given by u−1(p,α1, . . . , αn) = ∑
i α

iξi |p , p ∈ M .

Problem 2.19 Prove that the infinite Möbius strip M (see Problem 1.31) can be
considered as the total space of a vector bundle over S1. Specifically:

(i) Determine the base space, the fibre and the projection map π .
(ii) Prove that the vector bundle (M,π,S1) is locally trivial but not trivial.

Solution

(i) With the notations of Problem 1.31, we have that the base space is S1 ≡ ([0,1]×
{0})/∼ ⊂ M , the fibre is R (see Fig. 2.1), and the projection map is defined by

π
([

(x, y)
]) =

{
[(x,0)] if 0 < x < 1,

[(0,0)] = [(1,0)] if x = 0 or x = 1.

(ii) The charts in Problem 1.31 are in fact trivialisations that cover S1 entirely. Now
suppose that there exists a non-vanishing global section σ : S1 → M , i.e. a con-
tinuous map such that π ◦ σ = idS1 . This is equivalent to a continuous function
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Fig. 2.1 The Möbius strip as
the total space of a vector
bundle

s : [0,1] → R such that s(0) = −s(1). Since s must vanish somewhere, σ must
also vanish somewhere, so getting a contradiction.

Problem 2.20

(i) Consider

E = {
(u, v) = (x, y, z, a, b, c) ∈ R

3 ×R
3 : |u| = 1, 〈u,v〉 = 0

}

and the projection map on the unit sphere S2 given by π : E → S2, π(u, v) = u.
Prove that ξ = (E,π,S2) is a locally trivial bundle over S2 with fibre R

2.
(ii) Let A = {(Ui,Φi)}, i = 1,2,3, be as in the solution of (i) below. Prove that

T S2 = (E,π,S2,A ) is a vector bundle (see Definitions 2.1) with fibre R
2.

Solution

(i) The open subsets U1,U2,U3 of S2 given by |x| < 1, |y| < 1, |z| < 1, respec-
tively, are an open covering of S2. Define local trivialisations by

Φ1 : π−1(U1) → U1 ×R
2, (x, y, z, a, b, c) �→ (x, y, z, bz − cy, a),

Φ2 : π−1(U2) → U2 ×R
2, (x, y, z, a, b, c) �→ (x, y, z, cx − az, b),

Φ3 : π−1(U3) → U3 ×R
2, (x, y, z, a, b, c) �→ (x, y, z, ay − bx, c).

It is immediate that they are diffeomorphisms.
(ii) As a computation shows, the changes of charts are given, for each u =

(x, y, z) ∈ S2, by

g21(u) = −1

y2 + z2

(
xy z

−z xy

)
, g32(u) = −1

z2 + x2

(
yz x

−x yz

)
,

g13(u) = −1

x2 + y2

(
zx y

−y zx

)
.
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The cocycle condition is thus satisfied. Indeed, one has

g21(u)g13(u) = 1

x2 + y2

(−yz x

−x −yz

)
= (

g32(u)
)−1 = g23(u)

and the similar identities for g12(u)g23(u) and g13(u)g32(u).
Moreover, for

Ê = {(
(u, v),

(
u′, v′)) ∈ E × E : u = u′, 〈u,v〉 = 〈

u,v′〉 = 0
}
,

the maps

s : Ê → E,
(
(u, v),

(
u′, v′)) �→ (

u,v + v′),

h : R× E → E,
(
λ, (u, v)

) �→ (u,λv),

are C∞ (as for h, see Problem 2.17), and they induce a structure of two-
dimensional vector space on each fibre of T S2.

Problem 2.21

(i) Let {(Uα,ϕα)} be an atlas on a manifold M , where ϕα : Uα → R
n, ϕα =

(x1
α, . . . , xn

α), n = dimM . Let gαβ : Uα ∩ Uβ → GL(n,R) be the map

(
gαβ(p)

)h

i
= ∂xh

α

∂xi
β

(p), p ∈ Uα ∩ Uβ.

Prove that {gαβ} is a cocycle on M whose associated vector bundle is the tangent
bundle T M .

(ii) Similarly, if the map g∗
αβ : Uα ∩ Uβ → GL(n,R) is given by

(
g∗

αβ(p)
)h

i
= ∂xi

β

∂xh
α

(p), p ∈ Uα ∩ Uβ,

prove that {g∗
αβ} is a cocycle on M whose associated vector bundle is the cotan-

gent bundle T ∗M .

Solution

(i) Let us define two linear frames at p:

uα =
(

∂

∂x1
α

∣∣
∣∣
p

, . . . ,
∂

∂xn
α

∣∣
∣∣
p

)
, uβ =

(
∂

∂x1
β

∣∣
∣∣
p

, . . . ,
∂

∂xn
β

∣∣
∣∣
p

)
.

According to the definition of gαβ(p), we have

∂

∂xi
β

∣∣∣∣
p

=
n∑

h=1

(
gαβ(p)

)h

i

∂

∂xh
α

∣∣∣∣
p

.
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Hence uβ = uα ·gαβ(p), where the dot on the right-hand side stands for the right
action of GL(n,R) on the bundle of linear frames FM (see Definitions 5.3).
Accordingly,

uβ = uγ · gγβ(p) = (
uα · gαγ (p)

) · gγβ(p) = uα · (gαγ (p)gγβ(p)
)
.

As GL(n,R) acts freely on FM , we conclude that

gαβ(p) = gαγ (p)gγβ(p),

thus proving that {gαβ} is a cocycle.
Moreover, if π : T M → M is the tangent bundle, for every index α, we have

a trivialisation

Φα : π−1(Uα) → Uα ×R
n, Φα(X) = (

p,λ1, . . . , λn
)
,

X = ∑n
i=1 λi(∂/∂xi

α)p ∈ TpUα , or in other words,

Φα(X) = (
p,u−1

α (X)
)
,

where uα is understood as a linear isomorphism uα : Rn → TpM .
In order to prove that the cocycle {gαβ} defines T M , it suffices to see that the

cocycle associated to these trivialisations is {gαβ}. In fact, if {ei} is the standard
basis of Rn, for v = ∑

i λ
iei , p ∈ Uα ∩ Uβ , we have

(
Φα ◦ Φ−1

β

)
(p, v) = Φα

(
uβ(v)

) = (
p,u−1

α

(
uβ(v)

))

=
(

p,u−1
α

(
n∑

i=1

λi ∂

∂xi
β

∣∣∣∣
p

))

=
(

p,u−1
α

(
n∑

i,h=1

λi ∂xh
α

∂xi
β

(p)
∂

∂xh
α

∣
∣∣∣
p

))

=
(

p,

n∑

i,h=1

λi ∂xh
α

∂xi
β

(p)u−1
α

(
∂

∂xh
α

∣∣∣∣
p

))

=
(

p,
∑

i,h

λi
(
gαβ(p)

)h

i
eh

)
= (

p,gαβ(p) · v)
.

(ii) We have

n∑

j=1

(
g∗

αβ(p)
)h

j

(
t gαβ(p)

)j

i
=

n∑

j=1

∂x
j
β

∂xh
α

(p)
∂xi

α

∂x
j
β

(p) =
n∑

j=1

∂x
j
β

∂xh
α

(p)
∂

∂x
j
β

∣∣∣
∣
p

(
xi
α

)

= ∂

∂xh
α

∣∣
∣∣
p

(
xi
α

) = δi
h.
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Hence g∗
αβ(p) = (tgαβ)−1(p), and then

g∗
αγ (p)g∗

γβ(p) = (
tgαγ

)−1
(p)

(
tgγβ

)−1
(p) = (

tgαβ

)−1
(p) = g∗

αβ(p),

thus proving that {g∗
αβ} is a cocycle.

Finally, by proceeding as in (i) above, it is easily checked that {g∗
αβ} is the

cocycle attached to the trivialisations of the cotangent bundle π : T ∗M → M

defined as follows:

Ψα : π−1(Uα) → Uα ×R
n,

Ψα(ω) = (
p,u∗

α(ω)
) =

(
p,ω

(
∂

∂x1
α

∣
∣∣∣
p

)
, . . . ,ω

(
∂

∂xn
α

∣
∣∣∣
p

))
,

ω ∈ T ∗
p M, p ∈ Uα ∩ Uβ,

where u∗
α : T ∗

p M → (Rn)∗ is the dual map to uα : Rn → TpM .

Problem 2.22 (The Tautological Bundle Over the Real Grassmannian) Denote
by γ k(Rn) the subset of pairs (V , v) ∈ Gk(R

n) × R
n such that v ∈ V and let

π : γ k(Rn) → Gk(R
n) be the projection π(V,v) = V . Prove that γ k(Rn) is a C∞

vector bundle of rank k.

Solution The fibres of π are endowed with a natural structure of vector space as
π−1(V ) = V . Hence rankπ−1(V ) = k for all V ∈ Gk(R

n). The maps

γ k
(
R

n
) ×Gk(R

n) γ k
(
R

n
) → γ k

(
R

n
)
,

(
(V , v), (V ,w)

) �→ (V , v + w),

R× γ k
(
R

n
) → γ k

(
R

n
)
,

(
λ, (V, v)

) �→ (V ,λv),

are differentiable as they are induced by the corresponding operations in R
n. It re-

mains to prove that γ k(Rn) is locally trivial. Let us fix a point V0 ∈ Gk(R
n), and

let U be the set of k-planes V such that kerp|V = 0, where p is the orthogonal
projection onto V0 relative to the decomposition R

n = V0 ⊕ V ⊥
0 . Certainly, V0 ∈ U

as p|V0 = id.
If {v0

1, . . . , v0
k } is an orthonormal basis of V0 and {v1, . . . , vk} is a basis of V , then

V ∈ U if and only if

det
(〈

v0
i , vj

〉)
i,j=1,...,k

�= 0,

thus proving that U is an open neighbourhood of V0. For every V ∈ U , the restric-
tion p|V : V → V0 is an isomorphism as kerp|V = 0 and dimV = dimV0. Hence
we can define a C∞ trivialisation

U × V0
τ→ π−1(U ) ⊂ γ k

(
R

n
)

(V , v0) �→ (
V, (p|V )−1(v0)

)
.
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Problem 2.23 Let Φ : E → E′ be a homomorphism of vector bundles over M with
constant rank. Prove that kerΦ and imΦ are vector sub-bundles of E and E′, re-
spectively.

Solution As the problem is local, we can assume that E,E′ are trivial: E = M ×
R

n, E′ = M ×R
m. Then Φ is given by

Φ(p,v) = (
p,A(p)v

)
,

where A = (ai
j ), 1 � i � m, 1 � j � n, ai

j ∈ C∞M , is a C∞ m × n matrix. Set
r = rankp Φ for all p ∈ M . Given p0 ∈ M , by permuting rows and columns in A,
we can suppose that

det

⎛

⎜
⎝

a1
1(p0) . . . a1

r (p0)
...

...

ar
1(p0) . . . ar

r (p0)

⎞

⎟
⎠ �= 0.

Hence there exists an open neighbourhood U of p0 such that

det

⎛

⎜
⎝

a1
1(p) . . . a1

r (p)
...

...

ar
1(p) . . . ar

r (p)

⎞

⎟
⎠ �= 0, p ∈ U.

As rankA(p) = r for all p ∈ U , it is clear that ker(Φ|U) is defined by the equations

n∑

j=1

ai
j (p)vj = 0, 1 � i � r,

where v = ∑
j vj ej , {e1, . . . , en} is a basis of Rn. By using Cramer’s formulas we

conclude that the previous system is equivalent to

vh =
n∑

k=r+1

bh
k (p)vk, 1 � h � r.

Hence (p, v) ∈ kerΦ if and only if

v =
n∑

k=r+1

vk

(

ek +
r∑

h=1

bh
k (p)eh

)

.

Define sections of E over U by

σk(p) =
{

ek, 1 � k � r,

ek + ∑r
h=1 bh

k (p)eh, r + 1 � k � n.

Then, {σ1(p), . . . , σn(p)} is a basis of Ep , and {σr+1(p), . . . , σn(p)} is a basis of
(kerΦ)p for all p ∈ U , thus proving that kerΦ is a sub-bundle of E.
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Moreover, if F ⊂ E is a sub-bundle, then F 0 = {w ∈ E∗ : w|F = 0} is a sub-
bundle of E∗, as if {σ1, . . . , σn} is a basis of sections of E over U and {σr+1, . . . , σn}
is a basis of sections of F , then the dual basis {σ ∗

1 , . . . , σ ∗
n } is a basis of sections of

E∗|U , and {σ ∗
1 , . . . , σ ∗

r } is a basis of sections of F 0. Furthermore, as Φ has constant
rank, then the same holds for Φ∗ : E′∗ → E∗, as a matrix and its transpose have the
same rank. We can conclude by remarking that imΦ = (kerΦ∗)0.

Finally, we give the following counterexample. Let E = E′ = R×R be the trivial
bundle over R with fibre R, and let Φ : E → E′ be defined by Φ(p,λ) = (p,λp).
Then

(kerΦ)p =
{

0 if p �= 0,

R if p = 0.

2.3 Tensor and Exterior Algebras. Tensor Fields

Problem 2.24 Let V be a finite-dimensional vector space. An element θ ∈ Λ∗V ∗
is said to be homogeneous of degree k if θ ∈ ΛkV ∗, and a homogeneous element of
degree k � 1 is said to be decomposable if there exist θ1, . . . , θk ∈ Λ1V ∗ such that
θ = θ1 ∧ · · · ∧ θk .

(i) Assume that θ ∈ ΛkV ∗ is decomposable. Calculate θ ∧ θ .
(ii) If dimV > 3 and θ1, θ2, θ3, θ4 are linearly independent, is θ1 ∧ θ2 + θ3 ∧ θ4

decomposable?
(iii) Prove that if dimV = n � 3, then every homogeneous element of degree k � 1

is decomposable.
(iv) If dimV = 4, give an example of a non-decomposable homogeneous element

of Λ∗V ∗.

Solution

(i) It is immediate that θ ∧ θ = 0.
(ii) No, since

(
θ1 ∧ θ2 + θ3 ∧ θ4) ∧ (

θ1 ∧ θ2 + θ3 ∧ θ4) = 2θ1 ∧ θ2 ∧ θ3 ∧ θ4 �= 0,

so by virtue of (i) it is not decomposable.
(iii) If dimV = 1 or 2, the result is trivial. Suppose then that dimV = 3, and let

{α1, α2, α3} be a basis of V ∗. If θ ∈ Λ1V ∗, the result follows trivially. If θ ∈
Λ3V ∗, then θ = aα1 ∧ α2 ∧ α3, and hence it is decomposable. Then suppose
that θ ∈ Λ2V ∗, so that θ = aα1 ∧ α2 + bα1 ∧ α3 + cα2 ∧ α3. Assume that
a �= 0. Then

θ = aα1 ∧
(

α2 + b

a
α3

)
+ cα2 ∧ α3 = (

aα1 − cα3) ∧
(

α2 + b

a
α3

)
.

If a = 0, then θ = (bα1 + cα2) ∧ α3.
(iv) The one given in (ii) in the statement is such an example.
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Problem 2.25

1. Let A, B be two (1,1) tensor fields on a C∞ manifold M . Define S by

S(X,Y ) = [AX,BY ] + [BX,AY ] + AB[X,Y ] + BA[X,Y ] − A[X,BY ]
− A[BX,Y ] − B[X,AY ] − B[AX,Y ], X,Y ∈ X(M).

Prove that S is a (1,2) skew-symmetric tensor field on M , called the Nijenhuis
torsion of A and B .

2. Let J be a tensor field of type (1,1) on the C∞ manifold M . The Nijenhuis
tensor of J is defined by

NJ (X,Y ) = [JX,JY ] − J [JX,Y ] − J [X,JY ] + J 2[X,Y ], X,Y ∈X(M).

(a) Prove that NJ is a tensor field of type (1,2) on M .
(b) Find its local expression in terms of that of J .

The relevant theory is developed, for instance, in Kobayashi and Nomizu [2, vol. 2,
Chap. IX]. However, for the sake of simplicity we omit the factor 2 of the Nijenhuis
tensor in that reference.

Solution

1. From the formula

[f X,gY ] = fg[X,Y ] + f (Xg)Y − g(Yf )X

it follows that S(f X,gY ) = fgS(X,Y ), f,g ∈ C∞M . Since the Lie bracket is
skew-symmetric, so is S.

2. (a) The proof is similar to the one in the case 1.
(b) Let x1, . . . , xn be local coordinates in which J = ∑

i,j J i
j

∂
∂xi ⊗ dxj and

NJ = ∑
i,j,k Ni

jk
∂

∂xi ⊗ dxj ⊗ dxk , so

J
∂

∂xk
=

n∑

i=1

J i
k

∂

∂xi
, NJ

(
∂

∂xi
,

∂

∂xj

)
=

n∑

k=1

Nk
ij

∂

∂xk
.

From the definition of the Nijenhuis tensor we obtain

Ni
jk =

n∑

l=1

(
J l

j

∂J i
k

∂xl
− J l

k

∂J i
j

∂xl
+ J i

l

∂J l
j

∂xk
− J i

l

∂J l
k

∂xj

)
.

Problem 2.26 Write the tensor field J ∈ T 1
1 R

3 given by

J = dx ⊗ ∂

∂x
+ dy ⊗ ∂

∂y
+ dz ⊗ ∂

∂z

in the system of spherical coordinates given by

x = r cosϕ cos θ, y = r cosϕ sin θ, z = sinϕ,

r > 0, ϕ ∈ (−π/2,π/2), θ ∈ (0,2π).
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Solution We have

J = dr ⊗ ∂

∂r
+ dϕ ⊗ ∂

∂ϕ
+ dθ ⊗ ∂

∂θ
,

as J represents the identity map in the natural isomorphism T ∗
R

3 ⊗ TR
3 ∼=

EndTR
3, and hence it has the same expression in any coordinate system.

2.4 Differential Forms. Exterior Product

Problem 2.27 Consider on R
2:

X = (
x2 + y

) ∂

∂x
+ (

y2 + 1
) ∂

∂y
, Y = (y − 1)

∂

∂x
,

θ = (
2xy + x2 + 1

)
dx + (

x2 − y
)

dy,

and let f be the map

f : R3 →R
2, (u, v,w) �→ (x, y) = (

u − v, v2 + w
)
.

Compute:

(i) [X,Y ](0,0).
(ii) θ(X)(0,0).

(iii) f ∗θ .

Solution

(i)

[X,Y ] = (
y2 − 2xy + 2x + 1

) ∂

∂x
, so [X,Y ](0,0) = ∂

∂x

∣∣∣∣
(0,0)

.

(ii)

θ(X)(0,0) = ((
2xy + x2 + 1

)(
x2 + y

) + (
x2 − y

)(
y2 + 1

))
(0,0) = 0.

(iii)

f ∗θ = {
2(u − v)

(
v2 + w

) + (u − v)2 + 1
}

du

+ {
2v

(
(u − v)2 − v2 − w

) − 2(u − v)
(
v2 + w

) − (u − v)2 − 1
}

dv

+ {
(u − v)2 − v2 − w

}
dw.

Problem 2.28 Consider the vector fields on R
2:

X = x
∂

∂x
+ 2xy

∂

∂y
, Y = y

∂

∂y
,
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and let ω be the differential form on R
2 given by

ω = (
x2 + 2y

)
dx + (

x + y2)dy.

Show that ω satisfies the relation

dω(X,Y ) = Xω(Y ) − Yω(X) − ω
([X,Y ]),

between the bracket product and the exterior differential.

Solution We have [X,Y ] = 0 and

dω =
(

∂(x2 + 2y)

∂x
dx + ∂(x2 + 2y)

∂y
dy

)
∧ dx

+
(

∂(x + y2)

∂x
dx + ∂(x + y2)

∂y
dy

)
∧ dy

= −dx ∧ dy.

From

Xω(Y ) = xy + 2x2y + 6xy3, Yω(X) = 2xy + 2x2y + 6xy3,

dω(X,Y ) = −(dx ∧ dy)

(
x

∂

∂x
+ 2xy

∂

∂y
, y

∂

∂y

)
= −xy

one easily concludes.

Problem 2.29 Find the subset of R2 where the differential forms

α = x dx + y dy, β = y dx + x dy

are linearly independent and determine the field of dual frames {X,Y } on this set.

Solution We have det
( x y

y x

) = x2 − y2 �= 0 on R
2 \ {(x, y) : x = ±y}. Thus α and

β are linearly independent on the subset of R
2 complementary to the diagonals

x + y = 0 and x − y = 0.
The dual field of frames

X = a
∂

∂x
+ b

∂

∂y
, Y = c

∂

∂x
+ d

∂

∂y
, a, b, c, d ∈ C∞

R
2

must satisfy X(α) = Y(β) = 1, X(β) = Y(α) = 0. Hence,

{
ax + by = 1

ay + bx = 0
and

{
cx + dy = 0

cy + dx = 1.
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Solving these systems, we obtain

X = x

x2 − y2

∂

∂x
− y

x2 − y2

∂

∂y
, Y = − y

x2 − y2

∂

∂x
+ x

x2 − y2

∂

∂y
.

Remark The result also follows (here and in other problems below) from the
general fact that, {ei = ∑

k λk
i

∂
∂xk } being a basis of vector fields on a manifold

and {θj = ∑
l μ

j
l dxl} its dual basis, from (

∑
l μ

j
l dxl)(

∑
kλ

k
i

∂
∂xk ) = δij one has

(μi
j ) = t (λi

j )
−1.

Problem 2.30 Consider the three vector fields on R
3:

e1 = (
2 + y2)ez ∂

∂x
, e2 = 2xy

∂

∂x
+ (

2 + y2) ∂

∂y
,

e3 = −2xy2 ∂

∂x
− y

(
2 + y2) ∂

∂y
+ (

2 + y2) ∂

∂z
.

(i) Show that these vector fields are a basis of the module of C∞ vector fields
on R

3.
(ii) Write the elements θi of its dual basis in terms of dx,dy, dz.

(iii) Compute the Lie brackets [ei, ej ] and express them in the basis {ei}.

Solution

(i) The determinant of the matrix of coefficients is (2 + y2)3ez, which is never
null; hence the three fields are indeed a basis of X(R3).

(ii) We proceed by direct computation. One has θi(ej ) = δi
j , where δi

j is the Kro-
necker delta. Hence, if

θ1 = A(x,y, z)dx + B(x, y, z)dy + C(x, y, z)dz,

we have

1 = θ1(e1) = A
(
2 + y2)ez, 0 = θ1(e2) = A2xy + B

(
2 + y2),

0 = θ1(e3) = A
(−2xy2) + B

(−y
(
2 + y2)) + C

(
2 + y2).

Solving the system, we have

A = 1
(
2 + y2

)
ez

, B = − 2xy

(2 + y2)ez
, C = 0.

Similarly, if θ2 = D(x,y, z)dx + E(x,y, z)dy + F(x, y, z)dz, we deduce

D = 0, E = 1

2 + y2
, F = y

2 + y2
.
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Finally, if θ3 = G(x,y, z)dx + H(x,y, z)dy + I (x, y, z)dz, we similarly
obtain

G = 0, H = 0, I = 1

2 + y2
.

Hence,

θ1 = 1
(
2 + y2

)
ez

dx − 2xy

(2 + y2)2ez
dy,

θ2 = 1

2 + y2
dy + y

2 + y2
dz, θ3 = 1

2 + y2
dz.

(iii) Applying the formula

[f X,gY ] = f (Xg)Y − g(Yf )X + fg[X,Y ],
we deduce [e1, e2] = 0. Similarly, one gets

[e1, e3] = −(
2 + y2)e1, [e2, e3] = (

y2 − 2
)
e2 + 2ye3.

Problem 2.31 Consider the three vector fields on R
3:

e1 = ∂

∂x
, e2 = ∂

∂x
+ ∂

∂y
, e3 = ∂

∂x
+ ∂

∂y
+ (

1 + x2) ∂

∂z
.

(i) Show that these vector fields are a basis of the module of C∞ vector fields
on R

3.
(ii) Write the elements of the dual basis {θi} of {ei} in terms of dx, dy, dz.

Solution

(i)

det

⎛

⎝
1 0 0
1 1 0
1 1 1 + x2

⎞

⎠ = 1 + x2 �= 0.

(ii)

1 = θ1(e1) = (Adx + B dy + C dz)(e1) = A, 0 = θ1(e2) = A + B,

0 = θ1(e3) = A + B + (
1 + x2)C.

Solving the system, we have A = 1, B = −1, C = 0. Hence θ1 = dx − dy.
Similarly, we obtain θ2 = dy − dz/(1 + x2) and θ3 = dz/(1 + x2).

Problem 2.32 Consider the vector fields

X = x
∂

∂x
+ y

∂

∂y
, Y = −y

∂

∂x
+ x

∂

∂y
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on R
2, and let ψ : R2 →R

4 be defined by

u = x2 − y2, v = x2 + y2, w = x + y, t = x − y.

(i) Compute [X,Y ].
(ii) Show that X, Y are linearly independent on the open subset R2 \ {(0,0)} of R2

and write the basis {α,β} dual to {X,Y } in terms of the standard basis {dx,dy}.
(iii) Find vector fields on R

4, ψ -related to X and Y , respectively.

Solution

(i) [X,Y ] = 0.
(ii)

det

(
x y

−y x

)
= x2 + y2 �= 0, (x, y) ∈ R

2 \ {
(0,0)

}
.

Let

α = a(x, y)dx + b(x, y)dy, β = c(x, y)dx + d(x, y)dy.

We thus have

1 = α(X) = a(x, y)dx

(
x

∂

∂x
+ y

∂

∂y

)
+ b(x, y)dy

(
x

∂

∂x
+ y

∂

∂y

)
,

0 = α(Y ) = a(x, y)dx

(
−y

∂

∂x
+ x

∂

∂y

)
+ b(x, y)dy

(
−y

∂

∂x
+ x

∂

∂y

)
.

That is, 1 = a(x, y)x + b(x, y)y and 0 = a(x, y)(−y) + b(x, y)x, and one has
a(x, y) = x/(x2 + y2), b(x, y) = y/(x2 + y2). Hence,

α = x

x2 + y2
dx + y

x2 + y2
dy.

Similarly, we obtain β = − y

x2+y2 dx + x

x2+y2 dy.
(iii)

ψ∗X ≡

⎛

⎜⎜
⎝

2x −2y

2x 2y

1 1
1 −1

⎞

⎟⎟
⎠

(
x

y

)

≡ (
2x2 − 2y2)

(
∂

∂u
◦ ψ

)
+ (

2x2 + 2y2)
(

∂

∂v
◦ ψ

)

+ (x + y)

(
∂

∂w
◦ ψ

)
+ (x − y)

(
∂

∂t
◦ ψ

)
,

ψ∗Y = −4xy

(
∂

∂u
◦ ψ

)
+ (x − y)

(
∂

∂w
◦ ψ

)
+ (−y − x)

(
∂

∂t
◦ ψ

)
.
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Taking

X̃ = 2u
∂

∂u
+ 2v

∂

∂v
+ w

∂

∂w
+ t

∂

∂t
, Ỹ = (

t2 − w2) ∂

∂u
+ t

∂

∂w
− w

∂

∂t
,

we have

ψ∗X = X̃ ◦ ψ, ψ∗Y = Ỹ ◦ ψ.

Problem 2.33 Prove that the differential 1-forms ω1, . . . ,ωk on an n-manifold M

are linearly independent if and only if ω1 ∧ · · · ∧ ωk �= 0.

Solution If ω1, . . . ,ωk are linearly independent, then each TpM , p ∈ M , has a basis
{v1, . . . , vk, . . . , vn} such that its dual basis {ϕ1, . . . , ϕk, . . . , ϕn} satisfies ϕi = ωi |p ,
1 � i � k; hence ω1 ∧ · · · ∧ ωk is an element of a basis of ΛkM , and so it does not
vanish.

Conversely, suppose that such differential forms are linearly dependent. Then
there exist a point p ∈ M and i ∈ {1, . . . , n} such that ωi |p = ∑

j �=i ajω
j |p , and

thus, at the point p,

ω1 ∧ ω2 ∧ · · · ∧ ωi ∧ · · · ∧ ωk = ω1 ∧ ω2 ∧ · · · ∧
∑

j �=i

ajω
j ∧ · · · ∧ ωk = 0.

Problem 2.34 Prove that the restriction to the sphere S3 of the differential form

α = x dy − y dx + zdt − t dz

on R
4, does not vanish.

Solution Given p ∈ S3, (α|S3)p = 0 if and only if αp(X) = 0 for all

X ∈ TpS3 = {
X ∈ TpR

4 : 〈X,N〉 = 0
}
,

where 〈 , 〉 stands for the Euclidean metric of R4, and

N = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ t

∂

∂t

is the outward-pointing unit normal vector field to S3. Define the differential form
β by β(X) = 〈X,N〉. Thus β = x dx + y dy + zdz + t dt .

If (α|S3)p = 0, then αp and βp vanish on TpS3. But two linear forms vanishing
on the same hyperplane are proportional, and thus αp = λβp , λ ∈ R, or equivalently,

−y

x
= x

y
= −t

z
= z

t
= λ.

We find x2 +y2 = 0, z2 + t2 = 0, and hence x = y = z = t = 0, which is not possible
because p ∈ S3.
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Problem 2.35 Let ω1, . . . ,ωr be differential 1-forms on a C∞ n-manifold M that
are independent at each point. Prove that a differential form θ belongs to the ideal
I generated by ω1, . . . ,ωr if and only if

θ ∧ ω1 ∧ · · · ∧ ωr = 0.

Solution If θ ∈ I , then θ is a linear combination of exterior products where those
forms appear as factors, and hence θ ∧ ω1 ∧ · · · ∧ ωr = 0.

Conversely, given a fixed point, complete ω1, . . . ,ωr to a basis

ω1, . . . ,ωr ,ωr+1, . . . ,ωn,

so

θ =
∑

1�i1<···<ik�n

fi1...ikω
i1 ∧ · · · ∧ ωik .

If θ ∧ ω1 ∧ · · · ∧ ωr = 0, then for each {i1, . . . , ik}, we have

fi1...ikω
i1 ∧ · · · ∧ ωik ∧ ω1 ∧ · · · ∧ ωr = 0.

Then

{1, . . . , r} ∩ {i1, . . . , ik} �= ∅ =⇒ ωi1 ∧ · · · ∧ ωik ∧ ω1 ∧ · · · ∧ ωr = 0,

{1, . . . , r} ∩ {i1, . . . , ik} = ∅ =⇒ fi1...ik = 0.

Hence,

θ =
∑

{1,...,r}∩{i1,...,ik}�=∅
fi1...ikω

i1 ∧ · · · ∧ ωik .

Problem 2.36 Let M be a C∞ manifold. If {ω1, . . . ,ωn} is a basis of T ∗
p M , p ∈ M ,

prove that there are coordinate functions x1, . . . , xn around p such that (dxi)p = ωi

for all i.

Solution Let (U,y1, . . . , yn) be a coordinate system around p. Since the differ-
entials {(dy1)q, . . . , (dyn)q} are a basis of T ∗

q M for each q ∈ U , we can write

ωi = ∑
j f i

j (dyj )p . Since {ω1, . . . ,ωn} is a basis of T ∗
p M , we have det(f i

j ) �= 0.

Thus the system (U,x1, . . . , xn) defined by xi(q) = ∑
j f i

j yj (q) is a coordinate

system, and one has (dxi)p = ∑
j f i

j (dyj )p = ωi .

Problem 2.37 Determine which of the following differential forms on R
3 are clo-

sed and which are exact:

(i) α = yzdx + xzdy + xy dz. (ii) β = x dx + x2y2 dy + yzdz.

(iii) γ = 2xy2 dx ∧ dy + zdy ∧ dz.
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Solution

(i) α = d(xyz); thus α is exact and hence closed.
(ii) dβ = 2xy2 dx ∧ dy + z dy ∧ dz; thus β is not closed, hence it is not exact.

(iii) γ = dω, where ω = (x2y2 − 1
2z2)dy; thus γ is exact, hence closed.

Recall that, by the Poincaré lemma, every closed differential form on R
n is exact.

Thus, another way to prove (i) and (iii) is:

(i) dα = 0, and thus α is closed and hence exact.
(iii) dγ = 0, and thus γ is closed and hence exact.

Problem 2.38 Let π : M → M ′ be a surjective submersion of manifolds M and
M ′. Suppose that the set π−1(p′) is connected for all p′ ∈ M ′. Let ω ∈ Λ∗(M).

Prove that there exists a unique differential form ω′ ∈ Λ∗(M ′) such that ω =
π∗(ω′) if and only if iY ω = 0 and LY ω = 0 for all vector fields Y belonging to the
smooth distribution kerπ∗ ⊂ T M of vectors annihilated by π∗.

Solution The distribution kerπ∗ is an involutive smooth distribution (see Prob-
lem 2.57). Since the map π : M → M ′ is a submersion, by the Theorem of the
Rank 1.11, for any point p ∈ M , there exist a connected neighbourhood U of p,
coordinates x1, . . . , xn on U and coordinates x1, . . . , xn′

(n � n′) on the open set
U ′ = π(U) ⊂ M ′ such that the restriction π |U in these coordinates has the form

π : (
x1, x2, . . . , xn

) → (
x1, x2, . . . , xn′)

,

i.e. in the neighbourhood U the restriction kerπ∗|U is spanned by the vector fields
∂/∂xn′+1, . . . , ∂/∂xn. Now let ω ∈ ΛqM . Let iY ω = 0 and LY ω = 0 for all vector
fields Y ∈ kerπ∗. Since

LY = iY ◦ d + d ◦ iY

(see formula (7.3)), we obtain that iY dω = 0. Then in the local coordinates
(x1, . . . , xn) on U we have

dω|U =
∑

1�j1<···<jq+1�n′
bj1...jq+1

(
x1, . . . , xn′

, . . . , xn
)

dxj1 ∧ · · · ∧ dxjq+1

and, consequently,

ω|U =
∑

1≤i1<···<iq≤n′
ai1...iq

(
x1, . . . , xn′)

dxi1 ∧ · · · ∧ dxiq ,

where ai1...iq are functions only of the variables x1, . . . , xn′
. Hence, there is a unique

local differential q-form ω′ ∈ ΛqU ′ such that ω|U = p∗ω′.
Let p1 ∈ U and p2 ∈ π−1(π(p1)), i.e. π(p1) = π(p2). Since the set π−1(π(p1))

is a connected closed submanifold of M (by the Implicit map Theorem for Submer-
sions), the points p1,p2 belong to the same leaf of the distribution kerπ∗. Then
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there exists a smooth vector field Z ∈ kerπ∗ such that for the corresponding (local)
one-parameter group ϕt we have ϕT (p1) = p2, T ∈ R. But LZω = 0, and therefore
ϕ∗

t ω = ω for all t (see Proposition 2.10). Thus, for ϕ−T = ϕ−1
T ,

ωp2 = ϕ∗−T ωp1 = ϕ∗−T

(
π∗ω′

π(p1)

) = (π ◦ ϕ−T )∗ω′
π(p2)

= π∗ω′
π(p2)

,

i.e. ω|π−1(U ′) = π∗(ω′). From the uniqueness of the local form ω′ ∈ ΛqU ′ it follows
that there is a smooth global differential q-form ω′ ∈ ΛqM ′ such that ω = π∗ω′.
Since the map π is a surjective submersion, such a form ω′ is unique.

Problem 2.39 Let α be a closed differential 2-form of constant rank 2� on a mani-
fold M . Denote by kerα the kernel of α, i.e. the distribution on M which is formed
by the set of all vector fields X ∈X(M) satisfying iXα = 0.

Prove that the distribution kerα is a smooth involutive distribution.

Solution Let p0 ∈ M be an arbitrary point. Locally, in a coordinate system
(U,x1, . . . , xn), where U ⊂ M is an open subset containing p0, the form α is deter-
mined by the expression

∑

1�i<j�n

aij

(
x1, . . . , xn

)
dxi ∧ dxj .

Since the two-form α is smooth, the map p �→ A(p) = (aij (x
1(p), . . . , xn(p)))

(aij = −aji ) determines a smooth matrix function on the set U . Moreover, there
exists some 2� × 2� minor of the matrix A(p) nowhere vanishing on some open
subset O ⊂ U containing p0. Therefore in O the kernel of the form αp , which
coincides with the kernel of A(p), is generated by n − 2� smooth vector fields.
Thus kerα is a smooth distribution of dimension n − 2�.

By the definition of dα (see formula (7.2)), for arbitrary vector fields X,Y,Z ∈
X(M), we have

dα(X,Y,Z) = X
(
α(Y,Z)

) − Y
(
α(X,Z)

) + Z
(
α(X,Y )

)

− α
([X,Y ],Z) + α

([X,Z], Y ) − α
([Y,Z],X)

.

Suppose now, in addition, that X,Y ∈ kerα. Then in the right-hand side of the ex-
pression above all terms vanish with the exception of the fourth term. Since dα = 0,
we obtain that α([X,Y ],Z) = 0. Thus

X,Y ∈ kerα ⇒ [X,Y ] ∈ kerα,

i.e. kerα is involutive.

Problem 2.40 Let M̃ be a submanifold of a manifold M . Suppose that X,Y are
smooth vector fields on M which are tangent to M̃ at each point belonging to M̃ ,
i.e. Xp,Yp ∈ TpM̃ ⊂ TpM if p ∈ M̃ .
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Prove:

(i) The map M̃ → T M̃ , p �→ Xp (resp. p �→ Yp), defines a smooth vector field X̃

(resp. Ỹ ) on M̃ .
(ii) The bracket [X,Y ] of the vector fields X,Y has the same property as X and Y :

[X,Y ]p ∈ TpM̃ ⊂ TpM if p ∈ M̃ .
(iii) We have [X̃, Ỹ ]p = [X,Y ]p for each p ∈ M̃ ⊂ M .

Solution It is clear that it is only necessary to prove all three assertions (i), (ii), (iii)
locally.

(i) Fix some point p0 ∈ M̃ ⊂ M . Since M̃ is a submanifold of M , by the Theo-
rem of the Rank 1.11 there exist neighbourhoods O ⊂ M and Õ ⊂ M̃ ∩ O of
the point p0, and coordinates (x1, . . . , xn) in O such that a point p ∈ O is an
element of the subset Õ if and only if xi(p) = 0 for all i > dim M̃ , i � n. In
particular, x1(p), . . . , xl(p), where l = dim M̃ , are coordinate functions in the
open subset Õ . We have

(X|O)p =
n∑

i=1

ai(p)
∂

∂xi
.

But for each p̃ ∈ Õ ⊂ O , the vector Xp̃ is an element of Tp̃M̃ , i.e.

ai(p̃ ) = ai

(
x1(p̃ ), . . . , xl(p̃ ),0, . . . ,0

) = 0, i > l, (�)

and, consequently,

∂ai

∂xj
(p̃ ) = ∂ai

∂xj

(
x1(p̃ ), . . . , xl(p̃ ),0, . . . ,0

) = 0, i > l, j � l. (��)

Thus,

(X̃|Õ )p̃ =
l∑

i=1

ãi (p̃ )
∂

∂xi

for all p̃ ∈ Õ ⊂ O , where ãi = ai |Õ . Since ãi (x
1, . . . , xl) = ai(x

1, . . . , xl,

0, . . . ,0), the vector field X̃|Õ is smooth.
Similarly,

(Y |O)p =
n∑

i=1

bi(p)
∂

∂xi

for all p ∈ O ⊂ M , and the vector field Ỹ |Õ ,

(Ỹ |Õ )p̃ =
l∑

i=1

b̃i (p̃ )
∂

∂xi
,

is smooth.
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(ii) and (iii) We shall see (ii) and (iii) giving two proofs. The first proof using the
local representations of the vector fields:

[X,Y ]p̃ =
n∑

j=1

n∑

i=1

(
ai(p̃ )

∂bj

∂xi
(p̃ ) − bi(p̃ )

∂aj

∂xi
(p̃ )

)
∂

∂xj
(by definition)

=
n∑

j=1

l∑

i=1

(
ai(p̃ )

∂bj

∂xi
(p̃ ) − bi(p̃ )

∂aj

∂xi
(p̃ )

)
∂

∂xj
(by (�))

=
l∑

j=1

l∑

i=1

(
ai(p̃ )

∂bj

∂xi
(p̃ ) − bi(p̃ )

∂aj

∂xi
(p̃ )

)
∂

∂xj
(by (��))

=
l∑

j=1

l∑

i=1

(
ãi (p̃ )

∂b̃j

∂xi
(p̃ ) − b̃i (p̃ )

∂ãj

∂xi
(p̃ )

)
∂

∂xj
.

Hence assertions (ii) and (iii) hold.
As to the second proof, consider the one-to-one immersion π : M̃ → M ,

p �→ p, defining the submanifold M̃ ⊂ M . Then the vector fields X̃ and X,
Ỹ and Y are π -related, i.e.

π∗ ◦ X̃ = X ◦ π, π∗ ◦ Ỹ = Y ◦ π.

By Theorem 1.21 the vector fields (brackets) [X̃, Ỹ ] and [X,Y ] are also π -
related. Thus,

[X,Y ]p = π∗
([X̃, Ỹ ]p

) = [X̃, Ỹ ]p, p ∈ M̃,

and, in particular, [X,Y ]p ∈ TpM̃ .

Problem 2.41 Let ω be a differential 1-form on a manifold M and consider a
nowhere-vanishing function f : M → R such that d(f ω) = 0. Prove that ω ∧
dω = 0.

Solution We have d(f ω) = df ∧ ω + f dω, and since f (x) �= 0 for all x ∈ M ,
one has dω = −(1/f )df ∧ ω. As ω is a differential 1-form, we have ω ∧ dω =
−(1/f )ω ∧ df ∧ ω = 0.

2.5 Lie Derivative. Interior Product

Problem 2.42 Let X and Y be vector fields on a C∞ manifold M . Prove that if ϕt

is the local 1-parameter group generated by X, we have for all p ∈ M :

ϕs∗
(
(LXY)

ϕ−1
s (p)

) = lim
t→0

1

t
(ϕs∗Yϕ−1

s (p)
− ϕs+t∗Yϕ−1

s+t (p)
). (�)
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Solution Since ϕt is the local one-parameter group of X, one has ϕs · X = X,
where by definition (ϕs · X)p = ϕs∗(Xϕ−1

s (p)
). Then, applying Problem 1.107, we

have

ϕs · LXY = ϕs · [X,Y ] = [ϕs · X,ϕs · Y ] = [X,ϕs · Y ] = LX(ϕs · Y).

Thus,

ϕs∗
(
(LXY)

ϕ−1
s (p)

) = LX(ϕs∗Yϕ−1
s (p)

)

= lim
t→0

1

t

(
ϕs∗Yϕ−1

s (p)
− ϕt∗

(
(ϕs∗Yϕ−1

s (p)
)
ϕ−1

t (p)

))

= lim
t→0

1

t
(ϕs∗Yϕ−1

s (p)
− ϕt∗ϕs∗Yϕ−1

s (ϕ−1
t (p))

)

= lim
t→0

1

t
(ϕs∗Yϕ−1

s (p)
− ϕs+t∗Yϕ−1

s+t (p)
).

Problem 2.43 Let f denote a diffeomorphism of the C∞ manifold M . Prove that

iX
(
f ∗α

) = f ∗(if ·Xα), X ∈X(M), α ∈ Λ∗M.

Solution If α ∈ ΛrM , then for X1, . . . ,Xr−1 ∈X(M), one has
(
iX

(
f ∗α

))
p
(X1|p, . . . ,Xr−1|p)

= (
f ∗α

)
p
(Xp,X1|p, . . . ,Xr−1|p)

= αf (p)

(
f∗Xp,f∗(X1|p), . . . , f∗(Xr−1|p)

)

= αf (p)

(
(f · X)f (p), (f · X1)f (p), . . . , (f · Xr−1)f (p)

)

and
(
f ∗(if ·Xα)

)
p
(X1|p, . . . ,Xr−1|p)

= (if ·Xα)f (p)

(
f∗(X1|p), . . . , f∗(Xr−1|p)

)

= αf (p)

(
(f · X)f (p), (f · X1)f (p), . . . , (f · Xr−1)f (p)

)
.

Problem 2.44 Consider on an open subset of R3 the differential 1-form

α = P1(x)dx1 + P2(x)dx2 + P3(x)dx3,

where x = (x1, x2, x3).

(i) Find the conditions under which iX dα = 0 for

X = X1∂/∂x + X2∂/∂y + X3∂/∂z.

(ii) When do we have iXα = 0 and iX dα = 0?
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Solution

(i) Let us compute dα. If we write Pij = ∂Pi/∂xj and Qji = Pji − Pij , then

dα = (P21 − P12)dx1 ∧ dx2 + (P31 − P13)dx1 ∧ dx3

+ (P32 − P23)dx2 ∧ dx3

=
∑

i<j

Qji dxi ∧ dxj .

Hence,

iX dα = 0 ⇔ iX dα(Y ) = 0, Y ∈X
(
R

3)

⇔ dα

(
X,

∂

∂xk

)
= 0, k = 1,2,3

⇔
∑

i<j

Qji dxi ∧ dxj

(∑

l

Xl

∂

∂xl
,

∂

∂xk

)

=
∑

l

∑

i<j

Qji

(
Xlδ

i
l δ

j
k − Xlδ

i
kδ

j
l

)

=
∑

l

(∑

l<k

QklXl −
∑

k<l

QlkXl

)

=
∑

l

QklXl = 0, k = 1,2,3.

(ii) By (i),

iX dα = 0 ⇔
3∑

l=1

QklXl = 0, k = 1,2,3,

and

iXα =α(X)=0 ⇔
(∑

i

Pi dxi

)(∑

j

Xj ∂

∂xj

)
= 0 ⇔

∑

i

PiX
i =0.

2.6 Distributions and Integral Manifolds. Frobenius Theorem.
Differential Ideals

Problem 2.45 Consider on the octant of R3 of positive coordinates the vector fields

X = x
∂

∂x
− 2y

∂

∂y
, Y = xy

∂

∂y
− xz

∂

∂z
.
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(i) Prove that they span an involutive distribution on this octant of R3.
(ii) Find the integral surfaces.

Hint (to (ii)) Substitute Y by x−1Y .

Solution

(i) [X,Y ] = Y .
(ii) Since in the given domain x does not vanish, we can substitute x−1Y for Y ,

which, jointly with X, determines the same distribution. The integral curves of
X are (x0et , y0e−2t , z0), and those of x−1Y are (x0, y0es , z0e−s), so that the
respective local flows are

ϕt (x, y, z) = (
xet , ye−2t , z

)
, ψs(x, y, z) = (

x, yes , ze−s
)
.

The map

(t, s) ∈ R
2 �→ (ψs ◦ ϕt )(x0, y0, z0) = ψs

(
x0et , y0e−2t , z0

)

= (
x0et , y0e−2t+s , z0e−s

)

is the integral surface through (x0, y0, z0). In fact, the point (ψs ◦ϕt )(x0, y0, z0)

is obtained from (x0, y0, z0) as follows: We first run an interval “t” from
p = (x0, y0, z0) along the integral curve of X through p for t = 0 and then
an interval “s” from ϕt (p) along the integral curve of x−1Y through ϕt (p) for
s = 0. If we put

x(t, s) = x0et , y(t, s) = y0e−2t+s , z(t, s) = z0e−s ,

then we see that x2yz is constant. Hence the integral surfaces are defined by
x2yz = const. As a verification, observe that X(x2yz) = Y(x2yz) = 0.

Problem 2.46 Consider on R
3 the distribution D determined by

X = ∂

∂x
+ 2xz

1 + x2 + y2

∂

∂z
, Y = ∂

∂y
+ 2yz

1 + x2 + y2

∂

∂z
.

(i) Calculate [X,Y ] and find whether D is involutive or not.
(ii) Calculate the local flows of X and Y .

(iii) If D is involutive, find its integral surfaces.

Solution

(i) [X,Y ] = 0, and thus D is involutive.
(ii) We have

{
x′ = 1

y′ = 0
⇔

{
x = x0 + t

y = y0
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and

z′

z
= 2(x0 + t)

1 + (x0 + t)2 + y2
0

if and only if log z = logA(1 + (x0 + t)2 + y2
0) if and only if z = A(1 + (x0 +

t)2 + y2
0). For t = 0, z0 = A(1 + x2

0 + y2
0), so

z = z0
1 + (x0 + t)2 + y2

0

1 + x2
0 + y2

0

.

Hence the local flow of X is

ϕt (x, y, z) =
(

x + t, y, z
1 + (x + t)2 + y2

1 + x2 + y2

)
.

Similarly, the local flow of Y is

ψs(x, y, z) =
(

x, y + s, z
1 + x2 + (y + s)2

1 + x2 + y2

)
.

(iii) The integral manifolds can be written as ψ(t, s) �→ (ψs ◦ϕt )(x0, y0, z0). But let
us see a better solution. We are looking for a differential 1-form annihilating X

and Y . For example, we have as a solution:

α = 2xzdx + 2yzdy − (
1 + x2 + y2)dz

= zd
(
1 + x2 + y2) − (

1 + x2 + y2)dz

= −(
1 + x2 + y2)2 d

(
z

1 + x2 + y2

)
.

Hence, the integral manifolds are z

1+x2+y2 = const.

Problem 2.47 The vector field X = x ∂
∂x

+ xy ∂
∂y

+ z ∂
∂z

, defined on x > 0, y > 0,

z > 0 in R
3, determines a two-dimensional distribution given by the vector fields

orthogonal to X. Is this distribution involutive?

Solution The vector fields U = −y ∂
∂x

+ ∂
∂y

and V = −z ∂
∂x

+x ∂
∂z

are orthogonal to

X and linearly independent at each point. They span that distribution, but [U,V ] =
−y ∂

∂z
. Since

∣∣∣∣∣∣

−y 1 0
−z 0 x

0 0 −y

∣∣∣∣∣∣
= −yz

is not identically zero, we have [U,V ]p /∈ 〈Up,Vp〉. Hence the distribution is not
involutive.
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Fig. 2.2 An example of
foliation with non-Hausdorff
quotient manifold

Problem 2.48 Prove that

X = − cos2 x
∂

∂x
+ sinx

∂

∂y

determines a foliation with non-Hausdorff quotient.

Solution This vector field determines an integrable distribution of codimension 1
of R2. We have two kind of solutions:

Integrating the equation that X determines, i.e.

dx

cos2 x
= − dy

sinx
,

we obtain the curves

y = − secx + A

(see Fig. 2.2) for x �= (2k + 1)π/2, k ∈ Z.
Moreover, we have the solutions with initial conditions of the type ((2k +1)π/2,

y0), that is, the straight lines t �→ ((2k+1)π/2, (−1)kt). Actually, if p and q are two
non-separable points of the quotient, then each of them corresponds to a solution of
this kind.

Take, for instance, the integral curve x = −π/2; a point on it, say (−π/2, y0);
and an open disk around this point. This open disk intersects all the integral curves
intersecting the y-axis at the points with ordinate greater than or equal to A0 > 0.
This is also true for open disks around the point (π/2, y1). Such an open disk inter-
sects all the integral curves that intersect the y-axis at points with ordinate greater
than or equal to A1 > 0. Now, the integral curves intersecting the y-axis at points
with ordinate greater than max(A0,A1) intersect both open disks. Hence the pro-
jections of the two open disks on the quotient intersect, so that the projections of
x = −π/2 and of x = π/2 cannot be separated. Consequently, the quotient mani-
fold is not Hausdorff.
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Problem 2.49 Consider on R
3 the vector fields

X = z
∂

∂x
+ ∂

∂z
, Y = ∂

∂y
+ ∂

∂z
, Z = z

∂

∂x
− ∂

∂y
.

(i) Prove that X,Y,Z define a C∞ distribution D on R
3. Which dimension is it?

Is it involutive?
(ii) Compute the set I (D) of forms which annihilate D . Is it a differential ideal?

Is the ideal I generated by ex dy a differential ideal?

Solution

(i) X,Y,Z are not linearly independent because Z = X − Y . Hence D is a two-
dimensional C∞ distribution spanned, for instance, by X and Y , which are
linearly independent. D is not involutive, as [X,Y ] = − ∂

∂x
and − ∂

∂x
/∈ D , since

if it were

− ∂

∂x
= az

∂

∂x
+ a

∂

∂z
+ b

∂

∂y
+ b

∂

∂z
,

we would have az = −1, b = 0, b + a = 0, which would lead us to a contradic-
tion.

(ii) {X,Y, ∂/∂x} is a basis of X(R3). Therefore, if {α,β,ω} is its dual basis of 1-
forms, then I (D) = 〈ω〉, where 〈ω〉 stands for the ideal generated by ω.

Let us determine ω = f dx + g dy + hdz, f,g,h ∈ C∞
R

3. From

0 = ω(X) = f z + h, 0 = ω(Y ) = g + h, 1 = ω

(
∂

∂x

)
= f

it follows that f = 1. Thus h = −z, and hence g = z; that is, ω = dx + zdy −
zdz. Since D is not involutive, I (D) cannot be a differential ideal.

We can also prove this directly. One has dω = dz ∧ dy = −dy ∧ dz. If it
were, for a, b, c ∈ C∞

R
3,

dω = ω ∧ (a dx + b dy + c dz)

= (b − az)dx ∧ dy + (c + az)dx ∧ dz + (zc + zb)dy ∧ dz,

we would have b−az = 0, c+az = 0, zc+ zb = −1. From the first and second
equations one has b + c = 0, in contradiction with the third equation. One can
also conclude by applying Problem 2.35, as ω ∧ dω = −dx ∧ dy ∧ dz �= 0.
Finally, I is a differential ideal since

d
(
ex dy

) = ex dx ∧ dy = ex dy ∧ (−dx).

Problem 2.50 Given on R
4 = {(x, y, z, t)} the 1-forms α = dx + zdt and β =

dz + dt , let I be the ideal generated by α and β , and let D be the distribution
associated to I .
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(i) Compute a basis for D .
(ii) Is D involutive?

(iii) If p = (1,0,1,0) ∈ R
4, do we have

vp = −3
∂

∂y

∣∣∣∣
p

+ z
∂

∂x

∣∣∣∣
p

∈ Dp?

(iv) If ω = dx ∧ dz + dx ∧ dt + dz ∧ dt , is ω ∈ I ?
(v) Is y = const, z = const an integral manifold of D?

Solution

(i) For X,Y ∈ D given by

X = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
+ d

∂

∂t
, Y = e

∂

∂x
+ f

∂

∂y
+ g

∂

∂z
+ h

∂

∂t
,

for a, b, c, d, e, f, g,h ∈ C∞
R

4, it must be

α(X) = a + zd = 0, α(Y ) = e + zh = 0,

β(X) = c + d = 0, β(Y ) = g + h = 0.

Thus, for instance, we can consider

X = z
∂

∂x
+ ∂

∂z
− ∂

∂t
, Y = ∂

∂y
.

(ii) [X,Y ] = 0, and hence D is involutive.
(iii) No, as

αp(vp) = (dx + zdt)p

(
−3

∂

∂y
+ z

∂

∂x

)

p

= 1 �= 0.

(iv) ω = dx ∧ β + dz ∧ β , and hence ω ∈ I .
(v) The tangent space is 〈 ∂

∂x
, ∂

∂t
〉, but α( ∂

∂x
) = 1, so y = const, z = const is not an

integral manifold of D .

Problem 2.51 Prove that the 1-form α = (1+y2)(x dy +y dx), defined on R
2 \{0},

generates a rank-1 differential ideal and find the integral manifolds.

Solution Since 1 + y2 does not vanish, α generates the same annihilator ideal as

α

1 + y2
= x dy + y dx = d(xy).

As d(x dy + y dx) = 0, the ideal is differential.
The integral manifolds are xy = const (see Fig. 2.3).
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Fig. 2.3 Integral manifolds
of α = (1 + y2)(x dy + y dx)

Fig. 2.4 The component in
the first octant of an integral
surface of the distribution
α = yz dx + zx dy + xy dz

Problem 2.52 Let U = R
3 \ {axes}. Compute the integral surfaces of the distribu-

tion determined by the ideal of Λ∗U generated by

α = yzdx + zx dy + xy dz.

Solution We have α = d(xyz). If X is annihilated by α, then we have α(X) =
X(xyz) = 0. Thus the integral surfaces are the surfaces xyz = const (see Fig. 2.4).

Problem 2.53 Consider the (1,1) tensor field

J = 1

coshx

∂

∂y
⊗ dx + coshx

∂

∂x
⊗ dy

on R
2 and the distribution D defined by the condition: X ∈ D if and only if JX =

X.

(i) Compute the integral curves of D .
(ii) Compute the fields X ∈ D for which LXJ = 0.
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Solution

(i) If X = f ∂
∂x

+ h ∂
∂y

∈ D , f,h ∈ C∞
R

2, then

(
1

coshx

∂

∂y
⊗ dx + coshx

∂

∂x
⊗ dy

)(
f

∂

∂x
+ h

∂

∂y

)

= f

coshx

∂

∂y
+ h coshx

∂

∂x
= f

∂

∂x
+ h

∂

∂y
.

Thus f = h coshx. Denoting by (x, y) the integral curves of D , we have
dx/dt = (dy/dt) coshx. Hence dy = dx/ coshx, and thus

y = arctan sinhx + A. (�)

That is, the integral curves of D are given by (�).
(ii)

LXJ =
(

hx coshx − fy

coshx

)(
∂

∂x
⊗ dx − ∂

∂y
⊗ dy

)

+ (hy coshx + f sinhx − fx coshx)

(
∂

∂x
⊗ dy − 1

cosh2 x

∂

∂y
⊗ dx

)

= 0. (��)

Moreover, if X ∈ D , then we have f = g coshx, and from this equation and
from (��) we conclude that we have to solve only the following equation:

∂h

∂x
coshx = ∂h

∂y
.

Let u = 2 arctan ex . Then we have

∂h

∂x
= 1

coshx

∂h

∂u
,

and hence ∂h
∂u

= ∂h
∂y

. Taking t = u + y, w = u − y, we obtain

0 = ∂h

∂u
− ∂h

∂y
= 2

∂h

∂w
.

Thus h = h(u + y) = h(2 arctan ex + y), and we finally have

f = h
(
2 arctan ex + y

)
coshx,

where h(2 arctan ex +y) is an arbitrary differentiable function in that argument.

Problem 2.54 (A Reeb Foliation of S3) The three-sphere S3 can be decomposed as
two solid 2-tori joint along their common 2-torus boundary. In fact, if one removes
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Fig. 2.5 Left: The two core
circles of S3 (here actually
the part in S3 \ {∞}), this
viewed as the union of two
solid 2-tori. Right: Some
curves y = f (x) + c′

the solid torus of rotation from R
3 = S3 \ {∞}, what remains is homeomorphic to a

solid torus minus an interior point. Consider the vertical coordinate axis as the core
circle (see Fig. 2.5, left).

Find a foliation of the strip

{
(x, y) ∈R

2 : −1 � x � 1
}

originating a foliation in (each) solid torus and so a codimension 1 foliation of the
three-sphere S3.

For the development of the relevant theory, see Reeb [4] and Lawson [3].

Solution Consider the C∞-foliation of the (x, y)-plane given by the lines x = c for
|c| � 1 together with the graphs of the functions

y = f (x) + c′, −1 < x < 1, c′ ∈ R,

where f has the property that its derivatives f (r) satisfy lim|x|→1 f (r) = ∞ for all
r (see Fig. 2.5, right).

Consider now the foliation of the solid cylinder obtained by rotating the strip
given in the statement about the y-axis in R

3. This foliation is invariant by vertical
translations, and so we can obtain a foliation of the solid torus where each noncom-
pact leaf has the form that one can see in Fig. 2.6, left. Gluing together two copies
of the foliated solid torus gives a Reeb foliation of S3 (see Fig. 2.6, right, showing
part of a transversal cutting of two leaves). Note that both the “interior” and the
“exterior” leaves approach their common 2-torus boundary after turning around it.

Problem 2.55 Let M be a C∞ n-manifold, and let D ⊂ T M be an integrable dis-
tribution of rank p. By Frobenius’ theorem, D is spanned by ∂/∂x1, . . . , ∂/∂xp on
an open subset U of M , for a certain coordinate system (U,xi). We can consider
local frames of M of the type

(
∂

∂x1
, . . . ,

∂

∂xp
,X1, . . . ,Xq

)
, p + q = n = dimM,
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Fig. 2.6 Left: The foliation (generated by curves as the previous ones) of the “interior” solid torus
in S3. Right: Transversal cut of a Reeb foliation of S3 showing two sections of an “interior” leaf
and part of an “exterior” leaf

where

Xu = ∂

∂xp+u
−

∑

a

f a
u

∂

∂xa
, 1 � a � p, 1 � u � q, f a

u ∈ C∞M.

Write the integrability condition of the complementary distribution H generated
by X1, . . . ,Xq on the open subset where these vector fields are defined.

Solution In order for H to be integrable, it must be [Xu,Xv] ∈ H for any
Xu,Xv ∈ H , u,v = 1, . . . , q . Then

[Xu,Xv] =
[

∂

∂xp+u
−

∑

a

f a
u

∂

∂xa
,

∂

∂xp+v
−

∑

b

f b
v

∂

∂xb

]

=
∑

a

(
∂f a

u

∂xp+v
− ∂f a

v

∂xp+u
+

∑

b

(
f b

u

∂f a
v

∂xb
− f b

v

∂f a
u

∂xb

))
∂

∂xa
∈ D .

As [Xu,Xv] ∈ H , the last expression in parentheses must be zero, that is, the con-
dition is

∂f a
u

∂xp+v
− ∂f a

v

∂xp+u
+

∑

b

(
f b

u

∂f a
v

∂xb
− f b

v

∂f a
u

∂xb

)
= 0.

Problem 2.56 Let X be a vector field on a smooth manifold M , and let ϕt be its
local one-parameter group (local flow) on M . Let D ⊂ T M be a smooth distribution.

Prove that the following conditions are equivalent:

(i) For any vector field Y lying in D , the bracket [X,Y ] belongs to D (the distri-
bution D is preserved by the vector field X).

(ii) For any vector field Y lying in D , the local vector field ϕt · Y belongs to D (the
distribution D is preserved by the local flow ϕt of X).

For a development of the relevant theory, see, for instance, Gawedzki [1].
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Solution Let p ∈ M and suppose that D is preserved by the vector field X. Let
us choose a scalar product in TpM . Let Pt be the orthogonal projection onto
ϕt∗(Dϕ−t (p)) ⊂ TpM . The operator function Pt : TpM → TpM smoothly depends
on the parameter t . Let Y ∈ D , and let

Yt = (ϕt · Y)p, i.e. by definition Yt = ϕt∗(Yφ−t (p)).

We have by Proposition 2.10

dYt

dt
= −(

ϕt · [X,Y ])
p

∈ Pt(TpM),

because [X,Y ] ∈ D . Now Yt = Pt(Yt ) by the definition of Pt , and consequently,

dYt

dt
= d(PtYt )

dt
= dPt

dt
Yt + Pt

dYt

dt
= dPt

dt
Yt + dYt

dt
.

Thus,

dPt

dt
Yt = 0.

Since varying Y,Yt span the range of Pt , we get

dPt

dt
Pt = 0.

Let P ∗
t denote the transpose operator of Pt (with respect to the scalar product in

TpM). From Pt = P ∗
t and P 2

t = Pt one obtains

(
dPt

dt

)∗
= dPt

dt
and

dPt

dt
Pt + Pt

dPt

dt
= dPt

dt
.

Hence,

dPt

dt
= Pt

dPt

dt
=

(
dPt

dt
Pt

)∗
= 0.

Consequently, Pt = P0, and ϕt preserves D .
Clearly, from the definition of the Lie bracket (see also Proposition 2.10) we have

that if ϕt · Y ∈ D , then [X,Y ] ∈ D .

Problem 2.57 Let π : M → M ′ be a surjective submersion of manifolds M

and M ′.

(i) Prove that kerπ∗ ⊂ T M (the set of vectors annihilated by π∗) is an involutive
smooth distribution on M .

Let the set π−1(p′) be connected for all p′ ∈ M ′, and let D ⊂ T M be a smooth
distribution on M containing the distribution kerπ∗. Suppose that D is preserved
by kerπ∗, i.e. [Z,Y ] ∈ D for all vector fields Z ∈ kerπ∗ and Y ∈ D .
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Prove:

(ii) There exists a unique smooth distribution D ′ on M ′ such that D ′
π(p) = π∗Dp

for all p ∈ M . Moreover, for any point p ∈ M , there exist a neighbourhood
U ⊂ M and vector fields {Yl} lying in D |U such that the restriction D ′|U ′ ,
where U ′ = π(U), is spanned by vector fields {Y ′

l }, and the vector fields Yl, Y
′
l

are π -related for each l.
(iii) If the distribution D is involutive, then so is D ′.

Solution

(i) Since the map π : M → M ′ is a submersion, by the Theorem of the Rank 1.11,
for any point p ∈ M , there exist a neighbourhood U of p, coordinates
x1, . . . , xn on U , −1 < xj < 1, j = 1, . . . , n, and coordinates x1, . . . , xn′

(n′ � n) on the open subset U ′ = π(U) ⊂ M ′ such that the point p has co-
ordinates (0, . . . ,0) and the restriction π |U in these coordinates has the form

π : (
x1, x2, . . . , xn

) → (
x1, x2, . . . , xn′)

, (�)

i.e. in the neighbourhood U the restriction kerπ∗|U is spanned by the commut-
ing vector fields ∂/∂xn′+1, . . . , ∂/∂xn. Therefore D is an involutive smooth
distribution on M .

(ii) Let p1,p2 ∈ π−1(p′) ⊂ M for some point p′ ∈ M ′. Since the set π−1(p′) is
connected, the points p1,p2 belong to the same leaf of the distribution kerπ∗.
Then there exists a smooth vector field Z ∈ kerπ∗ such that for a correspond-
ing (local) one-parameter group ϕt , we have ϕt0(p1) = p2, t0 ∈ R (we can use
a partition of unity to construct such a field). But π ◦ ϕt = π for all t , and
therefore it follows (see Problem 2.56) that

π∗(Dp1) = (π∗ ◦ ϕt0∗)(Dp1) = π∗(Dp2).

Hence the distribution D ′ is well defined. To prove the smoothness of D ′,
choose a point p ∈ M and neighbourhoods U ⊂ M , U ′ ⊂ M ′, with the co-
ordinates as above. Let Y be any local vector field belonging to D |U :

Y
(
x1, . . . , xn

) =
n∑

j=1

aj

(
x1, . . . , xn

) ∂

∂xj
.

The sub-bundle kerπ∗ is spanned on U by ∂/∂xk, k = n′ + 1, . . . , n, and the
distribution D |U is preserved by these vector fields ∂/∂xk and, consequently
(see Problem 2.56), by the corresponding local flows

ϕk
t : (

x1, . . . , xk−1, xk, xk+1, . . . , xn
) �→ (

x1, . . . , xk−1, xk + t, xk+1, . . . , xn
)
.

Therefore the vector field

Y ′′(x1, . . . , xn
) =

n∑

j=1

aj

(
x1, . . . , xn′

,0, . . . ,0
) ∂

∂xj
=

n∑

j=1

bj

(
x1, . . . , xn′) ∂

∂xj
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(recall that xj (p) = 0, j = 1, . . . , n) is a smooth vector field belonging to D |U .
Thus,

Y ′ = π∗Y ′′(x1, . . . , xn′) =
n′∑

j=1

bj

(
x1, . . . , xn′) ∂

∂xj

is a smooth vector field belonging to D ′|U ′ , and the vector fields Y ′′, Y ′ are π -
related. Thus there are vector fields {Y ′′

l } and {Y ′
l } belonging to the restrictions

D |U and D ′|U ′ , respectively, such that D ′|U ′ is spanned by the vector fields
{Y ′

l } and the vector fields Y ′′
l , Y ′

l are π -related for each l.
(iii) By Proposition 1.21, if the distribution D is involutive, then so is D ′.

Problem 2.58 Let π : M → M ′ be a surjective submersion of manifolds M and M ′.
Let the set π−1(p′) be connected for all p′ ∈ M ′, and let X ∈ X(M) be a smooth
vector field which preserves the distribution kerπ∗.

Prove that there exists a unique smooth vector field X′ on M ′ such that the vector
fields X,X′ are π -related.

Solution We will use the notation of the solution of the previous Problem 2.57.
As above, consider the vector field Z (belonging to the distribution kerπ∗) with its
local one-parametric group ϕt connecting points p1,p2 for which π(p1) = π(p2).
For the vector field X, we have (see Proposition 2.10)

d

dt
(ϕt · X) = −ϕt · [Z,X].

Since the bracket [Z,X] belongs to the distribution kerπ∗ and the local flow ϕt of
Z ∈ kerπ∗ preserves the (involutive) distribution kerπ∗, the difference ϕt · X − X

is a vector field belonging to kerπ∗ for all t . Thus π∗Xp1 = π∗Xp2 and X′,
X′

π(p) = π∗Xp is a well-defined vector field on the manifold M ′. Therefore in

the coordinate system (U,x1, . . . , xn) around p ∈ M , the smooth vector field X|U
has the following form (see the local expression (�) for π in the solution of Prob-
lem 2.57):

(X|U)
(
x1, . . . , xn

) =
n′∑

j=1

aj

(
x1, . . . , xn′) ∂

∂xj

+
n∑

j=n′+1

aj

(
x1, . . . , xn′

, . . . , xn
) ∂

∂xj
.

Now it is clear that the vector field

X′∣∣
U ′ =

n′∑

j=1

aj

(
x1, . . . , xn′) ∂

∂xj

is also smooth. The vector fields X,X′ are π -related.
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Chapter 3
Integration on Manifolds

Abstract After giving some definitions and results on orientability of smooth man-
ifolds, the problems treated in the present chapter are concerned with orientation
of smooth manifolds; especially the orientation of several manifolds introduced in
the previous chapter, such as the cylindrical surface, the Möbius strip, and the real
projective space RP2. Some attention is paid to integration on chains and integration
on oriented manifolds, by applying Stokes’ and Green’s Theorems. Some calcula-
tions of de Rham cohomology are proposed, such as the cohomology groups of the
circle and of an annular region in the plane. This cohomology is also used to prove
that the torus T 2 and the sphere S2 are not homeomorphic. The chapter ends with
an application of Stokes’ Theorem to a certain structure on the complex projective
space CPn.

Dans le domain des paramètres a1, . . . , ar d’un groupe continu quelconque
d’ordre r , il existe en effet un élément de volume qui se conserve par une
transformation quelconque du groupe des paramètres (. . . ) Le premier groupe
des paramètres, par example, est formé de l’ensemble des transformations
que laissent invariantes r expressions de Pfaff ω1, . . . ,ωr ; l’élément de vol-
ume dτ est ω1ω2 · · ·ωr . Si l’on désigne par S0 une transformation fixe du
groupe et si l’on pose S0Sa = Sb, à un domaine (a) correspond un domain (b)

de même volume. Or il existe des groupes continus dont le domain est fermé
et de volume total fini; si alors on parte d’un function quelconque des vari-
ables et qu’on fasse l’integral des functiones transformées par les differents
transformations du groupe, on obtient une function invariante par le groupe.1

1“In the domain of the parameters a1, . . . , ar of any continuous group of order r , there exists
indeed a volume element which is preserved under any transformation of the group of parameters
(. . . ) The first group of parameters consists, for instance, of the set of transformations preserving
r Pfaff expressions ω1, . . . ,ωr ; the volume element dτ is ω1ω2 · · ·ωr . Denoting by S0 a fixed
transformation of the group and putting S0Sa = Sb , to a domain (a) corresponds a domain (b) with
the same volume. Now, there are continuous groups with closed domain and finite total volume;
hence starting with any function of the variables and integrating the functions obtained by the
different transformations of the group, one obtains a function invariant under the group.”

P.M. Gadea et al., Analysis and Algebra on Differentiable Manifolds,
Problem Books in Mathematics, DOI 10.1007/978-94-007-5952-7_3,
© Springer-Verlag London 2013
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ÉLIE CARTAN, “Les tenseurs irreductibles et les groupes linéaires simples
et semi-simples,” Boll. Sc. Math. 49 (1925), p. 131. Oeuvres Complètes, vol. I,
part I, Gauthier-Villars, avec le concours du C.N.R.S, Paris, 1952, p. 532.
(Reproduced with kind permission from Dunod Éditeur, Paris. Not for re-use
elsewhere.)

The extension to manifolds involves two steps: first, we define integrals
over the entire manifold M of suitable exterior n-forms and second, for those
M which have a predetermined volume element (e.g. Riemannian manifolds),
integrals of functions over domains are defined. All the standard properties of
integrals follow readily from the corresponding facts in the Euclidean space.
As an illustration of the use of integration on manifolds an application is made
to compact Lie groups. It is shown that by averaging a left-invariant metric on
a compact group one may obtain a bi-invariant Riemannian metric. With the
same techniques—due to Weyl—it is shown that any representation of a com-
pact group as a matrix group acting on a vector space leaves invariant some
inner product on that vector space, from which it follows that any invariant
subspace has a complementary invariant subspace.

WILLIAM M. BOOTHBY, An Introduction to Differentiable Manifolds and
Riemannian Geometry, 2nd Revised Ed., Academic Press, 2003, p. 222. (With
kind permission from Elsevier.)

3.1 Some Definitions and Theorems on Integration on Manifolds

Definitions 3.1 Let V be a real vector space of dimension n. An orientation of V

is a choice of component of ΛnV \ {0}.
A connected differentiable manifold M of dimension n is said to be orientable if

it is possible to choose in a consistent way an orientation on T ∗
p M for each p ∈ M .

More precisely, let O be the “0-section” of the exterior n-bundle ΛnM∗, that is,

O =
⋃

p∈M

{
0 ∈ ΛnT ∗

p M
}
.

Then since ΛnT ∗
p M \ {0} has exactly two components, it follows that ΛnT ∗M \ {O}

has at most two components. It is said that M is orientable if ΛnT ∗M \ {O} has two
components; and if M is orientable, an orientation is a choice of one of the two
components of ΛnT ∗M \ {O}. It is said that M is non-orientable if ΛnT ∗M \ {O}
is connected.

Let M and N be two orientable differentiable n-manifolds, and let Φ : M → N

be a differentiable map. It is said that Φ preserves orientations or that it is
orientation-preserving if Φ∗ : TpM → TΦ(p)N is an isomorphism for every p ∈ M ,
and the induced map Φ∗ : ΛnT ∗N → ΛnT ∗M maps the component ΛnT ∗M \ {O}
determining the orientation of N into the component ΛnT ∗M \ {O} determining
the orientation of M . Equivalently, Φ is orientation-preserving if Φ∗ sends oriented
bases of the tangent spaces to M to oriented bases of the tangent spaces to N .
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Proposition 3.2 Let M be a connected differentiable manifold of dimension n. Then
the following are equivalent:

(i) M is orientable;
(ii) There is a collection C = {(U,ϕ)} of coordinate systems on M such that

M =
⋃

(U,ϕ)∈C

U and det

(
∂xi

∂yj

)
> 0 on U ∩ V

whenever (U,x1, . . . , xn) and (V , y1, . . . , yn) belong to C ;
(iii) There is a nowhere-vanishing differential n-form on M .

Theorem 3.3 (Stokes’ Theorem I) Let c be an r-chain in M , and let ω be a C∞
(r − 1)-form defined on a neighbourhood of the image of c. Then

∫

∂c

ω =
∫

c

dω.

Theorem 3.4 (Green’s Theorem) Let σ(t) = (x(t)), y(t)), t ∈ [a, b], be a sim-
ple, closed plane curve. Suppose that σ is positively oriented (that is, σ |(a,b) is
orientation-preserving) and let D denote the bounded, closed, connected domain
whose boundary is σ . Let f = f (x, y) and g = g(x, y) be real functions with con-
tinuous partial derivatives ∂f/∂x, ∂f/∂y, ∂g/∂x, ∂g/∂y on D. Then

∫

D

(
∂g

∂x
− ∂f

∂y

)
dx dy =

∫

σ

(
f

dx

dt
+ g

dy

dt

)
dt.

Definition 3.5 Let M be a differentiable manifold. A subset D ⊆ M is said to be
a regular domain if for every p ∈ ∂D there exists a chart (U,ϕ) = (U,x1, . . . , xn)

centred at p such that

ϕ(U ∩ D) = {
x ∈ ϕ(U) : xn � 0

}
.

Theorem 3.6 (Stokes’ Theorem II) Let D be a regular domain in an oriented n-
dimensional manifold M , and let ω be a differential (n − 1)-form on M such that
supp(ω) ∩ D̄ is compact. Then

∫

D

dω =
∫

∂D

ω.

Definitions 3.7 A differential r-form α on M is said to be closed if dα = 0. It
is called exact if there is an (r − 1)-form β such that α = dβ . Since d2 = 0, every
exact form is closed. The quotient space of closed r-forms modulo the space of
exact r-forms is called the r th de Rham cohomology group of M :

Hr
dR(M,R) = {closed r-forms}/{exact r-forms}.
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If Φ : M → N is differentiable, then Φ∗ : Λ∗N → Λ∗M transforms closed
(resp., exact) forms into closed (resp., exact) forms. Hence Φ induces a linear map

Φ∗ : Hr
dR(N,R) → Hr

dR(M,R).

3.2 Orientable Manifolds. Orientation-Preserving Maps

Problem 3.8 Prove:

(i) The product of two orientable manifolds is orientable.
(ii) The total space of the tangent bundle over any manifold is an orientable mani-

fold.

Solution

(i) A C∞ manifold M is orientable if and only if (see Proposition 3.2(ii)) there is
a collection Φ of coordinate systems on M such that

M =
⋃

(U,ϕ)∈Φ

U and det

(
∂xi

∂yj

)
> 0 on U ∩ V

whenever (U,x1, . . . , xn) and (V , y1, . . . , yn) belong to Φ .
Suppose M1 and M2 are orientable. Denote by (U1, x

i
1) and (U2, x

j

2 ) two
such coordinate systems on M1 and M2, respectively. With a little abuse of
notation (that is, dropping the projection maps pr1 and pr2 from M1 × M2 onto
the factors M1 and M2), we can write the corresponding coordinate systems on
M1 ×M2 as (U1 ×U2, x

i
1, x

j

2 ). As the local coordinates on each factor manifold
do not depend on the local coordinates on the other one, the Jacobian matrix of
the corresponding change of charts of the product manifold M1 × M2 can be
expressed in block form as

J =
(

J1 0
0 J2

)
=

⎛

⎜⎝

∂xi
1

∂yk
1

0

0
∂x

j
2

∂yl
2

⎞

⎟⎠ .

Since detJ1 and detJ2 are positive, we have detJ > 0.
Alternatively, the question can be solved more intrinsically as follows: Given

the non-vanishing differential forms of maximum degree ω1 and ω2 determin-
ing the respective orientations on M1 and M2, it suffices to consider the form
ω = pr∗1 ω1 ∧ pr∗2 ω2 on M1 × M2.

(ii) Let M be a differentiable n-manifold and let π be the projection map of the tan-
gent bundle T M . For any coordinates {xi} on an open subset U ⊂ M , denote by
{xi, yi} = {xi ◦ π,dxi} the usual coordinates on π−1(U). Let {x′ i} be another
set of coordinates defined on a open subset U ′ ⊂ M such that U ∩ U ′ �= ∅. The
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change of coordinates x′ i = x′ i (xj ) on U ∩ U ′ induces the change of coordi-
nates on π−1(U ∩ V ) given by

x′ i = x′ i(x1, . . . , xn
)
, y′ i =

n∑

j=1

∂x′ i

∂xj
yj , i = 1, . . . , n.

The Jacobian matrix of this change of coordinates is

J =
⎛

⎝
∂x′ i
∂xj 0

∂2x′ i
∂xk∂xj yk ∂x′ i

∂xj

⎞

⎠ .

Since detJ = det( ∂x′ i
∂xj )2 > 0, it follows that T M is orientable.

Problem 3.9 Prove that if a C∞ manifold M admits an atlas formed by two charts
(U,ϕ), (V ,ψ), and U ∩ V is connected, then M is orientable. Apply this result to
the sphere Sn, n > 1, with the atlas formed by the stereographic projections from
the poles (see Problem 1.28).

Solution Let ϕ = (x1, . . . , xn) and ψ = (y1, . . . , yn) be the coordinate maps. If
det(∂xi/∂yj ) �= 0 on U ∩ V and U ∩ V is connected, we have either (a) det(∂xi/

∂yj ) > 0 for all U ∩ V ; or (b) det(∂xi/∂yj ) < 0 for all U ∩ V . In the case (a), it
follows that M is orientable with the given atlas. In the case (b), we should only
have to consider as coordinate maps ϕ = (x1, . . . , xn) and ψ = (−y1, y2, . . . , yn).

For Sn, n > 1, considering the stereographic projections, we have the coordinate
domains

UN = {(
x1, . . . , xn+1) ∈ Sn : xn+1 �= 1

}
,

US = {(
x1, . . . , xn+1) ∈ Sn : xn+1 �= −1

}
.

As

UN ∩ US = {(
x1, . . . , xn+1) ∈ Sn : xn+1 �= ±1

} = ϕ−1
N

(
R

n \ {0})

is connected, we conclude that Sn is orientable.

Problem 3.10 Study the orientability of the following C∞ manifolds:

(i) A cylindrical surface of R3, with the atlas given in Problem 1.30.
(ii) The Möbius strip, with the atlas given in Problem 1.31.

(iii) The real projective space RP2, with the atlas given in Problem 1.81.

Solution

(i) The Jacobian matrix J of the change of the charts given in Problem 1.30 always
has positive determinant; in fact, equal to 1. Thus the manifold is orientable.
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(ii) For the given atlas, the open subset U ∩ V decomposes into two connected
open subsets W1 and W2, such that on W1 (resp., W2) the Jacobian of the
change of coordinates has positive (resp., negative) determinant. Hence M is
not orientable.

(iii) With the notations in (ii) in Problem 1.81, we have in the case of RP2 three
charts (U1, ϕ1), (U2, ϕ2) and (U3, ϕ3), such that, for instance,

ϕ1(U1 ∩ U2) = ϕ1
({[

x1, x2, x3] : x1 �= 0, x2 �= 0
}) = {(

t1, t2) ∈ R
2 : t1 �= 0

}

= V1 ∪ V2,

where V1 = {(t1, t2) ∈ R
2 : t1 > 0} and V2 = {(t1, t2) ∈ R

2 : t1 < 0} are con-
nected. The change of coordinates on ϕ1(U1 ∩ U2) is given by

(
ϕ2 ◦ ϕ−1

1

)(
t1, t2) = ϕ2

([
1, t1, t2]) =

(
1

t1
,
t2

t1

)
,

and the determinant of its Jacobian matrix is easily seen to be equal to
−1/(t1)3, which is negative on V1 and positive on V2. Hence, RP2 is not ori-
entable.

Problem 3.11 Consider the map

ϕ : R2 → R
2, (x, y) �→ (u, v) = (

x ey + y, x ey + λy
)
, λ ∈ R.

(i) Find the values of λ for which ϕ is a diffeomorphism.
(ii) Find the values of λ for which the diffeomorphism ϕ is orientation-preserving.

Solution

(i) Suppose that

x ey + y = x′ey′ + y′, x ey + λy = x′ey′ + λy′. (�)

Subtracting, we have (1 − λ)y = (1 − λ)y′. Hence, for λ �= 1, we have y = y′.
And from any of the two equations (�), we deduce that x = x′.

The map ϕ is clearly C∞ and its inverse map, given by

y = u − v

1 − λ
, x = λu − v

λ − 1
e

u−v
λ−1 ,

is a C∞ map if and only if λ �= 1. Thus ϕ is a diffeomorphism if and only if
λ �= 1.

(ii) Consider the canonical orientation of R2 given by dx ∧ dy, or by du ∧ dv. We
have

det

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
= det

(
ey x ey + 1
ey x ey + λ

)
.
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Therefore,

du ∧ dv = ∂(u, v)

∂(x, y)
dx ∧ dy = ey(λ − 1)dx ∧ dy.

That is, ϕ is orientation-preserving if λ > 1.

3.3 Integration on Chains. Stokes’ Theorem I

For the theory relevant to the next problem and others in this chapter, see, among
others, Spivak [1] and Warner [2].

Problem 3.12 Compute the integral of the differential 1-form

α = (
x2 + 7y

)
dx + (−x + y siny2)dy ∈ Λ1

R
2

over the 1-cycle given by the oriented segments going from (0,0) to (1,0), then
from (1,0) to (0,2), and then from (0,2) to (0,0).

Solution Denoting by c the 2-chain (with the usual counterclockwise orientation)
whose boundary is the triangle above, by Stokes’ Theorem I (Theorem 3.3), we have

∫

∂c

α =
∫

c

dα = −8
∫

c

dx ∧ dy = −8
∫ 1

0

(∫ 2(1−x)

0
dy

)
dx = −8.

Problem 3.13 Deduce from Green’s Theorem 3.4:

(i) The formula for the area of the interior D of a simple, closed positively oriented
plane curve [a, b] → (x(t), y(t)) ∈ R

2:

A(D) =
∫

D

dx dy = 1

2

∫ b

a

(
x(t)

dy

dt
− y(t)

dx

dt

)
dt.

(ii) The formula of change of variables for double integrals:

∫∫

D

F(x, y)dx dy =
∫∫

ϕ−1D

F
(
x(u, v), y(u, v)

)∂(x, y)

∂(u, v)
dudv,

corresponding to the coordinate transformation ϕ : R2 → R
2, x ◦ ϕ = x(u, v),

y ◦ ϕ = y(u, v).

Solution

(i) It follows directly from Green’s Theorem 3.4 by letting g = x, f = −y in the
formula mentioned there.
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(ii) First, we let f = 0, ∂g/∂x = F in Green’s formula. Then, from the formula for
change of variables and again from Green’s Theorem 3.4, we obtain

∫∫

D

F(x, y)dx dy =
∫

∂D

g dy = ±
∫

ϕ−1(∂D)

ϕ∗(g dy)

= ±
∫

ϕ−1(∂D)

(g ◦ ϕ)

(
∂y

∂u
u′(t) + ∂y

∂v
v′(t)

)
dt

= ±
∫

ϕ−1(∂D)

{(
(g ◦ ϕ)

∂y

∂u

)
du

dt
+

(
(g ◦ ϕ)

∂y

∂v

)
dv

dt

}
dt

= ±
∫∫

ϕ−1D

{
∂

∂u

(
(g ◦ ϕ)

∂y

∂v

)
− ∂

∂v

(
(g ◦ ϕ)

∂y

∂u

)}
dudv,

(�)

where one takes + if ϕ preserves orientation and − if not. Moreover

∂

∂u

(
(g ◦ ϕ)

∂y

∂v

)
=

((
∂g

∂x
◦ ϕ

)
∂x

∂u
+

(
∂g

∂y
◦ ϕ

)
∂y

∂u

)
∂y

∂v
+ (g ◦ ϕ)

∂2y

∂u∂v
,

∂

∂v

(
(g ◦ ϕ)

∂y

∂u

)
=

((
∂g

∂x
◦ ϕ

)
∂x

∂v
+

(
∂g

∂y
◦ ϕ

)
∂y

∂v

)
∂y

∂u
+ (g ◦ ϕ)

∂2y

∂v∂u
.

Hence,

∂

∂u

(
(g ◦ ϕ)

∂y

∂v

)
− ∂

∂v

(
(g ◦ ϕ)

∂y

∂u

)
= (F ◦ ϕ)

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)

= (F ◦ ϕ)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣.

Substituting this equality in (�), we have

∫∫

D

F(x, y)dx dy = ±
∫∫

ϕ−1D

(F ◦ ϕ)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣dudv.

Problem 3.14 Let c2 be a 2-chain in R
2 and f ∈ C∞

R
2. Prove that

∫

∂c2

(
∂f

∂y
dx − ∂f

∂x
dy

)
= 0

if f satisfies the Laplace equation

∂2f

∂x2
+ ∂2f

∂y2
= 0.
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Solution From Stokes’ Theorem I, we have

∫

∂c2

(
∂f

∂y
dx− ∂f

∂x
dy

)
=

∫

c2

d

(
∂f

∂y
dx− ∂f

∂x
dy

)
= −

∫

c2

(
∂2f

∂x2
+ ∂2f

∂y2

)
dx∧dy = 0.

Problem 3.15 Consider the 1-chain

cr,n : [0,1] →R
2 \ {0}, cr,n(t) = (

x(t) = r cos 2πnt, y(t) = r sin 2πnt
)
,

for r ∈R
+, n ∈ Z

+.
Prove that cr,n is not the boundary of any 2-chain in R

2 \ {0}.

Solution Let θ be the angle function on C = cr,n([0,1]). Then, dθ is a globally
defined differential 1-form on C, and we have

∫

cr,n

dθ =
∫

cr,n

d arctan

(
y

x

)
= 2πn.

Suppose cr,n = ∂c2 for a 2-chain c2 ∈ R
2 \ {0}. Then, from Stokes’ Theorem I, it

follows that
∫

cr,n

dθ =
∫

c2

d (dθ) = 0,

thus leading us to a contradiction.

3.4 Integration on Oriented Manifolds. Stokes’ Theorem II

Problem 3.16 Given on R
3 the differential form

ω = (
z − x2 − xy

)
dx ∧ dy − dy ∧ dz − dz ∧ dx,

compute
∫
D

i∗ω, where i denotes the inclusion map of

D = {
(x, y, z) ∈R

3 : x2 + y2 � 1, z = 0
}

in R
3.

Solution We have
∫

D

i∗ω = −
∫

D

(
x2 + xy

)
dx ∧ dy.

Taking polar coordinates

x = ρ cos θ, y = ρ sin θ, ρ ∈ (0,1), θ ∈ (0,2π),
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one has

∂(x, y)

∂(ρ, θ)
= det

(
cos θ −ρ sin θ

sin θ ρ cos θ

)
= ρ.

Therefore, for D0 = D \ {[0,1) × {0}}, one has

∫

D

i∗ω = −
∫

D0

(
x2 + xy

)
dx ∧ dy = −

∫

D0

ρ2(cos2 θ + sin θ cos θ
)
ρ dρ ∧ dθ

= −
∫ 2π

0

∫ 1

0
ρ3(cos2 θ + sin θ cos θ

)
dρ dθ

− 1

4

∫ 2π

0

(
1 + cos 2θ

2
+ sin 2θ

2

)
dθ

= −π

4
.

Problem 3.17 Let (u, v,w) denote the usual coordinates on R
3. Consider the

parametrisation (see Remark 1.4)

u = 1

2
sin θ cosϕ, v = 1

2
sin θ sinϕ, w = 1

2
cos θ + 1

2
, (�)

where θ ∈ (0,π), ϕ ∈ (0,2π), of the sphere

S2 =
{
(u, v,w) ∈R

3 : u2 + v2 +
(

w − 1

2

)2

= 1

4

}
.

Let N = (0,0,1) be its north pole and let π : S2 \{N} → R
2 be the stereographic

projection onto the plane R
2 ≡ w = 0. Let vR2 = dx ∧ dy be the canonical volume

form on R
2 and let vS2 = 1

4 sin θ dθ ∧ dϕ be the volume form on S2 above. Write
π∗vR2 in terms of vS2 .

Remark The 2-form

vS2 = 1

4
sin θ dθ ∧ dϕ

is called the canonical volume form on S2 because one has σ(X,Y ) = 1, X,Y ∈
X(S2), for {X,Y,n} an orthonormal basis of R3, where n denotes the exterior (i.e.
pointing outwards) unit normal field on S2.

Solution The given stereographic projection is the restriction to S2 \ {N} of the
map

π̃ : R3 \ {w = 1} →R
2, (u, v,w) �→

(
u

1 − w
,

v

1 − w

)
,
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whose Jacobian matrix is
(

1
1−w

0 u

(1−w)2

0 1
1−w

v

(1−w)2

)
.

Hence

π̃∗vR2 = π̃∗(dx ∧ dy)

= π̃∗ dx ∧ π̃∗ dy

=
(

1

1 − w
du + u

(1 − w)2
dw

)
∧

(
1

1 − w
dv + v

(1 − w)2
dw

)

= 1

(1 − w)2
du ∧ dv + v

(1 − w)3
du ∧ dw − u

(1 − w)3
dv ∧ dw. (��)

Thus, substituting (�) into (��), we obtain after an easy computation

π∗vR2 = π̃∗vR2 = − sin θ

(1 − cos θ)2
dθ ∧ dϕ = − 4

(1 − cos θ)2
vS2 .

Problem 3.18 Compute the integral of ω = (x − y3)dx + x3 dy along S1 applying
Stokes’ Theorem II.

Solution Let D (resp., D̄) be the open (resp., closed) unit disk of R2, and let D0 =
D \ {[0,1) × {0}}. Applying Stokes’ Theorem II, we have

∫

S1
ω =

∫

∂D̄

ω =
∫

D̄

dω =
∫

D0

dω =
∫

D0

3
(
x2 + y2)dx ∧ dy.

Taking polar coordinates, we have as in Problem 3.16 that

∫

S1
ω =

∫

D0

3ρ3 dρ ∧ dθ = 3
∫ 2π

0

(∫ 1

0
ρ3 dρ

)
dθ = 3π

2
.

Problem 3.19 Let f be a C∞ function on R
2, and D a compact and connected

subset of R2 with regular boundary ∂D such that f |∂D = 0.

(i) Prove the equality

∫

D

f

(
∂2f

∂x2
+ ∂2f

∂y2

)
dx ∧ dy = −

∫

D

{(
∂f

∂x

)2

+
(

∂f

∂y

)2}
dx ∧ dy.

(ii) Deduce from (i) that if ∂2f

∂x2 + ∂2f

∂y2 = 0 on D, then f |D = 0.
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Solution

(i) By Stokes’ Theorem II, we have

∫

D

{
f

(
∂2f

∂x2
+ ∂2f

∂y2

)
+

(
∂f

∂x

)2

+
(

∂f

∂y

)2}
dx ∧ dy =

∫

∂D

ψ,

where ψ is a differential 1-form so that dψ is equal to the 2-form in the left-
hand side. One solution is given by

ψ = −f
∂f

∂y
dx + f

∂f

∂x
dy.

Since f |∂D = 0, we have
∫

∂D

ψ = 0,

from which the wanted equality follows.

(ii) If �f = − ∂2f

∂x2 − ∂2f

∂y2 = 0, by the equality we have just proved, one has

∫

D

{(
∂f

∂x

)2

+
(

∂f

∂y

)2}
dx ∧ dy = 0,

that is, |df | being the modulus of df , we have
∫
D

|df |2 dx ∧ dy = 0; thus f is
constant on D, but since f |∂D = 0 we have f |D = 0.

Problem 3.20 Let α = 1
2π

x dy−y dx

x2+y2 ∈ Λ1(R2 \ {0}).
(i) Prove that α is closed.

(ii) Compute the integral of α on the unit circle S1.
(iii) How does this result show that α is not exact?
(iv) Let j : S1 ↪→ R

2 be the canonical embedding. How can we deduce from (iii)
that j∗α is not exact?

Solution

(i) Immediate.
(ii) Parametrise S1 (see Remark 1.4) as x = cos θ , y = sin θ , θ ∈ (0,2π). Then

∫

S1
α = 1

2π

∫ 2π

0

(
cos2 θ + sin2 θ

)
dθ = 1.

(iii) If it were α = df for a given function f , applying Stokes’ Theorem II, it would
be

∫

S1
α =

∫

S1
df =

∫

∂S1
f = 0,

contradicting the result in (ii).
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(iv) Let us suppose that j∗α is exact, i.e. j∗α = df . Then we would have
∫

S1
j∗α =

∫

j (S1)

α =
∫

S1
α = 1.

On the other hand, as j∗ d = dj∗, and denoting by ∅ the empty set, we would
have

∫

S1
j∗α =

∫

S1
j∗ df =

∫

S1
dj∗f =

∫

∂S1
j∗f =

∫

∅
j∗f = 0,

but this contradicts the previous calculation.

Problem 3.21 Consider

α = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy

(x2 + y2 + z2)3/2
∈ Λ2(

R
3 \ {0}).

(i) Prove that α is closed.
(ii) Compute

∫
S2 α.

(iii) How does this prove that α is not exact?

Solution

(i) Immediate.
(ii) Consider the parametrisation of S2 given (see Remark 1.4) by

x = cos θ cosϕ, y = cos θ sinϕ, z = sin θ,

θ ∈ (−π/2,π/2), ϕ ∈ (0,2π), which covers the surface up to a set of measure
zero. We have α|S2 = − cos θ dθ ∧ dϕ and

∫

S2
α =

∫ 2π

0

(∫ π
2

− π
2

− cos θ dθ

)
dϕ = −4π.

(iii) If α = dβ , by Stokes’ Theorem II, it would be
∫

S2
α =

∫

S2
dβ =

∫

∂S2
β = 0,

which contradicts the result in (ii).

3.5 De Rham Cohomology

Problem 3.22 Prove that the de Rham cohomology groups of the circle are

Hi
dR

(
S1,R

) =
{
R, i = 0,1,

0, i > 1.

The relevant theory is developed, for instance, in Warner [2].
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Solution One has H 0
dR(S1,R) = R because S1 is connected. Since dimS1 = 1, one

has Hi
dR(S1,R) = 0 if i > 1.

As for H 1
dR(S1,R) = R, every 1-form on S1 is closed. Now, let ω0 be the re-

striction to S1 of the differential form (−y dx + x dy)/(x2 + y2) on R
2 \ {(0,0)}.

We locally have ω0 = dθ , θ being the angle function. Hence dθ is non-zero at every
point of S1. (In spite of the notation, dθ is not exact, cf. Problem 3.20.) Hence, if
ω is any 1-form on S1, then we have ω = f (θ)dθ , where f is differentiable and
periodic with period 2π . To prove this, we only have to see that there is a constant
c and a differentiable and periodic function g(θ) such that

f (θ)dθ = c dθ + dg(θ).

In fact, if this is so, integrating we have

c = 1

2π

∫ 2π

0
f (θ)dθ.

We then define

g(θ) =
∫ θ

0

(
f (t) − c

)
dt,

where c is the constant determined by the previous equality. One clearly has that g

is differentiable. Finally, we must see that it is periodic. Indeed,

2g(θ + 2π) = g(θ) +
∫ θ+2π

θ

(
f (t) − c

)
dt

= g(θ) +
∫ θ+2π

θ

f (t)dt −
∫ 2π

0
f (t)dt (f is periodic)

= g(θ).

Problem 3.23 Compute the de Rham cohomology groups of the annular region

M = {
(x, y) ∈ R

2 : 1 <

√
x2 + y2 < 2

}
.

Hint Apply the following general result: if two maps f,g : M → N between two
C∞ manifolds are C∞ homotopic, that is, if there exists a C∞ map F : M ×
[0,1] → N such that F(p,0) = f (p), F(p,1) = g(p) for every p ∈ M , then the
maps

f ∗ : Hk
dR(N,R) → Hk

dR(M,R), g∗ : Hk
dR(N,R) → Hk

dR(M,R),

are equal for every k = 0,1, . . . .

The relevant theory is developed, for instance, in Warner [2].
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Solution Let N = S1(3/2) be the circle with centre at the origin and radius
3/2 in R

2. Let j : N → M be the inclusion map and let r be the retraction
r : M → N , p �→ 3

2 (p/|p|). Then, r ◦ j : N → N is the identity on S1(3/2). The
map j ◦ r : M → M , p �→ 3

2 (p/|p|), although not the identity of M , is homotopic
to the identity. In fact, we can define the homotopy by

H : M × [0,1] → M, (p, t) �→ tp + (1 − t)
3

2

p

|p| .

Thus, for k = 0,1,2, we have

j∗ : Hk
dR(M,R) → Hk

dR

(
S1(3/2),R

)
, r∗ : Hk

dR

(
S1(3/2),R

) → Hk
dR(M,R),

so, applying the general result quoted in the hint, we have

r∗ ◦ j∗ = (j ◦ r)∗ = identity on Hk
dR(M,R),

j∗ ◦ r∗ = (r ◦ j)∗ = identity on Hk
dR

(
S1(3/2),R

)
.

Hence, j∗ and r∗ are mutually inverse and it follows that

Hk
dR(M,R) ∼= Hk

dR

(
S1(3/2),R

)
. (�)

Consequently, H 0
dR(M,R) = R (as one can also deduce directly since M is con-

nected). In fact, there are no exact 0-forms, and the closed 0-forms (that is, the
differentiable functions f such that df = 0) are the constant functions, since M is
connected.

As dimS1(3/2) = 1, from the isomorphism (�) we obtain Hk
dR(M,R) = 0,

k � 2.
Finally, H 1

dR(M,R) ∼= H 1
dR(S1(3/2),R) =R, hence

Hk
dR(M,R) =

{
R, k = 0,1,

0, k > 1.

Problem 3.24

(i) Prove that every closed differential 1-form on the sphere S2 is exact.
(ii) Using de Rham cohomology, conclude that the torus T 2 and the sphere are not

homeomorphic.

Hint Consider the parametrisation (see Remark 1.4)

x = (R + r cos θ) cosϕ, y = (R + r cos θ) sinϕ, z = r sinϕ,

R > r, θ,ϕ ∈ (0,2π),

of the torus T 2, and take the restriction to T 2 of the differential form ω = x dy−y dx

x2+y2

on R
3 \ {z-axis}.

The relevant theory is developed, for instance, in Warner [2].
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Solution Let ω be a closed 1-form on the sphere. We shall prove that it is exact. Let
U1 and U2 be the open subsets of S2 obtained by removing two antipodal points,
respectively. Then, writing ωi = ω|Ui

, since Ui is homeomorphic to R
2, there exist

functions fi : Ui → R, such that ωi = dfi . As U1 ∩ U2 is connected, one has f1 =
f2 + λ on U1 ∩ U2, for λ ∈ R. The function f : S2 → R defined by f |U1 = f1,
f |U2 = f2 + λ is differentiable and df = ω.

To prove that T 2 and S2 are not homeomorphic, we only have to find a closed
1-form on the torus which is not exact. Let j : T 2 ↪→ R

3 \ {0} be the canonical
injection map. The form

ω = x dy − y dx

x2 + y2

on R
3 \ {0} is closed. Since d ◦ j∗ = j∗ ◦ d, the form j∗ω on T 2 is also closed. To

see that ω is not exact, by Stokes’ Theorem, we only have to see that there exists
a closed curve γ on the torus such that

∫
γ

j∗ω �= 0. In fact, let γ be the parallel
obtained taking θ = 0 in the parametric equations above of the torus. Hence,

∫

γ

j∗ω =
∫ 2π

0
dϕ = 2π �= 0.

Problem 3.25 Let z0, . . . , zn be homogeneous coordinates on the complex projec-
tive space CPn, and let Uα be the open subset defined by zα �= 0, α = 0, . . . , n. Let
us fix two indices 0 � α < β � n. Set uj = zj /zα on Uα , vj = zj /zβ on Uβ .

We define two differential 2-forms ωα on Uα and ωβ on Uβ , by setting

ωα = 1

i

(∑
j duj ∧ dūj

ϕ
−

∑
j,k uj ūk duk ∧ dūj

ϕ2

)
,

ωβ = 1

i

(∑
j dvj ∧ dv̄j

ψ
−

∑
j,k vj v̄k dvk ∧ dv̄j

ψ2

)
,

where ϕ = ∑n
j=0 uj ūj , ψ = ∑n

j=0 vj v̄j . Prove:

(i) ωα|Uα∩Uβ = ωβ |Uα∩Uβ .
(ii) There exists a unique differential 2-form ω on CPn such that ω|Uα = ωα , for

all α = 0, . . . , n.
(iii) dω = 0.

(iv) ω ∧ (n)· · · ∧ ω is a volume form.
(v) ω is not exact.

Remark Let a = [ω] be the (real) cohomology class of ω. It can be proved that
a generates the real cohomology ring of CPn; specifically, that H ∗

dR(CPn,R) ∼=
R[a]/(an+1).
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Solution

(i) On Uα ∩ Uβ one has vj = uj/uβ , and hence ϕ = ψ uβūβ . We have

dvk ∧ dv̄j = uβ duk − uk duβ

(uβ)2
∧ ūβ dūj − ūj dūβ

(ūβ)2

= 1

(uβ)2(ūβ)2

(
uβūβ duk ∧ dūj − uβūj duk ∧ dūβ

− ukūβ duβ ∧ dūj + ukūj duβ ∧ dūβ
)
,

and substituting into the expression of ωβ , on Uα ∩ Uβ we obtain

iωβ = uβūβ

ϕ

∑

j

1

(uβ)2(ūβ)2

(
uβūβ duj ∧ dūj − uβūj duj ∧ dūβ

− uj ūβ duβ ∧ dūj + uj ūj duβ ∧ dūβ
)

− (uβ)2(ūβ)2

ϕ2

∑

j,k

uj ūk

uβūβ

1

(uβ)2(ūβ)2

(
uβūβ duk ∧ dūj

− uβūj duk ∧ dūβ − ukūβ duβ ∧ dūj + ukūj duβ ∧ dūβ
)
.

Since the sum of the first and fifth summands above is iωα , and moreover, the
fourth and eighth summands are easily seen to cancel, we have

iωβ = iωα

− 1

ϕuβūβ

∑

j

(
uβūj duj ∧ dūβ + uj ūβ duβ ∧ dūj

)

+ 1

ϕ2uβūβ

∑

j,k

uj ūk
(
uβūj duk ∧ dūβ + ukūβ duβ ∧ dūj

)
. (�)

Consider the last summand. Interchanging the indices j and k, since
∑

j uj ūj

= ∑
k ukūk = ϕ, this summand can be written as

1

ϕ2uβūβ
ϕ

(∑

j

ūj uβ duj ∧ dūβ +
∑

k

ukūβ duβ ∧ dūk

)
,

which is the opposite to the second summand in (�). Hence ωβ = ωα on Uα ∩
Uβ .

(ii) Because of (i), we only need to prove that ωα takes real values. In fact,

ω̄α = −1

i

(∑
j dūj ∧ duj

ϕ
−

∑
j,k ūj uk dūk ∧ duj

ϕ2

)
,

and permuting the indices j and k in the second summand, we obtain ω̄α = ωα .
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(iii) On Uα we easily get

i dω = i dωα

= −
∑

j,k

1

ϕ2

(
uk duj ∧ dūj ∧ dūk + ūk duj ∧ dūj ∧ duk

)

−
∑

j,k

1

ϕ2

(
ūk duj ∧ duk ∧ dūj + uj dūk ∧ duk ∧ dūj

)

+ 2

ϕ3
dϕ ∧

∑

j,k

uj ūk duk ∧ dūj . (��)

The first two summands at the right-hand side of (��) cancel. The third sum-
mand vanishes, as

dϕ =
∑

h

(
uh dūh + ūh duh

)

yields

dϕ ∧
∑

j,k

uj ūk duk ∧ dūj = −dϕ ∧
∑

j,k

(
uj dūj

) ∧ (
ūk duk

)

= −dϕ ∧
(∑

j

uj dūj

)
∧

(
dϕ −

∑

j

uj dūj

)
.

(iv) As in (iii), we have

∑

j,k

uj ūk duk ∧ dūj =
∑

k

ūk duk ∧
∑

j

uj dūj .

Set

ν = 1

ϕ

∑

j

ūj duj , μ = 1

ϕ

∑

j

duj ∧ dūj .

Then iω = μ − ν ∧ ν̄. Thus

inωn = μn −
(

n

1

)
μn−1 ∧ ν ∧ ν̄.

Now,

μn = n!
ϕn

du1 ∧ dū1 ∧ · · · ∧ dun ∧ dūn
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(we suppose that α = 0, so that only the coordinates u1, ū1, . . . , un, ūn are
effective), and

μn−1 = (n − 1)!
ϕn−1

n∑

k=1

du1 ∧ dū1 ∧ · · · ∧ d̂uk ∧ d̂ūk ∧ · · · ∧ dun ∧ dūn.

Hence

nμn−1 ∧ ν ∧ ν̄ = n!
ϕn+1

n∑

k=1

du1 ∧ dū1 ∧ · · ·

∧ d̂uk ∧ d̂ūk ∧ · · · ∧ dun ∧ dūn ∧ ūk duk ∧ uk dūk

= n!
ϕn+1

n∑

k=1

ukūk du1 ∧ dū1 ∧ · · · ∧ dun ∧ dūn

= n!(ϕ − 1)

ϕn+1
du1 ∧ dū1 ∧ · · · ∧ dun ∧ dūn,

for
n∑

k=0

ukūk = u0ū0 +
n∑

k=1

ukūk = 1 +
n∑

k=1

ukūk = ϕ.

Thus

inωn = n!
ϕn+1

du1 ∧ dū1 ∧ · · · ∧ dun ∧ dūn,

which does not vanish on U0, hence on CPn, as the same argument holds for
any α = 0, . . . , n.

(v) Immediate from (iv) and Stokes’ Theorem.
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Chapter 4
Lie Groups

Abstract After giving some definitions and results on Lie groups, Lie algebras and
homogeneous spaces, this chapter discusses problems on these topics. First, some
specific examples of Lie groups and Lie algebras are introduced. Then, we consider
homomorphisms, Lie subgroups and Lie subalgebras, integration on Lie groups, the
exponential map exp and its differential map exp∗, the adjoint representation Ad and
its differential map ad, and Lie groups of transformations. We include several prob-
lems with the idea of introducing the reader to basic topics on Lie groups and Lie
algebras, such as the determination of all the 2-dimensional Lie algebras, and all (up
to isomorphism) 1-dimensional Lie groups. We also present some calculations that
justify the name ‘exponential,’ the computation of the dimensions of some classical
groups, and some properties of the Heisenberg group are studied. Some miscella-
neous topics are considered as well. Special mention should also be paid of the fact
that, in the present edition, two new problems have been added in the section con-
cerning the exponential map, where the simply connected Lie group corresponding
to a given Lie algebra is obtained, and that the section devoted to the adjoint repre-
sentation, contains six new problems concerning somewhat more specialized topics
such as Weyl group, Cartan matrix, Dynkin diagrams, etc. Similarly, the section de-
voted to Lie groups of transformations, has been increased in ten new application
problems in Symplectic Geometry, Hamiltonian Mechanics, and other related top-
ics. We then switch to homogeneous spaces, bringing in various classical examples,
as the sphere, the real Stiefel manifold, and the real Grassmannian and other not so
usual examples.

(. . . ) ‘Satz 2. Sind δx = X1(x)δt, . . . , δx = Xr(x)δt r unabhängige in-
finitesimale Transformationen eine r-gliedrigen Gruppe, so befriedigen die X

paarwise Relationen der Form:

Xi

dXk

dx
−Xk

dXi

dx
= cik1X1 + · · · + cikrXr,

wo die ciks Konstanten sind.’ Dieser Satz zusammen mit den Formeln (2)
genügt zur Bestimmung aller Transformationgruppen einer einfach aus-
gedehnten Mannigfaltigkeit.

P.M. Gadea et al., Analysis and Algebra on Differentiable Manifolds,
Problem Books in Mathematics, DOI 10.1007/978-94-007-5952-7_4,
© Springer-Verlag London 2013
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(. . . ) Meine Untersuchungen über Transformationgruppen beabsichti-
gen zunc̈hst die allegemeine des folgenden (. . . ) Problem. Man soll alle
r-gliedrigen Transformationgruppen einer n-fach ausgedehnten Mannig-
faltigkeit bestimmen.

(. . . ) Durch Verfolgung dieser Bemerkung kam ich zu dem überraschenden
Resultate, daß alle Transformationgruppen einer einfach ausgedehnten Man-
nigfaltigkeit durch Einführung von zweckmäßingen Variablen auf die lineare
Form reduzierte werden können, wie auch, daß die Bestimmung aller Grup-
pen einer n-fach ausgedehnten Mannigfaltigkeit durch die Integration von
gewöhnlicehn Differentialgelichungen geleistet werder kann. Diese Entdeck-
und, deren esrte Spuren auf ABEL and HELMHOLTZ zurückfüheren sind, is
der Ausgangspunkt meiner vieljähringen Untersuchungen über Transforma-
tionsgruppen gewesen.1

SOPHUS LIE, “Theorie der Transformationgruppen,” Math. Ann. 16
(1880), 441–528. Gessammelte Abhandlungen, Sechster Band, ss. 1–94,
B.G. Teubner, Leipzig und H. Aschehoug & Co., Oslo, 1927. Translated
by Michael Ackerman, Comments by Robert Hermann in Sophus Lie 1880
Transformation Group Paper, Math Sci Press, Brookline, Massachusetts,
1975. (With kind permission from Springer.)

A Lie group is, roughly speaking, an analytic manifold with a group struc-
ture such that the group operations are analytic. Lie groups arise in a natural
way as transformations groups of geometric objects. For example, the group
of all affine transformations of a connected manifold with an affine connection
and the group of all isometries of a pseudo-Riemannian manifold are known
to be Lie groups in the compact open topology. However, the group of all dif-
feomorphisms of a manifold is too big to form a Lie group in any reasonable
topology (. . . ). In the early days of Lie group theory, the late nineteenth cen-
tury, the notion of a Lie group had, in the hands of S. Lie, W. Killing, and
É. Cartan, a primarily local character (. . . ) Global Lie groups were not em-
phasized until during the 1920’s through the work of H. Weyl, É. Cartan, and
O. Schreier. These two viewpoints, the infinitesimal method and the integral
method, were not completely coordinated until É. Cartan proved in 1930 that
every Lie algebra over R is the Lie algebra of a Lie group.

1“(. . . ) ‘Theorem 3.2.1. If δx = X1(x)δt, . . . , δx = Xr(x)δt are r independent infinitesimal
transformations of an r-term transformation group, then the X’s satisfy relations of the form
XidXk/dx − XkdXi/dx = cik1X1 + · · · + cikrXr , where the ciks are constants.’ This theorem,
together with formulas 3.2.1, suffices for the determination of all transformation groups of a one-
dimensional manifold. (. . . ) My investigations of transformation groups are meant in the first place
to settle the following (. . . ) Problem. To determine all r-term transformation groups of an n-
dimensional manifold. (. . . ) I reached the astounding result that all transformation groups of a
one-dimensional manifold can be reduced to linear form by introducing suitable variables and also
that all groups of an n-dimensional manifold can be determined by integrating ordinary differen-
tial equations. This discovery, whose first traces back to ABEL and HELMHOLTZ, was the starting
point of many years of my investigations on transformation groups.”
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SIGURDUR HELGASON, Differential Geometry, Lie Groups, and Symmet-
ric Spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical
Society, 2001, pp. 87, 128. (With kind permission from the author.)

4.1 Some Definitions and Theorems on Lie Groups

In this section we denote by F the field R of real numbers or the field C of complex
numbers.

Definitions 4.1 A Lie group G over R (resp. C) is a differentiable (resp. complex)
manifold endowed with a group structure such that the map G × G → G, (s, t) �→
st−1, is C∞ (resp. holomorphic).

Let G and H be Lie groups. A map Φ : G → H is a homomorphism of Lie
groups if it is a group homomorphism and a C∞ (resp. holomorphic) map of differ-
entiable (resp. complex) manifolds. Φ is said to be an isomorphism if it is moreover
a diffeomorphism (resp. a biholomorphic map).

Let G and H be two Lie groups and consider a homomorphism of H into the
abstract group of automorphisms of G, Ψ : H → AutG. The semi-direct product
G�Ψ H of G and H with respect to Ψ is the product manifold G × H , endowed
with the Lie group structure given (denoting Ψ (h) by Ψh) by

(g,h)
(
g′, h′) = (

gΨh

(
g′), hh′), (g,h)−1 = (

Ψh−1

(
g−1), h−1),

for g,g′ ∈ G, h,h′ ∈ H .
A Lie algebra over F is a vector space g over F together with a bilinear operator

[ , ] : g× g → g (called the bracket) such that for all X,Y,Z ∈ g:

(i) [X,Y ] = −[Y,X] (anti-commutativity).
(ii) [[X,Y ],Z] + [[Y,Z],X] + [[Z,X], Y ] = 0 (Jacobi identity).

Let g and h be Lie algebras. A map ϕ : g → h is a homomorphism of Lie algebras
if it is linear and preserves brackets. ϕ is said to be an isomorphism if it is moreover
one-to-one and surjective.

An endomorphism D : g → g of a Lie algebra g is called a derivation if

D
([X,Y ]) = [DX,Y ] + [X,DY ] for all X,Y ∈ g.

The set of derivations of g is denoted by Derg.

Definition 4.2 Let End(n,F) be the vector space of all n × n matrices over F. Let
GL(n,F) be the set of all invertible elements of End(n,F). The subset GL(n,F) is
open in End(n,F), and we regard it as an open submanifold of End(n,F). It is clear
that under matrix multiplication GL(n,F) becomes a (real or complex) Lie group.

An endomorphism φV of a vector space V over F is called semi-simple if every
invariant subspace of V admits a complementary invariant subspace of V or, equiv-
alently, if V is a direct sum of φV -irreducible subspaces. If F = C, such irreducible
subspaces are one-dimensional.
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The Lie algebra of the Lie group G is the Lie algebra g of left-invariant vector
fields on G. There exists an isomorphism of vector spaces

g → TeG, X �→ Xe.

In other words, a left-invariant vector field is completely determined by its value at
the identity. Using this isomorphism, we can identify the tangent space TeG with
the Lie algebra g of G.

For any Lie subalgebra h ⊂ g of the Lie algebra of G, there exists a unique
connected (not necessarily closed) subgroup H of G with Lie algebra h, i.e. H is a
Lie group, and as a subset of G it is the image of some homomorphism (which is a
natural immersion) H ↪→ G.

Let g and h be two Lie algebras, and let ϕ : h → Endg be a homomorphism such
that every operator ϕ(Y ), Y ∈ h, is a derivation of g. The semi-direct product g�ϕ h

of g and h with respect to ϕ is the direct sum vector space g⊕ h, endowed with the
Lie algebra structure given by the bracket

[
(X,Y ),

(
X′, Y ′)] = ([

X,X′]+ ϕ(Y )X′ − ϕ
(
Y ′)X,

[
Y,Y ′]) (4.1)

for X,X′ ∈ g, Y,Y ′ ∈ h.

Proposition 4.3 Let G,H be simply connected Lie groups, and let g,h be their
respective Lie algebras. Then, given a homomorphism

ψ : h−→ Derg,

there exists a unique map

Ψ : H −→ AutG

such that:

(i) Ψ (h1h2) = Ψ (h1)Ψ (h2).
(ii) Denoting Ψ (h) by Ψh, the map

Ψh : G × H −→ G

(g,h) �−→ Ψh(g)

is C∞, and, g�ψ h being the semi-direct product of g and h with respect to ψ , it is
the Lie algebra of the Lie group G�Ψ H .

Theorem 4.4 (Cartan’s Criterion for Closed Subgroups) Let G be a Lie group, and
let H be a closed abstract subgroup of G. Then H has a unique manifold structure
that makes H into a Lie subgroup of G.

Definitions 4.5 A Lie group G acts on itself on the left by inner automorphisms,
that is, automorphisms ι defined by

ι : G× G → G, ι(s, t) = sts−1.
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Letting ιs(t) = ι(s, t), the map s �→ ι∗s |TeG is, under the identification of the vector
space TeG with the Lie algebra g of G, a homomorphism of G into the group of
automorphisms Autg of the vector space g, called the adjoint representation of G

and denoted by

Ad : G → Autg.

The differential map of Ad, denoted by ad, is a homomorphism of g into the Lie
algebra Endg of endomorphisms of the vector space g, called the adjoint represen-
tation of the Lie algebra g. One has

adX Y = [X,Y ], X,Y ∈ g.

By the Jacobi identity each endomorphism adX , X ∈ g, is a derivation of g.
A bilinear form B : g× g → F on a Lie algebra g is called invariant if

B
([X,Y ],Z) = −B

(
Y, [X,Z]), X,Y,Z ∈ g.

The connected subgroup Intg (not necessarily closed) of the Lie group Autg with
Lie algebra adg is called the group of inner automorphisms of g. Each invariant form
B on g is invariant with respect to the group Intg.

The bilinear form

Bg(X,Y ) = tr(adX ◦ adY ), X,Y ∈ g,

is called the Killing form of the Lie algebra g. The Killing form is invariant with
respect the group of automorphisms Autg of g, i.e.

Bg

(
a(X), a(Y )

) = Bg(X,Y ), X,Y ∈ g, a ∈ Autg.

Each derivation of the Lie algebra g, in particular each operator adX , is skew-
symmetric with respect to Bg: Bg([X,Y ],Z) = −Bg(Y, [X,Z]), X,Y,Z ∈ g. In
other words, the Killing form is an invariant bilinear form on g.

Since GL(n,F) is an open subset of End(n,F), the tangent space to the Lie group
GL(n,F) at the identity element is identified naturally with the space End(n,F). It
is clear that for any g ∈ GL(n,F), the linear map

End(n,F) → End(n,F), X �→ gXg−1,

is the adjoint operator Adg and determines the adjoint representation of GL(n,F).
Therefore its differential map ad in this case has the following form:

adX Y = XY − YX, X,Y ∈ End(n,F).

In other words, the Lie algebra of GL(n,F) is the set of n× n matrices over F with
bracket defined by

[X,Y ] = XY − YX.
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Moreover, the Lie algebra of an arbitrary Lie subgroup of GL(n,F) can be consid-
ered as a subalgebra of the Lie algebra End(n,F) with this bracket.

A real Lie algebra a is called a real form of a complex Lie algebra g if g is
(isomorphic to) the complexification aC of a. For instance, the Lie algebras sl(n,R)

and su(n) are real forms of the complex Lie algebra sl(n,C).

Definitions 4.6 Given a Lie algebra g, one defines its derived algebra by D(g) =
[g,g], and one considers Dk+1(g) = D(Dk(g)) for k = 1,2, . . . . Then g is called
solvable if there exists an integer k � 1 such that Dk(g) = 0.

A Lie group over F is said to be solvable if its Lie algebra so is.
A solvable Lie algebra over R is said to be completely solvable (or split solv-

able) if all the eigenvalues of the adjoint representation belong to R. A solvable Lie
group over R is said completely solvable (or split solvable) if its Lie algebra so is.
A completely solvable Lie algebra over R is also called real solvable.

A Lie algebra g over F is said to be nilpotent if for each X ∈ g, adX is a nilpotent
endomorphism of g.

Let h be a nilpotent subalgebra of a Lie algebra g over F, and let λ ∈ h∗ be any
linear function on h. The generalised weight space gλ = gλ(h) of g relative to adg h
is defined as

g
λ = {

X ∈ g : (adh −λ(h)I
)n
(X) = 0 ∀h ∈ h and some positive integer n = n(h)

}
.

It is evident that the weight space gλ ⊂ g, where

gλ = {
X ∈ g : [h,X] = λ(h)X, ∀h ∈ h

}

is a subspace of gλ.

Proposition 4.7 If g is a finite-dimensional Lie algebra and h a nilpotent Lie sub-
algebra, then the generalised weight spaces of g relative to adg h satisfy:

(i) h ⊆ g0.
(ii) [gλ,gμ] ⊆ gλ+μ (with gλ+μ understood to be zero if λ+μ is not a generalised

weight) for any λ,μ ∈ h∗.
(iii) If B is an invariant form on g, then the spaces gλ and gμ such that λ + μ = 0

are orthogonal with respect to B .
(iv) If an invariant form B on g is non-degenerate, then its restriction to gλ × g−λ,

λ ∈ h∗, is non-degenerate, and, in particular, the restriction of B to g0 × g0 is
non-degenerate.

(v) If, in addition, F= C, then g = ⊕
λ∈h∗ gλ.

In particular, the subspace g0(h) ⊂ g is a Lie subalgebra of g over F.

Definition 4.8 A nilpotent Lie subalgebra h of a finite-dimensional complex Lie
algebra g over F is called a Cartan subalgebra if h = g0(h).
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Proposition 4.9 A nilpotent Lie subalgebra h of a finite-dimensional Lie algebra g

over F is a Cartan subalgebra if and only if h coincides with its normaliser:

Ng(h) = {
X ∈ g : [X,h] ⊆ h

}
.

Definitions 4.10 Let g be a Lie algebra over F, and let ρ be a representation of g
on a vector space V . One can regard each X ∈ g as generating a one-dimensional
Abelian subalgebra, and we can form the generalised eigenspace

V 0,X = {
Y ∈ g : ρ(X)n(Y ) = 0 for some n = n(ρ,X)

}

for the eigenvalue 0 under ρ(X). Let

�g(V ) = min
X∈gdimV 0,X, Rg(V ) = {

X ∈ g : dimV 0,X = �g(V )
}
.

These are related to the characteristic polynomial

det
(
tI − ρ(X)

) = tn −
n−1∑

i=0

di(X)ti .

In any basis of g, the di(X) are polynomial functions in g, as one can see by ex-
panding det(tI − ∑

j xjρ(Xj )). For a given X, if i is the smallest value for which

di(X) = 0, then i = dimV 0,X , since the degree of the last term of the characteristic
polynomial is the multiplicity of 0 as a generalised eigenvalue of ρ(X). Thus, �g(V )

is the minimum value i such that di ≡ 0, and

Rg(V ) = {
X ∈ g : d�g(V )(X) = 0

}
.

Let ρ be the adjoint representation of g on g. The elements of Rg(g), relative to
the adjoint representation, are called the regular elements of g. By definition, X ∈
Rg(g) if and only if dimg0,X = �g(g).

We have the following:

Theorem 4.11 If X is a regular element of a finite-dimensional Lie algebra g

over F, then the Lie algebra g0,X (of dimension �g(g)) is a Cartan subalgebra
of g (this implies in particular that the set of Cartan subalgebras is not empty).
Each Cartan subalgebra h of g of dimension �g(g) has the form h = g0,X for some
X ∈ Rg(g). If h is a Cartan subalgebra of g, then dimh� �g(g).

Definition 4.12 A Lie algebra (over F) is said to be simple if it is of dimension
greater than one and has no proper ideals. A Lie algebra is semi-simple if it has no
non-zero Abelian ideals. A Lie group G is semi-simple if its Lie algebra is semi-
simple.
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A Lie algebra is semi-simple if and only if it is the direct sum of simple Lie
algebras.

Theorem 4.13 (Cartan’s Criterion for Semisimplicity) A Lie algebra is semisimple
if and only its Killing form is non-degenerate.

In the case of a complex semi-simple Lie algebra, we have the following:

Theorem 4.14 Let g be a complex semi-simple Lie algebra. Then all Cartan sub-
algebras of g are conjugate with respect to the group of inner automorphisms Intg
of g. If h is a Cartan subalgebra of g, then h is an Abelian Lie algebra, and for each
λ ∈ h∗, we have gλ(h) = gλ(h), i.e. each endomorphism adX , X ∈ h, is semi-simple.

In particular, each non-zero space gλ consists of eigenvectors of the opera-
tors adh, h ∈ h, with eigenvalues λ(h), and in g there exists a common eigenvector
basis for all adh, h ∈ h.

Definitions 4.15 A torus is a complex Lie group T isomorphic to C
∗ × · · · × C

∗
(n times). The integer n is called the rank of T . If G is a complex Lie group, then a
torus T ⊂ G is maximal if it is not contained in any larger torus of G. The rank of a
complex Lie group G is defined as the rank of any maximal torus.

In a semi-simple complex connected Lie group G, all maximal toruses are conju-
gate with respect to the group of inner automorphisms Ad(G) of G, and a connected
subgroup H ⊂ G is a maximal torus if and only if its Lie algebra h is a Cartan sub-
algebra of g. In particular, each Cartan subalgebra of g is the Lie algebra of some
maximal torus.

Definitions 4.16 Let G be a complex semi-simple Lie group, let H be a maximal
torus, and let g and h be the corresponding Lie algebras (h is a Cartan subalgebra
of g). Let h∗ be the space dual to h. If α = 0 and gα = 0, then α is said to be a
root and gα is said to be a root space (of g with respect to h). If α is a root, then a
non-zero element of gα is said to be a root vector for α. The set Δ of roots is said
to be the root system of g. It depends on a choice of Cartan subalgebra (maximal
torus), so one writes Δ(g,h) to make the choice explicit.

Since by Proposition 4.7 the Killing form Bg is non-degenerate on h × h, it
defines a bilinear form on h∗ that we denote by 〈α,β〉. Let α ∈ Δ and β ′ ∈ (Δ∪{0}).
The α-series containing β ′ is by definition the set of all elements of the set Δ∪ {0}
of the form β ′ + nα, where n is an integer.

Then we have the following:

Theorem 4.17 The roots and root spaces of a complex semi-simple Lie algebra
satisfy the following properties:
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(i) Δ spans h∗.
(ii) If α ∈ Δ, then dim[gα,g−α] = 1, and there is a unique element hα ∈ [gα,g−α]

such that α(h) = Bg(hα,h) for all h ∈ h, the real subspace hR of h generated
by the vectors hα , α ∈ Δ, has real dimension dimC h, and it is a real form
of h. Moreover, the Killing form Bg is positive definite on hR, and

[Yα,Y−α] = Bg(Yα,Y−α)hα, Yα ∈ gα, Y−α ∈ g−α.

(iii) The quotient 2〈β,α〉
|α|2 is an integer for all α,β ∈ Δ.

(iv) Δ spans the real subspace h∗
R

of h∗, in particular α(hβ) ∈R for all α,β ∈ Δ.
(v) The orthogonal transformations

sα(β) = β − 2〈β,α〉
|α|2 α, β ∈ Δ,

carry Δ to itself.
(vi) For α ∈ Δ and β ′ ∈ (Δ ∪ {0}), the α-series containing β ′ has the form

β ′ + nα with p � n � q (it is an uninterrupted string β ′ + pα,βα, . . . , β
′ +

0α, . . . , β ′ + qα,βα) such that p + q = −2 〈β ′,α〉
〈α,α〉 .

(vii) If α,β ∈ Δ and α + β ∈ Δ, then [gα,gβ ] = gα+β .
(viii) If Yα ∈ gα , Y−α ∈ g−α and Yβ ∈ gβ with α,β ∈ Δ, then

[
Y−α, [Yα,Yβ ]] = qα,β(1 − pα,β)

2
α(hα)Bg(Y−α,Yα)Yβ,

where β + nα, pα,β � n� qα,β , is the α-series in Δ containing β .

Note that by definition 〈α,β〉 = Bg(hα,hβ) for α,β ∈ Δ.

Definition 4.18 An abstract root system in a finite-dimensional real vector space
V with inner product 〈 , 〉 and squared norm | · |2 is a finite subset Δ of non-zero
elements such that:

(i) Δ spans V .
(ii) The orthogonal transformations

sα(β) = β − 2〈β,α〉
|α|2 α, β ∈ Δ,

carry Δ to itself.
(iii) The quotient 2〈β,α〉

|α|2 is an integer ∀α,β ∈ Δ.

If α,β ∈ Δ are proportional, β = aα (a ∈ R), then a = ± 1
2 ,±1,±2. A root

system Δ is said to be reduced if α,β ∈ Δ, β = aα implies a = ±1.

It is evident that a root system Δ(g,h) of a complex semi-simple Lie algebra g

is a reduced abstract root system.
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Proposition 4.19 Let Δ be a reduced root system in the inner product space V .
Then:

(i) If α ∈ Δ, then −α ∈ Δ.
(ii) If α ∈ Δ, then the only members of Δ∪ {0} proportional to α are 0,±α.

(iii) If α ∈ Δ and β ∈ Δ∪ {0}, then

2〈β,α〉
|α|2 = 0,±1,±2,±3.

(iv) If α ∈ Δ and β ∈ Δ are such that |α| ≤ |β|, then

2〈β,α〉
|β|2 = 0,±1.

(v) If α,β ∈ Δ with 〈α,β〉 > 0, then α − β is a root or 0. If α,β ∈ Δ with
〈α,β〉 < 0, then α + β is a root or 0.

(vi) If α,β ∈ Δ and neither α + β nor α − β belong to Δ∪ {0}, then 〈α,β〉 = 0.

Definitions 4.20 A lexicographic ordering on a vector space V , induced by the
basis {v1, . . . , vn} of V , is defined by putting v > u if there is a (unique) integer k,
with 1 � k � n, such that 〈v, vk〉 > 〈u,vk〉 and 〈v, vi〉 = 〈u,vi〉 for all i < k. We say
that an element v is positive if v > 0. The set of all positive roots of Δ (with respect
to the above ordering) is denoted by Δ+. It is clear that Δ = −Δ since sα(α) = −α,
and therefore Δ = Δ+ ∪ −Δ+ and Δ+ ∩ −Δ+ = ∅.

A root α, i.e. a vector α in Δ, is said to be simple if it is positive, but not a sum
of two positive roots. (Note that this definition and all the following developments
depend on the chosen ordering.) Let Π ⊂ Δ+ be the set of all simple roots in Δ; this
is called the simple root system of Δ. We have some elementary but basic properties
of Π :

(i) Π = {α1, . . . , αn} contains n = dimV linearly independent roots, i.e. Π is a
basis of V .

(ii) If β ∈ Δ+, then β = m1α1 + · · · +mrαr where mi are nonnegative integers.

It is evident that any subset Π ⊂ Δ satisfying conditions (i) and (ii) defines a lex-
icographic ordering on V . With respect to this ordering, Π is a simple root system.

Definitions 4.21 Let Δ be a reduced root system in a vector space V of dimen-
sion n. Let Π = {α1, . . . , αn} be the set of simple roots in Δ (determined by some
lexicographic ordering). The Cartan matrix of Δ and Π is the n× n-matrix C with
entries

Cij = 2〈αi,αj 〉
|αi |2 .

The Dynkin diagram of a set Π of simple roots is the graph obtained associating to
each simple root αi the vertex ◦ of a graph, attaching to that vertex a weight pro-
portional to |αi |2 and connecting each two such vertices corresponding to different
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simple roots αi and αj by CijCji (no sum, and the possible values are 0,1,2,3)
edges. When there is one edge, the roots have the same length, but if there are two
or three edges, one often adds an arrow pointing from the longer to the shorter root.

Definition 4.22 Let G be a connected semi-simple complex Lie group, and let
H ⊂ G be a maximal torus. Let h and g be the corresponding Lie algebras. The
Weyl group W of G is the group of automorphisms of H (or, equivalently, of the
Cartan subalgebra h) that are restrictions of inner automorphisms of G preserving
H (of inner automorphisms of g preserving h).

Since all maximal toruses of G are conjugate with respect to Ad(G) and all
Cartan subalgebras of g are conjugate with respect to Intg, the Weyl group W does
not depend on the choice of a maximal torus H ⊂ G (or a Cartan subalgebra h ⊂ g).
The real subspace hR ⊂ h is invariant with respect of W , i.e. s(h) ∈ hR for any s ∈ W

and h ∈ hR. The Weyl group W = W(g,h) as a group acting on hR is generated by
the reflections sα defined by the roots α ∈ Δ(g,h).

A real Lie algebra a is compact if there exists an invariant inner product on it,
i.e. a symmetric bilinear positive (negative) definite form β on a such that

β
([X,Y ],Z) = −β

(
Y, [X,Z]), X,Y,Z ∈ a.

Theorem 4.23 Let a be a real Lie algebra. The following conditions are equi-
valent:

(i) a is a compact Lie algebra.
(ii) The Lie group of inner automorphisms Inta of a is compact.

(iii) a is a direct sum of semi-simple and Abelian algebras, and for any X ∈ a, the
endomorphism adX is semi-simple and has purely imaginary eigenvalues.

(iv) If a is semi-simple, then the Killing form Ba of a is negative definite.
(v) If a semi-simple, then a is the Lie algebra of some compact Lie group.

If a Lie algebra a is compact and semi-simple, then any nilpotent subalgebra t of
a is Abelian, and a0(t) = a0(t) because each endomorphism adX , X ∈ a, is semi-
simple. Therefore each Cartan subalgebra of a is the centraliser of some regular
element of a, and it is a maximal Abelian subalgebra of a. All Cartan subalgebras
of k are conjugate with respect to the group of inner automorphisms Int k.

Let K be a connected compact Lie group with Lie algebra k. Since a Cartan
subalgebra t of k coincides with its normaliser in k, the connected Lie subgroup T

of K with Lie algebra t ⊂ k is closed, and it is isomorphic to the real n-dimensional
torus S1 × · · · × S1, where n = dim t. The group T is called a maximal torus of K .

Let G be a complex connected semi-simple Lie group with Lie algebra g. There
exists a compact real form k of g. The corresponding (real) connected subgroup
K ⊂ G is closed in G, and, moreover, it is a maximal compact subgroup of G.
All the compact real forms of g are conjugate with respect to the group of inner
automorphisms Intg. If t is a Cartan subalgebra of k, then its complexification h =
tC is a Cartan subalgebra of g. Therefore the root system Δ = Δ(g,h) = Δ(kC, tC)
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of g will also be called a root system for the compact Lie algebra k, and we will
denote it by Δ = Δ(k, t).

Let T be a maximal torus of K with Lie algebra t. The Weyl group W(k, t) of K is
the group of automorphisms of T (or, equivalently, of the Cartan subalgebra t) that
are restrictions of inner automorphisms of K preserving T (of inner automorphisms
of k preserving t). If hR is the space (real form of h) generated by the vectors hα ∈ h,
α ∈ Δ(g,h), then t = ihR. Since the space hR is invariant with respect to the Weyl
group W = W(g,h) of g, so is t = ihR. Therefore the restriction map s �→ s|t of
the group W(g,h) is well defined. This map induces an isomorphism of the Weyl
group W = W(g,h) of g onto the Weyl group W(k, t) of k. Using this map, we will
identify the Weyl groups W(g,h) and W(k, t) and will denote them by the same
symbol W .

We also have the following (cf. [2, Chap. V, §3, Lemma 2, (iii), Theorem 1, (iv);
and Chap. VI, §1, Theorem 2, (vii)]):

Theorem 4.24 Let K be a connected semi-simple compact Lie group, and let T

be a maximal torus with Lie algebra t. The Weyl group W of K as a group of
transformations of t is generated by the transformations sαi

|t, i = 1, . . . , n, where
{α1, . . . , αn} is the set Π of simple roots of the root system Δ = Δ(kC, tC) = Δ(k, t).

If s ∈ W and s is a reflection in t, then s = sα|t for some root α ∈ Δ.

We now give some more definitions.

Definitions 4.25 Suppose that n = 2r is even. Let s0 denote the r × r matrix
⎛

⎜⎜⎜⎜⎜
⎝

1
1

. .
.

1
1

⎞

⎟⎟⎟⎟⎟
⎠

with 1 in the skew diagonal and 0 elsewhere. Set

J+ =
(

0 s0
s0 0

)
, J− =

(
0 s0

−s0 0

)
,

and define the bilinear forms

B(z,w) = (z, J+w), Ω(z,w) = (z, J−w), z,w ∈C
n.

The form B , with B(z,w) = z1w2r +· · ·+z2rw1, is non-degenerate and symmetric.
The form Ω , with

Ω(z,w) = −z1w2r − · · · − zrwr+1 + zr+1wr + · · · + z2rw1,

is non-degenerate and skew-symmetric.
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Proposition 4.26 Let SO(C2r ,B) be the Lie group of complex matrices preserv-
ing the bilinear form B and having determinant 1. The Lie algebra so(C2r ,B) of
SO(C2r ,B) consists of all matrices

A =
(
a b

c −s0
tas0

)

,

where a ∈ gl(r,C), and b, c are r × r matrices such that

tb = −s0bs0,
tc = −s0cs0

(that is, b and c are skew-symmetric around the skew diagonal).
Let Sp(C2r ,Ω) be the Lie group of complex matrices preserving the bilinear

form Ω . The Lie algebra sp(C2r ,Ω) of Sp(C2r ,Ω) consists of all matrices

A =
(
a b

c −s0
tas0

)

,

where a ∈ gl(r,C), and b, c are r × r matrices such that tb = s0bs0, tc = s0cs0 (that
is, b and c are symmetric around the skew diagonal).

Suppose now that n = 2r + 1. One then embeds the group SO(C2r ,B) into the
group SO(C2r+1,B), for r � 2, by

(
a b

c d

)
�→

⎛

⎝
a 0 b

0 1 0
c 0 d

⎞

⎠ , (4.2)

and one considers the symmetric bilinear form

B(z,w) =
∑

i+j=n+1

ziwj , z,w ∈ C
n.

One can write this form as B(x, y) = (x, Sy), where the n × n symmetric matrix S

has block form
⎛

⎝
0 0 s0
0 1 0
s0 0 0

⎞

⎠ .

Writing the elements of M(n,C) in the same block form, one has the following
description (see [6]) of the Lie algebra of the complex orthogonal group in this
case:
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Proposition 4.27 The Lie algebra so(C2r+1,B) of SO(C2r+1,B) consists of all
matrices

A =
⎛

⎜
⎝

a w b

u 0 −tw0

c −s0
tu −s0

tas0

⎞

⎟
⎠ ,

where a ∈ gl(r,C), b, c are r × r matrices such that

tb = −s0bs0,
tc = −s0cs0

(that is, b and c are skew-symmetric around the skew diagonal), w is an r ×1 matrix
(column vector), and u is a 1 × r matrix (row vector).

Definitions 4.28 Let G be one of the following classical Lie groups of rank n:

GL(n,C), SL(n+ 1,C), Sp
(
C

2n,Ω
)
, SO

(
C

2n,B
)
, SO

(
C

2n+1,B
)
,

and let g be its Lie algebra. The subgroup H of diagonal matrices in G is a maximal
torus of rank n, and we denote its Lie algebra by h. Fix a basis for the dual h∗ of h
as follows:

(i) Let G = GL(n,C). Define the linear functional εi on h by

〈εi,A〉 = ai, A = diag(a1, . . . , an).

Then {ε1, . . . , εn} is a basis for h∗.
(ii) Let G = SL(n + 1,C). Then h consists of all diagonal traceless matrices. De-

fine εi as in (i) as a linear functional on the space of diagonal matrices for
i = 1, . . . , n + 1. The restriction of εi to h is then an element of h∗, again
denoted as εi . The elements of h∗ can be written uniquely as

n+1∑

i=1

λiεi, λi ∈C,

n+1∑

i=1

λi = 0.

The functionals

εi − 1

n+ 1
(ε1 + · · · + εn+1), i = 1, . . . , n,

are a basis for h∗.
(iii) Let G be Sp(C2n,Ω) or SO(C2n,B). Define the linear functionals εi on h

by 〈εi,A〉 = ai for A = diag(a1, . . . , an,−an, . . . ,−a1) ∈ h and i = 1, . . . , n.
Then {ε1, . . . , εn} is a basis for h∗.

(iv) Let G = SO(C2n+1,B). Define the linear functionals εi on h by 〈εi,A〉 =
ai for A = diag(a1, . . . , an,0,−an, . . . ,−a1) ∈ h and i = 1, . . . , n. Then
{ε1, . . . , εn} is a basis for h∗.
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We recall the following result (cf. e.g. [11, Lect. 14])).

Theorem 4.29 Let G2 ⊂ SO(7) be the 14-dimensional compact exceptional simple
Lie group. Its Lie subalgebra g2 ⊂ so(7) consists of the skew-symmetric real 7 × 7
matrices (aij ) such that

a32 + a45 + a76 = 0, a13 + a64 + a75 = 0, a21 + a65 + a47 = 0,

a14 + a36 + a27 = 0, a51 + a26 + a73 = 0, a17 + a42 + a53 = 0,

a61 + a52 + a34 = 0.

Definitions 4.30 Let (M,Ω) be a symplectic manifold, and let G be a Lie group
acting symplectically on M , i.e. g∗Ω = Ω for all g ∈ G. Let g be the Lie algebra
of G. For any X ∈ g, denote by X̂ the vector field on M generated by the one-
parameter subgroup exp tX ⊂ G:

X̂p = d

dt

∣∣∣∣
t=0

(exp tX)p, p ∈ M.

The symplectic action of G on M is called Hamiltonian if there exists a G-
equivariant linear map X �→ fX from the Lie algebra g to the space C∞M such
that X̂ is the Hamiltonian vector field of fX for all X ∈ g. In other words, for all
X,Y ∈ g, g ∈ G, a, b ∈ R,

faX+bY = afX + bfY , −dfX = i
X̂
Ω,

(
g−1)∗fX = fAdg X.

It can be proved that in this case

{fX,fY } = f[X,Y ], X,Y ∈ g,

i.e. this G-equivariant linear map X �→ fX is a homomorphism from the Lie alge-
bra g to the Lie algebra C∞M with respect to the standard Poisson bracket on M

induced by Ω . The map

μ : M → g
∗, μ(p)(X) = fX(p),

from M to the dual space g∗ of the Lie algebra g is called the momentum map.
The momentum map is G-equivariant with respect to the action of G on M and the
coadjoint action of G on g∗, i.e.

μ(gp)(X) = μ(p)(Adg−1 X).

Definitions 4.31 The action of a Lie group G on a connected differentiable mani-
fold M is said to be effective if gp = p for all p ∈ M implies that g = e, the identity
element of G.

The action of a Lie group G on a connected differentiable manifold M is said to
be free if gp = p for a point p ∈ M implies that g = e.
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The action of a Lie group G on a connected differentiable manifold M is said to
be transitive if for each two points p,q ∈ M , there exists g ∈ G such that gp = q .

The action of a Lie group G on a connected differentiable manifold M is said to
be properly discontinuous if the two following conditions hold:

(i) Each point p ∈ M has a neighbourhood U such that U ∩ g(U) is empty for all
g ∈ G \ {e}.

(ii) Any two points p,p′ ∈ M that are not equivalent modulo G (i.e. gp = p′ for
every g ∈ G) have neighbourhoods U,U ′, respectively, such that U ∩ g(U ′) is
empty for all g ∈ G.

Conditions (i), (ii) together imply that M/G is a Hausdorff manifold of the same
dimension as M .

Definition 4.32 A Lie group G is said to act simply transitively on a manifold M

if the action is transitive and free.

Theorem 4.33 Let H be a closed subgroup of a Lie group G. Then the quotient
manifold G/H admits a unique structure of smooth manifold in such a way that the
natural projection G → G/H is a submersion and the natural action of G on G/H

is smooth.

Theorem 4.34 Let G × M → M , (s,p) �→ sp, be a transitive action of the Lie
group G on the differentiable manifold M on the left. Let p ∈ M , and let H be the
isotropy group at p. Define the map

Φ : G/H → M, Φ(sH) = sp.

Then Φ is a diffeomorphism.

Proposition 4.35 Let G/H be a homogeneous space, and let N be the maximal
normal subgroup of G contained in H . Notice that N is a closed subgroup. Then
G′ = G/N acts on G/H with isotropy subgroup H ′ = H/N , and G′ acts effectively
on G/H = G′/H ′.

Definition 4.36 A homogeneous space G/H is said to be reductive if there exists
an Ad(H)-invariant direct sum complement vector space m to the Lie algebra h of
the isotropy group H .

4.2 Lie Groups and Lie Algebras

Problem 4.37 Prove that the following are Lie groups:
(i) Each finite-dimensional real vector space with its structure of additive group.

In particular Rn.
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(ii) The set of non-zero complex numbers C
∗ with the multiplication of complex

numbers.
(iii) G × H , where G,H are Lie groups, with the product (g,h)(g′, h′) =

(gg′, hh′), g,g′ ∈ G, h,h′ ∈ H . In general, if Gi , i = 1, . . . , n, is a Lie group,
then G1 × · · · ×Gn is a Lie group.

(iv) T n for n� 1 (toral group).
(v) AutV , where V is a vector space of finite dimension over R or C, with the

composition product, and in particular GL(n,R) = AutRR
n and GL(n,C) =

AutCC
n.

(vi) K = R
n × GL(n,R), n > 1, with the group structure defined by

(x,A)
(
x′,A′) = (

x +Ax′,AA′).

The relevant theory is developed, for instance, in Warner [13].

Solution

(i) Let V be a finite-dimensional real vector space. If dimV = n, then V has a
natural structure of C∞ manifold, defined by the global chart (V ,ϕ), ϕ : V →
R

n, the coordinate functions being the dual basis to a given basis of V . The
structure does not depend on the given basis, as it is easily checked. On the
other hand, V has the structure of an additive group with the internal law, and
the map V × V → V , (v,w) �→ v −w, is C∞.

(ii) C
∗ has a natural structure of a two-dimensional manifold as an open subset

of the two-dimensional real vector space C. C∗ has the structure of a multi-
plicative group, and the map C

∗ ×C
∗ → C

∗, (z,w) �→ zw−1, is C∞, since if
z = a + bi, w = c + di, one has

zw−1 = ac + bd

c2 + d2
+ bc − ad

c2 + d2
i ≡

(
ac + bd

c2 + d2
,
bc − ad

c2 + d2

)
∈ R

2.

(iii) G × H is a Lie group with the structure of product manifold and the given
product, since

(
(g,h),

(
g′, h′)) �→ (g,h)

(
g′, h′)−1 = (

gg′−1, hh′−1)

is C∞.

(iv) T n = S1 × (n)· · · × S1. Hence T n is a Lie group as it is a finite product of Lie
groups.

(v) AutV is an open subset of EndV because

AutV = {A ∈ EndV : detA = 0}
and det is a continuous function. Therefore AutV has a structure of C∞ mani-
fold (as an open submanifold of Rn2

, n = dimV ). The multiplication in AutV
is the composition. Taking as its chart the map which associates to an auto-
morphism its matrix in a basis, the product is calculated by multiplication
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of matrices. The map AutV × AutV → AutV , (A,B) �→ AB−1, is C∞, as
the components of AB and B−1 are rational functions in the components of
A and B . Hence AutV is a Lie group. We have as particular cases the sets
GL(n,R) = AutRR

n and GL(n,C) = AutCC
n.

(vi) K = R
n × GL(n,R) (n > 1) has the structure of a product manifold, and with

the law (x,A) · (x′,A′) = (x+Ax′,AA′), it has the structure of a group. Let us
show that K is a Lie group. In fact, the above product is C∞, and the inverse of
(x,A) is (y,B) such that (y,B) · (x,A) = (0, I ). Hence the inverse of (x,A) is
(−A−1x,A−1), so the map (x,A) �→ (x,A)−1 is C∞. This is the Lie group of
affine transformations of Rn (identify the element (v,A) of K with the affine
transformations x �→ v+Ax of Rn). The multiplication in K corresponds with
the composition of affine transformations of Rn.

Problem 4.38 Consider the product T 1 × R
+ of the one-dimensional torus by the

multiplicative group of strictly positive numbers (that group is called the group of
similarities of the plane). Let (θ, x) denote local coordinates. Show that the vector
field

∂

∂θ
+ x

∂

∂x

is left-invariant.

Solution (i) Let Ls : G → G denote the left translation Lss1 = ss1 on a Lie
group G. A vector field Y on a Lie group is left-invariant if Ls∗Ye = Ys for all
s ∈ G, where e stands for the identity element of G.

In the present case, let (α, a), (θ, x) be in the coordinate domain with (α, a)

arbitrarily fixed and any (θ, x). The left translation is given by L(α,a)(θ, x) =
(α + θ, ax). Therefore one has

L(α,a)∗ =
(

∂(α+θ)
∂θ

∂(α+θ)
∂x

∂(ax)
∂θ

∂(ax)
∂x

)

=
(

1 0
0 a

)
.

A vector field Z on T 1 ×R
+ is left-invariant if

L(α,a)∗Z(0,1) = Z(α,a). (�)

For the vector field

X(θ,x) = ∂

∂θ
+ x

∂

∂x

(see Fig. 4.1), we have

L(α,a)∗X(0,1) ≡
(

1 0
0 a

)(
1
1

)
≡ ∂

∂θ
+ a

∂

∂x
= X(α,a).

Since (α, a) is arbitrary, we have that condition (�) is satisfied at any point, and
X is in fact left-invariant on the given coordinate domain. The prolongation to all of
G is immediate.
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Fig. 4.1 The vector field
∂/∂θ + x∂/∂x on the group
of similarities of the plane

Problem 4.39 Using the coordinate vector fields ∂/∂xi
j , 1 � i, j � n, on GL(n,R),

prove that the vector field Y on GL(n,R) whose matrix of components at the identity
is A = (ai

j ) and whose matrix of components is equal to BA at the element B = (bij )

of GL(n,R) is a left-invariant vector field.

Solution We have YI = ∑n
i,j=1 a

i
j (∂/∂x

i
j )I , where I denotes the identity element

of GL(n,R). Since (LB∗YI )x
i
j = YI (x

i
j ◦LB) and

(
xi
j ◦ LB

)
(C) = xi

j (BC) =
∑

k

bikc
k
j ,

one has xi
j ◦ LB = ∑

k b
i
kx

k
j . Hence,

YI

(
xi
j ◦ LB

) =
n∑

h,k,l=1

ah
l

∂

∂xh
l

∣∣∣∣
I

(
bikx

k
j

) =
n∑

h=1

ah
j b

i
h,

that is,

LB∗YI =
n∑

i,j,h=1

biha
h
j

∂

∂xi
j

∣∣∣∣
B

=
n∑

i,j=1

(BA)ij
∂

∂xi
j

∣∣∣∣
B

= YB.

Problem 4.40 Show that the following are Lie algebras:

1. The vector space X(M) of C∞ vector fields X on a manifold M , with the bracket
of vector fields, satisfying LXT = 0, where T denotes a tensor field on M such
that either
(i) T is the identity endomorphism (the corresponding vector fields are all

X ∈X(M)), or
(ii) T is a volume element (the corresponding X are called divergence-free vec-

tor fields).
2. The vector space R

3 with the vector product operation × of vectors.
3. The space EndV of endomorphisms of a vector space V of dimension n, with

the operation [A,B] = AB −BA.



168 4 Lie Groups

The relevant theory is developed, for instance, in Warner [13].

Solution

1. (i) Let a, b ∈ R and X,Y ∈ X(M). Since

[aX1 + bX2, Y ]f = a[X1, Y ]f + b[X2, Y ]f,
[X,Y ] is linear in the first variable. As [X,Y ] = −[Y,X], linearity on the
first variable implies linearity on the second one. So [X,Y ] is R-bilinear and
anticommutative. The Jacobi identity

[[X,Y ],Z] + [[Y,Z],X]+ [[Z,X], Y ] = 0

is satisfied, as it follows by adding
[[X,Y ],Z]

f = [X,Y ](Zf )− Z
([X,Y ]f )

= X
(
Y(Zf )

)− Y
(
X(Zf )

)− Z
(
X(Yf )

)+ Z
(
Y(Xf )

)
,

and the two similar identities obtained by cyclic permutation of X, Y and Z.

(ii) If v is an n-form on an n-dimensional manifold M , then the conditions
LXv = LYv = 0 , X,Y ∈ X(M), imply

LλX+μY v = 0, λ,μ ∈ R,

by virtue of the linear properties of the Lie derivative. Hence the set

L (v) = {
X ∈X(M) : LXv = 0

}

is a vector space. Moreover, by using the formula L[X,Y ] = [LX,LY ], we
have L[X,Y ]v = LX(LY v) − LY (LXv) = 0, thus proving that L (v) is a Lie
algebra as well.

2. One defines

v ×w = (bf − ce,−af + cd, ae − bd), v = (a, b, c), w = (d, e, f ).

Then we have:
(a) (bilinearity) (λv + μw) × u = λv × u + μw × u, λ,μ ∈ R, and u × (λv +

μw) = λu× v +μu ×w, as it is easily seen.
(b) (skew-symmetry) u × w + w × u = 0. Immediate from the definition of the

vector product.
(c) (Jacobi identity) (u × v)×w + (v × w)× u + (w × u)× v = 0.

In fact, by using the formula relating the vector product and the scalar product,
we obtain:

(u × v)× w = (wu)v − (wv)u, (v × w)× u = (uv)w − (uw)v,

(w × u)× v = (vw)v − (vu)w.
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Adding these equalities and taking into account the skew-symmetry of the vector
product, we obtain the Jacobi identity.

3. The map

EndV × EndV → EndV, (A,B) �→ [A,B] = AB −BA,

is bilinear, skew-symmetric and satisfies the Jacobi identity, as it is easily seen.

Problem 4.41 Consider the set G of matrices of the form
⎛

⎝
x 0 y

0 x z

0 0 1

⎞

⎠ , x, y, z ∈R, x > 0,

with a structure of C∞ manifold defined by the chart mapping each element of G

as above to (x, y, z) ∈ R
+ ×R

2.

(i) Is G a Lie subgroup of GL(3,R)?
(ii) Prove that

{
X = x

∂

∂x
, Y = x

∂

∂y
, Z = x

∂

∂z

}

is a basis of left-invariant vector fields.
(iii) Find the structure constants of G with respect to the basis in (ii).

Solution

(i) The product of elements of G
⎛

⎝
x 0 y

0 x z

0 0 1

⎞

⎠

⎛

⎝
u 0 v

0 u w

0 0 1

⎞

⎠ =
⎛

⎝
xu 0 xv + y

0 xu xw + z

0 0 1

⎞

⎠ ∈ G

and the inverse of an element
⎛

⎝
x 0 y

0 x z

0 0 1

⎞

⎠

−1

=
⎛

⎝
1/x 0 −y/x

0 1/x −z/x

0 0 1

⎞

⎠ ∈ G

yield C∞ maps G × G → G and G → G, respectively. Hence G is a Lie
group, which is in addition an abstract subgroup of GL(3,R). The inclusion
G → GL(3,R) is an immersion, as its rank (that of the map (x, y, z) ∈ R

+ ×
R

2 �→ (x,0, y,0, x, z,0,0,1) ∈ R
9) is 3, so that G is a submanifold, hence a

Lie subgroup, of GL(3,R).
(ii) Let (a, b, c) ∈ G be arbitrarily fixed and any (x, y, z) in G. As the left transla-

tion by (a, b, c) is

L(a,b,c)(x, y, z) = (ax, ay + b, az + c),
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we have

L(a,b,c)∗ ≡ diag(a, a, a).

Let e = (1,0,0) denote the identity element of G. We have

Xe = ∂

∂x

∣∣∣∣
e

, Ye = ∂

∂y

∣∣∣∣
e

, Ze = ∂

∂z

∣∣∣∣
e

.

We deduce L(a,b,c)∗Xe = X(a,b,c) and similar expressions for Y and Z. Since
X,Y,Z are C∞ left-invariant vector fields that are linearly independent at e,
they are a basis of left-invariant vector fields.

(iii) Let X1 = X, X2 = Y , X3 = Z. Then

[X1,X2] = X2, [X1,X3] = X3, [X2,X3] = 0,

so, with respect to that basis, the non-zero structure constants are

c2
12 = −c2

21 = c3
13 = −c3

31 = 1.

Problem 4.42 Let

H =
⎧
⎨

⎩

⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠ : x, y, z ∈ R

⎫
⎬

⎭
.

(i) Show that H admits a structure of C∞ manifold with which it is diffeomorphic
to R

3.
(ii) Show that H with matrix multiplication is a Lie group (H is called the Heisen-

berg group).
(iii) Show that B = { ∂

∂x
, ∂
∂y

, x ∂
∂y

+ ∂
∂z

} is a basis of the Lie algebra h of H .

Solution

(i) The map

H
ϕ→ R

3
⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠ �→ (x, y, z)

is obviously bijective. Thus {(H,ϕ)} is an atlas for H , which defines a C∞
structure on H such that ϕ is a diffeomorphism with R

3.
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(ii) H is a group with the product of matrices, because if A,B ∈ H , then AB ∈ H ,
and if

A =
⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠ ∈ H, then A−1 =
⎛

⎝
1 −x xz − y

0 1 −z

0 0 1

⎞

⎠ ∈ H.

Moreover, the maps

H ×H
Φ→ H

(A,B) �→ AB
and H

Ψ→ H

A �→ A−1

are C∞. Indeed, ϕ ◦Φ ◦ (ϕ × ϕ)−1 : R3 ×R
3 −→R

3, given by
(
ϕ ◦Φ ◦ (ϕ × ϕ)−1)((x, y, z), (a, b, c)

) = (a + x, b + xc + y, c + z),

is obviously C∞. Similarly,

ϕ ◦Ψ ◦ ϕ−1: R
3 → R

3

(x, y, z) �→ (−x, xz − y,−z)

is also C∞. Thus H is a Lie group.
One can also prove it considering H as the closed subgroup of the general

linear group GL(3,R), defined by the equations

x1
1 = x2

2 = x3
3 = 1, x2

1 = x3
1 = x3

2 = 0,

where xi
j denote the usual coordinates of GL(3,R) ⊂ M(3,R) ∼= R

9. Hence by
Cartan’s Criterion on Closed Subgroups 4.4, G is a Lie subgroup of GL(3,R).

(iii) We have that dimH = 3. Thus dimh = 3, and so we only have to prove that

∂

∂x
,

∂

∂y
, x

∂

∂y
+ ∂

∂z

are linearly independent, which is immediate, and that they are left-invariant,
for which we shall write

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x

∂

∂y
+ ∂

∂z
.

We have to prove that for every A ∈ H , one has

(LA)∗B(Xi |B) = Xi |AB, B ∈ H, i = 1,2,3. (�)

Let (a, b, c) be arbitrarily fixed and any (x, y, z) in H . As the left translation
by (a, b, c) is L(a,b,c)(x, y, z) = (x + a, y + az + b, z + c), we have

L(a,b,c)∗ ≡
⎛

⎝
1 0 0
0 1 a

0 0 1

⎞

⎠ .
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Hence,

(LA)∗B(X1|B) ≡
⎛

⎝
1 0 0
0 1 a

0 0 1

⎞

⎠

⎛

⎝
1
0
0

⎞

⎠ ≡ ∂

∂x

∣∣∣∣
AB

,

and similarly we obtain

(LA)∗B(X2|B) = ∂

∂y

∣∣∣
∣
AB

, (LA)∗B(X3|B) = (x + a)
∂

∂y

∣∣∣
∣
AB

+ ∂

∂z

∣∣∣
∣
AB

,

so condition (�) is satisfied.

Problem 4.43 Let g be the Lie algebra of left-invariant vector fields on a Lie
group G. For every X ∈ g, let X� be the infinitesimal generator of the one-parameter
group

Φ : R× G → G, Φ(t, x) = exp(tX)x, t ∈R, x ∈ G.

Prove:

(i) The vector field X� is right-invariant.
(ii) LX�ω = 0 ∀ω ∈ g∗.

Solution

(i) The vector field X� is said to be right-invariant if Rg ·X� = X� for all elements
g ∈ G, which is equivalent to saying that every Φt commutes with every Rg

(see, e.g. [9, Vol. I, Chap. I, Corollary 1.8]). In fact, one has

(Φt ◦ Rg)(x) = (Rg ◦Φt)(x) = exp(tX)xg, g, x ∈ G, t ∈ R.

(ii) Moreover (see formula (2.1)),

(LX�ω)x = lim
t→0

ωx −Φ∗−t (ωΦt (x))

t
,

but

Φ∗−t (ωΦt (x)) = ωΦt (x) ◦ (Lexp(−tX))∗ = ωx,

as ω is left-invariant.
Hence LX�ω = 0.

Problem 4.44 Find the left- and right-invariant measures on:

(i) The Euclidean group E(2) of matrices of the form
⎛

⎝
1 0 0
x cos θ sin θ

y − sin θ cos θ

⎞

⎠ .
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(ii) The group of matrices of the form
( x z

0 y

)
, x, y > 0.

(iii) The Heisenberg group (see Problem 4.42).
(iv) The real general linear group GL(2,R).

Remark Given a matrix of functions, A = (ai
j ), we shall denote by dA the matrix

(dai
j ).

The relevant theory is developed, for instance, in Sattinger and Weaver [12].

Solution Let A be a generic element of any of the groups above. We have [12,
pp. 90–91] that one basis of left- (resp. right-) invariant 1-forms on G is given by a
set of different elements of the matrix A−1dA (resp. (dA)A−1). Then a left- (resp.
right-) invariant measure is given by the wedge product of the given basis of left-
(resp. right-) invariant 1-forms. In the present cases we obtain:

(i)

A−1dA =
⎛

⎝
0 0 0

cos θ dx − sin θ dy 0 dθ
sin θ dx + cos θ dy −dθ 0

⎞

⎠ ,

(dA)A−1 =
⎛

⎝
0 0 0

dx − y dθ 0 dθ
dy + x dθ −dθ 0

⎞

⎠ ,

and hence the left- and right-invariant measures ωL and ωR are, up to a constant
factor,

ωL = dx ∧ dy ∧ dθ = ωR.

(ii)

A−1dA =
(

dx
x

1
x
(dz − z

dy
y
)

0 dy
y

)

, (dA)A−1 =
(

dx
x

1
y
(dz − z dx

x
)

0 dy
y

)

,

hence,

ωL = 1

x2y
dx ∧ dy ∧ dz, ωR = 1

xy2
dx ∧ dy ∧ dz.

(iii) We have

A−1dA =
⎛

⎝
0 dx dy − x dz
0 0 dz
0 0 0

⎞

⎠ , (dA)A−1 =
⎛

⎝
0 dx dy − zdx
0 0 dz
0 0 0

⎞

⎠ ,

hence,

ωL = dx ∧ dy ∧ dz = ωR.
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(iv) Given A = (aij ) ∈ GL(2,R), i, j = 1,2, let A−1 = (αij ) be its inverse. Then
a basis of left-invariant 1-forms is given by the components of A−1dA. The
left-invariant measure ωL on GL(2,R) is given by the wedge product of such
components:

ωL = (
α11 da11 + α12 da21

)∧ (
α11 da12 + α12 da22

)

∧ (
α21 da11 + α22 da21

)∧ (
α21 da12 + α22 da22

)

= (
α11α22 − α12α21)2da11 ∧ da12 ∧ da21 ∧ da22

= 1

(detA)2
da11 ∧ da12 ∧ da21 ∧ da22.

One has ωL = ωR , as the computation of the components of (dA)A−1 shows.

Problem 4.45 Let A be a finite-dimensional R-algebra (not necessarily commu-
tative). Set n = dimRA. Let AutRA ∼= GL(n,R) be the group of all R-linear auto-
morphisms of A, and let G(A) be the group of R-algebra automorphisms of A. Let
DerA be the set of all R-linear maps X : A → A such that

X(a · b) = X(a) · b + a ·X(b), a, b ∈ A.

Prove:

(i) DerA is a Lie algebra with the bracket

[X,Y ](a) = X
(
Y(a)

)− Y
(
X(a)

)
.

(ii) G(A) is a closed subgroup of GL(n,R) and hence is a Lie group.
(iii) dimG(A)� (n − 1)2.
(iv) The Lie algebra of G(A) is isomorphic to (DerA, [ , ]).

Solution

(i) Certainly, DerA is an R-vector space. Further, the bracket of two derivations
is another derivation, as

[X,Y ](a · b) = X
(
Y(a · b))− Y

(
X(a · b))

= X
{
Y(a) · b + a · Y(b)

}− Y
{
X(a) · b + a ·X(b)

}

= {
X
(
Y(a)

) · b + Y(a) ·X(b) +X(a) · Y(b) + a ·X(
Y(b)

)}

− {
Y
(
X(a)

) · b + X(a) · Y(b) + Y(a) · X(b)+ a · Y (
X(b)

)}

= {
X
(
Y(a)

)− Y
(
X(a)

)} · b + a · {X(
Y(b)

)− Y
(
X(b)

)}

= [X,Y ](a) · b + a · [X,Y ](b).



4.2 Lie Groups and Lie Algebras 175

Accordingly, DerA is endowed with a skew-symmetric bilinear map

[ , ] : DerA× DerA → DerA,

and the Jacobi identity follows from the following calculation:

([[X,Y ],Z] + [[Y,Z],X]+ [[Z,X], Y ]
(a)

)

= ([X,Y ](Z(a)
)−Z

([X,Y ](a)))+ ([Y,Z](X(a)
)− X

([Y,Z](a)))

+ ([Z,X](Y(a)
)− Y

([Z,X](a)))

= X
(
Y
(
Z(a)

))− Y
(
X
(
Z(a)

))− Z
(
X
(
Y(a)

))+ Z
(
Y
(
X(a)

))

+ Y
(
Z
(
X(a)

))−Z
(
Y
(
X(a)

))−X
(
Y
(
Z(a)

))+X
(
Z
(
Y(a)

))

+Z
(
X
(
Y(a)

))−X
(
Z
(
Y(a)

))− Y
(
Z
(
X(a)

))+ Y
(
X
(
Z(a)

)) = 0.

(ii) For every pair a, b ∈ A, let Φa,b : AutRA → A be the map given by Φa,b(f ) =
f (a · b)− f (a) · f (b). Then we have

G(A) =
⋂

a,b∈A
Φ−1

a,b(0).

As each Φa,b is a continuous map, we conclude that G(A) is a closed subset in
AutRA. Furthermore, G(A) is an abstract subgroup as if f,g ∈ G(A), then

(f ◦ g)(a · b) = f
(
g(a · b)) = f

(
g(a) · g(b)) = f

(
g(a)

) · f (
g(b)

)

= (f ◦ g)(a) · (f ◦ g)(b).

Hence f ◦ g ∈ G(A). Similarly, f−1 ∈ G(A) since

f
(
f−1(a) · f−1(b)

) = f
(
f−1(a)

) · f (
f−1(b)

) = a · b = f
(
f−1(a · b)),

and since f is injective, we conclude that f−1(a) ·f−1(b) = f−1(a · b) for all
a, b ∈ A.

(iii) If f ∈ G(A), then f (1) = 1. Hence each f ∈ G(A) induces an automorphism
f̄ ∈ AutR(A/R) by setting f̄ (a mod R) = f (a) mod R, and the map

h : G(A) → AutR(A/R), f �→ f̄ ,

is clearly a group homomorphism. We claim that h is injective. In fact, f ∈
kerh if and only if f̄ (a) mod R = a mod R for all a ∈ A, and this condition
means that f (a) − a ∈ R for all a ∈ A. Hence we can write f (a) = a + ω(a),
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where ω : A → R is a linear form such that ω(1) = 0. By imposing f (a · b) =
f (a) · f (b) we obtain

ω(a · b) = ω(b)a + ω(a)b + ω(a)ω(b).

Hence,

ω(b)a + ω(a)b ∈R, a, b ∈ A. (�)

If ω = 0, then there exists a ∈ A such that ω(a) = 1, and from (�) it follows
that b ∈ R + Ra for every b ∈ A. Hence dimA = 2, and then either A ∼= R[ε]
or A ∼= R[i] or A ∼= R[j], with ε2 = 0, i2 = −1, j2 = 1, thus leading us to a
contradiction, as in these cases kerh is the identity. Accordingly, G(A) is a
subgroup of AutR(A/R), so that dimG(A)� dim AutR(A/R) = (n − 1)2.

(iv) Let g(A) be the Lie algebra of G(A), which is a Lie subalgebra of EndRA =
Lie(AutRA). We know that an element X ∈ EndRA belongs to g(A) if and only
if for every t ∈R, we have exp(tX) ∈ G(A), or equivalently,

exp(tX)(a · b) = exp(tX)(a) · exp(tX)(b).

Differentiating this equation at t = 0, we conclude that X is a derivation of A.
Conversely, if X is a derivation, then by recurrence on k it is readily checked

that

Xk(a · b) =
k∑

h=0

(
k

h

)
Xh(a)Xk−h(b).

Hence,

exp(tX)(a · b) =
∞∑

k=0

tk
Xk(a · b)

k! =
∞∑

k=0

k∑

h=0

tk
1

(k − h)!h!X
h(a)Xk−h(b)

= exp(tX)(a) · exp(tX)(b),

thus proving that the Lie algebra of G(A) is isomorphic to (DerA, [ , ]).

Problem 4.46 Prove that the Lie algebra so(3) does not admit any two-dimensional
Lie subalgebra.

Solution Let {e1, e2, e3} be the standard basis; that is,

[e1e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Assume that g is a two-dimensional Lie subalgebra. Let {v = λiei,w = μiei} be a
basis of g. As the rank of the 3 × 2-matrix

⎛

⎝
λ1 μ1

λ2 μ2

λ3 μ3

⎞

⎠
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is 2, we can assume that

det

(
λ1 μ1

λ2 μ2

)
= 0.

By making a change of basis in g we can thus suppose that

(
λ1 μ1

λ2 μ2

)
=

(
1 0
0 1

)
.

Hence,

v = e1 + λ3e3, w = e2 +μ3e3. (�)

As g is a Lie subalgebra, we have [v,w] = αv + βw. By using (�) we obtain
λ3 = −α, μ3 = −β , αλ3 + βμ3 = 1, and substituting the first two relations into the
third one, we obtain α2 + β2 + 1 = 0, thus leading us to a contradiction.

4.3 Homomorphisms of Lie Groups and Lie Algebras

Problem 4.47 Consider the Heisenberg group (see Problem 4.42) and the map
f : H → R, A �→ f (A) = x + y + z.

(i) Is f differentiable?
(ii) Is it a homomorphism of Lie groups?

Solution Let

ψ : H → R
3,

⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠ �→ (x, y, z),

be the usual global chart of H . The map

f ◦ψ−1 : R3 →R, (x, y, z) �→ x + y + z,

is C∞, and thus f is a C∞ map. The additive group of real numbers (R,+) is a Lie
group. Given

A =
⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠ , B =
⎛

⎝
1 a b

0 1 c

0 0 1

⎞

⎠ ∈ H,

it is easy to see that f (AB) = f (A) + f (B), so that f is not a homomorphism of
Lie groups.
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Problem 4.48 Prove that one has:

(i) An isomorphism of Lie groups SO(2) ∼= U(1) ∼= S1.
(ii) A homeomorphism O(n) ∼= SO(n)× {−1,+1}.

Hint (to (i)) Consider the real representation of the general linear group GL(1,C):

ρ : GL(1,C) → GL(2,R)

a + bi �→
(
a −b

b a

)
.

Solution

(i)

SO(2) = {
A ∈ GL(2,R) : tAA = I, detA = 1

}

=
{(

a b

c d

)
: a2 + c2 = b2 + d2 = 1, ab + cd = 0, ad − bc = 1

}

∼=
{(

cosα − sinα

sinα cosα

)
: α ∈R

}

and

U(1) = {
A ∈ GL(1,C) : tĀA = 1

} = {
z ∈C \ {0} : z̄z = 1

}

= {z ∈C : z = cosα + i sinα} ∼= {
(cosα, sinα) : α ∈R

} = S1.

Let ρ be the real representation of GL(1,C). If
(
a −b
b a

) = ( 1 0
0 1

)
, we have

a = 1, b = 0; so ρ is injective. We have

ρ
(
U(1)

) = ρ
({cosα + i sinα}) =

{(
cosα − sinα

sinα cosα

)}
∼= SO(2).

Since ρ is injective, one obtains U(1) ∼= SO(2).
(ii)

O(n) = {
A ∈ GL(n,R) : tAA = I

}
.

Hence, if A ∈ O(n), then det tAA = 1. Consider the exact sequence

1 → SO(n)
j
↪→ O(n)

det→ {−1,+1} → 1,

where j denotes the inclusion map of SO(n) = {A ∈ O(n) : detA = 1} in O(n).
The map

σ : {−1,+1} → O(n)

1 �→ I

−1 �→ diag{−1,1, . . . ,1}
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is a section of det, and hence we have a homeomorphism

O(n) ∼= SO(n)× {−1,+1}, A �→ (
σ(detA)A,detA

)
.

Problem 4.49 Let ψ : G → G be the diffeomorphism of the Lie group G defined
by ψ(a) = a−1, a ∈ G. Prove that ω is a left-invariant form if and only if ψ∗ω is
right-invariant.

Solution We have

ψ(Rbx) = ψ(xb) = (xb)−1 = b−1x−1

and

Lb−1ψ(x) = Lb−1

(
x−1) = b−1x−1.

Thus ψ ◦Rb = Lb−1 ◦ψ , and hence (ψ ◦Rb)
∗ = (Lb−1 ◦ψ)∗, that is, R∗

b ◦ψ∗ =
ψ∗ ◦L∗

b−1 . If ω is left-invariant, we have

(
R∗

b ◦ ψ∗)(ω) = (
ψ∗ ◦L∗

b−1

)
(ω) = ψ∗ω,

and thus ψ∗ω is right-invariant. Conversely, if ψ∗ω is right-invariant, ψ∗ω =
R∗

bψ
∗ω = ψ∗L∗

b−1ω, and thus ω = L∗
b−1ω, because ψ∗ is an isomorphism, and ω is

left-invariant.

Problem 4.50 Let G be a compact, connected Lie group oriented by a left-invariant
volume form v. Prove that for every continuous function f on G and every s ∈ G,
we have

∫

G

f v =
∫

G

(f ◦ Rs)v,

where Rs : G → G denotes the right translation by s; that is, the left-invariant inte-
gral f �→ ∫

G
f v is also right-invariant.

Solution For every s ∈ G, there exists a unique scalar ϕ(s) ∈ R
∗ such that R∗

s v =
ϕ(s)v. The map ϕ : G → R

∗ is clearly differentiable, and since ϕ(e) = 1 (where e

denotes the identity element of G) and G is connected, we have ϕ(G) ⊆ R
+; hence

Rs is orientation-preserving. By applying the formula of change of variables to the
diffeomorphism Rs : G → G we obtain

∫

G

f v =
∫

G

R∗
s (f v) =

∫

G

(f ◦Rs)R
∗
s v =

∫

G

(f ◦ Rs)ϕ(s)v.

Hence,
∫

G

f v = ϕ(s)

∫

G

(f ◦ Rs)v.
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Letting f = 1 and taking into account that
∫
G
v = 0, we conclude that ϕ(s) = 1 for

all s ∈ G, and consequently,
∫

G

f v =
∫

G

(f ◦Rs)v.

We also remark that ϕ(s) = 1 for all s ∈ G implies that v is right-invariant.

Problem 4.51 Let G be a compact, connected Lie group oriented by a left-invariant
volume form v and consider the map

ψ : G → G, ψ(a) = a−1, a ∈ G.

Prove that for every continuous function f on G, we have
∫

G

f v =
∫

G

(f ◦ ψ)v.

Solution For every s ∈ G, we have from Problem 4.49:

R∗
s

(
ψ∗v

) = (ψ ◦Rs)
∗v = (Ls−1 ◦ψ)∗v = ψ∗(L∗

s−1v
) = ψ∗v.

Hence ψ∗v is right-invariant, and since v is also right-invariant (see Problem 4.50),
there exists ε ∈R

∗ such that ψ∗v = εv. Moreover, ε2 = 1 as ψ is an involution. By
applying the formula of change of variables to the diffeomorphism ψ (which may
be orientation-reversing) we obtain

∫

G

f v = ε

∫

G

ψ∗(f v) = ε

∫

G

(f ◦ψ)ψ∗v = ε

∫

G

(f ◦ψ)εv =
∫

G

(f ◦ ψ)v.

Problem 4.52 Let λ be an irrational real number, and let ϕ be the map

ϕ : R → T 2 = S1 × S1, ϕ(t) = (
e2π it , e2π iλt).

(i) Prove that it is an injective homomorphism of Lie groups.
(ii) Prove that the image of ϕ is dense in the torus (see Fig. 4.2).

Solution

(i) That ϕ is a homomorphism of Lie groups is immediate. We have ϕ(t1) = ϕ(t2)

if and only if (e2π it1 , e2π iλt1) = (e2π it2 , e2π iλt2) or equivalently if t1 − t2 and
λ(t1 − t2) are integers, which happens only if t1 = t2. Hence ϕ is injective.

(ii) It suffices to show that the subgroup Z+λZ is dense in R, since if this happens,
given the real numbers t1, t2, there exists a sequence mj + λnj such that

t2 − λt1 = lim
j→∞(mj + λnj ),
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Fig. 4.2 A geodesic of
irrational slope is dense in the
2-torus

that is,

t2 = lim
j→∞

(
mj + λ(nj + t1)

)
.

Hence,

ϕ(nj + t1) = (
e2π it1 , e2π iλ(nj+t1)

) = (
e2π it1 , e2π i(mj+λ(nj+t1))

)
,

and thus,

lim
j→∞ϕ(nj + t1) = (

e2π it1 , e2π it2
)
.

Now, to prove that the subgroup A = Z + λZ is dense in R, it suffices to see
that the origin is an accumulation point in A, since in this case, given x > 0 and
0 < ε < x, there exists a ∈ A such that 0 < a < ε, and if N denotes the greatest
integer less than or equal to (x − ε)/a, then Na � x − ε < (N + 1)a, which
implies (N + 1)a < x + ε, as in the contrary case we would have

x + ε � (N + 1)a � x − ε + a,

that is, 2ε � a < ε, so getting a contradiction. Thus we have

x − ε < (N + 1)a < x + ε,

that is, |(N + 1)a − x| < ε.
If the origin is not an accumulation point in A, it is an isolated point, and then

every point in A is isolated as A is a subgroup. Hence A is a closed discrete sub-
set of R. In fact, if limk→∞ xk = x, xk ∈ A, then for k large enough, xk − xk+1

belongs to an arbitrarily small neighbourhood of the origin. As xk − xk+1 ∈ A

and the origin is isolated, we conclude xk = xk+1. Hence x ∈ A. Accordingly,
μ = inf{x ∈ A : x > 0} is a positive element in A. We will prove that A is gen-
erated by μ, that is, that Z + λZ = μZ. This will lead us to a contradiction, as
λ is irrational.

Let x ∈ A be a positive element. Let n denote the greatest integer less than or
equal to x/μ, so that n� x/μ < n+1. Hence 0 � x −nμ< μ. As x −nμ ∈ A,
from the very definition of μ we conclude that x − nμ = 0.
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4.4 Lie Subgroups and Lie Subalgebras

Problem 4.53 Let C∗ be the multiplicative group of non-zero complex numbers.

(i) Prove that the map

j : C∗ → GL(2,R), x + iy �→
(
x −y

y x

)
,

is a faithful representation of the Lie group C
∗ (faithful means that j is injec-

tive).
(ii) Find the Lie subalgebra Lie(j (C∗)) of gl(2,R).

Solution

(i) Since C
∗ ∼= GL(1,C), this was proved in Problem 4.48.

(ii)

Lie
(
j
(
C

∗)) = j∗
(
T1C

∗) ∼=
{(

λ −μ

μ λ

)
, λ,μ ∈ R

}
.

Problem 4.54 Let g be the Lie algebra of a Lie group G, and h ⊂ g a Lie subalge-
bra. Consider the distribution D(s) = {Xs : X ∈ h}, s ∈ G.

(i) Show that D is a C∞ distribution of the same dimension as h. Is it involutive?
(ii) Consider the two-dimensional C∞ distributions

D1 =
〈
∂

∂x
,
∂

∂y

〉
, D2 =

〈
∂

∂x
, x

∂

∂y
+ ∂

∂z

〉
, D3 =

〈
∂

∂y
, x

∂

∂y
+ ∂

∂z

〉

on the Heisenberg group (see Problem 4.42). Are they involutive?
(iii) Let I (Di ) be the differential ideal corresponding to Di , i = 1,2,3. If α =

dx ∧ dz, β = dx + dz. Do we have α,β ∈ I (D1)? And α,β ∈ I (D3)?

Solution

(i) The space h is a vector subspace of g. Let {X1, . . . ,Xk} be left-invariant vector
fields which are a basis of h. Then,

D(s) = 〈
X1|s , . . . ,Xk|s

〉
, s ∈ G,

is a vector subspace of TsG of dimension k. Hence D is a C∞ k-dimensional
distribution on G, because it is globally spanned by X1, . . . ,Xk , which are
left-invariant vector fields and hence C∞. Moreover, D is involutive. In fact,
X1, . . . ,Xk span D , and h is a subalgebra, so [Xi,Xj ] ∈ h.

(ii) The Lie algebra h of H is spanned (see Problem 4.42) by

∂

∂x
,

∂

∂y
, x

∂

∂y
+ ∂

∂z
.
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Since
[

∂

∂x
,
∂

∂y

]
= 0,

[
∂

∂x
, x

∂

∂y
+ ∂

∂z

]
= ∂

∂y
,

[
∂

∂y
, x

∂

∂y
+ ∂

∂z

]
= 0,

it follows that D1 and D3 are involutive but D2 is not.
(iii) {∂/∂x, ∂/∂y, ∂/∂z} is a basis of the (C∞H)-module X(H), with dual basis

{dx,dy,dz}, and thus I (D1) = 〈dz〉. Hence α ∈ I (D1), but β /∈ I (D1).
Also, {∂/∂x, ∂/∂y, x∂/∂y + ∂/∂z} is a basis of X(H), with dual basis
{θ1, θ2, θ3}, and we have I (D3) = 〈θ1〉 = 〈dx〉. Hence α ∈ I (D3), and
β /∈ I (D3).

Problem 4.55 Consider the set G of matrices of the form

g =
(
x y

0 1

)
, x, y ∈ R, x = 0.

(i) Show that G is a Lie subgroup of GL(2,R).
(ii) Show that the elements of ω = g−1dg are left-invariant 1-forms.

(iii) Since g ∼= TeG = R
2, we have dimg = 2, and we can choose {ω1 = dx/x,ω2 =

dy/x} as a basis of the space of left-invariant 1-forms. Compute the structure
constants of G with respect to this basis.

(iv) Prove that ω satisfies the relation dω +ω ∧ω = 0.

Remark Here dω denotes the matrix (dω)ij = (dωi
j ), and ω ∧ ω denotes the wedge

product of matrices, that is, with entries (ω ∧ω)ik = ∑
k ω

i
k ∧ωk

j .

Solution

(i) Since
(
x y

0 1

)(
x′ y′
0 1

)
=

(
xx′ xy′ + y

0 1

)
∈ G,

(
x y

0 1

)−1

=
(

1/x −y/x

0 1

)
∈ G,

G is an abstract subgroup of GL(2,R), and as both the product and the inverse
are C∞ maps, G is a Lie group.

Moreover, G is a closed subgroup of GL(2,R), defined by the equations
x2

2 = x3
3 − 1 = 0, xi

j being the usual coordinates of GL(2,R) ⊂ M(2,R) ∼=
R

4. Hence G is closed in GL(2,R), and accordingly G is a Lie subgroup of
GL(2,R).

(ii) If g = ( x y

0 1

)
, one has ω = g−1dg = 1

x

( dx dy
0 0

)
. We must prove L∗

gωg = ωe. Let

s = (
a b
0 1

)
be arbitrarily fixed. Proceeding similarly to Problem 4.38, we obtain
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Ls∗ = (
a 0
0 a

)
. Thus,

L∗
gωg =

{(
x 0
0 x

)(
1/x

0

)
,

(
x 0
0 x

)(
0

1/x

)}
=

{(
1
0

)
,

(
0
1

)}

≡ {dx,dy} ≡
(

dx dy
0 0

)
= ωe

for e = ( 1 0
0 1

)
.

(iii) As

d

(
dx

x

)
= 0, d

(
dy

x

)
= −dx

x
∧ dy

x
,

from the Maurer–Cartan equations dωi = −∑
j<k c

i
jkω

j ∧ωk we deduce

c2
12 = −c2

21 = 1.

(iv)

dω = − 1

x2

(
0 dx ∧ dy
0 0

)
= −ω ∧ω.

Problem 4.56 Let S be the set of matrices of the form

M(u,v,w) =

⎛

⎜
⎜
⎝

cosw sinw 0 u

− sinw cosw 0 v

0 0 1 w

0 0 0 1

⎞

⎟
⎟
⎠ , u, v,w ∈R.

(i) Prove that S is a Lie subgroup of GL(4,R).
(ii) Let j : R3 → GL(4,R), (u, v,w) �→ M(u,v,w). Compute

j∗
∂

∂u
, j∗

∂

∂v
, j∗

∂

∂w

and show that j is an immersion.
(iii) Prove that the tangent space to S at the identity element e ∈ S admits the basis

{
X1 = ∂

∂x1
4

∣∣∣∣
e

, X2 = ∂

∂x2
4

∣∣∣∣
e

, X3 = ∂

∂x1
2

∣∣∣∣
e

− ∂

∂x2
1

∣∣∣∣
e

+ ∂

∂x3
4

∣∣∣∣
e

}
.

Solution

(i) For all M(u,v,w) ∈ S, one has detM(u,v,w) = 1, so S ⊂ GL(4,R). More-
over, the product of two elements of S and also the inverse of any element
belong to S, as it follows by direct computation, so that S is a subgroup of
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GL(4,R). Further, S can be considered as the closed subgroup of GL(4,R)

determined by the equations

x1
1 = x2

2 = cosx3
4 , x1

2 = −x2
1 = sinx3

4 , x3
3 = x4

4 = 1,

x1
3 = x2

3 = x3
1 = x3

2 = x4
1 = x4

2 = x4
3 = 0,

xi
j being the usual coordinates of GL(4,R) ⊂ M(4,R) ∼= R

16. Hence by Car-
tan’s Criterion on Closed Subgroups, S is a Lie subgroup of GL(4,R).

(ii) We have

j∗
∂

∂u
= ∂

∂x1
4

, j∗
∂

∂v
= ∂

∂x2
4

,

j∗
∂

∂w
= − sinw

∂

∂x1
1

+ cosw
∂

∂x1
2

− cosw
∂

∂x2
1

− sinw
∂

∂x2
2

+ ∂

∂x3
4

.

Therefore j is an immersion.
(iii) The identity element of S, e = I , corresponds to u = v = w = 2kπ . By (ii),

TeS admits the basis in the statement.

Problem 4.57 Let G = {( a 0
b 1

) : a, b ∈R, a > 0}.
(i) Prove that G admits a Lie group structure.

(ii) Is G a Lie subgroup of GL(2,R)?
(iii) Let μ be the map defined by

G → GL(2,R),

(
a 0
b 1

)
�→

(
a b

0 1

)
.

Is it differentiable? Is it a homomorphism of Lie groups? Is it an immersion? (cf.
Problem 4.55).

Solution

(i) The map

G
ϕ→ U = {

(a, b) ∈R
2 : a > 0

}
(
a 0
b 1

)
�→ (a, b)

is obviously bijective. Since U is open in R
2, it is a two-dimensional C∞

manifold, and thus there exists a unique differentiable structure on G such that
dimG = 2 and ϕ is a diffeomorphism.

G is a group with the product of matrices, since given

A =
(
a 0
b 1

)
, B =

(
a′ 0
b′ 1

)
,
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we have

AB =
(

aa′ 0

ba′ + b′ 1

)
∈ G, A−1 =

(
1/a 0

−b/a 1

)
∈ G.

Therefore G is a subgroup of GL(2,R).
The operations

G ×G
Φ→ G

(A,B) �→ AB
and G

Ψ→ G

A �→ A−1

are C∞. In fact,
(
ϕ ◦Φ ◦ (ϕ × ϕ)−1)((a, b),

(
a′, b′)) = (

aa′, ba′ + b′), a, a′ > 0,
(
ϕ ◦Ψ ◦ ϕ−1)(a, b) = (1/a,−b/a), a > 0,

are C∞.
(ii) G is the closed submanifold of the open subset x1

1 > 0 in GL(2,R) given by
the equations x1

2 = 0, x2
2 −1 = 0, xi

j being the usual coordinates of GL(2,R) ⊂
M(2,R) ∼= R

4. Thus G is a Lie subgroup of GL(2,R).
Another way to prove that G is a Lie subgroup of GL(2,R) is to observe

that G is closed in GL(2,R), as if the sequence
(
an 0
bn 1

)

goes to
(
a11 a12
a21 a22

)
∈ GL(2,R)

as n → ∞, then it implies that a11 � 0, a12 = 0, a22 = 1; hence a11 > 0, and
we can apply Cartan’s Criterion on Closed Subgroups.

(iii) μ can be written in local coordinates as
(
ψ ◦ j ◦ μ ◦ ϕ−1)(a, b) = (a, b,0,1), (a, b) ∈ U,

where ψ stands for the coordinate map of a local coordinate system on
GL(2,R), and j denotes the inclusion map j : μ(G) → GL(2,R). As ψ ◦ j ◦
μ ◦ ϕ−1 is a C∞ map, μ is C∞. On the other hand,

μ

((
a 0
b 1

)(
a′ 0
b′ 1

))
= μ

(
aa′ 0

ba′ + b′ 1

)
=

(
aa′ ba′ + b

0 1

)

and

μ

(
a 0
b 1

)
μ

(
a′ 0
b′ 1

)
=

(
a b

0 1

)(
a′ b′
0 1

)
=

(
aa′ ab′ + b

0 1

)
,
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and hence μ is not even a homomorphism of groups.
Finally, we have

rankμ(
a 0
b 1

) = rank
(
ψ ◦μ ◦ ϕ−1)

(a,b)
= 2.

Hence μ is an immersion.

Problem 4.58

(i) Determine all the two-dimensional Lie algebras. In fact, prove that there is a
unique non-Abelian two-dimensional Lie algebra.

(ii) Prove that the map ρ of the non-Abelian two-dimensional Lie Algebra g to
Endg given by e �→ [e, ·] (that is, the adjoint representation) is a faithful rep-
resentation of g.

(iii) Give a basis of left-invariant vector fields on the image of ρ and their bracket.
(iv) Let D be the distribution on Autg spanned by the left-invariant vector fields on

the image of ρ. Find a coordinate system (u, v,w, z) on Autg such that ∂/∂z,
∂/∂u span D locally.

(v) Prove that the subgroup G0 ⊂ GL(2,R) determined by the subalgebra g is the
identity component (β > 0) of the group

G =
{(

1 0
α β

)
: β = 0

}
.

(vi) Prove that G can be viewed as the group Aff(R) of affine transformations of
the real line R. That is, the group of transformations

t ′ = βt + α, β = 0,

where t = y/x, t ′ = y′/x′ are the affine coordinates.

Solution

(i) Let g be a two-dimensional Lie algebra with basis {e1, e2}. The Lie algebra
structure is completely determined, up to isomorphism, knowing the constants
a and b in the only bracket

[e1, e2] = ae1 + be2.

If a = b = 0, the Lie algebra is Abelian, that is, [e, e′] = 0 for all e, e′ ∈ g.
Otherwise, permuting e1 and e2 if necessary, we can suppose that b = 0,

and so {e′
1 = (1/b)e1, e

′
2 = (a/b)e1 + e2} is a basis of g, and one has

[
e′

1, e
′
2

] = e′
2.

Hence there exist, up to isomorphism, only two two-dimensional Lie algebras.
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(ii) Let g = 〈e′
1, e

′
2〉 be the two-dimensional non-Abelian Lie algebra. That the map

ρ is a representation follows from the Jacobi identity. The representation is
faithful (that is, the homomorphism is injective) as we have

ρ
(
ae′

1 + be′
2

) =
(

0 0
−b a

)

in the basis {e′
1, e

′
2}.

(iii) Fixing that basis, Endg can be identified to the space of 2 × 2 square matrices,
which is the Lie algebra of GL(2,R).

Let Ei
j be the n × n-matrix with zero entries except the (i, j)th one, which

is 1. The left-invariant vector field Xi
j associated to Ei

j generates the one-

parameter group (ϕi
j )t given by

(
ϕi
j

)
t
X = X · exp

(
tEi

j

)
, X ≡ (

xk
l

)
.

Now,

(
Ei

j

)2 =
{

0 if i = j,

Ei
j if i = j.

Hence,

exp
(
tEi

j

) =
{
I + tEi

j if i = j,

I + (et − 1)Ei
j if i = j,

where I denotes the identity matrix.
As a computation shows,

Xi
j =

∑

k

xk
i

∂

∂xk
j

.

So, in the present case we have

X2
1 = x1

2
∂

∂x1
1

+ x2
2

∂

∂x2
1

, X2
2 = x1

2
∂

∂x1
2

+ x2
2

∂

∂x2
2

,

and
[
X2

1,X
2
2

] = −X2
1.

(iv) Let us reduce X2
1 to canonical form. The functions

u = x2
1

x2
2

, v = x1
1 − x1

2x
2
1

x2
2

, x1
2 , x2

2
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are coordinate functions on the neighbourhood defined by x2
2 = 0 of the iden-

tity element I . In fact,

∂(u, v, x1
2 , x

2
2)

∂(x1
1 , x

1
2 , x

2
1 , x

2
2)

= 1

x2
2

.

In the new system we have

X2
1 = ∂

∂u
, X2

2 = −u
∂

∂u
+ x1

2
∂

∂x1
2

+ x2
2

∂

∂x2
2

.

Now, taking w = x1
2/x

2
2 , the functions (u, v,w,x2

2) are coordinate functions
on the neighbourhood given by x2

2 = 0, since

∂(u, v,w,x2
2)

∂(u, v, x1
2 , x

2
2)

= 1

x2
2

.

In this system we have

X2
1 = ∂

∂u
, X2

2 = −u
∂

∂u
+ x2

2
∂

∂x2
2

.

Finally, defining z = logx2
2 in the neighbourhood x2

2 > 0 of the identity ele-
ment, we obtain coordinate functions (u, v,w, z) in which

X2
1 = ∂

∂u
, X2

2 = −u
∂

∂u
+ ∂

∂z
.

Thus, the involutive distribution D corresponding to the subalgebra g is
spanned by ∂/∂u, ∂/∂z, that is,

D = 〈
X2

1,X
2
2

〉 =
〈
∂

∂u
,
∂

∂z

〉
.

(v) By the above results, the integral submanifolds of D are defined by

v = x1
1 − x1

2x
2
1

x2
1

= A, w = x1
2

x2
2

= B,

where A,B denote arbitrary constants. In particular, the integral submanifold
passing through the identity element I is obtained for A = 1, B = 0, that is, it
is defined by

x1
1 = 1, x1

2 = 0.

Consequently, the subgroup G0 of Autg defined by the subalgebra g is the
(identity component of the) one in the statement.
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(vi) The group G represents the transformations

x′ = x, y′ = αx + βy.

The subgroup G admits a simple geometrical interpretation as the group of
affine transformations of the real line R (see Problem 4.37). In fact, dividing
we obtain

t ′ = βt + α,

where t = y/x, t ′ = y′/x′ are the affine coordinates.
The group G has two components, defined by β > 0 and β < 0. The com-

ponent of the identity element, which is the subgroup defined from g, is the
first one.

4.5 The Exponential Map

Problem 4.59 Prove that, up to isomorphisms, the only one-dimensional connected
Lie groups are S1 and R.

Solution The Lie algebra g of such a Lie group G is a real vector space of dimen-
sion 1, hence isomorphic to R. The exponential map is a homomorphism of Lie
groups if the Lie algebra is Abelian, as in the present case. Consequently, here we
have that exp is surjective since G is connected:

exp : R → G, X �→ expX = expX(1).

As ker(exp) is a closed subgroup of R, then either ker(exp) = 0 or ker(exp) = aZ,
a ∈R. Hence, either

G = R/ker(exp) = R or G = R/aZ ∼= S1.

Problem 4.60 Prove that
(−2 0

0 −1

)
is not of the form eA for any A ∈ gl(2,R).

Solution Suppose that
(−2 0

0 −1

) = eA. Then, since eA = eA/2+A/2 = eA/2eA/2, it

would be
(−2 0

0 −1

) = (eA/2)2. That is, the matrix would have square root, say
(
a b
c d

)

with
(
a b
c d

)2 = (−2 0
0 −1

)
; but a calculation shows that there is no real solution.

Remark Interestingly enough, −I = (−1 0
0 −1

)
does lie in the image of exp, as

exp
( 0 π

−π 0

) = −I . On the other hand, the square roots of −I in GL(2,R) are

±( 0 1
−1 0

)
.
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Problem 4.61 Let X be an element of the Lie algebra sl(2,R) of the real special
linear group SL(2,R). Calculate expX.

The relevant theory is developed, for instance, in Helgason [7].

Solution Since

sl(2,R) = {
X ∈ M(2,R) : trX = 0

}

if X ∈ sl(2,R), it is of the form X = (
a b
c −a

)
, and

expX =
∑

n�0

1

n!
(
a b

c −a

)n

.

It is immediate that X2 = (a2 + bc)I = −(detX)I , and hence,

expX =
(∑

n�0

(−detX)n

(2n)!
)
I +

(∑

n�0

(−detX)n)

(2n+ 1)!
)
X

=
(

1 − detX

2! + (detX)2

4! − (detX)3

6! + · · ·
)
I

+
(

1 − detX

3! + (detX)2

5! − (detX)3

7! + · · ·
)
X.

We have to consider three cases:

(i) detX < 0. Then

expX =
(

1 + |detX|
2! + |detX|2

4! + |detX|3
6! + · · ·

)
I

+
(

1 + |detX|
3! + |detX|2

5! + |detX|3
7! + · · ·

)
X

= (cosh
√−detX)I +

(
sinh

√−detX√−detX

)
X.

(ii) detX = 0. Hence expX = I +X.

(iii) detX > 0. Then expX = (cos
√

detX)I + ( sin
√

detX√
detX

)X.

Problem 4.62 With the same definitions as in Problem 4.53:

(i) Prove that exp is a local diffeomorphism from Lie(j (C∗)) into j (C∗).
(ii) Which are the one-parameter subgroups of j (C∗)?
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Solution

(i)

exp

(
0 −t

t 0

)
= I +

(
0 −t

t 0

)
+ 1

2

(−t2 0
0 −t2

)
+ 1

3!
(

0 t3

−t3 0

)
+ · · ·

=
(

1 − t2

2! + t4

4! − · · · −(t − t3

3! + · · · )
t − t3

3! + · · · 1 − t2

2! + t4

4! − · · ·

)

=
(

cos t − sin t

sin t cos t

)
,

and since
(
λ 0
0 λ

)
commutes with

( 0 −t
t 0

)
, we have

exp : Lie
(
j
(
C

∗)) → j
(
C

∗)

(
λ −t

t λ

)
�→ expλ exp

(
0 −t

t 0

)
= eλ

(
cos t − sin t

sin t cos t

)
.

Hence exp : Lie(j (C∗)) → j (C∗) is a local diffeomorphism.
(ii) A one-parameter subgroup of j (C∗) is a homomorphism ρ from the additive

group R, considered as a Lie group, into j (C∗). As there exists a bijective cor-
respondence between one-parameter subgroups and left-invariant vector fields,
that is, elements of the Lie algebra, the one-parameter subgroups of j (C∗) are
the maps

ρ : R −→ j (C∗)

t �−→ exp t

(
a −b

b a

)
= eat

(
cosbt − sinbt

sinbt cosbt

)
, a, b ∈R.

In fact, it is immediate that ρ(t)ρ(t ′) = ρ(t + t ′).

Problem 4.63 Let x = ( cos t − sin t
sin t cos t

) ∈ SO(2). Verify the formula

x =
∞∑

n=0

tn

n!X
n

with X = ( 0 −1
1 0

) ∈ so(2), which justifies (as many other cases) the notation x =
exp tX.

Solution One has det tX = t2 > 0, so the results of Problem 4.61 apply. On the
other hand, it is immediate that the powers of X with integer exponents from 1 on
are cyclically equal to X,−I,−X,I . Hence,
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exp tX = (cos t)I + sin t

t
tX =

(
1 − t2

2! + t4

4! − · · ·
)
I +

(
t − t3

3! + t5

5! − · · ·
)
X

= I + tX + t2

2! (−I ) + t3

3! (−X)+ t4

4! I + t5

5!X + · · · =
∞∑

n=0

tn

n!X
n.

As x = (cos t)I + sin t
t

tX, we are done.

Problem 4.64 Let H be the Heisenberg group (see Problem 4.42).

(i) Determine its Lie algebra h.
(ii) Prove that the exponential map is a diffeomorphism from h onto H .

Solution

(i) The Lie algebra h of H can be identified to the tangent space at the identity
element e ∈ H , that is,

h ≡
⎧
⎨

⎩

⎛

⎝
0 a b

0 0 c

0 0 0

⎞

⎠ ∈ M(n,R)

⎫
⎬

⎭
,

considered as a Lie subalgebra of EndR3.
(ii) We have expM = ∑∞

n=0
Mn

n! . Since

⎛

⎝
0 a b

0 0 c

0 0 0

⎞

⎠

3

=
⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ ,

one has

exp

⎛

⎝
0 a b

0 0 c

0 0 0

⎞

⎠ =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠+
⎛

⎝
0 a b

0 0 c

0 0 0

⎞

⎠+ 1

2!

⎛

⎝
0 a b

0 0 c

0 0 0

⎞

⎠

2

=
⎛

⎝
1 a b + 1

2ac

0 1 c

0 0 1

⎞

⎠ .

Clearly exp is a diffeomorphism of h onto H .

Problem 4.65 Find the matrices X ∈ gl(n,R) = M(n,R) such that exp tX = etX

is a one-parameter subgroup of

SL(n,R) = {
A ∈ GL(n,R) : detA = 1

}
.
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Solution Applying the formula det eX = etrX , we have that if det etX = 1, then
tr(tX) = 0, that is, trX = 0, and conversely.

Problem 4.66 Consider the next subgroups of the general linear group GL(n,C):

(a) U(n) = {A ∈ M(n,C) : tĀA = I }, unitary group (the t means “transpose”, and
the bar indicates complex conjugation).

(b) SL(n,C) = {A ∈ M(n,C) : detA = 1}, special linear group.
(c) SU(n) = {A ∈ U(n) : detA = 1}, special unitary group.
(d) O(n,C) = {A ∈ M(n,C) : tAA = I }, complex orthogonal group.
(e) SO(n,C) = {A ∈ O(n,C) : detA = 1}, complex special orthogonal group.
(f)

O(n) = U(n)∩ GL(n,R) = O(n,C)∩ GL(n,R) = {
A ∈ GL(n,R) : tAA = I

}
,

orthogonal group.
(g) SO(n) = {A ∈ O(n) : detA = 1}, special orthogonal group.
(h)

SL(n,R) = SL(n,C)∩ GL(n,R) = {
A ∈ GL(n,R) : detA = 1

}
,

real special linear group.

Then:

1. Prove that we have a diffeomorphism U(n) ∼= SU(n)× S1.
2. Compute the dimensions of each of the groups described above.

The relevant theory is developed, for instance, in Chevalley [4].

Solution

1. Consider the exact sequence

1 → SU(n) → U(n)
det→ S1 → 1,

and let σ : S1 → U(n) be the section of det given by σ(u) = ( u 0
0 In−1

)
. The map

f : SU(n) × S1 → U(n) given by f (A,u) = Aσ(u) is clearly differentiable.
We will show that f is one-to-one by calculating its inverse. If B = Aσ(u),
then detB = detσ(u) = u, and thus A = B(σ(detB))−1. Hence f−1(B) =
(B(σ (detB))−1,detB).

2. Let V and W be neighbourhoods of 0 and I in M(n,C) and GL(n,C), respec-
tively, such that the exponential map establishes a diffeomorphism between them.
Moreover, we can suppose (taking smaller neighbourhoods if necessary) that
A ∈ V implies Ā, −A, tA ∈ V or |trA| < 2π .
(a) Suppose that A ∈ V is such that B = eA ∈ W ∩ U(n). Then we have B−1 =

tB̄ , that is, e−A = e
tĀ. Hence A+ tĀ = 0, or equivalently tA+ Ā = 0. There-

fore, A is a skew-hermitian matrix. Conversely, if A is a skew-hermitian
matrix belonging to V , then eA ∈ W ∩ U(n). Since the space of n× n skew-
hermitian matrices has dimension n2, it follows that dimR U(n) = n2.
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(b) If A ∈ V is such that eA ∈ W ∩ SL(n,C), then det eA = 1 = etrA. Hence
trA = 2π ik, but | trA| < 2π , therefore k = 0, that is, trA = 0, so
dimR SL(n,C) = 2(n2 − 1).

(c) For the unitary special group, we can proceed as in (a) or (b). Alterna-
tively, considering the diffeomorphism above U(n) ∼= SU(n)×S1, we obtain
dimR SU(n) = n2 − 1.

(d) Given A ∈ V , reasoning as in (a) above, except that one must drop the bars
denoting complex conjugation in the corresponding matrices, we obtain that
eA ∈ W ∩ O(n,C) if and only if A is skew-symmetric; that is, A + tA = 0.
Hence, dimR O(n,C) = n(n − 1).

(e) dimR SO(n,C) = n(n − 1) because SO(n,C) is open in O(n,C), since one
has SO(n,C) = ker det, where det : O(n,C) → {+1,−1}, and the last space
is discrete.

(f) and (g): Proceeding as in (d) but with open subsets V ⊂ M(n,R) and W ⊂
GL(n,R), we have dimR O(n) = n(n−1)/2. Proceeding as in (e), we deduce
dimR SO(n) = n(n − 1)/2.

(h) Obviously dim SL(n,R) = n2 − 1.

Problem 4.67 Let G be an Abelian Lie group. Prove that [X,Y ] = 0 for any left-
invariant vector fields X and Y .

Solution The local flow generated by a left-invariant vector field X is given by
ϕt (x) = x exp tX. Moreover we know that [X,Y ] is the Lie derivative of Y with
respect to X; hence,

[X,Y ]x = lim
t→0

1

t

(
Yx − ϕt∗(Yϕ−t (x))

)
.

Accordingly, [X,Y ] = 0 if ϕt∗(Yϕ−t (x)) = Yx , that is, if Y is invariant by ϕt ; and this
is equivalent to saying that ϕt and ψs commute, where ψs(x) = x exp sY denotes
the local flow of Y . As G is Abelian, we have

(ϕt ◦ ψs)(x) = x exp sY exp tX = x exp tX exp sY = (ψs ◦ ϕt )(x).

Problem 4.68 Consider, for each λ ∈ R \ {0}, the Lie algebra

g = 〈e1, e2, e3〉
with the only non-zero bracket

[e1, e2] = λe3.

Find the corresponding simply connected Lie group G.

Solution The simply connected Lie group corresponding to

g = 〈e1, e2, e3〉
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is G ≡R
3. To determine the operation in G, we consider that

exp : g → G ≡R
3

is a diffeomorphism, and we take the global coordinates on G defined by that dif-
feomorphism,

(x1, x2, x3) = exp(x1e1 + x2e2 + x3e3), [e1, e2] = λe3.

Then, since G is nilpotent, we have that the Campbell–Baker–Hausdorff formula
(see Zachos [14] or (7.5) for the first five summands) reduces to

exp(X) · exp(Y ) = exp

(
X + Y + 1

2
[X,Y ]

)
,

and we accordingly define the group operation on G with respect to these coordi-
nates,

(x1, x2, x3) · (y1, y2, y3) = exp(X) · exp(Y ) = exp

(
X + Y + 1

2
[X,Y ]

)

= exp

(
(x1 + y1)e1 + (x2 + y2)e2 + (x3 + y3)e3

+ 1

2
[x1e1 + x2e2 + x3e3, y1e1 + y2e2 + y3e3]

)

= exp

(
(x1 + y1)e1 + (x2 + y2)e2 + (x3 + y3)e3

+ λ

2
(x1y2 − x2y1)e3

)

=
(
x1 + y1, x2 + y2, x3 + y3 + λ

2
(x1y2 − x2y1)

)
.

That is, the product in G ≡R
3 is given by

R
3 ×R

3 −→ R
3

(
(t1, t2, t3), (s1, s2, s3)

) �−→
(
t1 + s1, t2 + s2, t3 + s3 + λ

2
(t1s2 − t2s1)

)
.

Problem 4.69 Consider the Lie algebra

g = 〈P,X,Y,Q〉
having the non-zero brackets

[X,Y ] = P, [Q,X] = Y, [Q,Y ] = −X.
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Then:

(i) Prove that its centre is 〈P 〉.
(ii) Find the corresponding simply connected Lie group.

Hint Given the semi-direct product Lie algebra

g�ϕ h

of the two Lie algebras g,h with respect to a given map ϕ : h → Derg, in order to
find the corresponding simply connected semi-direct product Lie group

G �Ψ H

(see Proposition 4.3 above):

(i) One first considers the map

ϕ : h → Derg ⊂ Endg

to determine Φ : H → Autg, where ϕ = Φ∗, such that the diagram

H
Φ��� Autg

exp ↑ ↑ exp

h
ϕ=Φ∗−→ Derg ⊂ Endg

(�)

is commutative, i.e. one should have

Φ(expA) = exp
(
ϕ(A)

)
, A ∈ h.

(ii) In turn, this permits one to obtain the map

Ψ : H → AutG

expA �→ Ψ (expA) : G → G

expX �→ exp
{(
Φ(expA)

)
(X)

}

= exp
{(

exp
(
ϕ(A)

))
(X)

}

for all A ∈ h, X ∈ g.
(iii) Finally, denoting (only for the sake of simplicity) Ψ (h) by Ψh, the operation in

the semi-direct product of Lie groups is given by

(G�Ψ H)× (G�Ψ H) −→ G�Ψ H

(
(g,h),

(
g′, h′)) �−→ (

g · Ψh

(
g′), hh′).

Hint (to (ii)) The simply connected Lie group with Lie algebra g = 〈P,X,Y 〉 hav-
ing the only non-zero bracket

[X,Y ] = P
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is the usual (i.e. three-dimensional) Heisenberg group H . This can be viewed as
either H ≡ R

3 with the operation

R
3 ×R

3 −→ R
3

(
(p, x, y),

(
p′, x′, y′)) �−→

(
p + p′ + 1

2

(
xy′ − yx′), x + x′, y + y′

)

or H = R×C with the operation

(R×C)× (R×C) −→ R×C

(
(p, z),

(
p′, z′)) �−→

(
p + p′ + 1

2
Im

(
z̄z′), z + z′

)
.

Furthermore, with this operation, the exponential map is the identity map on R
3,

that is,

exp : h ≡ R
3 −→ H ≡ R

3

pP + xX + yY �−→ (p, x, y).

Remark With the operation above, R3 is isomorphic to the matrix group H in Prob-
lem 4.42. In fact, the map

f : H ≡ R
3 −→ H ⊂ GL(3,R)

(p, x, y) �−→ f (p,x, y) =
⎛

⎝
1 x p − 1

2xy

0 1 y

0 0 1

⎞

⎠

is a group isomorphism.

Solution

(i) It follows from

[pP + xX + yY + qQ,P ] = 0,

[pP + xX + yY + qQ,X] = −yP + qY,

[pP + xX + yY + qQ,Y ] = xP − qX,

[pP + xX + yY + qQ,Q] = −xY + yX.

(ii) Consider the two Lie algebras g = 〈P,X,Y 〉, with the only non-zero bracket
[X,Y ] = P , and h = 〈Q〉; and the semi-direct product g�ϕ h of g and h with
respect to the map

ϕ : h −→ Derg
Q �−→ ϕ(Q)
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such that
(
ϕ(Q)

)
(P ) = adQP = 0,

(
ϕ(Q)

)
(X) = adQX = Y,

(
ϕ(Q)

)
(Y ) = adQ Y = −X.

We have ϕ(Q) =
(

0 0 0
0 0 −1
0 1 0

)
and

ϕ(tQ) =
⎛

⎝
0 0 0
0 0 −t

0 t 0

⎞

⎠ .

The simply connected Lie group H with Lie algebra h is H ≡ R. Moreover, the
commutative diagram in the hint above is given in the present case by

H ≡ R
Φ��� Autg = Aut

(〈P,X,Y 〉)
exp ↑ ↑ exp

h ≡ R
ϕ=Φ∗−→ End

(〈P,X,Y 〉)

with exp tQ = t . Denoting Φ(exp tQ) simply by Φt , one should have

Φt = exp
(
ϕ(tQ)

) = exp

⎛

⎝
0 0 0
0 0 −t

0 t 0

⎞

⎠ = e

(
0 0 0
0 0 −t
0 t 0

)

=
⎛

⎝
1 0 0
0 cos t − sin t

0 sin t cos t

⎞

⎠ .

Hence we have

Ψ : H = R −→ AutG

exp tQ ≡ t �−→ Ψ t

as follows. Let (p, x, y) ∈ H be given by

(p, x, y) = exp(pP + xX + yY ).

Then

Ψt(p, x, y) = exp
{(
Φ(exp tQ)

)
(pP + xX + yY )

}

= exp

⎧
⎨

⎩

⎛

⎝
1 0 0
0 cos t − sin t

0 sin t cos t

⎞

⎠ · (pP + xX + yY )

⎫
⎬

⎭

= exp
(
pP + (x cos t − y sin t)X + (x sin t + y cos t)Y

)

= (p, x cos t − y sin t, x sin t + y cos t) ∈ R
3,

or well

Ψt(p, x, y) = (
p, et iz

) ∈ R×C.
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Hence the operation in the semi-direct product group

G�Ψ H ≡ R
4 ≡ R×C×R

is given by

(p, x, y, q) · (p′, x′, y′, q ′)

= (
(p, x, y) ·Ψq

(
p,x′, y′), q + q ′)

= (
(p, x, y) · (p′, x′ cosq − y′ sinq, x′ sinq + y′ cosq

)
, q + q ′)

=
(
p + p′ + 1

2

(
x
(
x′ sinq + y′ cosq

)− (
x′ cosq − y′ sinq

)
y
)
,

x + x′ cosq − y′ sinq, y + x′ sinq + y′ cosq, q + q ′
)

=
(
p + p′ + 1

2

(
(x sinq − y cosq)x′ + (x cosq + y sinq)y′),

x + x′ cosq − y′ sinq, y + x′ sinq + y′ cosq, q + q ′
)
,

or well, taking

Ψt : R×C −→ R×C

(p, z) �−→ Φt(p, z) =
(

1 0
0 et i

)(
p

z

)
=

(
p

et iz

)
,

by

(p, z, q) · (p′, z′, q ′)

= (
(p, z) ·Ψq

(
p′, z′), q + q ′)

= (
(p, z) · (p′, eqiz′), q + q ′) ( · = operation in H ≡ R×C)

=
(
p + p′ + 1

2
Im

(
z̄eqiz ′), z + eqiz′, q + q ′

)
.

4.6 The Adjoint Representation

Problem 4.70 Let G be the group defined by

G = {
A ∈ GL(2,R) : AtA = r2I, r > 0, detA> 0

}
.

(i) Find the explicit expression of the elements of G.
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(ii) Find its Lie algebra.
(iii) Calculate the adjoint representation of G.

Solution

(i) Let

A =
(
a11 a12
a21 a22

)
∈ GL(2,R).

By imposing AtA = r2I we obtain:

a2
11 + a2

21 = a2
21 + a2

22 = r2, (�)

a11a12 + a21a22 = 0. (��)

From (�) we deduce

a11 = r cosα, a12 = r cosβ, a21 = r sinα, a22 = r sinβ,

and then equation (��) tells us that

0 = cosα cosβ + sinα sinβ = cos(α − β).

Hence β = α + kπ
2 , k ∈ Z. Accordingly,

A =
(
r cosα (−1)kr sinα

r sinα (−1)k−1r cosα

)
,

from which detA = (−1)k−1r2. Hence A ∈ G if and only if k is odd, and we
can write

A =
(
a −b

b a

)
, a2 + b2 = r2,

where a = r cosα, b = r sinα. The elements of G are usually called the simi-
larities of the plane, as they are the product of a rotation by a homothety, both
around the origin (see Problem 4.38), i.e.

(
a −b

b a

)
=

(
r 0
0 r

)(
cosα − sinα

sinα cosα

)
.

Hence we have

G =
{(

a11 a12
a21 a22

)
∈ GL(2,R) : a11 − a22 = a12 + a21 = 0

}
.

(ii) By (i), the tangent space at the identity element e is

TeG = {
X ∈ M(2,R) : Xf = 0, f = a11 − a22 or f = a12 + a21

}
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≡
〈

∂

∂x1
1

∣∣∣∣
e

+ ∂

∂x2
2

∣∣∣∣
e

,− ∂

∂x1
2

∣∣∣∣
e

+ ∂

∂x2
1

∣∣∣∣
e

〉
≡

〈(
1 0
0 1

)
,

(
0 −1
1 0

)〉
,

hence the Lie algebra of G is g = {( a11 −a21
a21 a11

) ∈ M(2,R)
}
.

(iii) For an arbitrary Lie group G with Lie algebra g, the adjoint representation
Ad : G → Autg is given by

Ads X = Ls∗R−1
s∗ X, s ∈ G, X ∈ g.

For a matrix group, we have

Ads X = sXs−1.

As the group G of similarities of the plane is Abelian, the adjoint representation
is trivial, i.e.

Ads = idg, s ∈ G.

Problem 4.71 The algebra H of quaternions is an algebra of dimension 4 over
the field R of real numbers. H has a basis formed by four elements e0, e1, e2, e3
satisfying

e2
0 = e0, e2

i = −e0, e0ei = eie0 = ei, eiej = −ej ei = ek, (�)

where (i, j, k) is an even permutation of (1,2,3). If q = ∑3
i=0 aiei ∈ H, the conju-

gate quaternion of q is defined by

q̄ = a0e0 − (a1e1 + a2e2 + a3e3),

and the real number |q| =
√∑3

i=0 a
2
i is called the norm of q . Let H∗ denote the

multiplicative group of non-zero quaternions.

(i) Prove that H∗ is a Lie group.
(ii) Consider the map ρ that defines a correspondence from each p ∈ H

∗ into the
R-linear automorphism of H defined by

ρ(p) : q �→ ρ(p)q = pq, q ∈H.

Which is the representative matrix of ρ(p) with respect to the given basis of H?
Compute its determinant.

(iii) Prove that ρ is a representation of H∗ on H≡ R
4.

(iv) Find the group of inner automorphisms Intg of the Lie algebra of H∗.

Solution

(i) To prove that H∗ is an abstract group is left to the reader. Given q = a0e0 +
a1e1 + a2e2 + a3e3 ∈ H

∗, applying the multiplication rules (�), we obtain

q−1 = 1

|q|2 (a0e0 − a1e1 − a2e2 − a3e3) = q̄

|q|2 ,
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and then, for p ∈ H
∗, we have

qp−1 = 1

|p|2
{
(a0b0 + a1b1 + a2b2 + a3b3)e0

+ (−a0b1 + a1b0 − a2b3 + a3b2)e1

+ (−a0b2 + a1b3 + a2b0 − a3b1)e2

+ (−a0b3 − a1b2 + a2b1 + a3b0)e3
}
.

Thus the map H
∗ ×H

∗ → H
∗, (q,p) �→ qp−1, is C∞, and hence H

∗ is a Lie
group.

(ii) Let q ∈ H,p ∈ H
∗, written as in (i). Then it is easy to obtain

ρ(q)p =

⎛

⎜⎜
⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

b0
b1
b2
b3

⎞

⎟⎟
⎠ ,

so the above matrix is the matrix of ρ(q) with respect to the basis {e0, e1, e2, e3}.
We have detρ(q) = |q|2.

(iii) A representation of H∗ on H≡ R
4 is a homomorphism from H

∗ to the group of
automorphisms GL(4,R) of R4. Since detρ(q) = |q|2 = 0, ρ(q) is invertible.
Thus ρ sends H∗ to GL(4,R), and since ρ(q−1)ρ(q)p = q−1qp = p, we have
ρ(q)−1 = ρ(q−1). Furthermore, we have

ρ
(
qq ′)p = qq ′p = ρ(q)ρ

(
q ′)p,

that is, ρ(qq ′) = ρ(q)ρ(q ′).
(iv) The group of inner automorphisms Intg of the Lie algebra of H∗ is (see Defi-

nition on p. 153) the image of

H
∗ → Aut Lie

(
H

∗), q �→ Adq,

where Lie(H∗) stands for the Lie algebra of H∗. We identify Lie(H∗) ∼= TeH
∗

to H, and we consider the basis {e0, e1, e2, e3} of H above. Hence, the adjoint
representation gives rise to a homomorphism H

∗ → GL(4,R), q �→ Adq .
We claim that Intg is the subgroup SO(3) embedded in GL(4,R) as

Ã =
(

1 0
0 A

)
, A ∈ SO(3).

Since

Adq Ye = Rq−1∗Lq∗Ye = (Rq−1 ◦ Lq)∗Ye, Y ∈ Lie
(
H

∗),

Intg is isomorphic to the group of matrices (Rq−1 ◦Lq)∗, q ∈H. Moreover, as
Rq and Lq are linear maps on H, we can identify (Rq−1 ◦ Lq)∗ to Rq−1 ◦ Lq ,
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that is, Adq = Rq−1 ◦ Lq . With the same notations as above, we note that
Lq = ρ(q). Hence detLq = |q|2. Similarly, it can be proved that detRq = |q|2.
Hence,

det Adq = (detRq−1)(detLq) = (detRq)
−1 detLq = 1.

Therefore, Intg is contained in the special linear group SL(4,R). Let 〈 , 〉 de-
note the scalar product of vectors in R

4. By using the formula for qp−1 in (i)
we obtain 〈q,p〉 = |p|2 Re(qp−1), where Req = 1

2 (q + q̄). Then, we have

〈Adqp1,Adqp2〉 = |Adqp2|2 Re
(
Adqp1(Adqp2)

−1)

= ∣∣qp2q
−1

∣∣2 Re
(
qp1p

−1
2 q−1)

= |p2|2 Re
(
p1p

−1
2

) = 〈p1,p2〉.
It follows that Adq is an isometry, and, consequently, it belongs to O(4). Fur-
thermore, Adqe0 = e0. Hence Adq leaves invariant the orthogonal subspace
〈e0〉⊥ = 〈e1, e2, e3〉. Accordingly, every Adq is a matrix of the form Ã above.
Therefore, Adq ∈ SO(3).

Moreover, the kernel of Ad is R∗, the centre of H∗. We have H∗/R+ ∼= S3 =
{q ∈ H : |q| = 1}. Hence,

H
∗/R∗ ∼= S3/{+1,−1} = RP3,

which is compact and connected. Accordingly, Intg is a compact, connected
subgroup in SO(3). Hence it necessarily coincides with SO(3).

Problem 4.72 Prove that SU(2) ∼= Sp(1) and apply it to prove that SU(2) is a two-
fold covering of SO(3).

Hint Apply that Sp(1) has centre Z2 ∼= {±I } and acts by conjugation on ImH∼= R
3.

One can find the relevant theory, for instance, in Ziller [15].

Solution It is easy to verify that any matrix of SU(2) has the form

M(a,b) =
(

a b

−b̄ ā

)
, a, b ∈C, |a|2 + |b|2 = 1.

Then the map SU(2) → Sp(1), M(a,b) �→ q = a + bj, is an isomorphism.
We will now prove that one can see the adjoint representation of

Sp(1) = {
q ∈ H : |q| = 1

} = {
q ∈H : q̄ = q−1}

as the two-fold covering

ϕ : Sp(1) −→ SO(3)

q �−→ {v �→ qvq̄} ∈ SO(ImH) ∼= SO(3).
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In fact, since |qvq̄| = |v|, the map v �→ qvq̄ is an isometry of H. Now,
(ϕ(q))(1) = 1, and hence ϕ(q) preserves the orthogonal complement (R · 1)⊥ =
ImH. Moreover, ϕ(q) lies in SO(3) as Sp(1) is connected. But if q ∈ kerϕ, then
for the anticommuting imaginary units i, j, k of H, we have qi = iq , qj = jq and
qk = kq , and, consequently, q ∈ R, i.e. q = ±1. So that kerϕ ∼= Z2 and the centre
of Sp(1) is Z2 = {±1}. Since both groups have dimension three, ϕ is a two-fold
covering map. Hence SO(3) = SU(2)/Z2.

Problem 4.73 Let G be a Lie group, and g its Lie algebra. If ad stands for the
adjoint representation of g, that is, the differential of the adjoint representation G →
Autg, s �→ Ads , prove:

(i)

(exp ad tX)(Y ) = Y + t[X,Y ] + t2

2!
[
X, [X,Y ]]+ · · · , X,Y ∈ g.

(ii)

Adexp tX(Y ) = Y + t[X,Y ] + t2

2!
[
X, [X,Y ]]+ · · · , X,Y ∈ g.

Solution

(i)

(exp ad tX)(Y ) =
(
I + ad tX + 1

2! (ad tX)2 + · · ·
)
(Y )

= Y + [tX,Y ] + 1

2!
[
tX, [tX,Y ]]+ · · ·

= Y + t[X,Y ] + t2

2!
[
X, [X,Y ]]+ · · · .

(ii) The expansion follows from the formula

Ad◦ exp = exp◦ ad

and (i) above.

Problem 4.74 Consider the Lie algebra g with a basis {e1, e2, e3} having non-
vanishing brackets

[e1, e3] = ae1 + be2, [e2, e3] = ce1 + de2,

ad − bc = 0, a2 + d2 + 2bc = 0.

(i) Compute the ideal [g,g]. Is g Abelian? Is g solvable?
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(ii) Compute adX for any X = X1e1 + X2e2 + X3e3.
(iii) Compute tr(adX)2. When is tr(adX)2 = 0?

Solution

(i) [g,g] = 〈e1, e2〉 and [[g,g], [g,g]] = 0, and thus g is solvable but not Abelian.
(ii)

adX =
⎛

⎜
⎝

−aX3 −cX3 aX1 + cX2

−bX3 −dX3 bX1 + dX2

0 0 0

⎞

⎟
⎠ .

(iii) tr(adX)2 = (a2 + d2 + 2bc)(X3)2, and tr(adX)2 = 0 only if X ∈ [g,g].
Problem 4.75 Prove that the Lie algebra

g =
⎧
⎨

⎩

⎛

⎝
0 −x y

x 0 z

0 0 0

⎞

⎠ , x, y, z ∈ R

⎫
⎬

⎭

is solvable but not completely solvable.

Remark Completely solvable Lie algebras (or groups) over R are also called split
solvable or real solvable Lie algebras (or groups), see Definition 4.6.

The relevant theory is developed, for instance, in Knapp [8].

Solution It is immediate that g admits a basis
⎧
⎨

⎩
e1 =

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ , e2 =
⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ , e3 =
⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠

⎫
⎬

⎭

with non-zero brackets

[e1, e2] = e3, [e1, e3] = −e2.

As
[[e1, e2], [e1, e3]

] = 0,

the Lie algebra is solvable.
Now, the eigenvalues of

ade1 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ ,

that is, the solutions of det(λI − ade1) = 0, are λ = 0,±i. Since ad has some non-
real eigenvalues, g is not completely solvable.
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Problem 4.76 Let g be a two-dimensional complex Lie algebra with basis {X,Y }
such that [X,Y ] = Y .

(i) Identify the regular elements.
(ii) Prove that CX is a Cartan subalgebra but that CY is not.

(iii) Find the weight-space decomposition of g relative to the Cartan subalgebra
CX.

Hint (to (i)) Apply Definition 4.10.

Hint (to (ii)) Apply Proposition 4.7.

Remark Root-space decompositions of Lie algebras are usually described for either
complex semi-simple Lie algebras or compact connected Lie groups. However, they
also exist for the general case of complex Lie groups (see Knapp [8]). Notice that
the example g in this problem is not semi-simple; actually, it is solvable.

The relevant theory is developed, for instance, in Knapp [8].

Solution

(i) We have

adX =
(

0 0
0 1

)
, adY =

(
0 0

−1 0

)
,

so a generic element zX + wY , z,w ∈ C, has the characteristic polynomial

λ2 − zλ.

This has the lowest possible degree whenever z = 0. Hence, according to Def-
inition 4.10, the regular elements are those in g \ 〈Y 〉.

(ii) Both CX and CY are Abelian and hence nilpotent. We are in the conditions of
Proposition 4.9 below, so a given nilpotent subalgebra h is a Cartan subalgebra
of g if and only h coincides with its own normaliser,

Ng(h) = {
A ∈ g : [A,h] ⊆ h

}
.

Since [X,Y ] = Y , the conclusion is immediate.
(iii) From (ii) one has that the decomposition is g = CX ⊕ CY with CY the (gen-

eralised) weight space for the linear functional α such that α(X) = 1.

Problem 4.77 Let

g = h⊕
⊕

α∈Δ
gα

be a root-space decomposition for a complex semi-simple Lie algebra, and let Δ′
be a subset of Δ that forms a root system in the R-linear span of all α ∈ Δ′ (see
Theorem 4.17 and Definition 4.18).
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Fig. 4.3 The root system of
SO(5,C). Dashed, the
subsystem Δ′

(i) Show by example that g′ = h⊕⊕
α∈Δ′ gα need not be a subalgebra of g.

(ii) Suppose that Δ′ ⊆ Δ is a root subsystem with the following property. Whenever
α and β are in Δ′ and α + β is in Δ, then α + β is in Δ′. Prove that

g
′ = h

′ ⊕
⊕

α∈Δ′
gα, where h

′ =
∑

α∈Δ′
[gα,g−α] ⊂ h

is a subalgebra of g and that it is semi-simple.

Hint (to (i)) Take g = so(5,C) and the subset Δ′ = {±ε1,±ε2} of the root system
of so(5,C) (see Table on p. 562 and Fig. 4.3).

Hint (to (ii)) Apply the properties of a Cartan decomposition of a complex semi-
simple Lie algebra in Theorem 4.17 and Cartan’s Criterion for Semisimplicity 4.13.

The relevant theory is developed, for instance, in Helgason [7].

Solution

(i) We take, as in the hint, the given subset Δ′ of the root system of so(5,C). Let
us first check that Δ′ is an abstract root system (see Definition 4.18). Let V be
the vector space spanned by the roots in Δ, then it is clear that Δ′ also spans V .

Moreover, given the symmetry of Δ′, it suffices to choose an element, say
ε1 ∈ Δ′, and prove that the orthogonal transformation

sε1(β) = β − 2〈β, ε1〉
|ε1|2 ε1, β ∈ Δ′,

carry Δ′ to itself. Now, this transformation is the reflection of Δ′ on the axis
orthogonal to ε1.

Furthermore, all the quotients 2〈β,γ 〉
|γ |2 , β,γ ∈ Δ′, equal either 0 or ±2, any-

way an integer.
So Δ′ is in fact a root system.
On the other hand, in the Lie algebra g = so(5,C) we have, for instance, that

[gε1 ,gε2] = gε1+ε2
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because ε1 + ε2 ∈ Δ (see Theorem 4.17). But gε1+ε2 ⊂ g′ because ε1 + ε2 /∈ Δ′,
i.e. g′ is not a subalgebra of g.

(ii) That

g
′ = h

′ ⊕
⊕

α∈Δ′
gα

is a subalgebra of g is immediate on account of the additional property in the
statement and Proposition 4.7.

To see that g′ is semi-simple, if suffices to prove that the Killing form of the
Lie algebra g′ is non-degenerate. For this, let Bg and Bg′ denote the Killing
forms of g and g′, respectively.

For each pair α,−α ∈ Δ, select vectors Xα ∈ gα and X−α ∈ g−α such that
Bg(Xα,X−α) = 1 (by Proposition 4.7 and by Theorem 4.14 the form Bg is
non-degenerate on gα × g−α). Consider two elements in g′,

Xi = hi +
∑

α∈Δ′
ai
αXα, where hi ∈ h

′ ⊂ h, i = 1,2.

Since by Proposition 4.7 we have [gλ, [gμ,gν]] ⊂ gλ+μ+ν for any λ,μ, ν ∈ h∗
(g0 = h) and by Theorem 4.14 one has gλ = gλ, we obtain that

Bg′(Xα,Xβ) = trg′(adXα ◦ adXβ ) = 0 if α,β ∈ Δ′, α + β = 0,

and Bg′(h′,gα) = 0 if α = 0. Hence,

Bg′(X1,X2) = Bg′(h1, h2)+
∑

α∈Δ′

(
a1
αa

2−α + a1−αa
2
α

)
Bg′(Xα,X−α). (�)

Now, on account of Theorem 4.17, one has

adX−α adXα(Xβ) = qα,β(1 − pα,β)

2
α(hα)(aβXβ),

adX−α adXα(h) = α(h)[Xα,X−α] = α(h)hα for any h ∈ h.

Since by definition qα,β � 0 and pα,β � 0, and moreover α(hα) =
Bg(hα,hα) > 0, we obtain that

Bg′(X−α,Xα) = α(hα)+
∑

β∈Δ′

qα,β(1 − pα,β)

2
α(hα) > 0.

Since each endomorphism adhi
: g′ → g′ is semi-simple with eigenvalues β(hi),

β ∈ Δ′ and 0, we have

Bg′(h1, h2) =
∑

β∈Δ′
β(h1)β(h2).
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Suppose that Bg′(X1,X2) = 0 for all X2 ∈ g′. Then Bg′(X1, h2) = 0, so

Bg′(h1, h2) = 0 ∀h2 ∈ h
′ =

∑

α∈Δ′
Rhα.

Hence α(h1) = 0 for each α ∈ Δ′, that is, Bg(h1, hα) = 0 for all α ∈ Δ′, thus
h1 = 0, and formula (�) reduces to

0 = 0 +
∑

α∈Δ′

(
a1
αa

2−α + a1−αa
2
α

)
Bg′(Xα,X−α)

with Bg′(Xα,X−α) > 0, which can be further reduced taking the sum on the
positive roots in Δ′ to

0 = 2
∑

α∈(Δ′)+

(
a1
αa

2−α + a1−αa
2
α

)
Bg′(Xα,X−α).

As this happens for any a2−α, a
2
α , with α ∈ (Δ′)+, it follows that a1−α = a1

α = 0
for all α ∈ (Δ′)+, and we conclude that X1 = 0.

Problem 4.78 With the terminology and notations in Definitions 4.28:

(i) Prove that the roots of the general linear group GL(4,C) are

±(ε1 − ε2), ±(ε1 − ε3), ±(ε1 − ε4), ±(ε2 − ε3),

±(ε2 − ε4), ±(ε3 − ε4),

each with multiplicity one.
(ii) Prove that the roots of the symplectic group Sp(C4,Ω) are

±(ε1 − ε2), ±(ε1 + ε2), ±2ε1, ±2ε2,

each with multiplicity one.
(iii) Prove that the roots of the special orthogonal group SO(C5,B) are

±(ε1 − ε2), ±(ε1 + ε2), ±ε1, ±ε2,

each with multiplicity one.
(iv) Why 2εi , i = 1,2, are roots of Sp(C4,Ω) but not of SO(C4,B)?

Remark We follow in this problem (see below from Definitions 4.25 to Defini-
tions 4.28) the terminology and notations of [6], which have the advantage that
each of the corresponding diagonal subgroups is a maximal torus.

The relevant theory is developed in Goodman and Wallach [6].
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Solution

(i) Let Ei
j be the matrix with (i, j)th entry equal to 1 and zero elsewhere. For

A = diag(a1, . . . , a4) ∈ h, we have
[
A,Ei

j

] = [
diag(a1, a2, a3, a4),E

i
j

] = (ai − aj )E
i
j = 〈εi − εj ,A〉Ei

j .

Since the set {Ei
j }, i, j ∈ {1, . . . ,4}, is a basis of g = gl(4,R) = M(4,C), the

roots are in fact the ones in the statement, each with multiplicity 1.
(ii) Label the basis for C4 as {e1, e2, e−2, e−1}. Consider Ei

j for i, j ∈ {±1,±2}.
Set

Xε1−ε2 = E1
2 −E−2

−1, Xε2−ε1 = E2
1 −E−1

−2, Xε1+ε2 = E1−2 +E2−1,

X−ε1−ε2 = E−2
1 +E−1

2 , X2ε1 = E1−1, X−2ε1 = E−1
1 ,

X2ε2 = E2−2, X−2ε2 = E−2
2 .

Then, for A = diag(a1, a2, a−2, a−1) ∈ h, one has

[A,Xεi−εj ] = 〈εi − εj ,A〉Xεi−εj , [A,X±(εi+εj )] = ±〈εi + εj ,A〉Xεi+εj .

Hence the elements in h∗ in the statement are roots of sp(C4,Ω). Now,

{X±(ε1−ε2),X±(ε1+ε2),X±2ε1 ,X±2ε2}
is a basis for sp(C4,Ω) mod h. So the given roots are all of the roots, each with
multiplicity one.

(iii) We embed SO(C4,B) into SO(C5,B) by using the map (4.2) for r = 2. Since
H ⊂ SO(C4,B) ⊂ SO(C5,B) via this embedding, the roots ±ε1 ± ε2 of adh
on so(C4,B) also occur for the adjoint action of h on g = so(C5,B). Label the
basis of C5 as {e−2, e−1, e0, e1, e2}. Consider Ei

j for i, j ∈ {0,±1,±2}. Then

one can prove that the root vectors from SO(C4,B) are

Xε1−ε2 = E1
2 −E−2

−1 , Xε2−ε1 = E2
1 −E−1

−2 ,

Xε1+ε2 = E1−2 − E2−1, X−ε1−ε2 = E−2
1 −E−1

2 .

Define

Xε1 = E1
0 −E0

−1, Xε2 = E2
0 −E0

−2, X−ε1 = E0
1 − E−1

0 ,

X−ε2 = E0
2 −E−2

0 .

Then we have X±εi ∈ g, i = 1,2, and

[A,X±εi ] = ±〈εi,A〉Xεi , A ∈ h.

As {X±εi }, i = 1,2, is a basis for g mod so(C4,B), one concludes that the roots
of so(C5,B) are the ones in the statement, each with multiplicity one.
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(iv) Both sp(C4,Ω) and so(C4,B) have the same subalgebra of diagonal matrices
diag(r, s,−s,−r), which give rise in both cases to the roots −2εi , i = 1,2. For
instance,

⎡

⎢⎢
⎣

⎛

⎜⎜
⎝

r 0 0 0
0 s 0 0
0 0 −s 0
0 0 0 −r

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ =

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0

−2r 0 0 0

⎞

⎟⎟
⎠ .

However, the non-zero skew diagonal matrices

⎛

⎜⎜
⎝

0 0 0 r

0 0 s 0
0 t 0 0
u 0 0 0

⎞

⎟⎟
⎠

exist in sp(C4,Ω) and originate the roots 2εi , i = 1,2; but those matrices do
not exist in so(C4,B).

Problem 4.79 Show that the group of diagonal matrices

⎛

⎜⎜⎜⎜
⎝

λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

⎞

⎟⎟⎟⎟
⎠

, λi = ±1, λ1 · · · · · λn = 1,

is a maximal Abelian subgroup of SO(n) but is not a torus.
The relevant theory is developed, for instance, in Adams [1] or Bröcker and tom

Dieck [3].

Solution Since for any such matrix A, one has AtA = 1 and detA = 1, that set of
matrices is in fact a subgroup of SO(n). As the matrices are diagonal, the subgroup
is Abelian. It is obviously maximal but not a torus, due to the definition of a torus
(see Definitions 4.28).

Problem 4.80 Classify all the reduced root systems on R
2.

Hint Apply Definition 4.18 and Proposition 4.19, and multiply each side of (iii) and
(iv) in that proposition.

The relevant theory is developed, for instance, in Bröcker and tom Dieck [3].
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Fig. 4.4 The root system
a1 ⊕ a1

Solution Let (ε1, ε2) be the usual orthonormal basis of R2. Since any set of roots
spans R

2 = 〈ε1, ε2〉 and, by Proposition 4.19(i), the opposite of a root is a root,
any root system should have at least a set of roots α,−α,β,−β , with α,β linearly
independent.

By Proposition 4.19(iii), the possible values for the cosine of the angle between
α ∈ Δ and β ∈ Δ∪ {0} are

cos θ = |α|
|β|

{
0,±1

2
,±1,±3

2

}
. (�)

Suppose that |α| � |β|. Then from Proposition 4.19(iv) we have moreover that

cos θ = |β|
|α|

{
0,±1

2

}
. (��)

Multiplying each side of (�) and (��), one gets, as possible values of cos θ ,

cos θ =
{

0,±1

2
,±

√
2

2
,±

√
3

2

}
,

that is, for θ ∈ [0,2π], the possible values of θ are

θ = π

6
,
π

4
,
π

3
,
π

2
,

2π

3
,

3π

4
,

5π

6
.

It is customary and useful, and supposes no restriction, to take 〈α,β〉 � 0. Notice
that it suffices to change α by −α if necessary. This reduces the possibilities to

θ = π

2
,

2π

3
,

3π

4
,

5π

6
.

Consider first the case θ = π
2 . Then 〈α,β〉 = 0, and we can take

Δ = {±ε1,±ε2},

which is (see Fig. 4.4) the root system a1 ⊕ a1 corresponding to SL(2,C) ×
SL(2,C).
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Fig. 4.5 The root system Δ

of sp(2,C). Dashed, the
positive roots. Labeled, the
simple roots

Fig. 4.6 The root system of
SL(3,C). Dashed, the
positive roots. Labeled, the
simple roots

Suppose now that θ = 2π
3 and take |α| = 1. Then from (��) we have |β| = 1, so

on account of Proposition 4.19(v), the corresponding root system is

{
±ε1,±

(
1

2
ε1 ±

√
3

2
ε2

)}
,

which is (see Fig. 4.6) the root system a2 corresponding to SL(3,C).
Let now |α| = 1 and θ = 3π

4 . Then from (��) it follows that

√
2

2
= |β|1

2
,

i.e. |β| = √
2, so the corresponding root system is

{±ε1,±ε2,±ε1 ± ε2},
which corresponds to either (see Fig. 4.3) the root system b2 of the simple group
SO(5,C) or (see Fig. 4.5) to its isomorphic root system c2 of the simple group
Sp(2,C).

Consider finally |α| = 1 and θ = 5π
6 ; then from (��) it follows that

√
3

2
= |β|1

2
,

that is, |β| = √
3. Due to the fact that a root system contains, for any root, its op-

posite and their symmetric roots under reflections, we have that the corresponding
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root system is

{
±ε1,±

(
1

2
ε1 ±

√
3

2
ε2

)
,±

(√
3ε1 ±

√
3

2
ε2

)
,±√

3ε2

}
,

which is (see Fig. 4.7) the root system g2 corresponding to the simple group GC

2 .

Problem 4.81 Consider the next simple compact connected Lie groups:
1. SU(3).
2. SO(5).
3. Sp(2).
4. G2.

Find in each case, by using the tables on p. 562:

(a) The semisum ρ of positive roots.
(b) The order |W | of the Weyl group W for the corresponding root system and the

inner automorphisms of the Lie algebra generating W .
(c) The Cartan matrix.
(d) The Dynkin diagram.

Hint (to 1(a)–4(a)) See Definition in 4.20.

Hint (to 1(b)–4(b)) Apply Theorem 4.24 on the properties of the Weyl group and
Theorem 4.29 on the properties satisfied by the entries of the matrices of the ele-
ments of the Lie subalgebra g2 ⊂ so(7) of G2.

Hint (to 1(c,d)–4(c,d)) See Definitions 4.21.

The relevant theory is developed, for instance, in Adams [1].

Solution

1. Since SU(3) is a (compact) real form of SL(3,C) (see p. 559), the root system
Δ of SU(3) is (see p. 160) of type an in the table in p. 562, for n = 2. That is,
that given in Fig. 4.6, i.e.

Δ = {±(εi − εj ); i, j = 1,2,3, i = j
}
.

(Notice that the vertices of the corresponding hexagon lye on a plane in the three-
dimensional vector space V = 〈ε1, ε2, ε3〉 with orthonormal basis {ε1, ε2, ε3}.)
The subset of positive roots is

Δ+ = {ε1 − ε2, ε2 − ε3, ε1 − ε3},
and hence

ρ = ε1 − ε3.
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On the other hand, according to the table in p. 562, the set of simple roots is
given by

Π = {α1, α2} = {ε1 − ε2, ε2 − ε3}.
To compute |W |, recall that the Weyl group W is generated by the reflections
with respect to the hyperplanes p1 and p2 (the lines if n = 2) orthogonal to the
vectors α1 and α2 in the two-dimensional space V2 = 〈α1, α2〉 ⊂ V . Since an
orientation of V2 is not preserved by a reflection (because any reflection has de-
terminant −1), the Weyl group W contains a subgroup W ′ of index two (i.e.
|W/W ′| = 2). But each orthogonal transformation of V2 =R

2 preserving an ori-
entation is a rotation. Taking into account that the angle between the planes p1

and p2 equals π
3 (see Problem 4.80), we obtain that the group W ′ is generated by

the rotation of angle 2π
3 . Therefore |W ′| = 3 and |W | = 6.

To describe the inner automorphisms of the Lie algebra su(3) generating the
Weyl group W , recall that the Lie algebra su(3) consists (see the table on p. 560)
of the traceless skew-Hermitian 3 × 3 matrices and define the inner product 〈 , 〉
on su(3) by

〈X,Y 〉 = 1

4π2
tr
(
tX̄Y

) = − 1

4π2
trXY,

which is clearly SU(3)-invariant. Moreover, restricted to the Lie algebra

t =
⎧
⎨

⎩

⎛

⎝
2π ix1 0 0

0 2π ix2 0
0 0 2π ix3

⎞

⎠ : x1, x2, x3 ∈R, x1 + x2 + x2 = 0

⎫
⎬

⎭

of a maximal torus T (see, for instance, [1, p. 83], [3, p. 170]), this inner product
has the form

x2
1 + x2

2 + x2
3 .

Since this is the usual inner product, reflection is the usual reflection.
It is easy to verify that the matrix Ek

j ∈ sl(3,C), 1 � k, j � 3, k = j , contain-
ing a unique non-zero element (which is equal to 1) in the kth row and the j th
column is a root vector with respect the Cartan subalgebra tC ⊂ sl(3,C):

[
Ek

j ,diag(2π ix1,2π ix2,2π ix3)
] = (2π ixk − 2π ixj )E

k
j .

Note also that this root vector is not an element of the compact Lie algebra
su(3) ⊂ sl(3,C). The corresponding root equals εk − εj , where by definition

ε1 = diag(2π i,0,0), ε2 = diag(0,2π i,0), ε3 = diag(0,0,2π i)

(here the restriction to t of each root belonging to the dual space of the complex
Cartan subalgebra tC ⊂ sl(3,C) is identified with the element of the real Cartan
subalgebra t ⊂ g using the inner product on t).
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The hyperplane of V = {(x1, x2, x3)} = 〈ε1, ε2, ε3〉 orthogonal to the root ε1 −
ε2 is the plane x1 = x2. The reflection with respect to this plane is given by

x′
1 = x2, x′

2 = x1, x′
3 = x3.

This is induced by an inner automorphism, namely by conjugation with an ele-
ment of SU(3). In fact, we can write, omitting the factors 2π ,

⎛

⎝
ix2 0 0
0 ix1 0
0 0 ix3

⎞

⎠ =
⎛

⎝
0 1 0

−1 0 0
0 0 1

⎞

⎠

⎛

⎝
ix1 0 0
0 ix2 0
0 0 ix3

⎞

⎠

⎛

⎝
0 −1 0
1 0 0
0 0 1

⎞

⎠ .

As this happens similarly for the other roots, the Weyl group contains the sym-
metric group S3 on ε1, ε2, ε3. But since |W | = 6 = 3!, W is this symmetric
group.

On account of the set of simple roots Π of so(3), the Cartan matrix is given
by

C =
⎛

⎝
2〈α1,α1〉

|α1|2
2〈α1,α2〉

|α1|2
2〈α2,α1〉

|α2|2
2〈α2,α2〉

|α2|2

⎞

⎠ =
⎛

⎝
2〈ε1−ε2,ε1−ε2〉

|ε1−ε2|2
2〈ε1−ε2,ε1−ε3〉

|ε1−ε2|2
2〈ε1−ε3,ε1−ε2〉

|ε1−ε3|2
2〈ε1−ε3,ε1−ε3〉

|ε1−ε3|2

⎞

⎠

=
(

2 2 cos 2π
3

2 cos 2π
3 2

)

=
(

2 −1
−1 2

)
,

and the Dynkin diagram by

1◦
ε1−ε2

1◦
ε2−ε3

2. Since SO(5) is a (compact) real form of SO(5,C) (see p. 559), the root system
Δ of SO(5) is (see p. 160) of type bn in the table on p. 562, for n = 2. That is,
that given in Fig. 4.3, i.e.

Δ = {±εi ± εj ; i, j = 1,2, i = j} ∪ {±εi; i = 1,2},
and the set of positive roots is

Δ+ = {ε1 ± ε2, ε1, ε2},
so

ρ = 1

2
(3ε1 + ε2).

According to the table on p. 562, the set of simple roots is given by

Π = {α1, α2} = {ε1 − ε2, ε2}.
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To compute |W | as above, it is sufficient to compute |W ′|, where W ′ is the sub-
group of index two in W generated by the rotations. Taking into account that the
angle between the planes p1 and p2 (defined by α1 and α2 in 〈α1, α2〉) in this
case equals π

4 (see Problem 4.80), we obtain that the group W ′ is generated by
the rotation of angle π

2 . Therefore |W ′| = 4 and |W | = 8.
To describe the inner automorphisms of the Lie algebra so(5) generating the

Weyl group W , recall that the Lie algebra so(5) consists (see table on p. 560)
of the skew-symmetric real 5 × 5 matrices and define the inner product 〈 , 〉 on
so(5) by

〈X,Y 〉 = 1

8π2
tr
(
tXY

) = − 1

8π2
trXY,

which is clearly SO(5)-invariant. Moreover, restricted to the Lie algebra

t =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(x1, x2) =

⎛

⎜
⎜
⎜
⎜
⎝

0 −2πx1 0 0 0
2πx1 0 0 0 0

0 0 0 −2πx2 0
0 0 2πx2 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

, x1, x2 ∈R

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

of a maximal torus T (see, for instance, [1, p. 89], [3, p. 171]), it has the form

x2
1 + x2

2 .

Since this is the usual inner product, reflection is the usual reflection.
We can find as above the root vectors of the complex Lie algebra so(5,C)

with respect to the Cartan subalgebra tC of so(5,C) (corresponding to the roots
from Δ) to prove that ε1 = A(1,0) and ε2 = A(0,1). But since in this case the
expressions for the root vectors are more complicated, here we only present di-
rectly the inner automorphisms of so(5) that induce the reflections corresponding
to the simple roots α1 and α2 (see Theorem 4.24).

Put ε′
1 = A(1,0) and ε′

2 = A(0,1). In fact, we can write, omitting the fac-
tors 2π ,
⎛

⎜
⎜⎜
⎝

0 −x2 0 0 0
x2 0 0 0 0
0 0 0 −x1 0
0 0 x1 0 0
0 0 0 0 0

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞

⎟
⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

0 −x1 0 0 0
x1 0 0 0 0
0 0 0 −x2 0
0 0 x2 0 0
0 0 0 0 0

⎞

⎟
⎟⎟
⎠

×

⎛

⎜⎜
⎜
⎝

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞

⎟⎟
⎟
⎠
.

We see that this inner automorphism of so(5), namely the conjugation by the
given element of the Lie group SO(5), acts in the space V = {(x1, x2)} = 〈ε′

1, ε
′
2〉
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as the map given by

x′
1 = x2, x′

2 = x1,

i.e. as the reflection with respect to the line (hyperplane) x1 = x2 orthogonal in
V to the vector ε′

1 − ε′
2 ∈ V .

Next we can write, again omitting the factors 2π ,
⎛

⎜
⎜
⎜
⎝

0 −x1 0 0 0
x1 0 0 0 0
0 0 0 x2 0
0 0 −x2 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0 −x1 0 0 0
x1 0 0 0 0
0 0 0 −x2 0
0 0 x2 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎠
.

This is an inner automorphism of so(5) that induces in V a reflection given by

x′
1 = x1, x′

2 = −x2,

i.e. the reflection with respect to the hyperplane of V orthogonal to the vector ε′
2.

As this happens similarly for the other analogous roots in each case, the Weyl
group consists of the transformations

ε1 �→ ±ε1, ε2 �→ ±ε2 and ε1 �→ ±ε2, ε2 �→ ±ε1.

Note also that by Theorem 4.24 the simple roots α1, α2 are proportional to the
vectors ε′

1 − ε′
2 and ε′

2 because ∠(ε′
1 − ε′

2, ε
′
2) = 3π

4 (see Problem 4.80). Taking
into account that the bases ε′

1, ε
′
2 and ε1, ε2 are orthonormal and |α1| = √

2|α2|,
∠(α1, α2) = 3π

4 , we conclude that ε1 = ±ε′
1 and ε2 = ±ε′

2.
It is easy to verify that the Cartan matrix is given by

(
2 −1

−2 2

)

and the Dynkin diagram by

2◦
ε1−ε2

>
1◦
ε2

3. Since Sp(2) is a (compact) real form of Sp(2,C) (see p. 559), the root system Δ

of Sp(2) is (see p. 160) of type cn in the table on p. 562, for n = 2. That is, that
given in Fig. 4.5, i.e.

Δ = {±εi ± εj ; i, j = 1,2, i = j} ∪ {±2εi ; i = 1,2},
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Fig. 4.7 The root system
of G2. Dashed, the positive
roots. Labeled as α1, α2, the
simple roots

and the set of positive roots is

Δ+ = {ε1 ± ε2,2ε1,2ε2};
hence,

ρ = 2ε1 + ε2.

According to the table on p. 560, the set of simple roots is

Π = {α1, α2} = {ε1 − ε2,2ε2}.
As for the order of the Weyl group and its action on the Cartan subalgebra,

note that the root systems of Sp(2) and SO(5) are isomorphic (compare Figs. 4.5
and 4.3) and note also that actually, the Lie group Sp(2) is isomorphic to the
universal covering group Spin(5) of SO(5) (see, for instance, Adams [1, Propo-
sition 5.1] and Postnikov [11, Lect. 13]). Thus, from (ii) above we have that

|W | = 8.

It is easy to verify that the Cartan matrix is given by
(

2 −2
−1 2

)

and the Dynkin diagram by

1◦
ε1−ε2

<
2◦

2ε2

4. Since G2 is a (compact) real form of GC

2 (see p. 559), the root system Δ of G2 is
(see p. 160) of type g in the table on p. 562. That is, that given in Fig. 4.7, i.e.

Δ = {±(ε1 − ε2),±(ε2 − ε3),±(ε1 − ε3)
}

∪ {±(2ε1 − ε2 − ε3),±(2ε2 − ε1 − ε3),±(2ε3 − ε1 − ε2)
}
.
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(Notice that the corresponding twelve points lye on a plane in the three-
dimensional vector space V = 〈ε1, ε2, ε3〉 generated by the orthonormal basis
ε1, ε2, ε3.) The set of positive roots is

Δ+ = {ε1 − ε2, ε2 − ε3, ε1 − ε3}
∪ {2ε1 − ε2 − ε3,2ε2 − ε1 − ε3,2ε3 − ε1 − ε2},

and so

ρ = 1

2
(ε1 − ε3).

According to the table in p. 560, the set of simple roots is given by

Π = {α1, α2} = {ε1 − ε2,−2ε1 + ε2 + ε3}.
To compute |W |, it is sufficient to compute |W ′|, where W ′ is the subgroup

of index two in W generated by the rotations. Taking into account that the angle
between the planes p1 and p2 (defined by α1 and α2 in 〈α1, α2〉) in this case
equals π

6 (see Problem 4.80), we obtain that the group W ′ is generated by the
rotation of angle π

3 . Therefore |W ′| = 6 and |W | = 12.
To describe the inner automorphisms of the Lie algebra g2 generating the

Weyl group W , recall that the Lie algebra g2 ⊂ so(7) consists of the skew-
symmetric real 7 × 7 matrices (aij ) satisfying the conditions recalled in the hint
above.

The Lie algebra t′ of a maximal torus T ′ of SO(7) is usually written as

t
′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

0 −2πx1 0 0 0 0 0
2πx1 0 0 0 0 0 0

0 0 0 −2πx2 0 0 0
0 0 2πx2 0 0 0 0
0 0 0 0 0 −2πx3 0
0 0 0 0 2πx3 0 0
0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

: x1, x2, x3 ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Now, we can make a change of coordinates in such a way that t′ is expressed by

t
′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜⎜⎜⎜⎜
⎜
⎝

0 −2πx1 0 0 0 0 0
2πx1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 2πx2
0 0 0 0 0 −2πx3 0
0 0 0 0 2πx3 0 0
0 0 0 −2πx2 0 0 0

⎞

⎟
⎟⎟⎟⎟
⎟⎟
⎠

: x1, x2, x3 ∈ R

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, according to the equations in the hint above, the elements in t′ ∩ g2 are
those with matrix as the previous one but with the additional condition x1 + x2 +
x3 = 0, and they constitute the Lie algebra t of a maximal torus T of G2.
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Define the inner product 〈 , 〉 on g2 ⊂ so(7) by

〈X,Y 〉 = 1

8π2
tr
(
tXY

) = − 1

8π2
trXY.

This is clearly G2-invariant (as it is SO(7)-invariant) and, restricted to the Lie
algebra

t = {
x1ε

′
1 + x2ε

′
2 + x3ε

′
3 : x1, x2, x3 ∈ R, x1 + x2 + x3 = 0

}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

0 −2πx1 0 0 0 0 0
2πx1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 2πx2
0 0 0 0 0 −2πx3 0
0 0 0 0 2πx3 0 0
0 0 0 −2πx2 0 0 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

:

x1, x2, x3 ∈ R, x1 + x2 + x3 = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

of a maximal torus T , it is the restriction of

x2
1 + x2

2 + x2
3

to x1 + x2 + x3 = 0. Since this is the usual inner product with the standard or-
thonormal base ε′

1, ε
′
2, ε

′
3, reflection is the usual reflection.

The hyperplane in V = {(x1, x2, x3)} = 〈ε′
1, ε

′
2, ε

′
3〉 orthogonal to the vector

ε′
1 − ε′

2 is the plane x1 = x2, and the reflection with respect to this plane is given
by

x′
1 = x2, x′

2 = x1, x′
3 = x3.

We will show that this reflection is induced by some inner automorphism of G2.
In fact, we can write, omitting the factors 2π ,

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 −x2 0 0 0 0 0
x2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 x1
0 0 0 0 0 −x3 0
0 0 0 0 x3 0 0
0 0 0 −x1 0 0 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠
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=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −x1 0 0 0 0 0
x1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 x2
0 0 0 0 0 −x3 0
0 0 0 0 x3 0 0
0 0 0 −x2 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
1 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

It is clear that the first matrix M on the right-hand side belongs to SO(7). (No-
tice that other possibilities for a matrix in SO(7) to satisfy the previous equation
are possible, for instance, the matrix M ′ given as M but with M ′

33 = M ′
66 = 1,

but one can check that M ′ ∈ G2.)
To see that M actually belongs to the Lie subgroup G2 ⊂ SO(7), it suffices to

see that it is an element of the group AutO of automorphisms of the octonions.
To this end, recall that each element of the algebra O admits a unique expres-

sion as q1 + q2e with q1, q2 ∈ H, where H is the quaternion algebra. Then the
multiplication in O is defined by the standard multiplication relations in H and
by the relations

q1(q2e) = (q2q1)e, (q1e)q2 = (q1q̄2)e, (q1e)(q2e) = −q̄2q1. (�)

On the other hand, each element of the quaternion algebra H admits a unique
expression as z1 + z2j with z1, z2 ∈ C, where C is the field of complex num-
bers. Then the multiplication and conjugation in H are defined uniquely by the
relations

zj = jz̄, j2 = −1, z1 + z2j = z̄1 − z2j, z, z1, z2 ∈C. (��)

In particular, denoting by i the imaginary unit of C, we have

i2 = j2 = −1, ij = −ji, ī = −i, j̄ = −j.

The algebra O can be also considered as the real space R
8 with the following

basis:

e0 = 1, e1 = i, e2 = j, e3 = ij, e4 = e, e5 = ie,

e6 = je, e7 = (ij)e.
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Moreover, the algebra O is a normed algebra with respect to the inner product in
R

8 with orthonormal basis {ep}, p = 0, . . . ,7, i.e. |uv| = |u||v| for any u,v ∈ O.
Remark also that

e2
p = −1, p = 1, . . . ,7, and epel = −elep, p, l = 1, . . . ,7, p = l,

i.e. e1, . . . , e7 are (anticommuting) imaginary units of O.
Now the matrix M can be viewed as the matrix diag(1,M) ∈ SO(8) acting,

under this identification O≡ R
8, by

r0e0 +
7∑

p=1

riei �−→ r0e0 + r7e1 + r4e2 − r3e3 + r2e4 + r5e5 − r6e6 + r1e7,

ri ∈ R,

i.e.

e0 �→ e0, e1 �→ e7, e2 �→ e4, e3 �→ −e3,

e4 �→ e2, e5 �→ e5, e6 �→ −e6, e7 �→ e1.

To prove that M ∈ AutO, we find a new canonical basis {e′
p}, p = 0, . . . ,7,

in O constructing some additional automorphism of O. Recall only that for any
elements ξ, η, ζ ∈ O such that

|ξ | = |η| = |ζ | = 1, η⊥ξ, ζ⊥ξ, ζ⊥η, ζ⊥ξη,

there exists a unique automorphism Φ : O → O such that (cf. [11, Lect. 15,
Lemma 1])

Φ(i) = ξ, Φ(j) = η, Φ(e) = ζ.

It is evident that the spaces

〈e0, e3, e5, e6〉 = 〈1, ij, ie, je〉, 〈e1, e2, e4, e7〉 = 〈
i, j, e, (ij)e

〉

are invariant with respect of the mapping M . So to construct our automorphism,
we choose ξ, η in the first space and ζ in the second. Indeed, putting ξ = je = e6,
η = ie = e5 and ζ = −e = −e4 and taking into account that e6e5 = (je)(ie) =
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ij = e3, we obtain the automorphism Φ of O for which Φ(e0) = e0 and

Φ(e1) = Φ(i) = je = e6,

Φ(e2) = Φ(j) = ie = e5,

Φ(e3) = Φ(ij) = (je)(ie) = ij = e3,

Φ(e4) = Φ(e) = −e = −e4,

Φ(e5) = Φ(ie) = −(je)e = j = e2,

Φ(e6) = Φ(je) = −(ie)e = i = e1,

Φ(e7) = Φ
(
(ij)e

) = −(
(je)(ie)

)
e = −(ij)e = −e7.

Now, in the new canonical basis e′
p = Φ(ep), p = 0, . . . ,7, we obtain that the

map M is defined by the following relations:

e′
0 �→ e′

0, e′
1 �→ −e′

1, e′
2 �→ e′

2, e′
3 �→ −e′

3,

e′
4 �→ −e′

5, e′
5 �→ −e′

4, e′
6 �→ −e′

7, e′
7 �→ −e′

6.

Identifying the space O with C
4 by putting (z1, z2, z3, z4) = (z1 + z2j) +

(z3 + z4j)e, we obtain the map

(z1, z2, z3, z4) �→ (z̄1, z̄2, az̄3, az̄4) with a = −i. (���)

Using relations (�) and (��), we obtain that the product in C
4 ≡ O is defined by

the relation

z · u = (z1, z2, z3, z4)(u1, u2, u3, u4)

= (z1u1 − z2ū2 − z3ū3 − z̄4u4, z1u2 + z2ū1 + z̄3u4 − z4ū3,

z1u3 − z̄2u4 + z3ū1 + z4ū2, z̄1u4 + z2u3 − z3u2 + z4u1).

Using this relation, we can find the four coordinates of the product M(z)M(u)

(on the left) and of the element M(zu) (on the right):

z̄1ū1 − z̄2u2 − (az̄3)(−au3)− (−az4)(aū4), z̄1ū1 − z̄2u2 − z̄3u3 − z4ū4,

z̄1ū2 + z̄2u1 + (−az3)(aū4)− (az̄4)(−au3), z̄1ū2 + z̄2u1 + z3ū4 − z̄4u3,

z̄1(aū3)− z2(aū4)+ (az̄3)u1 + (az̄4)u2, a(z̄1ū3 − z2ū4 + z̄3u1 + z̄4u2),

z1(aū4)+ z̄2(aū3)− (az̄3)ū2 + (az̄4)ū1, a(z1ū4 + z̄2ū3 − z̄3ū2 + z̄4ū1).

(†)
Now it is evident that M(z)M(u) = M(zu) for z,u ∈ O, i.e. M belongs in fact
to G2.

In turn, the hyperplane orthogonal in V to the vector −2ε′
1 + ε′

2 + ε′
3 is the

plane p of the equation

−2x1 + x2 + x3 = 0.
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Given a point P = (x̃1, x̃2, x̃3), its symmetric point with respect to p is given
by P ′ = 2Q − P , where Q stands for the foot of the perpendicular traced to
p from P , whose equations are (x̃1 − 2t, x̃2 + t, x̃3 + t), t being a real num-
ber parametrising the points of the straight line, since the normal vector to
p is (−2,1,1). Imposing now that the point (x̃1 − 2t, x̃2 + t, x̃3 + t) satis-
fies the equation of p, we obtain t = 1

6 (2x̃1 − x̃2 − x̃3), from which we get
Q = 1

3 (2(x̃1 + x̃2 + x̃3),2x̃1 + 5x̃2 − x̃3,2x̃1 − x̃2 + 5x̃3) and finally

P ′ =
(−x̃1 + 2x̃2 + 2x̃3

3
,

2x̃1 + 2x̃2 − x̃3

3
,

2x̃1 − x̃2 + 2x̃3

3

)
.

Since the reflection with respect to the plane p preserves the subspace {x1 +x2 +
x3 = 0} ⊂ V , we obtain (dropping the tilde ˜ ) that for each point P = (x1, x2, x3)

with x1 + x2 + x3 = 0, its image is the point P ′ = (−x1,−x3,−x2). In other
words, the reflection in the space {x1 + x2 + x3 = 0} ⊂ V is given by

x′
1 = −x1, x′

2 = −x3, x′
3 = −x2.

This is induced by an inner automorphism of G2. In fact, we can write, omitting
the factors 2π ,

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

0 x1 0 0 0 0 0
−x1 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 −x3
0 0 0 0 0 x2 0
0 0 0 0 −x2 0 0
0 0 0 x3 0 0 0

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −x1 0 0 0 0 0
x1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 x2
0 0 0 0 0 −x3 0
0 0 0 0 x3 0 0
0 0 0 −x2 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is obvious that the first matrix M on the right-hand side belongs to SO(7).
(Notice that, as before, other possibilities for a matrix in SO(7) to satisfy the
previous equation are possible, for instance, the matrix M ′ given as M but with
M ′

11 = M ′
33 = 1, but one can check that M ′ ∈ G2.)
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The matrix M can be viewed as the matrix diag(1,M) ∈ SO(8) acting, under
the identification O ≡ R

8, by

e0 +
7∑

i=1

riei �−→ r0e0 − r1e1 + r2e2 − r3e3 + r5e4 + r4e5 + r7e6 + r6e7, ri ∈R.

Hence the map M is defined by the following relations:

e0 �→ e0, e1 �→ −e1, e2 �→ e2, e3 �→ −e3,

e4 �→ e5, e5 �→ e4, e6 �→ e7, e7 �→ e6.

Identifying the space O with C
4 by putting (z1, z2, z3, z4) = (z1 + z2j) +

(z3 + z4j)e, we obtain that

(z1, z2, z3, z4) �→ (z̄1, z̄2, iz̄3, iz̄4),

i.e. this map coincides with the map (���) with a = i. Now from relations (†) it
follows that M(uv) = M(u)M(v), so actually M ∈ G2.

Now by Theorem 4.24 the simple roots α1, α2 are proportional to the vec-
tors α′

1 = ε′
1 − ε′

2 and α′
2 = −2ε′

1 + ε′
2 + ε′

3 because ∠(α′
1, α

′
2) = 5π

6 (see Prob-
lem 4.80). Taking into account that the bases ε′

1, ε
′
2 and ε1, ε2 are orthonormal

and |α1| = 1√
3
|α2|, ∠(α1, α2) = 5π

6 , we conclude that ε1 = ±ε′
1 and ε2 = ±ε′

2.
The Cartan matrix is given by

C =
⎛

⎝
2〈α1,α1〉

|α1|2
2〈α1,α2〉

|α1|2
2〈α2,α1〉

|α2|2
2〈α2,α2〉

|α2|2

⎞

⎠

=
⎛

⎝
2〈ε1−ε2,ε1−ε2〉

|ε1−ε2|2
2〈ε1−ε2,−2ε1+ε2+ε3〉

|ε1−ε2|2
2〈−2ε1+ε2+ε3,ε1−ε2〉

|−2ε1+ε2+ε3|2
2〈−2ε1+ε2+ε3,−2ε1+ε2+ε3〉

|−2ε1+ε2+ε3|2

⎞

⎠

=
⎛

⎝
2 2

√
3 cos 5π

6

2 1√
3

cos 5π
6 2

⎞

⎠ =
(

2 −3
−1 2

)
,

and the Dynkin diagram by

1◦
ε1−ε2

<
3◦−2ε1+ε2+ε3
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4.7 Lie Groups of Transformations

Problem 4.82 Consider:

(a) M = (0,4π) ⊂ R, with the differentiable structure induced by the usual one
on R.

(b) S1 with the usual differentiable structure as a closed submanifold of R2.
(c) The map f : M → S1, s �→ f (s) = (cos s, sin s).

Prove:

(i) The equivalence relation ∼ in M given by s ∼ t if and only if f (s) = f (t)

induces on the set M/∼ a structure of quotient manifold diffeomorphic to S1.
(ii) The manifold M/∼ cannot be obtained by the action of a group of transforma-

tions acting on M .

Solution

(i) The differentiable map f̃ : M → R
2 given by f̃ (s) = (cos s, sin s) is differen-

tiable and defines the map f : M → S1. Since S1 is an embedded submanifold
of R2, f is differentiable.

Furthermore f is a submersion as the rank of f at any s is equal to the rank
of the matrix (− sin s, cos s), which is equal to 1. Moreover, the associated
quotient manifold is diffeomorphic to S1. In fact, as the equivalence relation is
defined by s ∼ t if and only if f (s) = f (t), we have to prove that on M/∼ there
is a differentiable structure such that the map π : M → M/∼ is a submersion.
In fact, denote by [s] the equivalence class of s under ∼. Then the map

h : M/∼→ S1, [s] �→ (cos s, sin s),

is clearly bijective, and thus M/∼ admits only one differentiable structure with
which h : M/∼→ S1 is a diffeomorphism. The following diagram

M
f−→ S1

π ↘ ↗ h

M/∼

is obviously commutative, and since f is a submersion and h is a diffeomor-
phism, we deduce that π is a submersion. Consequently M/∼ is a quotient
manifold of M .

(ii) Let us suppose that there exists a group of transformations G acting on M by

θ : G × M → M, (g, s) �→ θ(g, s) = gs,
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such that from this action we would have the previous quotient manifold. Then,
given g ∈ G, as gs ∼ s, it would be

⎧
⎪⎨

⎪⎩

gs = s or s + 2π, s ∈ (0,2π),

g(2π) = 2π,

gs = s or s − 2π, s ∈ (2π,4π).

(�)

Consider the continuous map h : M → R, s �→ h(s) = gs − s. By (�) above,
h(M) ⊂ {−2π,0,2π}. Moreover, we know that 0 ∈ h(M) because h(2π) = 0.
But since M is connected and h continuous, h(M) is connected. We conclude
that h(M) = 0, that is, gs = s for all s ∈ M . As this holds for every g ∈ G, the
associated quotient manifold would be M , which cannot be homeomorphic to
M/∼, because M/∼ is compact and M is not.

Problem 4.83 Given R
2 with its usual differentiable structure, show:

1. The additive group Z of the integers acts on R
2 as a transformation group by the

action

θ : Z×R
2 → R

2

(
n, (x, y)

) �→ θ
(
n, (x, y)

) = (x + n,y).

2. The quotient space R
2/Z of R

2 by that action admits a structure of quotient
manifold.

3. S1 ×R admits a structure of quotient manifold of R2, diffeomorphic to R
2/Z as

above.

Solution

1. Z acts on R
2 as a transformation group by the given action. In fact, for each n,

the map

θn : R2 →R
2, (x, y) �→ θ(x, y) = (x + n,y),

is C∞. Moreover,

θ
(
n1, θ

(
n2, (x, y)

)) = θ
(
n1, (x+n2, y)

) = (x+n1 +n2, y) = θ
(
n1 +n2, (x, y)

)
.

2. Z acts freely on R
2, because if θ(n, (x, y)) = (x, y), i.e. (x + n,y) = (x, y), we

have n = 0, which is the identity element of Z.
Furthermore, the action of Z is properly discontinuous. In fact, we have to

verify the two conditions in Definition 4.31:
(i) Given (x0, y0) ∈R

2, let us consider U = (x0 −ε, x0 +ε)×R with 0 < ε < 1
2 .

Then, if (x1, y1) ∈ U ∩ θn(U), we have

x0 − ε < x1 < x0 + ε, x0 + n− ε < x1 < x0 + n + ε,

from which |n| < 2ε, that is, n = 0.
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(ii) Let (x0, y0), (x1, y1) ∈ R
2, such that (x0, y0) ∼ (x1, y1), that is, such that:

(a) y0 = y1, or (b) y0 = y1, x1 = x0 + n, for all n ∈ Z.
In the case (a), we have two different cases: x0 = x1 and x0 = x1, but the

solution is the same; we only have to consider

U = R× (y0 − ε, y0 + ε), V = R× (y1 − ε, y1 + ε), 0 < ε < |y1 − y0|/2.

Since θn(V ) = V , we have U ∩ θn(V ) = U ∩ V = ∅.
In the case (b), we have α = |x1 −x0| ∈ Z. We can suppose that x1 > x0. Thus

α = x1 − x0. Let m ∈ Z be such that m< α <m + 1, and consider the value

0 < ε < min
{
(α −m)/2, (m + 1 − α)/2

}
.

So, it suffices to consider

U = (x0 − ε, x0 + ε)×R, V = (x1 − ε, x1 + ε)×R.

Let us see that U ∩ θn(V ) = ∅ for all n ∈ Z. It is clear that the only values of n

that could give a non-empty intersection are n = −m and n = −(m + 1).
If n = −m, then if

(x2, y2) ∈ U ∩ θ−m(V ),

we have that

x0 − ε < x2 < x0 + ε, x1 − m − ε < x2 < x1 − m + ε,

so that x1 − m − ε < x0 + ε, hence x1 − x0 − m < 2ε, thus α − m < 2ε, thus
getting a contradiction.

If n = −(m + 1) and (x2, y2) ∈ U ∩ θ−(m+1)(V ), we have that

x0 − ε < x2 < x0 + ε, x1 − (m + 1)− ε < x2 < x1 − (m + 1)+ ε.

Thus x0 − ε < x1 − (m + 1) + ε, so x0 − x1 + (m + 1) < 2ε, hence (m + 1) −
α < 2ε, thus getting a contradiction.

We conclude that R2/Z admits a structure of quotient manifold of dimen-
sion 2.

3. We shall denote by [(x, y)] the class of (x, y) under the previous action. It is
immediate that the map

f : R → S1

s �→ f (s) = (sin 2πs, cos 2πs)

is a local diffeomorphism and thus is a submersion. Since the product of submer-
sions is a submersion, it follows that f × idR : R2 → S1 × R is a submersion.
Consider the diagram

R
2 f×idR�−−−−→ S1 ×R

π ↘ ↗ h

R
2/Z
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(x, y) �→ (f (x), y)

↘_ ↗_ h

π(x, y) = [(x, y)]
where h is defined by h([(x, y)]) = (f (x), y). Note that the definition makes
sense as if (x0, y0) ∼ (x1, y1), we have y0 = y1, x1 = x0 + n, and thus
f (x0, y0) = f (x1, y1), consequently h does not depend on the representative
of a given equivalence class. Furthermore h is one-to-one. In fact:
(a) h is injective, because if (f (x0), y0) = (f (x1), y1) then sin 2πx0 = sin 2πx1,

cos 2πx0 = cos 2πx1, and y0 = y1, hence x0 = x1 + n, y0 = y1, so
[(x0, y0)] = [(x1, y1)].

(b) h is surjective since h ◦ π is.

Problem 4.84 Consider M =R
2 with its usual differentiable structure and let Z be

the additive group of integer numbers. Prove:

1. Z acts on R
2 as a transformation group by the C∞ action

θ : Z×R
2 →R

2,
(
n, (x, y)

) �→ (
x + n, (−1)ny

)
.

2. R
2/Z is a quotient manifold.

Remark R
2/Z is diffeomorphic to the infinite Möbius strip (see Problem 1.31).

Solution

1. θ is an action of Z on R
2, because θ(0, (x, y)) = (x, y) and

θ(n1, θ
(
n2, (x, y)

) = (
x + n1 + n2, (−1)n1+n2y

) = θ
(
n1 + n2, (x, y)

)
.

Furthermore, the action is C∞. In fact, since Z is a discrete group, we only have
to prove that for each n ∈ Z, the action θn : R2 → R

2, (x, y) �→ (x +n, (−1)ny),
is a diffeomorphism, but this is clear.

2. Since Z is discrete, we only have to prove that the action θ is free and properly
discontinuous.
(i) The action θ is free, because if θ(n, (x, y)) = (x, y), then n = 0.

(ii) The action of Z is properly discontinuous. In fact:
(a) Given (x0, y0) ∈R

2, let U = (x0 − ε, x0 + ε)×R with 0 < ε < 1
2 . Then,

given (x1, y1) ∈ U ∩ θn(U), one has that

x0 − ε < x1 < x0 + ε, x0 + n − ε < x1 < x0 + n+ ε,

from which n = 0.
(b) Now, let (x0, y0), (x1, y1) ∈ R

2 such that (x0, y0) ∼ (x1, y1), where ∼
denotes the equivalence relation given by the present action.

For the sake of simplicity, we can assume that (x0, y0) and (x1, y1)

are in the same quadrant of R2. We have two possibilities:
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(α) y1 = y0.
(β) y1 = y0, and x1 = x0 + 2n for all n ∈ Z.

For (α), it suffices to consider U = R × (y0 − ε, y0 + ε) and V = R ×
(y1 − ε, y1 + ε) with 0 < ε < |y1 − y0|/2. Let

V ∗ = {
(x0, y0) ∈ R

2 : (x0,−y0) ∈ V
}
.

Then U ∩ θn(V ) ⊂ U ∩ (V ∪ V ∗) = ∅.
In case (β), we can assume that x1 > x0, and we have two possibili-

ties:

(β1) x1 − x0 = n, for all n.
(β2) x1 − x0 = n0 = an odd integer.

Case (β1) admits a solution similar to that given for (b) in Prob-
lem 4.83 for the case S1 ×R.

In case (β2), it suffices to consider the open balls U = B((x0, y0), ε)

and

V = B
(
(x1, y0), ε

)
, 0 < ε < min

(
1/2, (x1 − x0)/2, y0/2

)
.

In fact, it is easily checked that if either n = −n0 or n = −n0, the wanted
intersection is empty.

Consequently R
2/Z is a quotient manifold.

Problem 4.85 Find the one-parameter subgroups of GL(2,R) corresponding to

A =
(

0 1
−1 0

)
and B =

(
0 1
0 0

)
.

Compute the corresponding actions on R
2 and their infinitesimal generators from

the natural action of GL(2,R) on R
2.

Solution The one-parameter subgroup of GL(n,R) corresponding to the element
X ∈ gl(n,R) = M(n,R) is R → GL(n,R), t �→ etX . Thus,

etA =
(

cos t sin t

− sin t cos t

)
, etB =

(
1 t

0 1

)
.

The group {etA} acts on R
2, and the orbit of the point (x0, y0) is the circle with

centre (0,0) and radius r =
√
x2

0 + y2
0 .

The group {etB} acts on R
2 giving as orbit of each point (x0, y0) the straight line

(x0 + ty0, y0), which reduces to (x0,0) if y0 = 0.
The infinitesimal generator of (x, y) �→ (x cos t +y sin t,−x sin t +y cos t) is the

vector field

d

dt

∣∣∣∣
0
(x cos t + y sin t)

∂

∂x
+ d

dt

∣∣∣∣
0
(−x sin t + y cos t)

∂

∂y
= y

∂

∂x
− x

∂

∂y
,
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and the infinitesimal generator of (x, y) �→ (x + ty, y) is the vector field

d

dt

∣∣
∣∣
0
(x + ty)

∂

∂x
+ d

dt

∣∣
∣∣
0
y

∂

∂y
= y

∂

∂x
.

Problem 4.86 Find, in terms of the vector b, the matrix A and its eigenvalues when
the Euclidean motion

f : x → Ax + b, A ∈ O(3), b = (
b1, b2, b3),

of R3 has a fixed point.

Solution The equation f (x) = x for some x ∈ R
3 is the same as b = (I − A)(x),

where I stands for the identity. Thus f has a fixed point if and only if b ∈ im(I −A).
Then:

1. If +1 is not an eigenvalue of A, then ker(I − A) = {0}, and so I − A is an
automorphism of R3. In this case, b ∈ im(I − A).

2. Suppose that Au = u for some non-zero u ∈ R
3. We can assume that u is a

unit vector. Then R
3 = 〈u〉 ⊕ 〈u〉⊥, where 〈u〉 = {λu : λ ∈ R}; and A acts on

the plane 〈u〉⊥ as an isometry (in fact, from Au = u it follows that g(u, v) =
g(u,Av), where g stands for the Euclidean metric of R3; thus, as g(Au,Av) =
g(u, v), g(u, v) = 0 implies g(u,Av) = 0). We have b = λu + b′, b′ ∈ 〈u〉⊥,
and x = αu + x′ for all x ∈ R

3. Thus b = (I − A)(x) if and only if λ = 0 and
b′ = (I − A)(x′). Denote by A′ the restriction of A to 〈u〉⊥. If +1 is not an
eigenvalue of A′, we are done. In the other case, making an orthonormal change
of basis, we will have A′ = ( 1 0

0 1

)
or A′ = ( 1 0

0 −1

)
. That is, if +1 is an eigenvalue

of A, then we have:
(a) If A = I , then f has no fixed points except for b = 0.
(b) If A is a mirror symmetry, f has no fixed points except when b is orthogonal

to the plane of symmetry.
(c) If A is neither the identity nor a mirror symmetry, f has no fixed points

except when g(b,u) = 0, that is, when b is orthogonal to the rotation axis
of A (in this case).

Note that the multiplicity of the eigenvalue +1 is 3, 2 or 1, in the cases (a), (b)
and (c), respectively.

Problem 4.87 Let H 2 = {(x, y) ∈ R
2 : y > 0} be the upper half-plane and consider

(x, y) ∈ H 2 as z = x + iy ∈C under the identification R
2 ∼= C. Prove that the group

of fractional linear transformations

z �→ az + b

cz + d
, a, b, c, d ∈ Z, ad − bc = 1,

does not act freely on H 2.

Hint Compute, for instance, the isotropy group of i.
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Solution The isotropy group is given by the condition az+b
cz+d

= z, that is, az + b =
cz2 +dz. For example, for z = i, one has ai+b = di−c, so we have a = d , b = −c,
hence the isotropy group of i is the group of matrices of the form

(
a b

−b a

)
with a, b

integers such that a2 + b2 = 1. Hence, the solutions are (a, b) = (1,0), (−1,0),
(0,1) or (0,−1), and the subgroup is not the identity.

Problem 4.88

(i) Prove that the map

θ : R+ ×R →R, (a, x) �→ ax,

is a C∞ action of R+ on R. Is it free?
(ii) The action θ induces the equivalence relation ∼ in R defined by x ∼ y if there

exists a ∈ R
+ such that θ(a, x) = y or, equivalently, if there exists a ∈ R

+ such
that ax = y. Prove that R/R+ is not a quotient manifold of R.

Solution

(i) We have

θ(1, x) = x, θ
(
a, θ

(
a′, x

)) = aa′x = θ
(
aa′, x

)
.

Moreover, θ is C∞, as
(
idR ◦θ ◦ (idR+ × idR)

−1)(a, t) = at

is C∞.
The action θ is not free: For x = 0 and any a ∈R

+, we have ax = 0.
(ii) If R/R+ were a quotient manifold of R, then the natural map π : R → R/R+,

x �→ [x] would be a submersion. But R/R+ has only three points: [−1], [0]
and [1]. If it were a manifold, it would be discrete, so disconnected. Thus π

cannot be even continuous.

Problem 4.89 Show that

(x, y) �→ θt (x, y) = (
xe2t , ye−3t)

defines a C∞ action of R on R
2 and find its infinitesimal generator.

Solution We have θ0(x, y) = (x, y) and

θt ′θt (x, y) = (
xe2(t+t ′), ye−3(t+t ′)) = θt+t ′(x, y),

and hence θ is a C∞ action of R on R
2. The infinitesimal generator X is

X = d(xe2t )

dt

∣
∣∣∣
t=0

∂

∂x
+ d(ye−3t )

dt

∣
∣∣∣
t=0

∂

∂y
= 2x

∂

∂x
− 3y

∂

∂y
.
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Problem 4.90 Let

S3 = {
q = x + yi + zj + tk ∈ H : |q| = 1

}

act on itself by right translations.
Prove that the fundamental vector fields i∗, j∗,k∗ associated to the elements

i, j,k ∈ H are, respectively,

X = −y
∂

∂x
+ x

∂

∂y
+ t

∂

∂z
− z

∂

∂t
, Y = −z

∂

∂x
− t

∂

∂y
+ x

∂

∂z
+ y

∂

∂t
,

Z = −t
∂

∂x
+ z

∂

∂y
− y

∂

∂z
+ x

∂

∂t
.

Solution Identify the vector space of purely imaginary quaternions to the tangent
space T1S

3. The flow generated by i∗ is Rexp(t i)(q), q ∈ S3. Hence,

i∗q(x) = d

dt

∣
∣
∣∣
t=0

(x ◦Rexp(t i))(q) = d

dt

∣
∣
∣∣
t=0

x
(
q exp(t i)

) = x(qi)

= x
{(
x(q) + y(q)i + z(q)j + t (q)k

)
i
} = −y(q).

Similarly we obtain

i∗q(y) = x(q), i∗q(z) = t (q), i∗q(t) = −z(q),

so

i∗ = X.

The other cases are obtained analogously.

Remark The vector fields given in Problem 1.94 are ∗i, ∗j, ∗k, which are the fun-
damental vector fields with respect to left translations of S3 on itself, instead of the
right action above.

Problem 4.91 Let G×M → M , (g,p) �→ g · p, be a differentiable action of a Lie
group G on a differentiable manifold M . Let ∼ be the equivalence relation induced
by this action, i.e.

p ∼ q ⇔ ∃g ∈ G such that q = g · p.
Let N = {(p, q) ∈ M × M : p ∼ q}. Assume that N is a closed embedded subman-
ifold of M × M . Prove that the map π : N → M , π(p,q) = p, is a submersion.

Remark According to the Theorem of the Closed Graph 1.16, this problem proves
that the quotient manifold M/G = M/∼ of a group action exists if and only if the
graph of ∼ is a closed embedded submanifold of M ×M .
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Solution Let (p0, q0) ∈ N be an arbitrary point. Hence there exists g ∈ G such
that q0 = g · p0. Let s : M → M × M be the differentiable map σ(p) = (p,g · p).
This map takes values in N , and hence it induces, by virtue of the assumption,
a differentiable map σ : M → N , which is a section of π , i.e. π ◦ σ = idN . As
σ(p0) = (p0, q0), we conclude that π is a submersion at (p0, q0).

Problem 4.92 Let Ψ : G×M → M , (g,p) �→ gp, be a (left) action of a Lie group
G on a manifold M . For an arbitrary element X of the Lie algebra g of the Lie
group G, denote by X̂ the vector field on M generated by the one-parameter sub-
group exp tX ⊂ G, i.e.

X̂p = d

dt

∣
∣
∣
∣
t=0

(exp tX)p.

Prove:

(i) The map g → X(M), X �→ X̂, is linear, and for each vector X ∈ g, the vec-
tor field X̂ is a smooth vector field with associated one-parameter group of
diffeomorphisms

ϕt = exp tX : M → M.

(ii) For any g ∈ G and X ∈ g, we have

g · X̂ = Âdg X.

(iii) For arbitrary X,Y ∈ g, we have

[̂X,Y ] = −[X̂, Ŷ ]
(the map X �→ X̂ is an anti-homomorphism).

(iv) The linear subspace {X ∈ g : X̂p = 0} ⊂ g is the Lie algebra gp of the isotropy
group Gp = {g ∈ G : gp = p}. Moreover, Ggp = gGpg

−1 and ggp = Adg(gp).

Hint (to (iii)) Apply the geometric interpretation of the Lie bracket of two vector
fields in Proposition 1.18.

Solution

(i) Consider the tangent map Ψ∗ : TG × TM → TM and its restriction to TeG ×
TM → TM , where e is the identity element of the Lie group G. In particular,
for arbitrary X ∈ g = TeG, we obtain that Ψ∗(e,p)(X,0) = X̂p because X is
the tangent vector to the curve exp tX ⊂ G at the identity e (at t = 0). The map
X �→ X̂ is linear as the maps Ψ∗(e,p) are linear for all p ∈ M . The vector field X̂

is smooth as so is the map Ψ (it is easy to prove this fact using local coordinates
on G and M). The group exp tX is the one-parameter group associated with X̂

because

d

dt

∣
∣∣∣
t=0

(
exp(t0 + t)X

)
p = d

dt

∣
∣∣∣
t=0

(exp tX)
(
(exp t0X)p

)
.
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(ii) By definition, (g · X̂)p = g∗(X̂g−1p), where g∗ : Tg−1pM → TpM . In other
words,

(g · X̂)p = d

dt

∣∣∣∣
t=0

g
(
(exp tX)

(
g−1p

))
.

Taking into account that

g(exp tX)g−1 = exp t (Adg X)

and that g1(g2p) = (g1g2)p, we obtain the following equation:

(g · X̂)p = d

dt

∣
∣
∣
∣
t=0

exp t (Adg X)p,

i.e.

g · X̂ = Âdg X.

(iii) It suffices to prove that [̂X,Y ]p = −[X̂, Ŷ ]p for any point p ∈ M . As we

proved above, the map ψ : g → TpM , X �→ X̂p , is linear (for any fixed
point p), and, consequently, for its tangent map at any point Y ∈ g, we have
ψY∗ = ψ . Here we have used the natural identification of the tangent space T0g

with g. Therefore (see Definitions 4.5),

ψ
([X,Y ]) = ψY∗

([X,Y ]) = ψY∗(adX Y) = d

dt

∣
∣∣∣
t=0

ψ(Adexp tX Y )

= d

dt

∣∣∣∣
t=0

( ̂Adexp tX Y )p

= d

dt

∣∣∣∣
t=0

(
(exp tX) · Ŷ )

p
(by (ii))

= d

dt

∣∣∣∣
t=0

(
(exp tX)∗Ŷ

)
p

= −[X̂, Ŷ ]p (by Proposition 1.18).

(iv) It is clear that if X ∈ gp , then exp(tX)p = p, and, consequently, X̂p = 0. Sup-
pose now that X̂p = 0 for some X ∈ g. Since

exp(t + t0)X = exp tX exp t0X = exp t0X exp tX,

we have

d

dt

∣∣
∣∣
t=t0

(exp tX)p = (exp t0X)∗
(

d

dt

∣∣
∣∣
t=0

(exp tX)p

)
= (exp t0X)∗X̂p = 0
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for all t0 ∈ R, that is, (exp tX)p = p. Thus exp tX ⊂ Gp and, consequently,
X ∈ gp .

It is clear that Ggp ⊂ gGpg
−1 and g−1Ggpg ⊂ Gp . Therefore Ggp =

gGpg
−1 and, consequently,

ggp = Adg(gp)

(an infinitesimal version of the first identity).

Problem 4.93 Let G be a Lie group with Lie algebra g acting on a symplectic
manifold (M,Ω). Suppose that the form Ω is exact, i.e. Ω = dθ , where θ is a one-
form on M . Suppose also that each diffeomorphism g ∈ G preserves the form θ , i.e.
g∗θ = θ . For each X ∈ g, put

fX = θ(X̂),

where X̂ is the vector field on M associated with the one-parameter group exp tX.
Prove that this action of G on M is Hamiltonian with momentum map

μ(p)(X) = θ(X̂p),

i.e. for all X ∈ g and g ∈ G:

(i) X̂ is the Hamiltonian vector field of the function fX .
(ii) (g−1)∗fX = fAdg X .

Solution

(i) Using the well-known identity LX = iX ◦ d + d ◦ iX and the G-invariance of the
form θ (L

X̂
θ = 0), we obtain that

i
X̂
Ω = i

X̂
dθ = L

X̂
θ − di

X̂
θ = −di

X̂
θ = −dfX.

(ii) Taking into account that g · X̂ = Âdg X (see Problem 4.92), we obtain that

(
g−1)∗fX = (

g−1)∗(i
X̂
θ) = i

g·X̂
((
g−1)∗θ

) = i
g·X̂θ = iÂdg X

θ = fAdg X.

Problem 4.94 Let Ω be a skew-symmetric non-degenerate bilinear form on a real
linear space V of dimension 2n. Consider the Lie group

G̃ = {
g ∈ Aut(V ) : Ω(gv,gw) = Ω(v,w), v,w ∈ V

}

with Lie algebra

g̃ = {
X ∈ End(V ) : Ω(Xv,w) = −Ω(v,Xw), v,w ∈ V

}

(isomorphic to Sp(n,R) and sp(n,R), respectively). Let G be some closed Lie sub-
group of G̃ with Lie algebra g ⊂ g̃. Consider Ω as a symplectic differential form on
the manifold V , independent of v ∈ V .
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Prove that the natural linear action of the Lie group G on V is Hamiltonian with
momentum map

μ(v)(X) = 1

2
Ω(v,Xv), v ∈ V, X ∈ g.

Solution Since the action of G on V is linear, we obtain that

X̂v = d

dt

∣
∣∣∣
t=0

(exp tX)v = Xv.

Here we identify naturally the tangent space TvV with the linear space V . For any
X ∈ g, put

fX(v) = 1

2
Ω(v,Xv).

Such a map X �→ fX is linear. Since each operator X ∈ g is skew-symmetric with
respect to the form Ω , we have

− d

dt

∣∣∣∣
t=0

fX(v + tw) = − d

dt

∣∣∣∣
t=0

1

2
Ω
(
v + tw,X(v + tw)

)

= −1

2

(
Ω(w,Xv)+Ω(v,Xw)

) = Ω(Xv,w) = (i
X̂
Ω)(w)

for all w ∈ TvV = V , i.e. X̂ is the Hamiltonian vector field of fX . Similarly, tak-
ing into account that Adg X = gXg−1, we obtain the G-equivariance of the map
X �→ fX :

((
g−1)∗fX − fAdg X

)
(v) = 1

2
Ω
(
g−1v,Xg−1v

)− 1

2
Ω
(
v,gXg−1v

) = 0.

Problem 4.95 Let ϕ : M → M be a diffeomorphism of a manifold M . Denote by
π : T ∗M → M the natural projection of the cotangent bundle T ∗M onto M . The
map ϕ on M induces the diffeomorphism of T ∗M onto T ∗M as follows: A point
ωx of T ∗M is determined by the point x = π(ωx) ∈ M and is a linear function on the
tangent space TxM to M at the point x. The tangent map ϕ∗x of ϕ at x maps TxM

into Tϕ(x)M . Its dual, ϕ∗
x , maps a linear function on Tϕ(x)M into a linear function

on TxM . Thus ϕ∗−1
x maps T ∗

x M into T ∗
ϕ(x)M , and the induced diffeomorphism ϕ̃ on

T ∗M is given by

ϕ̃(ωx) = ϕ∗−1
x ωx,

where π(ϕ∗−1
x ωx) = ϕ(x).

Prove:

(i) The diffeomorphism ϕ̃ preserves the canonical one-form ϑ on T ∗M , i.e.

ϕ̃∗ϑ = ϑ.
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(ii) The diffeomorphism ϕ̃ preserves the canonical symplectic form Ω = dϑ
on T ∗M , i.e.

ϕ̃∗Ω = Ω.

Solution

(i) By definition of the canonical form ϑ , for any point ωx ∈ T ∗
x M , x ∈ M , and any

tangent vector X ∈ TωxT
∗M , we have ϑωx (X) = ωx(π∗ωx (X)) and recall that

π∗ωx (X) ∈ TxM because π(ωx) = x. Note that by the definition of the map ϕ̃,

π ◦ ϕ̃ = ϕ ◦ π and, consequently, π∗ϕ̃(ωx) ◦ ϕ̃∗ωx = ϕ∗x ◦ π∗ωx .

Since, by definition, (ϕ∗−1
x ωx)(ϕ∗xX) = ωx(X), where X ∈ TxM , we obtain

that
(
ϕ̃∗ϑ

)
ωx

(X) = ϑϕ̃(ωx)(ϕ̃∗ωxX) (by the definition of ϕ̃∗)

= ϕ̃(ωx)
(
π∗ϕ̃(ωx)(ϕ̃∗ωxX)

)
(by the definition of ϑ)

= ϕ̃(ωx)
(
ϕ∗x(π∗ωxX)

)

= (
ϕ∗−1
x ωx

)(
ϕ∗x(π∗ωxX)

)
(by the definition of ϕ̃)

= ωx(π∗ωxX) = ϑωx (X).

(ii) It is sufficient to note that d ◦ ϕ̃∗ = ϕ̃∗ ◦ d.

Problem 4.96 Let f : M → R be a smooth function on a manifold M . Prove that
the map

f̃ : ωx �→ ωx + df (x), ωx ∈ T ∗
x M, x ∈ M,

defines a diffeomorphism of the cotangent bundle T ∗M preserving the canonical
symplectic form Ω = dϑ on T ∗M .

Solution Given local coordinates q = (q1, . . . , qn) on M , they induce local coordi-
nates (q,p) = (q1, . . . , qn,p1, . . . , pn) on T ∗M putting

ωx =
∑

i

pi(ωx)dqi
∣∣
x
, ωx ∈ T ∗M, x ∈ M.

But since ϑ = ∑
i pidqi and

f̃ (q,p) =
(
q1, . . . , qn,p1 + ∂f (q)

∂q1
, . . . , pn + ∂f (q)

∂qn

)

are the local expressions of ϑ and f̃ in these coordinates, respectively, we have that

f̃ ∗ϑ =
n∑

i=1

(
pi + ∂f (q)

∂qi

)
dqi = ϑ + d

(
π∗f

)
,
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where π : T ∗M → M is the canonical projection. It is evident that the inverse map
f̃−1 is the map g̃, where g = −f . The map f̃ is symplectic because

f̃ ∗Ω = f̃ ∗(dϑ) = d
(
f̃ ∗ϑ

) = d
(
ϑ + d

(
π∗f

)) = dϑ = Ω.

Problem 4.97 Let G be a Lie group with Lie algebra g. For X ∈ g = TeG, denote
by Xl (resp. Xr ) the left (resp. right) G-invariant vector field on G such that Xl

e = X

(resp. Xr
e = X).

Prove:

(i) Each left (resp. right) G-invariant vector field on the Lie group G is associated
with the natural right (resp. left) action of G on G. For arbitrary vectors X,Y ∈
g, we have

[
Xl,Y l

] = [X,Y ]l , [
Xr,Y r

] = −[X,Y ]r .
(ii) Any left (resp. right) G-invariant q-form ω on the Lie group G is smooth.

Solution

(i) Put

lg
(
g′) = gg′, rg

(
g′) = g′g, g, g′ ∈ G.

Then Xl
g = lg∗X and Xr

g = rg∗X for arbitrary g ∈ G. The vector field Xl is the
vector field on G associated with the one-parameter group rexp tX of diffeomor-
phisms of G (see Problem 4.92(i)):

Xl
g = d

dt

∣∣∣∣
t=0

g exp tX = d

dt

∣∣∣∣
t=0

rexp tX(g).

We have
[
Xl,Y l

] = [X,Y ]l

by the definition of the bracket operation in g.
Similarly, the vector field Xr is associated with the one-parameter group

lexp tX :

Xr
g = d

dt

∣∣∣
∣
t=0

(exp tX)g = d

dt

∣∣∣
∣
t=0

lexp tX(g).

Then
[
Xr,Y r

] = −[X,Y ]r ,
as the vector fields Xr,Y r and [X,Y ]r coincide with the vector fields X̂, Ŷ and
[̂X,Y ] associated with the natural left action of G on itself, respectively (see
Problem 4.92(iii)).
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(ii) Let ω be a left (resp. right) G-invariant form on G, i.e. l∗gω = ω (resp. r∗
gω = ω)

for each g ∈ G. An arbitrary smooth vector field X on G has the form
∑

fiX
l
i

(resp.
∑

fiX
r
i ), where X1, . . . ,Xn is a basis of the Lie algebra g, and each

fi is a smooth real-valued function on G. The form ω is smooth because by
definition

ω
(
Xl

i1
, . . . ,Xl

iq

) = const.

(resp. ω(Xr
i1
, . . . ,Xr

iq
) = const.).

Problem 4.98 Let G be a Lie group acting transitively on a manifold M . Let Gp

be the isotropy group of some point p ∈ M . The isotropy representation

Gp → Aut(TpM), g �→ g∗p,

induces the action of Gp on the space ΛqT ∗
pM .

Prove:

(i) Any G-invariant q-form α on the manifold M is a smooth differential form.
(ii) Any Gp-invariant q-covector w ∈ ΛqT ∗

pM (on the tangent space TpM) deter-
mines a unique smooth G-invariant differential form β on M such that βp = w.

Solution

(i) Since the Lie group G acts transitively on M , this manifold is G-equivariantly
diffeomorphic to the homogeneous space G/H , where H = Gp . Here we con-
sider the natural left action of G on the quotient space G/H :

G ×G/H → G/H, (g1, gH) �→ g1gH.

This G-equivariant diffeomorphism is defined by the map gH �→ gp (see The-
orem 4.34). Therefore, to prove (i), it is sufficient to consider the case where
M = G/H and α is a (left) G-invariant form on G/H , i.e. g∗α = α for all
g ∈ G.

Let π : G → G/H be the canonical projection. This map is G-equivariant
with respect to the natural left actions of G on G and G/H . Therefore the form
π∗α is a left G-invariant form on G:

l∗g
(
π∗α

) = (π ◦ lg)
∗α = (g ◦ π)∗α = π∗(g∗α

) = π∗α,

where lg : G → G, g′ �→ gg′. The form π∗α as a left G-invariant form on
G is smooth (see Problem 4.97(ii)). Since the projection π is a submersion,
the form α is also smooth. Indeed, by the Theorem of the Rank 1.11, for any
point g ∈ G, there exist a neighbourhood U of g, coordinates x1, . . . , xn on U ,
and coordinates x1, . . . , xm (m � n) on the open subset π(U) ⊂ G/H such
that for the restriction π |U , we have, in these coordinates, π(x1, x2, . . . , xn) =
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(x1, x2, . . . , xm). Therefore the restrictions α|π(U) and π∗α|U (forms) are de-
scribed by the same expression

∑

1≤i1<···<iq≤m

ai1...iq
(
x1, . . . , xm

)
dxi1 ∧ · · · ∧ dxiq

and, consequently, are smooth simultaneously.
(ii) Put

βgp(g∗X1, . . . , g∗Xq) = w(X1, . . . ,Xq)

for arbitrary tangent vectors X1, . . . ,Xq ∈ TpM and g ∈ G. Such a q-form β

on M = G · p is well defined because w is Gp-invariant, i.e.

w(X1, . . . ,Xq) = w(g∗pX1, . . . , g∗pXq)

for all g ∈ Gp . By definition this form β on M is G-invariant and, consequently,
smooth (by (i)).

Problem 4.99 Let g be a Lie algebra with connected Lie group G. Let

Ad : G → Aut
(
g
∗), g �→ Ad 

g,

where
(
Ad 

g α
)
(X) = α(Adg−1 X), α ∈ g

∗, X ∈ g,

is the coadjoint representation of G in the dual space g∗ of g.
Consider on g∗ the coadjoint action of G putting

g · α = Ad 
g α.

Let

Oα = {
Ad 

g α : g ∈ G
}

be the coadjoint orbit of a covector α ∈ g∗, and let φ be the corresponding projection
G → Oα , φ(g) = Ad 

g α. Let Ω be a 2-form on Oα such that

Ω(X̂β, Ŷβ) = −β
([X,Y ]) at each point β ∈ Oα.

Here X̂, Ŷ denote the vector fields on Oα corresponding to the one-parameter groups

Ad 
exp tX, Ad 

exp tY , X,Y ∈ g.

The values of these vector fields at each point β ∈ Oα span the tangent space TβOα .



244 4 Lie Groups

Prove:

(i) The Lie algebra gβ of the isotropy group

Gβ = {
g ∈ G : Ad 

g β = β
}

of an element β ∈ Oα is the annihilator of the tangent space TβOα ⊂ g∗ in g,
and

gβ = {
X ∈ g : β([X,Y ]) = 0,∀Y ∈ g

}
.

(ii) The 2-form Ω is well defined and non-degenerate.
(iii) The 2-form Ω is G-invariant and, consequently, smooth.
(iv) The 2-form Ω is closed.
(v) The form Ω defines a symplectic structure on the orbit Oα (the Lie–Poisson

symplectic structure), and φ∗Ω = dαl , where αl is the unique left G-invariant
one-form on G such that αl

e = α.

Solution

(i) Taking into account that

d

dt

∣∣∣∣
t=0

Adexp tX Y = adX Y = [X,Y ],

and identifying naturally the tangent space Tβg
∗ with g∗ and the tangent space

TβOα with some subspace of g∗, we obtain that X̂β = ad 
X β , where by defini-

tion

ad 
X β(Y ) = β(− adX Y) = β

([−X,Y ]), Y ∈ g.

Therefore,

TβOα = {Ŷβ , Y ∈ g} = {
ad 

Y β,Y ∈ g
}
, β ∈ Oα,

and

gβ = {X ∈ g : X̂β = 0} = {
X ∈ g : ad 

X β = 0
}

= {
X ∈ g : β([X,Y ]) = 0 ∀Y ∈ g

} = {
X ∈ g : ad 

Y β(X) = 0 ∀Y ∈ g
}

(see Problem 4.92(iv)).
(ii) Similarly, if X̂β = X̂′

β for X,X′ ∈ g, then X′ −X ∈ gβ , and

Ω(X̂β, Ŷβ) = −β
([X,Y ]) = −β

([X,Y ])− β
([
X′ −X,Y

]) = −β
([
X′, Y

])

= Ω
(
X̂′

β, Ŷβ

)
.

Thus the form Ω is well defined. This form is non-degenerate because
Ω(X̂β, Ŷβ) = 0 for all Y ∈ g if and only if β([X,Y ]) = 0 ∀Y ∈ g, i.e. X̂β = 0
(X ∈ gβ ).
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(iii) The form Ω is G-invariant because g∗βX̂β = Âdg Xgβ
(see Problem 4.92(ii)):

(
g∗Ω

)
β
(X̂β, Ŷβ) = Ωgβ(g∗βX̂β, g∗βŶβ) = Ωgβ

(
(Âdg X)gβ, (Âdg Y )gβ

)

= (−gβ)
([Adg X,Adg Y ]) = (−Ad 

g β
)(

Adg

([X,Y ]))

= −β
([X,Y ]) = Ωβ(X̂β, Ŷβ).

Thus, by Problem 4.98(i), the form Ω is smooth.
(iv) We shall give two proofs. By the definition of dΩ (see formula (7.2)), for

arbitrary vectors X,Y,Z ∈ g we have

dΩ(X̂, Ŷ , Ẑ) = X̂
(
Ω(Ŷ , Ẑ)

)− Ŷ
(
Ω(X̂, Ẑ)

)+ Ẑ
(
Ω(X̂, Ŷ )

)

− Ω
([X̂, Ŷ ], Ẑ)+ Ω

([X̂, Ẑ], Ŷ )−Ω
([Ŷ , Ẑ], X̂)

= −X̂
(
β
([Y,Z]))+ Ŷ

(
β
([X,Z]))− Ẑ

(
β
([X,Y ]))

(by the definition of Ω)

+ Ω
([̂X,Y ], Ẑ)−Ω

([̂X,Z], Ŷ )+Ω
([̂Y,Z], X̂)

(by Problem 4.92(iii))

= − ad 
X β

([Y,Z])+ ad 
Y β

([X,Z])− ad 
Z β

([X,Y ])

− β
([[X,Y ],Z])+ β

([[X,Z], Y ])− β
([[Y,Z],X])

(by the definition of Ω)

= −2β
([[X,Y ],Z]+ [[Y,Z],X]+ [[Z,X], Y ])

= 0 (by the Jacobi identity).

We give the second proof of (iv) considering the orbit Oα as the homogeneous
manifold G/Gα with the natural left G-action on it. Denote by Φ the corre-
sponding diffeomorphism

G/Gα → Oα, gGα �→ Ad 
g α.

Let π be the canonical projection of G onto G/Gα . It is clear that for any
vector X ∈ g,

(Φ ◦ π)∗e(X) = d

dt

∣
∣∣∣
t=0

(Φ ◦ π)(exp tX) = d

dt

∣
∣∣∣
t=0

Ad 
exp tX α = X̂α,

and, consequently, for X,Y ∈ g = TeG, we have
(
(Φ ◦ π)∗Ω

)
e
(X,Y ) = Ω

(
(Φ ◦ π)∗eX, (Φ ◦ π)∗eY

) = Ω(X̂α, Ŷα)

= −α
([X,Y ]).
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There exists a unique left G-invariant one-form αl on G such that αl
e = α

(see Problem 4.98(ii)). Since Ω is a G-invariant form on the orbit Oα and the
maps π and Φ are G-equivariant, the form (Φ ◦ π)∗Ω is a left G-invariant
form on G. But by definition Φ ◦ π = φ. Therefore for arbitrary left-invariant
vector fields Xl and Y l on the Lie group G with Xl

e = X and Y l
e = Y , we have

(
φ∗Ω

)(
Xl,Y l

) = (
φ∗Ω

)
e
(X,Y ) = −α

([X,Y ]) = −αl
([X,Y ]l)

= −αl
([
Xl,Y l

])
.

Now taking into account that by the definition of dαl (see formula (7.1)),

dαl
(
Xl,Y l

) = Xl
(
αl
(
Y l

))− Y l
(
αl
(
Xl

))− αl
([
Xl,Y l

]) = −αl
([
Xl,Y l

])
,

we obtain that φ∗Ω = dαl . Hence the form φ∗Ω is exact and, in particular,
closed. Since 0 = d(φ∗Ω) = φ∗dΩ and the map φ = Φ ◦ π is a submersion of
G onto Oα , the form Ω on Oα is also closed.

(v) The closed non-degenerate two-form Ω defines a symplectic structure on the
orbit Oα (the Lie–Poisson symplectic structure).

Problem 4.100 Let

Ψ : G ×M → M, (g,p) �→ gp,

be a (left) action of a Lie group G on a manifold M . Denote by g the Lie algebra
of G. For an arbitrary point p ∈ M , denote by M̃ its G-orbit Gp = Ψ (G,p).

Prove:

(i) The subset M̃ ⊂ M is a submanifold of M .
(ii) The restriction map Ψ̃ = Ψ |(G × M̃) defines a smooth action of G on M̃ . For

any X,Y ∈ g, the vector fields X̂Ψ and ŶΨ on M are tangent to the orbit M̃ at
each point of M̃ ⊂ M , and

X̂Ψ |M̃ = X̂Ψ̃ , [X̂Ψ , ŶΨ ]|M̃ = [X̂Ψ̃ , ŶΨ̃ ].

Here X̂Ψ (resp. X̂Ψ̃ ) denotes the vector field on M (resp. on M̃) associated
with the one-parameter subgroup exp tX ⊂ G and the action Ψ on M (resp. the
action Ψ̃ on M̃).

Solution

(i) Since M̃ ∼= G/Gp , where Gp is the isotropy group (which is closed) of a
point p, the set M̃ naturally has a manifold structure. To prove that M̃ is
a submanifold of M , it is sufficient to show that the natural one-to-one map
φ : G/Gp → M , gGp �→ gp, is an immersion. Indeed,

rankφ∗o = dimG − dimGp = dim M̃,
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where o = π(e), and π : G → G/Gp is the natural projection, because for X ∈
g, X̂(p) = 0 if and only if X is an element of the Lie algebra gp of the Lie
group Gp (see Problem 4.92(iv)).

The rank of the map φ is independent of the choice of a point because by
definition φ(π(gg′)) = gφ(π(g′)) for all g,g′ ∈ G and, consequently, φ∗π(g) =
g∗p ◦ φ∗o, where g∗p : TpM → TgpM is a non-degenerate linear map.

(ii) The restriction map Ψ̃ = Ψ |(G × M̃) is smooth because any one-to-one im-
mersion is locally an embedding (see the solution of Problem 2.40). Since the
subset M̃ ⊂ M is G-invariant, Ψ̃ defines a (left) action on M̃ . Now taking into
account Problem 2.40, we conclude.

4.8 Homogeneous Spaces

Problem 4.101 Prove that O(n+ 1)/O(n) and SO(n+ 1)/SO(n) are homogeneous
spaces and that the sphere Sn is diffeomorphic to each of them.

Solution By means of the map

O(n) → O(n+ 1), A �→

⎛

⎜⎜⎜
⎝

1 0 . . . 0

0
... A

0

⎞

⎟⎟⎟
⎠

,

O(n) is a closed Lie subgroup of O(n + 1), so that the quotient space O(n + 1)/
O(n), with the usual C∞ structure, is a homogeneous space.

We will prove:

(i) There exists a C∞ action of O(n + 1) (resp. SO(n + 1)) on Sn.
(ii) This action is transitive.

(iii) The isotropy group Hp is isomorphic to O(n) (resp. SO(n)) for some p ∈ Sn

(see Fig. 4.8 for the case SO(2)).

Now, we have:

(i) The action GL(n + 1,R) × R
n+1 → R

n+1, (A,v) �→ Av, is C∞, and its re-
striction O(n+1)×R

n+1 → R
n+1 is also C∞. As the action of the orthogonal

group preserves the length of vectors, the restriction O(n + 1) × Sn → R
n+1

takes values in Sn and is C∞.
(ii) Given any pair p,q ∈ Sn, there exists A ∈ O(n + 1) with q = Ap. For, let

{ei}, {ēi} be orthonormal bases with respect to the Euclidean metric of Rn+1

satisfying e1 = p, ē1 = q . Then one takes as A the matrix of the change of
basis, so that, in fact, A ∈ O(n+ 1).

(iii) We choose, for the sake of simplicity, p = (1,0, . . . ,0). By definition,

Hp = {
A ∈ O(n+ 1) : Ap = p

};
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Fig. 4.8 The sphere S2 viewed as the homogeneous space SO(3)/SO(2). The north pole rotates
under rotations around either the x- or the y-axis but not under rotations around the z-axis

thus, if A = (aij ), we have a11 = 1, ai1 = 0, i = 2, . . . , n. Moreover, as A ∈
Hp ⊂ O(n + 1), we have tAA = I , hence p = tAAp = tAp, so that a1i = 0,
i = 2, . . . , n. Thus,

Hp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜⎜⎜
⎝

1 0 · · · 0

0
... B

0

⎞

⎟⎟⎟
⎠

∈ O(n+ 1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

but tAA = I , so tBB = I , i.e. B ∈ O(n). Thus Hp
∼= O(n).

Hence, one has a diffeomorphism Sn ∼= O(n + 1)/O(n). One also has Sn ∼=
SO(n + 1)/SO(n), because the above arguments are valid taking orthonormal
bases {ei} and {ēi} with the same orientation, satisfying e1 = p, ē1 = q , which
is always possible.

Problem 4.102 Prove that U(n)/U(n−1) and SU(n)/SU(n−1) are homogeneous
spaces and that the sphere S2n−1 is diffeomorphic to each of them.

Solution By means of the map

U(n− 1) → U(n), A �→

⎛

⎜⎜⎜
⎝

1 0 . . . 0

0
... A

0

⎞

⎟⎟⎟
⎠

,

U(n− 1) is a closed subgroup of U(n), and thus the quotient space U(n)/U(n− 1),
with the usual C∞ structure, is a homogeneous space.
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Consider S2n−1 as the unit sphere of Cn with the usual Hermitian product 〈 , 〉,
that is, 〈∑i λ

iei,
∑

j μ
j ej 〉 = ∑

i λ
iμ̄i , so

S2n−1 =
{(

z1, . . . , zn
) ∈C

n :
∑

i

zi z̄i = 1

}
.

The isometry group of the metric 〈 , 〉 is U(n) = {A ∈ GL(n,C) : tĀA = I }. Hence,
similarly to Problem 4.101 we have:

(i) The map U(n) × S2n−1 → S2n−1, being the restriction of the C∞ map
GL(n,C) ×C

n → C
n, is differentiable.

(ii) The action of U(n) on S2n−1 is transitive.
(iii) The isotropy subgroup of p = (1,0, . . . ,0) ∈ S2n−1 is isomorphic to U(n− 1).

Hence one has a diffeomorphism S2n−1 ∼= U(n)/U(n − 1), and similarly to
Problem 4.101, one proves that S2n−1 ∼= SU(n)/SU(n − 1).

Problem 4.103 Prove that S1 and S3 are Lie groups by two different methods:
First, from Problem 4.102. Then, by using the fact that S1 and S3 can be respectively
identified to the unit complex numbers and to the unit quaternions.

Solution From the diffeomorphisms

S2n−1 ∼= U(n)/U(n − 1) ∼= SU(n)/SU(n − 1)

in Problem 4.102, for n = 1, one has S1 ∼= U(1), and for n = 2, we have

S3 ∼= U(2)/U(1) = SU(2).

So S1 and S3 are Lie groups.
That S1 ∼= U(1) was already seen in Problem 4.48. As for S3, we have

S3 = {
(x, y, z, t) ∈R

4 : x2 + y2 + z2 + t2 = 1
} ≡ {

q ∈H : |q| = 1
}
.

Now, given q, q ′ ∈ H, one can check that |qq ′| = |q||q ′|; hence if q, q ′ ∈ S3 as
above, then qq ′ ∈ S3. Moreover, from the rules of multiplication in H (Prob-
lem 4.71(i)) we conclude that S3 is a Lie group. One can also obtain this applying
Cartan’s Criterion on Closed Subgroups of a Lie group to S3 ⊂ H

∗.

Problem 4.104 Let Vk(R
n) denote the set of k-frames (e1, . . . , ek) in R

n which are
orthonormal with respect to the Euclidean metric g of Rn. Prove:

(i) Vk(R
n) is a closed embedded C∞ submanifold of Rnk (called the Stiefel mani-

fold of orthonormal k-frames in R
n).

(ii) O(n)/O(n − k) is a homogeneous space diffeomorphic to Vk(R
n).
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Solution

(i) Let us denote by xi
j , i = 1, . . . , n, j = 1, . . . , k, the coordinate functions on

R
nk , that is, xi

j (e1, . . . , ek) is the ith component of ej in the standard basis
(v1, . . . , vn) of Rn. The equations defining Vk(R

n) are

fij =
n∑

h=1

xh
i x

h
j − δij = 0, 1 � i � j � k.

We shall now prove that the differentials of the functions fij are linearly inde-
pendent, so concluding. For this, we first consider that the action

O(n)× Vk

(
R

n
) → Vk

(
R

n
)
,

(
A, (e1, . . . , ek)

) �→ (Ae1, . . . ,Aek), (�)

is transitive, since given two g-orthonormal k-bases of Rn, they can be com-
pleted to two orthonormal bases of Rn, and there is always a matrix A ∈ O(n)

that defines a correspondence between them.
Moreover, since (fij + δij )(e1, . . . , ek) is nothing but the scalar product of

ei and ej , we clearly have

(fij + δij )
(
A · (e1, . . . , ek)

) = (fij + δij )(e1, . . . , ek)

for all A ∈ O(n), (e1, . . . , ek) ∈ Vk(R
n). Thus, it suffices to see that the differ-

entials of the functions fij are linearly independent at a point (e1, . . . , ek) ∈
Vk(R

n). Take the point represented by the n × k matrix whose first n rows are
the identity matrix Ik and the other n−k rows are zero, that is, xh

i (e1, . . . , ek) =
δhi . Then, it is immediate that

(dfij )(e1,...,ek) = (
dxi

j + dxj
i

)
(e1,...,ek)

.

As i � j , we are done.
(ii) By means of the map

O(n − k) → O(n), A �→
(
Ik 0
0 A

)
,

O(n − k) is a closed Lie subgroup of O(n), hence the quotient space O(n)/

O(n− k), with the usual C∞ structure, is a homogeneous space.
We have

Vk

(
R

n
) = {

(e1, . . . , ek) ∈ (
R

n
)k : g(ei, ej ) = δij

} ⊂ (
Sn−1)k.

In particular, V1(R
n) = Sn−1 ∼= O(n)/O(n−1), as we proved in Problem 4.101.

The action (�) is obviously differentiable. We have seen that it is also transitive.
To determine the isotropy group of a point we choose, for the sake of simplicity,
the point p = (e1, . . . , ek), where ei = (0, . . . ,0,1,0, . . . ,0), with 1 in the ith
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place. Then, since Hp = {A ∈ O(n) : Ap = p}, a calculation similar to that in
Problem 4.105 shows that

Hp =
(
Ik 0
0 A

)
, A ∈ O(n− k).

Consequently Hp is isomorphic to O(n − k), and Vk(R
n) is diffeomorphic to

O(n)/O(n− k).

Problem 4.105 Prove that O(n)/(O(k)× O(n− k)) is a homogeneous space dif-
feomorphic to the C∞ manifold Gk(R

n) of k-planes through the origin of Rn, called
the Grassmann manifold of k-planes in R

n. Analyse the particular case G1(R
n).

Solution By means of the map

O(k)× O(n− k) → O(n), (A,B) �→
(
A 0
0 B

)
,

O(k) × O(n − k) is a closed Lie subgroup of O(n), and thus the quotient space
O(n)/(O(k) × O(n− k)), with the usual C∞ structure, is a homogeneous space.

The map

Vk

(
R

n
) → Gk

(
R

n
)
, p = {e1, . . . , ek} �→ 〈e1, . . . , ek〉,

which defines a correspondence between each k-basis of Rn and the k-plane it spans,
is surjective, since given a k-plane, we always can choose a g-orthonormal k-basis,
g being the Euclidean metric of Rn. The map

O(n)×Gk

(
R

n
) → Gk

(
R

n
)
,

(
A, 〈e1, . . . , ek〉

) �→ 〈Ae1, . . . ,Aek〉,

is C∞. The action is transitive, as given two k-planes in R
n and a g-orthonormal k-

basis of each of them, we can complete both bases to g-orthonormal bases of Rn; but
there is always an element A ∈ O(n) that transforms the one into the other, and thus
it transforms the k-plane generated by the initial k-basis in the k-plane generated by
the other k-basis.

In order to determine the isotropy group of a point, we choose p = 〈e1, . . . , ek〉,
where ei = (0, . . . ,0,1,0, . . . ,0), with 1 at the ith place. It is easy to see that the
elements of O(n) leaving p invariant are those of the form

(
A 0
0 B

)
, A ∈ O(k), B ∈ O(n− k).

Hence Hp
∼= O(k)× O(n− k), and thus

Gk

(
R

n
) ∼= O(n)

/(
O(k)× O(n − k)

)
.
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For k = 1, we have 1-planes, that is, straight lines through the origin of R
n, and

G1(R
n) is then the real projective space RPn−1. We thus have

RPn−1 ∼= G1
(
R

n
) ∼= O(n)

/(
O(1)× O(n− 1)

) ∼= O(n)
/(

Z2 × O(n− 1)
)

∼= SO(n)/O(n − 1),

where the last equivalence follows from an argument as in Problem 4.101. Hence,
real projective spaces are homogeneous spaces.

Problem 4.106 Show that GL(n,R) acts transitively on RPn−1 and determine the
isotropy group of [e1], e1 = (1,0, . . . ,0) ∈R

n.

Solution If the points p,q ∈ RPn−1 are given by p = [λ], q = [μ], where
λ,μ ∈ R

n are two non-zero vectors, then there exists A ∈ GL(n,R) such that
Aλ = μ, as λ (resp. μ) can be completed to a basis v1 = {λ,v2, . . . , vn} (resp.
v′

1 = {μ,v′
2, . . . , v

′
n}) of R

n and A is the isomorphism Avi = v′
i , i = 1, . . . , n.

The isotropy group of [e1] is the subgroup of GL(n,R) of elements B such that
B(λ1,0, . . . ,0) = (μ1,0, . . . ,0), that is,

H =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B =

⎛

⎜⎜
⎜
⎝

b11 b12 · · · b1n
0 b22 · · · b2n
...

...
...

0 b2n · · · bnn

⎞

⎟⎟
⎟
⎠

∈ GL(n,R)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

So RPn−1 = GL(n,R)/H . (Note that dimRPn−1 = dim GL(n,R)−dimH = n−1,
as expected.)

Problem 4.107 The punctured Euclidean space R
n \ {0} is homogeneous since

GL(n,R) acts transitively on it.

(i) Determine the isotropy group H of (1,0, . . . ,0) ∈ R
n \ {0}.

(ii) Is the homogeneous space GL(n,R)/H reductive?

The relevant theory is developed, for instance, in Poor [10, Chap. 6].

Solution

(i)

H =
{(

1 v

0 B

)
: v ∈R

n−1,B ∈ GL(n − 1,R)

}
.

(ii) No, as we shall see giving two proofs.

1st proof The Lie algebra h of H is, as it is easily checked by using the exponential
map,

h =
{(

0 v

0 A

)
: v ∈ R

n−1,A ∈ gl(n − 1,R)

}
.
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Suppose that gl(n,R) = h ⊕ m with [h,m] ⊆ m. Since dimh = (n − 1)n, one has
dimm = n. Let Ei

j ∈ gl(n,R) be the matrix (Ei
j )

h
k = δhiδkj , so that {Ei

j }ni,j=1 is a
basis of gl(n,R).

First suppose that n = 2. Then the matrix E1
1 can be written as

E1
1 =

(
1 0
0 0

)
=

(
0 v

0 a

)
+

(
1 −v

0 −a

)
, a, v ∈R,

with

E
1h
1 =

(
0 v

0 a

)
∈ h, E1m

1 =
(

1 −v

0 −a

)
∈ m.

By virtue of the hypothesis, we have

[
E

1h
1 ,E1m

1

] =
(

0 −v

0 0

)
∈m,

but this matrix also belongs to h, and hence v = 0. Moreover, E1
2 belongs to h.

Consequently,

[
E1

2 ,E
1m
1

] =
(

0 −(a + 1)
0 0

)
∈ m,

and since this bracket also belongs to h, it follows that a = −1. Summarising, one
has E1m

1 = I2 ∈ m. On the other hand, one has the decomposition

E2
1 =

(
0 0
1 0

)
=

(
0 v

0 a

)
+

(
0 −v

1 −a

)
, a, v ∈R,

with

E
2h
1 =

(
0 v

0 a

)
∈ h, E2m

1 =
(

0 −v

1 −a

)
∈ m.

Again from E1
2 ∈ h we deduce that

[
E1

2,E
2m
1

] =
(

1 −a

0 −1

)
∈ m,

and since I2 and [E1
2 ,E

2m
1 ] are linearly independent, one concludes that

m= 〈
I2,

[
E1

2,E
2m
1

]〉
,

which is impossible as in this case the matrix E2m
1 could not belong to m, since its

(2,1)th entry is not null.
For n� 3, we have

E2
1 =

(
0 v

0 A

)
+

(
0 −v

u −A

)
,
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A ∈ gl(n − 1,R), v ∈R
n−1, tu = (1,0, . . . ,0) ∈ R

n−1,

with

E
2h
1 =

(
0 v

0 A

)
∈ h, E2m

1 =
(

0 −v

u −A

)
∈ m.

As

E1
3 =

(
0 w

0 0

)
, w = (0,1, . . . ,0) ∈ R

n−1,

belongs to h, one has that

[
E1

3,E
2m
1

] =
(

0 −wA

0 −(uiwj )

)

belongs to m, and since it also belongs to h, it is the null matrix. We are thus arrived
at a contradiction, for the square matrix (uiwj ) of order n − 1 never vanishes. �

2nd proof Another proof, this time unified for n� 2, and which uses representation
theory, is the following. First, we identify gl(n − 1,R) with the subalgebra

{(
0 0
0 A

)
: A ∈ gl(n − 1,R)

}
.

Then gl(n,R) decomposes as a gl(n − 1,R)-module into

gl(n,R) =
{(

0 v

0 0

)
: v ∈R

n−1
}

⊕ gl(n − 1,R)

⊕RE1
1 ⊕

{(
0 0
tv 0

)
: v ∈R

n−1
}
,

which is a sum of four non-isomorphic irreducible gl(n − 1,R)-modules.
Every h-submodule of gl(n,R) is in particular a gl(n − 1,R)-module and hence

a direct sum of some of the four gl(n − 1,R)-submodules above. Thus, the only
possibility for m is

m = RE1
1 ⊕

{(
0 0
tv 0

)
: v ∈R

n−1
}
,

but [h,m] ⊆ m, from which we conclude that the space is not reductive. �

Problem 4.108 The complex projective space CPn, which is the set of complex
lines through the origin in the complex (n+ 1)-space C

n+1, is diffeomorphic to the
homogeneous space SU(n + 1)/S(U(n) × U(1)).

(i) Does SU(n+ 1) act effectively on CPn?
(ii) Write CPn as a homogeneous space G/H such that G acts effectively on CPn.
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Remark We recall that the centre Zn+1 of SU(n + 1) consists of the diagonal ma-
trices diag(λ, . . . , λ), λ being an (n+ 1)th root of 1.

Solution

(i) The answer is no, since the isotropy group S(U(n) × U(1)) contains the centre
Zn+1 of SU(n + 1).

(ii) Let us compute the subgroup N . A matrix

s =
(
A 0
0 λ

)
, A ∈ U(n), λ = 1

detA
,

belongs to N if and only if g−1sg ∈ S(U(n) × U(1)) for all g ∈ SU(n + 1).
Let {v1, . . . , vn+1} be the standard basis of Cn+1, and let g ∈ SU(n + 1) be the
matrix given by

g(vr) = (cosα)vr + (sinα)vn+1,

g(vn+1) = −(sinα)vr + (cosα)vn+1,

g(vi) = vi, 1 � i � n, i = r,

where 1 � r � n is a fixed index, and α ∈ R. Then, we must have (g−1sg)(vn+1)

= μvn+1 for some μ ∈ C
∗, as g−1sg ∈ S(U(n) × U(1)), or equivalently,

s(g(vn+1)) = μg(vn+1), and by expanding we have:

s
(−(sinα)vr + (cosα)vn+1

) = −(sinα)A(vr)+ (cosα)λvn+1

= μ
(−(sinα)vr + (cosα)vn+1

)
.

Hence λ = μ and Avr = λvr for all r = 1, . . . , n. Therefore, A = λIn, and
since 1 = λdetA = λn+1, we conclude that N = Zn+1, which is the centre of
SU(n + 1). Accordingly, we can write

CPn ∼= (
SU(n+ 1)/Zn+1

)/(
S
(
U(n)× U(1)

)
/Zn+1

)
.

The group G = SU(n + 1)/Zn+1 acts effectively on CPn.

Problem 4.109 Consider the Lie group G2 = AutO of automorphisms of the octo-
nion algebra O.

Prove:
(i) The Lie group G2 is connected and simply connected.

(ii) The sphere S6 is isomorphic to the homogeneous space G2/SU(3).
(iii) The real Stiefel manifold V2(R

7) is isomorphic to the homogeneous space
G2/SU(2).

Hint (to (i)–(iii)) Use the fact that for any elements ξ, η, ζ ∈ O such that

|ξ | = |η| = |ζ | = 1, η⊥ξ, ζ⊥ξ, ζ⊥η, ζ⊥ξη,
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there exists a unique automorphism Φ : O → O such that

Φ(i) = ξ, Φ(j) = η, Φ(e) = ζ

(see [11, Lect. 15, Lemma 1]), where i, j, e are the standard generators of the octo-
nion algebra O, and | · | denotes the norm in O.

Hint (to (i)) To prove the simple connectedness of G2, use the following well-
known statement on the topology of homogeneous spaces (cf. [11, Lect. 12, Propo-
sition 8]): “For a connected Lie group G and a closed connected subgroup H , the
following holds: if the quotient space G/H is simply connected, then the fundamen-
tal group π1(G) of G is isomorphic to a quotient group of the fundamental group
π1(H).”

The relevant theory is developed, for instance, in Postnikov [11].

Solution

(i) The octonion algebra O can be considered as the real space R
8 with the fol-

lowing basis:

e0 = 1, e1 = i, e2 = j, e3 = ij, e4 = e, e5 = ie,

e6 = je, e7 = (ij)e.
(�)

Recall also that

e2
p = −1, p = 1, . . . ,7 and epel = −elep, p, l = 1, . . . ,7, p = l,

i.e. e1, . . . , e7 are (anticommuting) imaginary units of O. This basis {e0, . . . , e7}
is orthonormal with respect to the scalar product 〈u,v〉 = (uv+ vu)/2, where ·
denotes conjugation in O (see Problem 4.81), that is, e0 = e0 and ep = −ep for
p = 1, . . . ,7. Any element of G2 leaves invariant this scalar product, so that we
may write G2 ⊂ O(8). But the unit e0 is fixed under G2. Therefore G2 leaves
invariant the subspace orthogonal to e0, V7 = 〈e1, . . . , e7〉, of purely imaginary
octonions, and so G2 ⊂ O(7).

By the first hint above the group G2 acts transitively on the sphere S6 ⊂ V7,
i.e.

S6 ∼= G2/K, where K = {Φ ∈ G2 : Φe1 = e1}.
For any automorphism Φ ∈ K , the element η = Φe2 is orthogonal to e1, and,
consequently, it is an element of some sphere S5. Moreover, by the first hint
above,

S5 ∼= K/L, where L = {Φ ∈ G2 : Φe1 = e1,Φe2 = e2} ⊂ K.

But for any automorphism Φ ∈ L, the element ζ = Φe4 is orthogonal to the
elements e1, e2 and e3 = e1e2 (since they are preserved by the automorphism
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Φ), that is, ζ belongs to some sphere S3 ⊂ 〈e4, e5, e6, e7〉. Moreover, by the
first hint above the map Φ �→ Φe4 is a diffeomorphism (by the uniqueness of
Φ) of the Lie group L onto S3 : L ∼= S3.

In particular, since the Lie group L is connected and the sphere S5, where
K acts transitively, is connected, the Lie group K is connected (any connected
component of K acts transitively on S5). Similarly, considering the transitive
action of G2 on S6 with connected isotropy group K , we obtain the connect-
edness of G2.

On the other hand, according to the result recalled in the second hint, the
group K is simply connected because the sphere S5 ∼= K/L and the group
L ∼= S3 are simply connected. Similarly the group G2 is simply connected be-
cause the sphere S6 ∼= G2/K and the group K are simply connected.

(ii) Let us prove that K ∼= SU(3). Indeed, since the algebra O is alternative, that is,
u(uv) = (uu)v for any u,v ∈ O (cf. [11, Lect. 15]), the operator

I : O →O, v �→ iv,

defines a complex structure on the space O. The six-dimensional subspace
V6 = 〈e2, . . . , e7〉 is invariant under I and can be regarded as a complex vector
space with basis e2, e4, e6 (see (�)). The scalar product 〈 · , · 〉 in O satisfies
〈Iu, Iv〉 = 〈u,v〉 because by the central Moufang identity in O,

w(uv)w = (wu)(vw), u, v,w ∈ O,

(cf. [11, Lect. 15, Lemma 2]), we have

(iu)(iv)+ (iv)(iu) = (iu)(−vi)+ (iv)(−ui) = −i(uv + vu)i = uv + vu

as uv + vu ∈ R and i2 = −1. It is easy to verify that the form

γ (u, v) = 〈u,v〉 + 〈Iu, v〉i
on V6 defines a positive definite Hermitian form and that the basis e2, e4, e6
is orthonormal with respect to γ . Obviously, any automorphism Φ ∈ K maps
V6 onto itself and preserves the form γ (because Φe1 = e1, e1 = i). Thus the
restriction map Φ �→ Φ|V6 is an embedding of K in SU(3), so that we have

K ⊂ U(3) ⊂ SO(6) ⊂ SO(7).

By a dimension argument, K is a codimension one subgroup of U(3). Let
us prove that K ∼= SU(3). Since K is a connected and simply connected Lie
group, it is sufficient to prove that the Lie algebra k of K is the Lie algebra
su(3) ⊂ u(3). Indeed,

u(3) = z⊕ su(3),

where z is the one-dimensional center of u(3) and su(3) is the maximal semi-
simple ideal. Consider the projection (homomorphism) π of u(3) onto su(3)
along the ideal z. Let k′ be the image of k ⊂ u(3) under this projection.
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Suppose that k′ = su(3). Then k′ is a codimension one subalgebra of su(3).
The restriction to k′ of the adjoint representation of su(3) is completely re-
ducible as k′ is a compact Lie algebra. Thus su(3) = z′ ⊕ k′, where z′ is a
one-dimensional k′-module. If the Lie algebra k′ were semi-simple, then this
module would be trivial, i.e. [z′, k′] = 0, and, consequently, z′ would be an ideal
of su(3) because [z′, su(3)] = 0. This lead us to a contradiction, as su(3) is a
simple Lie algebra. If the compact Lie algebra k′ were not semi-simple, then
it would be k′ = c ⊕ s, where c is its non-trivial centre, and s is its maximal
semi-simple ideal. Therefore rank s � 1 because the rank of the Lie algebra
su(3) equals 2 and dim c� 1. But the unique compact semi-simple Lie algebra
of rank 1 is isomorphic to su(2). This leads us to a contradiction again as

dim su(2) + 1 < dim su(3) − 1
(= dim k

′).

Thus k′ = su(3), and the homomorphism π |k : k → su(3) is an isomorphism.
Since the Lie algebra k is semi-simple, any of its one-dimensional modules is
trivial, that is,

k = k
′ = su(3).

(iii) We have proved that K = SU(3). In other words, K = {Φ ∈ G2 : Φe1 = e1}
and also

K = {
g ∈ End(V7) : ge1 = e1, g(V6) = V6, gI = Ig on V6 ⊂ V7, detCg = 1

}
.

Now, it is evident that the subgroup L = {Φ ∈ G2 : Φe1 = e1,Φe2 = e2} of K
is defined by the relations

L = {
g ∈ End(V7) : ge1 = e1, g(V6) = V6, gI = Ig on V6 ⊂ V7,

detC g = 1, ge2 = e2
}
,

i.e. it is isomorphic to the Lie group SU(2).
The Lie group G2 ⊂ SO(7) acts naturally on the real Stiefel manifold

V2(R
7). By the first hint above this action is transitive. Moreover, by definition

the stabiliser of the pair (e1, e2) ∈ V2(R
7) in G2 is the Lie group L ∼= SU(2).

Thus,

V2
(
R

7) ∼= G2/SU(2).

Problem 4.110 Consider the octonion algebra O with its standard scalar product
〈u,v〉 = (uv + vu)/2. Let SO(8) be the Lie group of all operators on O preserving
this scalar product with Lie algebra

so(8) = {
A : O → O, A linear : 〈Au,v〉 = −〈u,Av〉}.

Let so(7) be its Lie subalgebra consisting of the maps A ∈ so(8) satisfying Ae0 = 0,
where e0 is the unit of O. It is known that so(8) is the unique simple real Lie algebra
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with an outer automorphism of order 3. In fact, if Aut(so(8)) (resp. Int(so(8)))
denotes the group of all (resp. inner) automorphisms of so(8), then the group of
outer automorphisms,

Out
(
so(8)

) = Aut
(
so(8)

)
/ Int

(
so(8)

) ∼= S3,

the symmetric group on three letters. Let λ,κ ∈ Aut(so(8)) be such that their images
in Aut(so(8))/ Int(so(8)) generate this group and satisfy the relations

λ3 = 1, κ3 = 1, κλκ = λ2.

We may choose λ and κ as follows (see Freudenthal [5]). Define κ by

κ(A)u = (Au), A ∈ so(8), u ∈ O.

Then λ is uniquely defined by the principle of triality which states that for all A ∈
so(8) and u,v ∈ O, we have

(
λ(A)u

)
v + u

(
λ2(A)v

) = κ(A)(uv). (�)

Consider the Lie subalgebra

s = λ
(
so(7)

) ⊂ so(8).

There exists a unique connected (not necessary closed) subgroup S of SO(8) with
Lie algebra s.

Prove:

(i) The orbit Se0 ⊂ O is isomorphic to the sphere S7, and the isotropy group Se0 of
the unit e0 ∈O is the Lie group G2 = AutO.

(ii) The connected Lie group S is simply connected, so that S ∼= Spin(7),

S7 ∼= Spin(7)/G2,

and the restriction λ|so(7) : so(7) → so(8) is the eight-dimensional basic spinor
representation of so(7).

Hint (to (i)) Using the definition of the automorphism κ , show that κ(so(7)) =
so(7) and, using the principle of triality, show that for A ∈ so(7) with λ(A) ∈ so(7),
we have λ(A) = λ2(A) = κ(A).

Hint (to (i)) To prove the connectedness of Se0 , use the following well-known state-
ment of the topology of homogeneous spaces (cf. Postnikov [11, Lect. 12, Proposi-
tion 6]): “Let G be a connected Lie group with a closed subgroup H , and let H 0 be
the identity component of the Lie group H . Then the natural map G/H 0 → G/H ,
gH 0 �→ gH , is a covering map.”

Hint (to (ii)) To prove the simple connectedness of S, see the second hint in Prob-
lem 4.109.
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One can find the relevant theory developed, for instance, in Freudenthal [5] and
Postnikov [11].

Solution

(i) Since S is a Lie subgroup of SO(8), the orbit Se0 is a subset of the sphere
S7 = {u ∈ O : 〈u,u〉 = 1} containing the unit e0 ∈ O. Let us prove that the Lie
algebra

se0 = {
λ(A), A ∈ so(7) : λ(A)e0 = 0

} ⊂ so(7) ⊂ so(8)

of the isotropy group Se0 is a Lie subalgebra of the Lie algebra

g2 = {
B ∈ so(8) : (Bu)v + u(Bv) = B(uv), u, v ∈O

} ⊂ so(7)

of derivations of the octonion algebra. Indeed, since e0 = e0, by the definition
of κ we have that κ(A)e0 = 0 for any A ∈ so(7), i.e. κ(so(7)) = so(7). Putting
u = v = e0 in relation (�), we obtain that

for A ∈ so(7) : λ(A)e0 = 0 if and only if λ2(A)e0 = 0.

Now putting u = e0 in (�), we obtain that

if λ(A)e0 = 0, A ∈ so(8), then λ2(A)v = κ(A)v, where v ∈ O.

Similarly, putting v = e0 in (�), we obtain that

if λ2(A)e0 = 0, A ∈ so(8), then λ(A)u = κ(A)u, where u ∈O.

In particular, if A ∈ so(7) and λ(A) ∈ so(7), then λ2(A) ∈ so(7) and

λ(A)u = λ2(A)u = κ(A)u for all u ∈ O,

and consequently, by (�),
(
λ(A)u

)
v + u

(
λ(A)v

) = λ(A)(uv), u, v ∈ O,

so that se0 ⊂ g2. But the orbit Se0 is a submanifold of the sphere S7, in particular
(dim so(7) − dim se0)� 7. Then dim se0 � (21 − 7 = 14). Taking into account
that dimg2 = 14 and se0 ⊂ g2, we obtain that se0 = g2 and the orbit Se0 is an
open connected subset of S7. Showing now that this orbit is a closed subset
of S7, we obtain that Se0 = S7. To this end, it is sufficient to show that S is a
closed (and, consequently, compact) subgroup of SO(8).

The normaliser of the Lie subalgebra so(7) in so(8) coincides with this al-
gebra so(7) because as it is easy to check the algebra so(8) as an so(7)-module
is a direct sum of its subalgebra so(7) and a simple seven-dimensional mod-
ule U7 (the standard irreducible representation of so(7) of lowest dimension),
i.e. so(8) = so(7)⊕U7, where [so(7),U7] ⊂ U7. Since λ is an automorphism of
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so(8), the Lie algebra s = λ(so(7)) also coincides with its normaliser ŝ in so(8).
Then the closed Lie subgroup Ŝ = {h ∈ SO(8) : Adh(s) = s} is a Lie subgroup
of SO(8) with Lie algebra ŝ = s. Thus, S being a connected component of Ŝ

(containing the unit element), it is also a closed subgroup of SO(8).
Let us show that Se0 = G2. Let S0

e0
be the identity component of Se0 . By the

second hint above the natural map S/S0
e0

→ S/Se0 , hS0
e0

�→ hSe0 , is a covering
map. But since the sphere S7 = S/Se0 is simply connected, we obtain that the
group Se0 is connected. But the unique connected Lie subgroup of SO(8) with
Lie algebra g2 ⊂ so(7) ⊂ so(8) is the Lie group G2 = AutO. Thus Se0 = G2.

(ii) Let us prove that S ∼= Spin(7). According to the result recalled in the second
hint of Problem 4.109, the group S is simply connected because the sphere
S7 ∼= S/Se0 and the group Se0 = G2 are simply connected. Since the Lie algebra
of S is isomorphic to so(7), we obtain that S ∼= Spin(7) and the corresponding
representation

so(7) → so(8), A → λ(A),

is the basic spinor representation of so(7).

References

1. Adams, J.F.: Lectures on Lie Groups. Chicago Lectures in Mathematics. University of Chicago
Press, Chicago (1982)

2. Bourbaki, N.: Groupes et Algèbres de Lie. Hermann, Paris (1968). Chaps. IV–VI
3. Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, New York

(1985)
4. Chevalley, C.: Theory of Lie Groups. Princeton University Press, Princeton (1946)
5. Freudenthal, H.: In: Oktaven, Ausnahmengruppen, und Oktavengeometrie, Utrecht (1951)
6. Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cam-

bridge University Press, Cambridge (1998)
7. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in

Mathematics, vol. 34. Am. Math. Soc., Providence (2012)
8. Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd edn. Progress in Mathematics,

vol. 140. Birkhäuser, Boston (2002)
9. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vols. I, II. Wiley Classics

Library. Wiley, New York (1996)
10. Poor, W.A.: In: Differential Geometric Structures. Dover Book in Mathematics Dover, New

York (2007)
11. Postnikov, M.M.: Lectures in Geometry, Lie Groups and Lie Algebras. MIR, Moscow (1986).

Semester 5. Translated from the Russian by Vladimir Shokurov
12. Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics, Geom-

etry, and Mechanics. Springer, New York (1993)
13. Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Graduate Texts in

Mathematics. Springer, Berlin (2010)
14. Zachos, C.K.: Crib Notes on Campbell–Baker–Hausdorff expansions. High Energy Physics

Division, Argonne National Laboratory, Argonne (1999)
15. Ziller, W.: Lie Groups, Representation Theory and Symmetric Spaces. Univ. of Pennsylvania

(2010)



262 4 Lie Groups

Further Reading

16. Adams, J.F.: Lectures on exceptional Lie groups. In: May, J.P., Mahmud, Z., Mimura, M.
(eds.) Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1996)

17. Besse, A.: Einstein Manifolds. Springer, Berlin (2007)
18. Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. AMS Chelsea Publishing, Providence

(2001)
19. Boothby, W.M.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd

revised edn. Academic Press, New York (2002)
20. Brickell, F., Clark, R.S.: Differentiable Manifolds. Van Nostrand Reinhold, London (1970)
21. Fulton, W., Harris, J.: Representation Theory: A First Course. Graduate Texts in Mathemat-

ics/Readings in Mathematics. Springer, New York (1991)
22. Lee, J.M.: Manifolds and Differential Geometry. Graduate Studies in Mathematics. Am. Math.

Soc., New York (2009)
23. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218.

Springer, New York (2012)
24. Lichnerowicz, A.: Geometry of Groups of Transformations. Noordhoff, Leyden (1977)
25. Spivak, M.: Differential Geometry, vols. 1–5, 3nd edn. Publish or Perish, Wilmington (1999)
26. Sternberg, S.: Lectures on Differential Geometry, 2nd edn. AMS Chelsea Publishing, Provi-

dence (1999)
27. Tu, L.W.: An Introduction to Manifolds. Universitext. Springer, Berlin (2008)



Chapter 5
Fibre Bundles

Abstract This chapter deals with problems on fibre bundles, principal bundles,
connections on bundles, characteristic classes and almost complex manifolds, af-
ter giving a survey of definitions and results on such topics. Examples of the top-
ics presented are: Fundamental vector fields on principal bundles and the complex
and quaternionic Hopf bundles; principal U(1)-bundles and connections on them;
Chern classes of the complex Hopf bundle and the tautological line bundle over the
complex projective space CP1. These topics, which might be deemed ‘mysterious’
by newcomers, are rendered clearer with the help of the explicit computations of
some characteristic forms, classes or numbers, carried out in this chapter. The Sec-
tion on characteristic classes includes two new problems on Godbillon–Vey class
in the present edition. After that, linear connections, including a few calculations
with indices, are shown. Furthermore, some holonomy groups and geodesics are
studied, and then almost complex and complex manifolds, along with some exam-
ples of Nijenhuis tensor. The last section is devoted to almost symplectic manifolds,
Hamilton’s equations, and the relation with principal U(1)-bundles.

The preceding definitions of tensor and tensor field are essentially equiva-
lent to the classical definitions. The novelty of our treatment lies in the assign-
ment of a topology to the set of tensors (of a prescribed type) at the various
points of X. This is done in such a way as to form a bundle space under the
natural projection into X. In most applications, Y is a linear space and G is
a linear group; hence B is a differentiable manifold. The advantage of our
approach is that a tensor field becomes a function in the ordinary sense. Its
continuity and differentiability need not be given special definitions.

NORMAN STEENROD, The Topology of Fibre Bundles, Princeton Mathe-
matical Series, no. 14, P.U.P., 1999. (With kind permission from Princeton
University Press.)

In recent years the works of Stiefel, Whitney, Pontrjagin, Steenrod, Feld-
bau, Ehresmann, etc. have added considerably to our knowledge of the topol-
ogy of manifolds with a differentiable structure, by introducing the notion
of so-called fibre bundles. The topological invariants thus introduced on a
manifold, called the characteristic cohomology classes, are to a certain extent

P.M. Gadea et al., Analysis and Algebra on Differentiable Manifolds,
Problem Books in Mathematics, DOI 10.1007/978-94-007-5952-7_5,
© Springer-Verlag London 2013
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susceptible of characterization, at least in the case of Riemannian manifolds,
by means of the local geometry. Of those characterizations the generalized
Gauss–Bonnet formula of Allendoerfer–Weil is probably the most notable ex-
ample. (. . . ) In the works quoted above, special emphasis has been laid on the
sphere bundles, because they are the fibre bundles which arise from manifolds
with a differentiable structure. Of equal importance are the manifolds with a
complex analytic structure which play an important rôle in the theory of an-
alytic functions of several complex variables and in algebraic geometry. The
present paper will be devoted to a study of the fibre bundles of the complex
tangent vectors of complex manifolds and their characteristic classes in the
sense of Pontrjagin. It will be shown that there are certain basic classes from
which all the other characteristic classes can be obtained by operations of the
cohomology ring. These basic classes are then identified with the classes ob-
tained by generalizing Stiefel–Whitney’s classes to complex vectors. In the
sense of de Rham the cohomology classes can be expressed by exact exterior
differential forms which are everywhere regular on the (real) manifold.

SHIING-SHEN CHERN, “Characteristic classes of Hermitian manifolds,”
Ann. of Math. 47 (1946), no. 1, p. 85. (With kind permission from the Annals
of Mathematics.)

5.1 Some Definitions and Theorems on Fibre Bundles

Definitions 5.1 (See Poor [7] and Problem 2.17 Above) Let

F ↪→ E

↓ π

M

be a fibre bundle. The vertical bundle on E is the real vector bundle with total space

V E := π−1∗ (0) =
⋃

ξ∈E

ker(π∗|ξ : Eξ → Tπ(ξ)M) ⊂ T E.

Proposition 5.2 If E
π→ M is a vector bundle, then the vertical vector bundle V E

is isomorphic to the pull-back vector bundle π∗E over E, that is, V E is isomorphic
to E along π .

Denote the isomorphism in Proposition 5.2 by I , so that

I : π∗E −→ V E

(ζ, ξ) �−→ Iζ ξ := d

dt

∣∣∣∣
t=0

(ζ + tξ ).
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Denote the vector bundle isomorphism from V E to E along π by pr2,

pr2 : V E −→ E

Iζ ξ �−→ ξ.

A connection on a vector bundle π : E → M is a vector sub-bundle H of T E →
E such that:

(a) The sub-bundle H is complementary to the vertical bundle V E → E, that is,

T E = H ⊕ V E.

(b) The sub-bundle H is homogeneous, i.e.

hλ∗Hξ = Hλξ , λ ∈ F= R,C,H, ξ ∈ E,

where hλξ = λξ .

A connection on the tangent bundle T M → M is usually referred to as a connec-
tion on M .

Let H be a connection on a vector bundle E over M . Given X ∈ T E = H ⊕
V E, it decomposes accordingly as X = Xh + Xv . The connection map κ of H is
defined by

κ : T E −→ E

X �−→ κ(X) = pr2
(
Xv
)= pr2

(
X − Xh

)
.

(5.1)

Definitions 5.3 A C∞ principal fibre bundle (or simply a principal bundle) is a
quadruple (P,π,M,G) where P , M are differentiable manifolds, G is a Lie group
and π is a surjective submersion from P to M such that:

(i) G acts differentiably and freely on the right on P ,

P × G → P.

For g ∈ G, one also writes Rg : P → P for the map Rgu = ug.
(ii) M is the quotient space of P by equivalence under G, so that for p ∈ M , G

acts simply transitively on π−1(p).
(iii) P is locally trivial, that is, for any p ∈ M , there is an open neighbourhood U

of p and a C∞ map ΦU : π−1(U) → G such that ΦU commutes with Rg for
every g ∈ G and the map π−1(U) → U × G given by u �→ (π(u),ΦU(u)) is a
diffeomorphism.

P is called the bundle space or the total space, π the projection map, M the base
space, and G the structure group. For p ∈ M , π−1(p) is called the fibre over p.
Each fibre is diffeomorphic to G via the map ju : G → π−1(π(u)) ⊂ P , defined by
ju(g) = Rgu.

Let G be a Lie group acting on a differentiable manifold M on the right. Each
element A ∈ g induces a vector field A∗ ∈ X(M), corresponding to the action of
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the 1-parameter group at = exp tA on M . A∗ is called the fundamental vector field
corresponding to A.

Given a differentiable n-manifold M , a linear frame z at a point p is an ordered
basis (X1, . . . ,Xn) of the tangent space TpM . The set FM of all linear frames at
all points of M is a principal bundle called the bundle of linear frames over M , with
projection map π sending each ordered basis of TpM to the point p, and with group
GL(n,R) acting on FM on the right.

There exists a natural Rn-valued differential 1-form θ on FM called the canoni-
cal form on the bundle of linear frames, defined by

θ(X) = z−1(π∗X), z ∈ π−1(p), p ∈ M, X ∈ Tz(FM),

where the linear frame z is viewed as an isomorphism z : Rn → TpM .
A G-structure on a differentiable n-manifold M is a principal sub-bundle of the

bundle of linear frames FM whose structure group is a Lie subgroup G ⊆ GL(n,R).

Definition 5.4 Let (P,π,M,G) be a principal bundle, and let F be a manifold on
which G acts on the left. The fibre bundle associated to (P,π,M,G) with fibre F

is defined as follows. Let us consider the right action of G on the product P × F

defined by (u,f )g = (ug,g−1f ), where p ∈ P , f ∈ F , g ∈ G. The quotient space
E = (P ×F)/G under equivalence by G, is the bundle space of the associated fibre
bundle.

The structure is as follows: The projection map πE : E → M is defined by
πE((u,f )G) = π(u). If p ∈ M , take a neighbourhood U of p as in Defini-
tions 5.3 (3), with ΦU : π−1(U) → G. Then we have ΨU : π−1

E (U) → F given by
ΨU((u,f )G) = ΦU(u)f , so that π−1

E (U) is diffeomorphic to the product U × F .

Definitions 5.5 Let (P,π,M,G) be a principal bundle. Denote by Vu the sub-
space of TuP of vectors tangent to the fibre through u ∈ P . A connection Γ in P is
an assignment of a subspace Hu of TuP to each u ∈ P such that:

(i) TuP = Vu ⊕ Hu;
(ii) Hug = R∗gHu,

u ∈ P , g ∈ G. The subspaces Vu and Hu are respectively called the vertical and the
horizontal subspace of TuP . We denote by v and h, respectively, the projections of
TuP onto Vu and Hu.

The connection Γ defines a differential 1-form ω on P , called the connection
form of Γ , which takes values in the Lie algebra g of G and satisfies, denoting by
A∗ the fundamental vector field on the total space P , corresponding to A ∈ g,

(i) ω(A∗) = A, A ∈ g;
(ii) R∗

gω = Adg−1 ◦ ω, g ∈ G.

Given a g-valued 1-form on P satisfying the two conditions above, there is a
unique connection Γ in P whose connection form is ω.

The horizontal lift of X ∈ X(M) is the unique vector field Xh ∈ X(P ) which is
horizontal and projects onto X, that is, π∗Xh

u = Xπ(u), for all u ∈ P .
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Let ρ be a representation of G on a finite-dimensional real vector space V . Let α

be a V -valued r-form on P such that R∗
gα = ρ(g−1)α, g ∈ G. The form Dα defined

by

(Dα)(X1, . . . ,Xr+1) = ((dα) ◦ h
)
(X1, . . . ,Xr+1) = dα(hX1, . . . , hXr+1),

for X1, . . . ,Xr+1 ∈ TuP , is called the exterior covariant derivative of α and D is
called the exterior covariant differentiation.

The curvature form of the connection form ω is defined by Ω = Dω.

Definition 5.6 A connection in the fibre bundle of linear frames FM over the man-
ifold M is called a linear connection on M .

Definition 5.7 A differentiable manifold M is called parallelisable if there exists
a linear connection ∇ of M for which parallel transport is locally independent of
curves. Such a ∇ is called a flat connection.

Definition 5.8 Let M be a differentiable manifold of dimension n, ∇ a linear con-
nection on M , and p ∈ M . Let exp denote the restriction of the exponential map to
TpM . Under the identification T0(TpM) ≡ TpM one has exp∗0 = id |TpM . Hence,
according to the Inverse Map Theorem (see Theorem 1.12), there exists a star-
shaped open neighbourhood V of 0 in TpM and an open neighbourhood U of p

in M such that exp(V ) = U and exp : V → U is a diffeomorphism.
A fixed basis (u1, . . . , un) of TpM defines an isomorphism

u : Rn → TpM, u(ζ ) =
∑

i

uiζ
i, ζ = (ζ 1, . . . , ζ n

) ∈R
n.

Let

ϕ : U → A = u−1(V ), ϕ = u−1 ◦ exp−1, xi = ri ◦ ϕ,

where ri stands for the ith coordinate function on R
n. With the previous notations,

(U,ϕ) is a chart of M , called a normal coordinate system at p (with respect to the
connection ∇), and the functions xi : U →R are the coordinate functions of ϕ.

Definition 5.9 An almost complex structure on a differentiable manifold M is a
differentiable map J : T M → T M , such that:

(i) J maps linearly TpM into TpM for all p ∈ M ;
(ii) J 2 = −I on each TpM , where I stands for the identity map.

Definitions 5.10 A complex manifold M is defined similarly to a differentiable
manifold, but taking homeomorphisms from open subsets of M to C

n instead of Rn,
and the changes of charts ϕα ◦ϕ−1

β being holomorphic functions on C
n. The number

n is called the complex dimension of M and one writes dimC M = n. A maximal
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set of charts is now called a complex structure. A complex manifold is a differ-
entiable manifold, as it follows from the identification C

n ≡ R
2n obtained taking

zk = xk + iyk , for xk, yk ∈R.
A complex manifold admits an almost complex structure J , taking the linear map

Jp at any p ∈ M defined by

Jp

(
∂

∂xk

∣∣∣∣
p

)
= ∂

∂yk

∣∣∣∣
p

, Jp

(
∂

∂yk

∣∣∣∣
p

)
= − ∂

∂xk

∣∣∣∣
p

,

where zk = xk + iyk are the coordinate functions in a chart (U,ϕ) around p. The
tensor field J does not depend on the chosen coordinates by virtue of the following
result: A map f of an open subset of C

n into C
m preserves the standard almost

complex structures of Cn and C
m (i.e. f∗ ◦ J = J ◦ f∗) if and only if f is holo-

morphic. The tensor field J is called the almost complex structure of the complex
manifold M .

Let M be a complex manifold with dimC M = n and let g be a Riemannian metric
on M as a differentiable manifold. If g and the almost complex structure J of M

satisfy

gp(Jpv, Jpw) = gp(v,w), p ∈ M, v,w ∈ TpM,

then g is said to be a Hermitian metric and (M,J,g) is called a Hermitian manifold.
The tensor field F on such a manifold defined at any p ∈ M by

Fp(v,w) = gp(v, Jpw), v,w ∈ TpM,

is called the fundamental (or Kähler) form of the Hermitian metric g. A Kähler man-
ifold is a Hermitian manifold whose Kähler form is closed: dF = 0. It can be proved
that this is equivalent to ∇J = 0, where ∇ denotes the Levi-Civita connection of g.

Definitions 5.11 Let M be a connected complex manifold of complex dimension n.
Given p ∈ M , three definitions are usually considered of tangent space to M at p,
of real dimension 2n:

TpM : The real tangent space at p. M has the underlying structure of a 2n-dimen-
sional differentiable manifold, and TpM refers to the tangent space of this under-
lying real structure, that is, to the space of real derivations of C∞

p M .

A basis of TpM can be exhibited as follows: Let z1, . . . , zn be local complex coor-
dinates near p and let zk = xk + iyk , k = 1, . . . , n; then x1, . . . , xn, y1, . . . , yn, are
real coordinates near p and

{
∂

∂xk

∣∣∣∣
p

,
∂

∂yk

∣∣∣∣
p

: k = 1, . . . , n

}

is a basis of TpM over R.
The linear map Jp converts TpM into a complex space with dimCTpM = n by the
definition

(a + ib)X = aX + bJpX, X ∈ TpM, a + ib ∈ C.
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T h
p M : The holomorphic tangent space at p, which is the complex vector space
of all complex derivations of the local algebra OpM of germs of holomorphic
functions at p, that is, the C-complex functions Z : OpM → C such that

Z(fg) = (Zf )g(p) + f (p)Zg, f,g ∈ OpM.

With z1, . . . , zn as above,
{

∂

∂zk

∣∣∣∣
p
: k = 1, . . . , n

}

is a basis of T h
p M over C, where by definition

∂

∂zk

∣∣∣∣
p

(f ) = ∂f

∂zk
(p),

for any holomorphic function f defined near p.
T

1,0
p M : The space of vectors of type (1,0), which is the complex subspace of the
complexification T c

pM = TpM ⊗R C defined by the (+i)-eigenspace of the com-

plexification of J . Then, T
1,0
p M is spanned by the elements of the form X − iJX,

where X ∈ TpM . That is, with zk and xk, yk as above, since

Jp

(
∂/∂xk

)
p

= (∂/∂yk
)
p
, Jp

(
∂/∂yk

)
p

= −(∂/∂xk
)
p
,

a basis of T
1,0
p M is given by

{
1

2

(
∂

∂xk
− i

∂

∂yk

)

p

; k = 1, . . . , n

}
.

Note that every element Z ∈ T c
pM can be written as

Z = X + iY ∼= X ⊗ 1 + Y ⊗ i, X,Y ∈ TpM.

Let

T M =
⋃

p∈M

TpM, T hM =
⋃

p∈M

T h
p M, T 1,0M =

⋃

p∈M

T 1,0
p M,

be the bundles defined fibrewise. T hM has the obvious structure of a holomorphic
vector bundle and it is called the holomorphic vector bundle of M .

Definitions 5.12 Let T ∗M be the cotangent bundle over a differentiable manifold
M of dimension n and let π : T ∗M → M be the natural projection. The canonical
1-form ϑ on T ∗M is defined by

ϑω(X) = ω(π∗X), ω ∈ T ∗M, X ∈ TωT ∗M.
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An almost symplectic manifold is a differentiable manifold M endowed with a non-
degenerate differential 2-form Ω . In this case, dimM = 2n, and

v = (−1)n

n! Ω ∧ (n)· · · ∧ Ω

is a volume form on M , called the standard volume form associated with Ω . A sym-
plectic manifold is an almost symplectic manifold whose corresponding 2-form is
closed: dΩ = 0.

Definitions 5.13 Let (M,Ω) be a symplectic manifold and let H be a smooth func-
tion on M . Since the form Ω is non-degenerate, there exists a unique smooth vector
field XH ∈X(M) such that

iXH
Ω = −dH.

This vector field is called the Hamiltonian vector field of the function H . A vector
field X ∈ X(M) is called locally Hamiltonian if the 1-form iXΩ is closed. Since
each closed form is locally exact (by the Poincaré lemma) for any point x ∈ M

there exists a neighbourhood U ⊂ M of x and a local function f ∈ C∞U such that
iXΩ = −df .

For any two functions H,F ∈ C∞M the smooth function

{H,F } = −XH (F) = −dF(XH ) = Ω(XF ,XH )

is called the Poisson bracket of the functions H and F .

Theorem 5.14 (Darboux’s Theorem) If (M,Ω) is a symplectic manifold of di-
mension 2n, then for every p ∈ M there exists a chart (U,x1, . . . , xn, y1, . . . , yn)

centred at p such that

Ω|U =
n∑

i=1

dxi ∧ dyi.

5.2 Principal Bundles

Problem 5.15 Let π : P → M be a surjective submersion and let P × G → P be
an action of G on P satisfying the following two properties:

(i) G acts freely, i.e. u · g = u, u ∈ P , g ∈ G, implies g = e.
(ii) The fibres of π coincide with the orbits of G, i.e.

π−1(x) = u · G, u ∈ π−1(x), x ∈ M.

Prove:

1. If π admits a global section (i.e. there exists a smooth map s : M → P such that
π ◦ s = idM ), then π is trivialisable, i.e. there exists a G-equivariant diffeomor-
phism Φ : M × G → P .
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2. Every x ∈ M admits an open neighbourhood U such that π−1(U) is G-
equivariantly diffeomorphic to U × G.

Solution

1. The smooth map

Φ : M × G → P, Φ(x,g) = s(x) · g, x ∈ M, g ∈ G,

is bijective. In fact, if Φ(x,g) = Φ(x′, g′), then

x = π
(
s(x) · g) (by (ii))

= π
(
Φ(x,g)

)= π
(
Φ
(
x′, g′))= π

(
s
(
x′) · g′)

= x′ (by (ii)).

Hence, s(x) · g = s(x) · g′, or equivalently, s(x) = s(x) · (g′g−1), and we con-
clude g = g′ by virtue of (i). Furthermore, we have

x = π(u) = π
(
s(x)

)
, u ∈ P.

From (ii) we deduce that an element g ∈ G exists, such that s(x) · g = u, or
equivalently, Φ(x,g) = u. The map Φ is also G-equivariant as

Φ
(
x,gg′)= s(x) · (gg′)= (s(x) · g) · g′ = Φ(x,g) · g′, x ∈ M, g,g′ ∈ G.

In order to prove that Φ∗ is an isomorphism at every (x0, g0) ∈ M ×G, it suffices
to prove that Φ∗ is surjective, as dimP = dimM + dimG. In fact,

dimP = dimTuP = dimTxM + dimπ−1(x) = dimM + dimπ−1(x),

for all u ∈ P , x = π(u), because π is a submersion; but π−1(x) ∼= G by virtue
of (i) and (ii).

If Rg denotes the right translation by g ∈ G on P as well as on M × G, then
Φ = Rg ◦ Φ ◦ Rg−1 , as it is readily checked. Taking differentials, we obtain

Φ∗(x0,g0) = (Rg0)∗s(x0) ◦ Φ∗(x0,e) ◦ (R
g−1

0
)∗(x0,g0).

Hence Φ∗(x0,g0) is surjective if and only if Φ∗(x0,e) is. By using the natural iden-
tification T(x0,e)M × G = Tx0M ⊕ TeG, we have

Φ∗(x0,e)(X1,X2) = (Φe∗
)
x0

(X1) + (Φx0∗
)
e
(X2), X1 ∈ Tx0M, X2 ∈ TeG,

where Φx0(g) = Φ(x0, g), Φe(x) = Φ(x, e) = s(x), are the partial mappings.
As π is a submersion, the following exact sequence holds:

0 → Ts(x0)

(
s(x0) · G)→ Ts(x0)P

π∗−→ Tx0M → 0,
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which splits via s∗x0 , i.e. every X ∈ Ts(x0)P can be written as

X = s∗x0(X1) + (Φx0∗
)
e
(X2)

for certain X1, X2, where the identity Ts(x0)(s(x0) · G) = (Φ
x0∗ )e(TeG) is used.

2. As π is submersive, every x ∈ M admits a section s : U → P defined on an open
neighbourhood U and we conclude by simply applying the previous result to
π : π−1(U) → U .

Problem 5.16 A morphism of principal bundles π : P → M , π ′ : P ′ → M ′, with
structure groups G, G′, respectively, is a smooth map Φ : P → P ′ and a Lie group
homomorphism γ : G → G′ such that

Φ(u · g) = Φ(u) · γ (g), u ∈ P, g ∈ G.

(i) If Φ : P → P ′ is a morphism, then prove that there exists a unique smooth map
φ : M → M ′ making the following diagram commutative:

P
Φ−→ P ′

π ↓ ↓ π ′

M
φ−→ M ′

(ii) Suppose now that M ′ = M , G′ = G, π = π ′, and γ = idG. Then a principal-
bundle morphism Φ : P → P , is said to be an automorphism if Φ is a diffeo-
morphism.

Prove that all the automorphisms constitute a group with respect to composition.
This group is denoted by AutP . Prove that the map AutP → DiffM , Φ �→ φ, with
φ given as in (i) above, is a group homomorphism.

Remark The kernel of the last homomorphism is called the gauge group of P and
it is denoted by GauP .

Solution

(i) As π is surjective, if φ exists, then it is unique. In order to prove the existence
of φ, it suffices to prove that if u,v ∈ P are two points in the fibre of x ∈ M ,
then π ′(Φ(u)) = π ′(Φ(v)). As u and v belong to the same fibre, by virtue of
the condition (ii) of Problem 5.15, there exists g ∈ G such that v = u · g. Hence

π ′(Φ(v)
)= π ′(Φ(u · g)

)= π ′(Φ(u) · γ (g)
)= π ′(Φ(u)

)
.

The continuity and smoothness of φ follow from the characteristic property
of submersions, according to which a map φ : M → M ′ is continuous (resp.,
differentiable) if and only if the composite map φ ◦ π is.
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(ii) If ψ ∈ DiffM and Ψ ∈ AutP are such that π ◦ Ψ = ψ ◦ π , then

(Φ ◦ Ψ )(u · g) = Φ
(
Ψ (u · g)

)= Φ
(
Ψ (u) · g)= Φ

(
Ψ (u)

) · g
= (Φ ◦ Ψ )(u) · g,

π ◦ (Φ ◦ Ψ ) = (π ◦ Φ) ◦ Ψ = (φ ◦ π) ◦ Ψ = φ ◦ (π ◦ Ψ ) = φ ◦ (ψ ◦ π)

= (φ ◦ ψ) ◦ π,

for all u ∈ P , g ∈ G, thus proving that Φ ◦Ψ belongs to AutP and its associated
diffeomorphism on the base manifold is φ ◦ψ , and we obtain an exact sequence
of groups,

1 → GauP → AutP → DiffM.

Problem 5.17 (Hopf Bundles) Set

S1 = {x ∈C : |x| = 1
}
,

S2 = {(x, t) ∈ C×R : |x|2 + t2 = 1
}
,

S3 = {(x, y) ∈C
2 : |x|2 + |y|2 = 1

}
,

S7 = {(x, y) ∈H
2 : |x|2 + |y|2 = 1

}
.

The spheres S1 and S3 are Lie groups with respect to the multiplication induced
from C and H, respectively (see Problem 4.103). Let S1 act on S3 (resp., S3 on S7)
by the formula

(x, y) · z = (xz, yz), (x, y) ∈ S3, z ∈ S1 (resp. (x, y) ∈ S7, z ∈ S3).

Let

πC : S3 → C×R, πH : S7 →H×R,

be the maps given by

πC(x, y) = (2yx̄, |x|2 − |y|2), (x, y) ∈ S3,

πH(x, y) = (2yx̄, |x|2 − |y|2), (x, y) ∈ S7.

Prove:

(i) πC(S3) = S2.
(ii) πH(S7) = S4.

(iii) The induced map πC : S3 → S2 is a principal S1-bundle with respect to the
action of S1 on S3 defined above.

(iv) The induced map πH : S7 → S4 is a principal S3-bundle with respect to the
action of S3 on S7 defined above.

(v) CP1 ∼= S2.
(vi) HP1 ∼= S4.
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Solution We solve the quaternionic case (ii), (iv), and (vi). The same formulae solve
the complex case (i), (iii), and (v), too.

(ii) First we check that πH(S7) ⊆ S4. In fact, if (x, y) ∈ S7 one has |x|2 +|y|2 = 1
and then, since q1q2 = q̄2q̄1 for every q1, q2 ∈ H, we have

∣∣πH(x, y)
∣∣2 = 4|y|2|x|2 + (|x|2 − |y|2)2 = (|x|2 + |y|2)2 = 1.

Let (u, t) ∈ H×R be a point in S4, such that |u|2 + t2 = 1. If u = 0, then t = ±1,
and we have πH(1,0) = (0,1), πH(0,1) = (0,−1). Hence we can assume u �= 0. In
this case −1 < t < 1, and one has

πH

(√
1 + t

2

ū

|u| ,
√

1 − t

2

)
= (u, t)

and
(√

1 + t

2

ū

|u| ,
√

1 − t

2

)
∈ S7.

(iv) First we have

πH

(
(x, y) · z)= πH(xz, yz) = (2yzxz, |xz|2 − |yz|2)

= (2yzz̄x̄, |x|2|z|2 − |y|2|z|2)

= (2yx̄, |x|2 − |y|2)= πH(x, y),

as zz̄ = |z|2 = 1 for z ∈ S3. Hence the orbit (x, y) · S3 is contained in the fibre
π−1
H

(πH(x, y)).
Conversely, if πH(x1, y1) = πH(x2, y2), then

y1x̄1 = y2x̄2, (�)

|x1|2 − |y1|2 = |x2|2 − |y2|2. (��)

As |x1|2 + |y1|2 = 1, either x1 �= 0 or y1 �= 0. Hence we can assume x1 �= 0. Set
z = x−1

1 x2 ∈H. Hence (�) implies, since |q1||q2| = |q1q2| for every q1, q2 ∈H,

ȳ1 = zȳ2, i.e. y1 = y2z̄. (���)

As |x1|2 + |y1|2 = |x2|2 + |y2|2 = 1, we have |y1|2 = |y2|2 by (��), from which
|y2|2|z|2 = |y1|2. If y2 = 0 we should have from (�) that y1 = 0 and so |x1|2 =
|x2|2 = 1 = |z|2. If y2 �= 0, then |z| = 1. That is, in both cases we have |z| = 1.
Therefore, z−1 = z̄ and from (���) we deduce y2 = y1z. In other words, z ∈ S3 and
(x1, y1) · z = (x2, y2), thus concluding.

(vi) By definition, HP1 is the quotient space (H2 \ {(0,0)})/∼, where (x, y) ∼
(x′, y′) if and only if there exists λ ∈ H

∗ such that x′ = λx, y′ = λy. Moreover, the
restriction to S7 of the quotient map

q : H2 \ {(0,0)
}→HP1
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is surjective as q(x, y) = q(x/r, y/r), with r = √|x|2 + |y|2, and its fibres are
the orbits of S3. Hence HP1 ∼= S7/S3 and since we have a principal S3-bundle
πH : S7 → S4, we conclude that HP1 ∼= S7/S3 ∼= S4.

Problem 5.18 Parametrise S3 (see Remark 1.4) by

z1 = cos
1

2
θeψ1i, z2 = sin

1

2
θeψ2i, 0 < θ < π, 0 < ψ1,ψ2 < 2π.

(i) Find the expression of πC(z1, z2) under the projection map of the Hopf bundle
πC : S3 → S2 given in Problem 5.17, in terms of that parametrisation.

(ii) Take as trivialising neighbourhoods U1 = S2\{S} and U2 = S2\{N}, where
N,S stand for the north and south pole. Determine π−1

C
(Uk), k = 1,2.

(iii) Define bundle trivialisations

fk : π−1
C

(Uk) → Uk × U(1), fk(z1, z2) =
(

πC(z1, z2),
zk

|zk|
)

, k = 1,2,

and put fk,p = fk|π−1(p). Find the transition function g21 : U1 ∩ U2 → U(1) of
the bundle with respect to the given trivialisations.

The relevant theory is developed, for instance, in Göckeler and Schücker [4].

Solution

(i)

πC(z1, z2) = (2 Re(z2z̄1),2 Im(z2z̄1), |z1|2 − |z2|2
)

= (sin θ cos(ψ2 − ψ1), sin θ sin(ψ2 − ψ1), cos θ
)
.

(ii) It is easily seen from the definitions of the trivialising neighbourhoods that

π−1
C

(Uk) = {(z1, z2) ∈ S3 : zk �= 0
}
, k = 1,2.

(iii) Given

p = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ U1 ∩ U2, eαi ∈ U(1),

with 0 < ϕ < 2π , we obtain, on account of the parametrisation of S3 and the
expression for the projection map π , that

fk(z1, z2) = (sin θ cos(ψ2 − ψ1), sin θ sin(ψ2 − ψ1), cos θ, eψk i),

so

f −1
1,p

(
eαi)=

(
cos

1

2
θeαi, sin

1

2
θe(ϕ+α)i

)
,
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hence
(
f2,p ◦ f −1

1,p

)(
eαi)= e(ϕ+α)i.

That is, the transition function for the given trivialisations is

g21 : U1 ∩ U2 → U(1), (sin θ cosϕ, sin θ sinϕ, cos θ) �→ eϕi.

Problem 5.19 Let (P,π,M,G) be a principal fibre bundle and let g be the Lie
algebra of G. Every A ∈ g induces a vector field A∗ ∈X(P ) (called the fundamental
vector field associated with A), with flow

ψt(u) = u exp tA, u ∈ P.

The map

ϕ : g → X(P ), ϕ(A) = A∗,

is R-linear, injective and satisfies [A,B]∗ = [A∗,B∗], for all A,B ∈ g.

(i) Prove that Rg · A∗ = (Adg−1 A)∗, where g ∈ G, A ∈ g.
(ii) Calculate the expression for ϕ(aX1 + bX2), where X1 and X2 are the left-

invariant vector fields on C
∗ given by

X1 = x
∂

∂x
+ y

∂

∂y
, X2 = −y

∂

∂x
+ x

∂

∂y
,

and ϕ is the isomorphism associated to the principal fibre bundle
(
C

n+1 \ {0},π,CPn,C∗),

where CPn stands for the complex projective space of real dimension 2n.

The relevant theory is developed, for instance, in Bishop and Crittenden [1].

Solution

(i) For u ∈ P , denote by ju the injection of G into P given by

ju : G → π−1(π(u)
)
, g �→ ug.

Let e be the identity element of G. It is clear that

A∗
u = ψt(u)′(0) = ju∗

(
(exp tA)′(0)

)= ju∗Ae.

Let ιg : G → G be the automorphism of G defined by ιg(h) = ghg−1, and
consider the composition map

G
j
ug−1−→ P

Rg−→ P

h �−→ ug−1h �−→ ug−1hg = uιg−1(h)
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whose differential at e is

Rg∗jug−1∗Ae = (juιg−1)∗Ae = (ϕ(Adg−1(Ae)
))

u
= (Adg−1 A)∗u.

Hence, the vector field image Rg · A∗ is given at u by

(
Rg · A∗)

u
= Rg∗A∗

ug−1 = Rg∗jug−1∗Ae = (Adg−1 A)∗u,

so Rg · A∗ = (Adg−1 A)∗.
(ii) Let u1, . . . , u2n+2 be the real coordinates on C

n+1 \ {0} (that is, {zj = u2j−1 +
iu2j } is the dual basis to the usual complex basis of C

n+1). For u = (u1 +
iu2, . . . , u2n+1 + iu2n+2) ∈C

n+1 \ {0}, the map ju above is now given by C
∗ →

π−1(π(u)),

x + iy �→ (
u1 + iu2, . . . , u2n+1 + iu2n+2)(x + iy)

= (u1x − u2y + i
(
u2x + u1y

)
, . . .

)

≡ (u1x − u2y,u2x + u1y, . . .
)
.

Therefore,

ϕ = ju∗ =
⎛

⎝
∂(u1x−u2y)

∂x
∂(u1x−u2y)

∂y

∂(u2x+u1y)
∂x

∂(u2x+u1y)
∂y

⎞

⎠=

⎛

⎜⎜⎜⎜⎜⎝

u1 −u2

u2 u1

...
...

u2n+1 −u2n+2

u2n+2 u2n+1

⎞

⎟⎟⎟⎟⎟⎠
.

Hence

(
ϕ(sX1 + tX2)

)
u

= ju∗
(
(sX1 + tX2)e

)= ju∗
(

s
∂

∂x
+ t

∂

∂y

)
, s, t ∈R,

as e ≡ (x = 1, y = 0). So,

ϕ(sX1 + tX2) ≡
⎛

⎜⎝
u1 −u2

u2 u1

...
...

⎞

⎟⎠
(

s

t

)
=
⎛

⎜⎝
u1s − u2t

u2s + u1t
...

⎞

⎟⎠

≡ (u1s − u2t
) ∂

∂u1
+ (u2s + u1t

) ∂

∂u2
+ · · ·

+ (u2n+1s − u2n+2t
) ∂

∂u2n+1
+ (u2n+2s + u2n+1t

) ∂

∂u2n+2
.

Problem 5.20 Let (FM,π,M) be the bundle of linear frames over the C∞ n-
manifold M . If p ∈ M and (x1, . . . , xn) is a coordinate system on a neighbourhood
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Fig. 5.1 The bundle of linear frames (FM,π,M) over M

U of p, we can define the map

FU : π−1(U) → GL(n,R), z = (q, e1, . . . , en) �→ (
dxi(ej )

)
.

The functions xi = xi ◦ π and xi
j = xi

j ◦ FU , where xi
j denote the standard co-

ordinates on GL(n,R), are a coordinate system on π−1(U) (see Fig. 5.1). If
z ∈ π−1(U), prove that

π∗
(

∂

∂xi

∣∣∣∣
z

)
=

n∑

j=1

Y
j
i (z)ej ,

where (Y i
j (z)) stands for the inverse matrix of (xi

j (z)).

Solution We have

π∗
(

∂

∂xi

∣∣∣∣
z

)
=

n∑

j=1

∂(xj ◦ π)

∂xi

∂

∂xj

∣∣∣∣
q

= ∂

∂xi

∣∣∣∣
q

, (�)

but the coordinates of {ej } with respect to the canonical basis {(∂/∂xi)q} are pre-
cisely (xi

j (z)), that is,

(e1, . . . , en) =
(

∂

∂xi

∣∣∣∣
q

, . . . ,
∂

∂xn

∣∣∣∣
q

)
⎛

⎜⎝
x1

1(z) · · · x1
n(z)

...
...

xn
1 (z) · · · xn

n(z)

⎞

⎟⎠ ,
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or equivalently, ei =∑n
j=1 x

j
i (z) ∂

∂xj |q . Thus

∂

∂xi

∣∣∣∣
q

=
n∑

j=1

Y
j
i (z)ej . (��)

From (�) and (��), it follows that π∗( ∂
∂xi |z) =∑j Y

j
i (z)ej .

Problem 5.21 Find the fundamental vector fields on the bundle of linear frames
FM over a C∞ n-manifold M .

Solution If X is an element of the Lie algebra gl(n,R) of GL(n,R) then its value
at the identity element e of GL(n,R) is the tangent vector at e to the curve etX , and
it has corresponding fundamental field X∗ on FM , whose value at z ∈ FM is X∗

z ,
the tangent vector to the curve zetX in FM at z. Let {xi} be local coordinates on M

with domain U , and let {xi
j } be the canonical coordinates on GL(n,R).

Then the coordinates of z are xi(z) = xi(π(z)), xi
j (z), as in Problem 5.20. There-

fore,

(
X∗xi

)
z
= lim

t→0

xi(zetX) − xi(z)

t
= 0,

because π(zetX) = π(z) and

(
X∗xi

j

)
z
= lim

t→0

xi
j (zetX) − xi

j (z)

t

= lim
t→0

1

t

{(
xi
j (z) + txi

j (zX) + t2

2!x
i
j

(
zX2)+ · · ·

)
− xi

j (z)

}

= xi
j (zX) = xi

k(z)a
k
j ,

where X = (ai
j ). Hence X∗

z =∑n
i,j,k=1 xi

k(z)a
k
j

∂

∂xi
j

|z and X∗|π−1(U) =∑n
i,j,k=1 ak

j ×
xi
k

∂

∂xi
j

.

Problem 5.22 Prove that a necessary and sufficient condition for a C∞ 2n-
manifold M to admit an almost tangent structure, that is, a G-structure with group

G =
{(

A 0
B A

)
∈ GL(2n,R) : A ∈ GL(n,R)

}
,

is that it admits a C∞ tensor field J of type (1,1) and rank n such that J 2 = 0.

Solution First, suppose that M admits an almost tangent structure. Let (ej ), j =
1, . . . ,2n, be a frame adapted to the G-structure. One has (ej ) = (eα, eα∗), α =
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1, . . . , n, α∗ = n+1, . . . ,2n, such that if (ej ) = (eα′ , eα′∗) is another adapted frame,
it is related to the previous one by the formulas

eα′ =
∑

β

(
A

β

α′eβ + B
β∗
α′ eβ∗

)
, eα′∗ =

∑

β

A
β

α′eβ∗ .

Hence, we can define a linear operator J of rank n,

Jp : TpM → TpM, Jp

∑

α

(
λαeα + λα∗

eα∗
)=

∑

α

λαeα∗,

where (eα, eα∗) denotes an adapted frame, which is well-defined because

Jpeα′ = Jp

∑

β

(
A

β

α′eβ + B
β∗
α′ eβ∗

)=
∑

β

A
β

α′eβ∗ = eα′∗ ,

Jpeα′∗ =
∑

β

Jp

(
A

β

α′eβ∗
)= 0.

Thus J 2
p = 0. Furthermore, since Jpeα∗ = 0, (eα∗) is a basis of kerJp , and (eα) is

a basis of a vector subspace supplementary to kerJp . That is, Jp is written in the
adapted frames as

( 0 0
In 0

)
.

Conversely, if there exists a C∞ (1,1) tensor field J of rank n on M such that
J 2 = 0, then (eα, eα∗) is an adapted frame if (eα∗) is a basis of kerJp and (eα) is
a basis of a vector subspace supplementary to kerJp (where Jp denotes the linear
operator of rank n induced by J on each tangent space TpM), in such a way that
Jpeα = eα∗ and Jpeα∗ = 0. Consider another adapted frame eα′ , eα′∗ . Then

eα′ =
∑

β

(
M

β

α′eβ + N
β∗
α′ eβ∗

)
, eα′∗ =

∑

β

(
P

β

α′∗eβ + Q
β∗
α′∗eβ∗

)
.

Since Jpeα′ = eα′∗ , we have

Jp

∑

β

(
M

β

α′eβ + N
β∗
α′ eβ∗

)=
∑

β

M
β

α′eβ∗ =
∑

β

(
P

β

α′∗eβ + Q
β∗
α′∗eβ∗

)
,

so M = Q, P = 0, and the matrix of the change has the form
(

A 0
B A

)
, A ∈ GL(n,R).

5.3 Connections in Bundles

Problem 5.23 Determine all the connections in the frame bundle FR over R.

Solution Consider FR ∼= R× GL(1,R) = R×R
∗ with coordinates (t, a). A con-

nection in FR is given by a “horizontal subspace” H(t,a) ⊂ T(t,a)(R × R
∗) at
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each point (t, a) ∈ R × R
∗, such that H(t,a) must be 1-dimensional and satisfy

π∗(H(t,a)) = TtR ≡ R, where π stands for the projection map of FR. Thus, we
can put

H(t,a) =
〈

∂

∂t

∣∣∣∣
(t,a)

+ h(t, a)
∂

∂a

∣∣∣∣
(t,a)

〉
, h ∈ C∞(

R×R
∗).

Moreover, H must be invariant under right translations, i.e. if b ∈ GL(1,R) = R
∗,

then

Rb∗(H(t,a)) = HRb(t,a) = H(t,ab) =
〈

∂

∂t

∣∣∣∣
(t,ab)

+ h(t, ab)
∂

∂a

∣∣∣∣
(t,ab)

〉
.

Since Rb(t, a) = (t, ab), it is clear that

Rb∗
(

∂

∂a

∣∣∣∣
(t,a)

)
= b

∂

∂a

∣∣∣∣
(t,ab)

.

Therefore, h(t, ab) = bh(t, a). Hence h(t, a) = ah(t,1). Thus calling f : R → R

the function given by f (t) = h(t,1), the connection is given by the distribution H
on FR generated by the vector field ∂

∂t
+ f (t)a ∂

∂a
, that is,

H =
〈

∂

∂t
+ f (t)a

∂

∂a

〉
, f ∈ C∞

R, a ∈R
∗.

Problem 5.24 Let G be a Lie group and let g be its Lie algebra. Consider the trivial
principal G-bundle (P = g× G,π,g,G),

G ↪→ P = g× G � (X,g)

↓ π ↓
g � X.

Let

Lg : G −→ G

h �−→ gh,

Rg : G −→ G

h �−→ hg,

be the left and right multiplication by g, respectively. Let e denote the identity ele-
ment of G and σe the identity section of the given bundle,

P = g× G � (X, e)

↑ σe ↑_
g � X.

Prove:

(i) The distribution H on the total space P of the bundle, given at each point
(X,g) ∈ P by the subspace H(X,g) of T(X,g)P defined by

H(X,g) = {(Y, (Rg∗)eY
) : Y ∈ g

}
, (�)

defines a connection Γ in P whose horizontal distribution is H .
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(ii) Let θ denote the connection 1-form, that is, the g-valued differential 1-form on
P defining Γ . The curvature 2-form of Γ is the g-valued differential 2-form on
the total space P defined by

dθ + 1

2
[θ, θ ].

Pulling θ back to the base space g by σe gives the local connection 1-form of Γ

(with respect to the identity section σe), that is, ω = σ ∗
e θ . The local curvature 2-

form Ω of Γ (with respect to the identity section σe) is defined as the pull-back
of the curvature 2-form of Γ by σe to the base manifold,

Ω = σ ∗
e

(
dθ + 1

2
[θ, θ ]

)
= dω + 1

2
[ω,ω]. (��)

Prove that the local curvature 2-form of Γ (with respect to the identity sec-
tion σe) is the constant g-valued 2-form Ω on g given by

Ω(X,Y ) = [X,Y ], X,Y ∈ g.

Hint If V is a finite-dimensional real vector space endowed with its natural C∞-
manifold structure, then every v ∈ V defines a vector field Xv ∈ X(V ) given as
follows (directional derivative):

(Xv)x(f ) = d

dt

∣∣∣∣
t=0

f (x + tv), x ∈ V, f ∈ C∞V,

and the linear mapping v �→ (Xv)x induces an isomorphism V ∼= TxV . In practice,
the vector field Xv is identified to v itself.

Moreover, recall that the right action of G on P is given by (X,h) · g = (X,hg)

and denote it by Rg , that is,

Rg : P −→ P

(X,h) �−→ (X,hg).

Also recall that for any principal bundle (P,π,M,G), given X ∈ g = Lie(G),
the corresponding fundamental vector field on P is X∗ ∈ X(P ) whose value at
u ∈ P is

X∗
u = d

dt

∣∣∣∣
t=0

(
u · exp(tX)

)
.

The relevant theory is developed, for instance, in Morrison [6].

Solution

(i) We must prove that H is a smooth right-equivariant distribution on the total
space P , complementary to the vertical tangent space to P at (X,g).
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It is obvious by its definition that H is a smooth distribution.
Moreover, since for any (Z,W) ∈ T(X,g)P we have

(Z,W) = (Z,W + (Rg∗)eZ − (Rg∗)eZ
)= (Z, (Rg∗)eZ

)+ (0,W − (Rg∗)eZ
)
,

H(X,g) is complementary to the vertical tangent space at (X,g).
Finally, as given (Y, (Rg∗)eY ) ∈ H(X,g), one has

(Rh∗)g
(
Y, (Rg∗)eY

)= (Y, (Rh∗)g(Rg∗)eY
)= (Y, (Rgh∗)eY

) ∈ H(X,gh),

it follows that the distribution (�) is right-equivariant.
(ii) In the present particular case, P being the trivial bundle g × G, we have that

the fundamental vector field on P corresponding to an element X ∈ g, is given
at (Y, g) ∈ P by

X∗
(Y,g) = d

dt

∣∣∣∣
t=0

(
(Y, g) · exp(tX)

)= d

dt

∣∣∣∣
t=0

(
Y,g · exp(tX)

)

= d

dt

∣∣∣∣
t=0

(
Y,Lg

{
exp(tX)

})

= (0, (Lg∗)eX
) ∈ g× TgG. (†)

The connection 1-form θ is characterised by

H(Z,g) = ker θ(Z,g), (††)

θ(Z,g)

(
Y ∗

(Z,g)

)= Y, (†††)
(
R∗

gθ
)
(X,Y ) = Adg−1

(
θ(X,Y )

)
.

From (†) and (†††) we get

θ(Z,g)(0, Y ) = θ(Z,g)

({
(Lg−1∗)eY

}∗
(Z,g)

)= (Lg−1∗)eY.

Hence, given (X,Y ) ∈ g× TgG, one has that

θ(Z,g)(X,Y ) = θ(Z,g)

((
X, (Rg∗)eX

)+ (0, Y − (Rg∗)eX
))

= θ(Z,g)

(
0, Y − (Rg∗)eX

)
(by (�) and (††))

= θ(Z,g)

({
(Lg−1∗)g

(
Y − (Rg∗)eX

)}∗
(Z,g)

)
(by (†))

= (Lg−1∗)g
(
Y − (Rg∗)eX

)
(by (†††))

= (Lg−1∗)gY − (Lg−1∗)g(Rg∗)eX

= (Lg−1∗)gY − (Lg−1∗ ◦ Rg∗)eX

= (Lg−1∗)gY − Adg−1 X. (by (���)) (�)
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According to (��), the local curvature form Ω is then

Ω = dω + 1

2
[ω,ω].

Recall now that for any Y ∈ m, by using the directional derivative, one has the
identification TYm≡m. Then, we have from (�) that

ωZ(Y ) = θ(Z,e)(Y,0) = −Y.

Thus, the differential form ω is constant, hence closed. We now evaluate [ω,ω]
on a pair of tangent vectors X,Y ∈ TZg ≡ g, getting

[ω,ω](X,Y ) = [
ω(X),ω(Y )

]− [ω(Y ),ω(X)
]

= [−X,−Y ] − [−Y,−X] = 2[X,Y ].
Therefore, the local curvature form Ω with respect to σe is in fact the constant
g-valued differential 2-form Ω such that

Ω(X,Y ) =
(

dω + 1

2
[ω,ω]

)
(X,Y ) = [X,Y ], X,Y ∈ g.

Problem 5.25 Let π : P = M × C
∗ → M be the trivial principal C∗-bundle over

the C∞ manifold M . Prove that, in complex notation, every connection form ωΓ on
P can be written as

ωΓ = z−1dz + π∗ω, z ∈ C
∗,

where ω is a complex-valued differential 1-form on M ; that is, ω ∈ Λ1(M,C).

Solution Let ϕ1, ϕ2 : R → C
∗ be the homomorphisms ϕ1(t) = et , ϕ2(t) = et i.

These homomorphisms induce a basis {A1,A2} of the Lie algebra of C
∗, which

can be identified to C itself by 1 �→ A1, i → A2. The fundamental vector fields
attached to these vectors are:

A∗
1 = x

∂

∂x
+ y

∂

∂y
, A∗

2 = −y
∂

∂x
+ x

∂

∂y
.

For example, let us compute A∗
1. The flow generating A∗

1 is

ψt(z) = ϕ1(t)z = et (x + yi) = et x + et yi = x̃t + ỹt i.

Hence

A∗
1(x) = ∂

∂t

∣∣∣∣
t=0

x̃t = x, A∗
1(y) = ∂

∂t

∣∣∣∣
t=0

ỹt = y.

Thus, by using the previous identification, ωΓ can be written as

ωΓ = η1 + η2i,
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where η1, η2 are differential 1-forms on P . By imposing that

ωΓ

(
A∗

k

)= Ak, k = 1,2,

we obtain ηj (A∗
k) = δ

j
k . Hence by using a coordinate system (xh) on M , the forms

η1, η2 can be written as

η1 = x dx + y dy

x2 + y2
+ f 1

h dxh, η2 = x dy − y dx

x2 + y2
+ f 2

h dxh,

where f 1
h , f 2

h ∈ C∞P . We remark that

z−1 dz = x dx + y dy

x2 + y2
+ x dy − y dx

x2 + y2
i.

Hence
x dx + y dy

x2 + y2
,

x dy − y dx

x2 + y2

are left-invariant differential forms on C
∗.

Moreover, as C
∗ is commutative, the condition R∗

zωΓ = Adz−1 ◦ωΓ simply
means that ωΓ is right-invariant. Accordingly, this condition holds if and only if
the functions f 1

h , f 2
h are C

∗-invariant, that is, if and only if f 1
h , f 2

h ∈ C∞M . Hence
ω1 = ∑

h f 1
h dxh, ω2 = ∑

h f 2
h dxh, are differential forms on M , and by setting

ω = ω1 + ω2i, we conclude.

Problem 5.26 Consider the trivial bundle π : P = M × U(1) → M . Parametrise
the fibre U(1) (see Remark 1.4) as exp(iα), 0 < α < 2π . If (qj ), j = 1, . . . , n =
dimM , are local coordinates on M , then (qj ,α) are local coordinates on P . Let
p : T ∗M → M be the canonical projection of the cotangent bundle. Prove:

1. For every connection form ωΓ on P there exists a unique differential 1-form ω

on M such that

ωΓ = (dα + π∗ω
)⊗ A,

where A ∈ u(1) is the invariant vector field defined by the homomorphism R →
U(1), t �→ exp(it).

2. Every automorphism Φ : P → P can be described locally as Φ(x,α) =
(φ(x),α + ψ(x)), where φ : M → M is a diffeomorphism and ψ : M → R is a
differentiable map.

3. (Φ−1)∗ωΓ is another connection form ωγ ′ on P . Set ωγ ′ = (dα + π∗ω′) ⊗ A

and compute ω′.
4. There exists a unique diffeomorphism Φ̃ : T ∗M → T ∗M such that:

(i) p ◦ Φ̃ = φ ◦ p.
(ii) If the differential forms ω,ω′ on M are related as in (3), then Φ̃ ◦ ω = ω′.

Here, ω,ω′ are viewed as sections of the cotangent bundle.
5. If Ψ : P → P is another automorphism, then (Ψ ◦ Φ)̃ = Ψ̃ ◦ Φ̃ . (This property

justifies the exponent −1 in defining γ ′ in (3).)
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Solution

1. As A is a basis of u(1), it is clear that every connection form can be written as
ωΓ = η ⊗ A for some differential 1-form η on P . Moreover, the fundamental
vector field associated to A is readily seen to be A∗ = ∂/∂α and from the very
definition of a connection form it must hold that ωΓ (A∗) = η(A∗)A = A. Hence
η(∂/∂α) = 1, and accordingly,

η = dα +
∑

j

fj dqj ,

for certain functions fj ∈ C∞P . We now impose

R∗
z ωΓ = Adz−1 ◦ ωΓ , z ∈ U(1), (�)

that is, the second property of a connection form. As U(1) is Abelian, the adjoint
representation is trivial, and hence (�) simply means that η is invariant under
right translations. As the forms dα and dqj are invariant, we conclude that η is
invariant if and only if the functions fj are invariant, that is, if each fj does not
depend on α, thus projecting to a function on M . Hence ω =∑j fj dqj .

2. A diffeomorphism Φ : P → P is a principal bundle automorphism if Φ is equiv-
ariant, i.e. Φ(u · z) = Φ(u) · z, for all u ∈ P , for all z = exp(iα) ∈ U(1). We
have

Φ(x,w) = (ξ(x,w),ϕ(x,w)
)
, (x,w) ∈ P,

where ξ : P → M , ϕ : P → U(1) are the components of Φ . By imposing the
condition of equivariance, we obtain Φ(x,wz) = Φ((x,w) · z) = Φ(x,w)z, that
is,

(
ξ(x,wz),ϕ(x,wz)

)= (ξ(x,w),ϕ(x,w)z
)
.

Letting w = 1, we have ξ(x, z) = ξ(x,1) and ϕ(x, z) = ϕ(x,1)z. Hence ξ factors
through π by means of a differentiable map φ : M → M as follows: ξ = φ ◦ π ,
and, locally, we have ϕ(x,1) = exp(iψ(x)). Then,

ϕ(x, z) = exp
(
iψ(x)

)
exp(iα) = exp

(
i
(
α + ψ(x)

))
.

3. As a simple computation shows, we have

Φ−1(x,α) = (φ−1(x),α − (ψ ◦ φ−1)(x)
)
.

Thus

(
Φ−1)∗ωΓ = ((

Φ−1)∗(dα + π∗ω
))⊗ A

= (
dα − d

(
ψ ◦ φ−1 ◦ π

)+ π∗(φ−1)∗ω
)⊗ A.

Hence ω′ = (φ−1)∗ω − d(ψ ◦ φ−1).
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4. Given a covector w ∈ T ∗
x M , let ω be a differential 1-form on M such that ω(x)

= w. Then, from conditions (i), (ii) we obtain

Φ̃(w) = Φ̃
(
ω(x)

)= (Φ̃ ◦ ω)(x) = ω′(x) = (φ−1)∗ω(x) − (d(ψ ◦ φ−1))
φ(x)

= (φ−1)∗w − (d(ψ ◦ φ−1))
φ(x)

,

thus proving the existence and uniqueness of Φ̃ .
5. Set ωγ ′ = (Φ−1)∗ωΓ , ωΓ ′′ = (Ψ −1)∗ωγ ′ . Then,

ωΓ ′′ = (Ψ −1)∗(Φ−1)∗ωΓ = ((Ψ ◦ Φ)−1)∗ωΓ .

Hence (Ψ̃ ◦ Φ̃) ◦ ω = ω′′ and (Ψ ◦ Φ)̃ ◦ ω = ω′′, so that Ψ̃ ◦ Φ̃ and (Ψ ◦ Φ)̃

satisfy the condition (ii) in part 4. Moreover, we have

p ◦ (Ψ̃ ◦ Φ̃) = (p ◦ Ψ̃ ) ◦ Φ̃ = (ψ ◦ p) ◦ Φ̃ = ψ ◦ (p ◦ Φ̃)

= ψ ◦ (φ ◦ p) = (ψ ◦ φ) ◦ p.

Hence condition (i) in part 4 holds.

Problem 5.27 Let zk = xk + iyk , 0 � k � n, be the standard coordinates on C
n+1.

Prove that the 1-form

ω =
n∑

k=0

(−yk dxk + xk dyk
)∣∣

S2n+1

is a connection form on the principal U(1)-bundle

p : S2n+1 → CPn,

where we identify the Lie algebra of U(1) with R via the isomorphism λ �→
λ(∂/∂θ), where θ stands for the angle function on U(1).

Solution According to the definition of a connection form, we must check the fol-
lowing properties:

(i) ω((λ ∂
∂θ

)∗) = λ, for all λ ∈ R.
(ii) R∗

gω = Adg−1 ◦ω, for all g ∈ U(1).

As the coordinates of the point z · exp(iλθ) are
(
xk + iyk

)(
z · exp(iλθ)

)= xk cos(λθ) − yk sin(λθ) + i
(
xk sin(λθ) + yk cos(λθ)

)
,

0 � k � n, we have

(
λ

∂

∂θ

)∗
= λ

n∑

k=0

(
−yk ∂

∂xk
+ xk ∂

∂yk

)
.
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Hence

ω

((
λ

∂

∂θ

)∗)
=

n∑

k=0

(−yk dxk + xk dyk
)
(

λ

n∑

l=0

(
−yl ∂

∂xl
+ xl ∂

∂yl

))

= λ

n∑

k=0

((
yk
)2 + (xk

)2)= λ,

at every point of the sphere, thus proving (i). As for (ii), we first remark that the
adjoint representation is trivial since U(1) is Abelian, so (ii) simply tells us that ω

is invariant under right translations. In order to prove this, we note that

−yk dxk + xk dyk = ((xk
)2 + (yk

)2)d

(
arctan

yk

xk

)
,

and that Rexp(θ i) leaves the quadratic form
∑

k((x
k)2 + (yk)2) invariant. Working in

polar coordinates, we thus obtain

R∗
exp(θ i)

(−yk dxk + xk dyk
)= ((xk

)2 + (yk
)2)

R∗
exp(θ i)d

(
arctan

yk

xk

)

= ((xk
)2 + (yk

)2)d

(
arctan

yk

xk
+ θ

)

= ((xk
)2 + (yk

)2)d

(
arctan

yk

xk

)

= −ykdxk + xk dyk.

5.4 Characteristic Classes

Problem 5.28 Consider the trivial principal bundle (R3 \ {0}) × U(1) over R3 \
{0}. Then, for the connection with connection form described (on the open subset
R

3 \ {(0,0, z), z � 0} of the base manifold) by the u(1)-valued differential 1-form
(cf. Problem 5.26)

A2 = i

2r(z − r)
(x dy − y dx), (�)

where r2 = x2 + y2 + z2:

(i) Calculate the curvature form F of the connection in terms of A2.
(ii) Write A2 in spherical coordinates (r, θ,ϕ), given (see Remark 1.4) by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,

θ ∈ (0,π), ϕ ∈ (0,2π),
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and calculate

A1 = A2 + γ −1 dγ,

γ being the U(1)-valued function on R
3 \ {z-axis} defined by γ (p) = eϕ(p)i.

(iii) A1 and A2 furnish well-defined differential forms on U1 = S2 − S and U2 =
S2 − N , respectively, where N,S denote the north and south pole.

Consider the complex Hopf bundle H studied in Problems 5.17, 5.18 and
take real coordinates u1, . . . , u4 on C

2 ≡ R
4 such that

S3 = {(z1 = u1 + iu2, z2 = u3 + iu4) ∈ C
2 : ∣∣z1

∣∣2 + ∣∣z2
∣∣2 = 1

}
.

Prove that

ω = i
(
u1du2 − u2 du1 + u3 du4 − u4 du3)

is a connection form on the bundle. Show that σ ∗
1 ω = A1 and σ ∗

2 ω = A2, where
σk is the local section associated to the trivialisation on Uk , k = 1,2, (see Prob-
lem 5.18) by means of σk(p) = f −1

k,p(1), where 1 ∈ U(1) is the identity element.
That is, A1 and A2 are local representatives of the connection in H with con-
nection form ω.

(iv) Compute the (only) Chern number of the bundle H .

Remark The above bundle is a particular case of a construction named in Physics,
namely a Dirac magnetic monopole bundle. Each of the given differential forms
A1,A2 is called a gauge potential of a magnetic monopole at the origin of R3, the
transformation in (ii) is called a gauge transformation, and F is called the field
strength. The general construction depends on an integer n, and the bundle of the
problem corresponds to n = 1.

The relevant theory is developed, for instance, in Göckeler and Schücker [4].

Solution

(i)

F = dA2 + A2 ∧ A2 = dA2 = i

2r3
(x dy ∧ dz + y dz ∧ dx + zdx ∧ dy).

(ii) Since γ −1 dγ = i dϕ, one has that

A1 = i

2
(1 − cos θ)dϕ, A2 = i

2
(−1 − cos θ)dϕ.

(iii) Since

u(1) = {X ∈ gl(1,C) = C : tX + X̄ = 0
}= Ri,
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one can identify u(1) with the purely imaginary complex numbers. The fun-
damental vector field X∗ ∈ X(S3) corresponding to X ∈ u(1) is (see Prob-
lem 5.19) X∗

(z1,z2)
= j(z1,z2)∗X1, (z1, z2) ∈ S3. According to the parametrisa-

tion (see Remark 1.4)

(
z1, z2)=

(
cos

1

2
θ eψ1i, sin

1

2
θ eψ2i

)
, θ ∈ (0,π), ψ1,ψ2 ∈ (0,2π),

of S3 and the fibre action of S1 by eαi, this action corresponds to (the same)
changes in the parameters ψ1 and ψ2. In fact,

j(z1,z2)

(
eαi) = Reαi

(
z1, z2)= (z1eαi, z2eαi)

=
(

cos
1

2
θ e(ψ1+α)i, sin

1

2
θ e(ψ2+α)i

)
.

Now,

∂

∂ψ1
= ∂u1

∂ψ1

∂

∂u1
+ ∂u2

∂ψ1

∂

∂u2
= − cos

1

2
θ sinψ1

∂

∂u1
+ cos

1

2
θ cosψ1

∂

∂u1

= −u2 ∂

∂u1
+ u1 ∂

∂u2
,

and, similarly,

∂

∂ψ2
= −u4 ∂

∂u3
+ u3 ∂

∂u4
.

So, we can take the vector

X∗
(z1,z2)

= a

(
∂

∂ψ1
+ ∂

∂ψ2

)
= a

(
−u2 ∂

∂u1
+u1 ∂

∂u2
−u4 ∂

∂u3
+u3 ∂

∂u4

)
, (�)

which is clearly tangent to S3, as the tangent vector to the fibre at a generic
point (z1, z2) ∈ S3, image under j(z1,z2)∗ of X ≡ ia ∈ u(1). The vector field X∗
is the fundamental vector field corresponding to X. In fact, since the Jacobian
map of the map τeαi : (z1, z2) �→ (z1eαi, z2eαi) is given, in terms of the real
coordinates u1, u2, u2, u4, by

⎛

⎜⎜⎝

cosα − sinα 0 0
sinα cosα 0 0

0 0 cosα − sinα

0 0 sinα cosα

⎞

⎟⎟⎠ ,

we deduce

τeαi∗
(
X∗

(z1,z2)

)= a

{
−(u2(z1) cosα + u1(z1) sinα

) ∂

∂u1

∣∣∣∣
(z1eαi,z2eαi)
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− (u2(z1) sinα − u1(z1) cosα
) ∂

∂u2

∣∣∣∣
(z1eαi,z2eαi)

− (u4(z2) cosα + u3(z2) sinα
) ∂

∂u3

∣∣∣∣
(z1eαi,z2eαi)

− (u4(z2) sinα − u3(z2) cosα
) ∂

∂u4

∣∣∣∣
(z1eαi,z2eαi)

}

= a

(
−u2 ∂

∂u1
+ u1 ∂

∂u2
− u4 ∂

∂u3
+ u3 ∂

∂u4

)

(z1eαi,z2eαi)

= X∗
(z1eαi,z2eαi)

.

This vector field is called the standard Hopf vector field on S3 (see Prob-
lem 6.149).

Next, we consider the properties of the form ω. It is clearly C∞ and takes
imaginary values on S3, which can be identified with elements of u(1), as we
have seen. It is immediate that

ω
(
X∗

(z1,z2)

)≡ ai ∈ u(1).

Moreover, we have

R∗
eαiω = i

(
u1 cosα − u2 sinα

)(− sinα du1 − cosα du2)

− (u1 sinα + u2 cosα
)(

cosα du1 − sinα du2)

+ (u3 cosα − u4 sinα
)(

sinα du3 + cosα du4)

− (u3 sinα + u4 cosα
)(

cosα du3 − sinα du4)= ω,

and also, trivially, Ade−αi ω = ω, hence

R∗
eαiω = Ade−αi ω.

Finally, we prove that the connection form ω has local representatives A1 on
U1 and A2 on U2. In fact, the local sections corresponding to the trivialisations
over Uk are, respectively,

σ1(sin θ cosϕ, sin θ sinϕ, cos θ) =
(

cos
1

2
θ, sin

1

2
θ eϕi

)
, θ < π,

σ2(sin θ cosϕ, sin θ sinϕ, cos θ) =
(

cos
1

2
θ e−ϕi, sin

1

2
θ

)
, 0 < θ.
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Thus, it is immediate that the section σ1 is given in terms of the real coordinates
u1, . . . , u4, by

(
u1, u2, u3, u4)=

(
cos

1

2
θ,0, sin

1

2
θ cosϕ, sin

1

2
θ sinϕ

)
.

Substituting in the expression for ω in the statement, we easily obtain σ ∗
1 ω =

A1. One proceeds similarly to obtain σ ∗
2 ω = A2.

(iv)

c(1)(H) = i

2π

∫

S2
F = − 1

4π

∫

S2
x dy ∧ dz + y dz ∧ dx + zdx ∧ dy

= − 1

4π

∫

S2
sin θ dθ ∧ dϕ = −1.

Problem 5.29

(i) Identify SU(2) with the unit sphere S3 in H and prove that there is an iso-
morphism su(2) ∼= ImH of the Lie algebra of SU(2) onto the vector space of
purely imaginary quaternions endowed with the Lie algebra structure given by
[a, b] = ab − ba, for a, b ∈ ImH.

(ii) Any connection in the principal SU(2)-bundle P = R
4 × SU(2) over R4 can be

expressed, by (i), in terms of an (ImH)-valued differential 1-form on R
4. Let

q ∈H arbitrarily fixed, and let

Aλ,q(x) = Im
(x − q)dx̄

λ2 + |x − q|2 , x ∈ H, 0 < λ ∈R,

be an (ImH)-valued connection form. Prove that the curvature form of Aλ,q is
given by

Fλ,q(x) = λ2 dx ∧ dx̄

(λ2 + |x − q|2)2
. (�)

Solution

(i) We first remark that (ImH, [· , ·]) is a Lie algebra as a ∈ ImH if and only if
a + ā = 0, and for every a, b ∈ ImH we have

[a, b] + [a, b] = (ab − ba) + (ab − ba) = (ab − ba) + (b̄ā − āb̄)

= (ab − ba) + ((−b)(−a) − (−a)(−b)
)= 0.

Any quaternion can be written as

q = a0 + a1i + a2j + a3k = (a0 + a1i) + (a2 + a3i)j = z1 + z2j,
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with the rule jz = z̄ j, and, hence, q can be identified to the matrix

Aq =
(

z1 z2
−z̄2 z̄1

)
. (��)

In fact, for two quaternions q, q ′, we have

AqAq ′ =
(

z1 z2
−z̄2 z̄1

)(
z′

1 z′
2−z̄′

2 z̄′
1

)
=
(

z1z
′
1 − z2z̄

′
2 z1z

′
2 + z2z̄

′
1−z̄1z̄

′
2 − z̄2z

′
1 z̄1z̄

′
1 − z̄2z

′
2

)
= Aqq ′ ,

where the last equality is immediate from the expression for the product of q

and q ′. Moreover, we have

SU(2) ≡
{
A ∈ GL(2,C) : A =

(
z1 z2

−z̄2 z̄1

)
, detA = |z1|2 + |z2|2 = 1

}
,

so that SU(2) can be identified to the quaternions of norm 1, which can be
viewed as the 3-sphere in H ≡ R

4. The Lie algebra of the Lie group S3

(see Problem 4.103) can be identified with the tangent space at the identity
(1,0,0,0) ∈ S3, that is, with the subspace of R4 orthogonal to the identity
1 ∈ S3, which is the vector space of purely imaginary quaternions ImH. The
associated matrices (��) are thus written as

(
ia z2

−z̄2 −ia

)
, a ∈ R.

Now, it is easily seen that these are exactly the matrices of su(2). Finally, it is
easily checked that the matrices

B1 = 1

2

(
i 0
0 −i

)
, B2 = 1

2

(
0 1

−1 0

)
, B3 = 1

2

(
0 i
i 0

)

are a basis of su(2) (remark that −2iBr , 1 � r � 3, are the Pauli matrices) such
that

[B1,B2] = B3, [B2,B3] = B1, [B3,B1] = B2.

Similarly, b1 = 1
2 i, b2 = 1

2 j, b3 = 1
2 k is a basis of ImH such that

[b1, b2] = b3, [b2, b3] = b1, [b3, b1] = b2,

and we conclude. Notice that this isomorphism permits us to consider the su(2)-
valued differential forms as ImH-valued differential forms.

(ii) The quaternion differential is defined by

dx = d
(
x0 + x1i + x2j + x3k

)= dx0 + dx1i + dx2j + dx3k,

dx̄ = dx0 − dx1i − dx2j − dx3k.
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We also use the following properties: If ω,η are two H-valued differential forms
and f is an H-valued function, then

ωf ∧ η = ω ∧ f η. (†)

Every H-valued differential form ω can be decomposed as ω = ω0 + ω′, where
ω0 is an ordinary differential form and

ω′ = Imω = 1

2
(ω − ω̄)

is an ImH-valued differential form. Hence, if the degree of ω is odd, then we
have ω ∧ ω = ω′ ∧ ω′, as ω0 ∧ ω0 = 0, ω0 ∧ ω′ + ω′ ∧ ω0 = 0. Therefore,

Im(ω ∧ ω) = (Imω) ∧ (Imω). (††)

Setting

fλ,q(x) = x − q

λ2 + |x − q|2 ,

we have Aλ,q(x) = Im{fλ,q(x)dx̄}, and by using (††), we obtain

Fλ,q(x) = dAλ,q(x) + Aλ,q(x) ∧ Aλ,q(x)

= Im
{
dfλ,q(x) ∧ dx̄ + fλ,q(x)dx̄ ∧ fλ,q(x)dx̄

}
. (‡)

Moreover, taking into account that |x − q|2 = (x̄ − q̄)(x − q), we have

dfλ,q(x) ∧ dx̄ =
(

dx

λ2 + |x − q|2 − (x − q)
dx̄(x − q) + (x̄ − q̄)dx

(λ2 + |x − q|2)2

)
∧ dx̄

= dx ∧ dx̄

λ2 + |x − q|2 − (x − q)dx̄(x − q) ∧ dx̄

(λ2 + |x − q|2)2

− (x − q)(x̄ − q̄)dx ∧ dx̄

(λ2 + |x − q|2)2
,

and by using the formula (†), we obtain

− (x − q)dx̄(x − q) ∧ dx̄

(λ2 + |x − q|2)2
= − (x − q)dx̄ ∧ (x − q)dx̄

(λ2 + |x − q|2)2

= −fλ,q(x)dx̄ ∧ fλ,q(x)dx̄.

Hence, substituting into (‡), we obtain

Fλ,q(x) = Im
{
dfλ,q(x) ∧ dx̄ + fλ,q(x)dx̄ ∧ fλ,q(x)dx̄

}

= Im

(
dx ∧ dx̄

λ2 + |x − q|2 − |x − q|2 dx ∧ dx̄

(λ2 + |x − q|2)2

)
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= Im
λ2 dx ∧ dx̄

(λ2 + |x − q|2)2
= λ2 dx ∧ dx̄

(λ2 + |x − q|2)2
,

for it is immediate that dx ∧ dx̄ is purely imaginary.

Problem 5.30 Consider the quaternionic Hopf bundle πH : S7 → S4 (see Prob-
lem 5.17).

(i) Prove that ω defined by

ω(a,b)(X) = Im(āX1 − X̄2b),

where

(a, b) ∈ S7 = {(x, y) ∈H×H : |x|2 + |y|2 = 1
}

and

X = (X1,X2) ∈ T(a,b)S
7 ↪→ T(a,b)(H×H),

is a connection in the Hopf bundle.
(ii) Let N = (0,0,0,0,1) ∈ S4, S = (0,0,0,0,−1) ∈ S4. Consider the maps (in-

verses of the stereographic projections)

ϕ−1
N : H → S4 \ {N}, ϕ−1

S : H → S4 \ {S},
given by

ϕ−1
N (x) =

(
2x

xx̄ + 1
,
xx̄ − 1

xx̄ + 1

)
, ϕ−1

S (x) =
(

2x

xx̄ + 1
,

1 − xx̄

xx̄ + 1

)
,

respectively. Denoting UN = S4 \ {N}, US = S4 \ {S}, we construct trivialisa-
tions of πH : S7 → S4,

ψN : π−1
H

(UN) → H× S3, ψS : π−1
H

(US) → H× S3,

by

ψN(x, y) =
(

ϕN

(
πH(x, y)

)
,

y

|y|
)

, ψS(x, y) =
(

ϕS

(
πH(x, y)

)
,

x

|x|
)

.

Consider the sections σN,σS : H → S7 given by

σN(x) = ψ−1
N (x,1), σS(x) = ψ−1

S (x,1).

Let r2 = xx̄, x ∈ H, and γ : H \ {0} → S3, γ (x) = r−1x.
Prove that the local expressions of ω in terms of σN and σS are

σ ∗
Nω = − r2

1 + r2
γ −1 dγ, σ ∗

S ω = r2

1 + r2
γ −1 dγ.
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Solution

(i) We have

ω(a,b)(X) = 1

2

(
(āX1 − X̄2b) − (āX1 − X̄2b)

)

= 1

2
(āX1 − X̄2b − X̄1a + b̄X2) ∈ H.

Since the Lie algebra of S3 is identified to the purely imaginary quaternions, it
follows that ω(a,b)(X) ∈ T1S

3. That is, ω takes its values in the Lie algebra of
the Lie group S3 ↪→H.

The action of S3 on S7 is given by Rz(a, b) = (az, bz) (see Problem 5.17).
Then

(
R∗

zω
)
(a,b)

(X) = ω(az,bz)(Rz∗X) = ω(az,bz)(X1z,X2z)

= 1

2
(z̄āX1z − z̄X̄2bz − z̄X̄1az + z̄b̄X2z)

= z̄ω(a,b)(X)z = z−1ω(a,b)(X)z = (Adz−1 ◦ ω)(X).

On the other hand, the fundamental vector field A∗ corresponding to A ∈
T1S

3 is given by A∗
(a,b) = j(a,b)∗A, where

j(a,b) : S3 → S7, z �→ Rz(a, b) = (az, bz).

Hence

A∗
(a,b) = d

dt

∣∣∣∣
t=0

(
a(1 + At), b(1 + At)

)= (aA,bA).

We thus have

ω(a,b)

(
A∗

(a,b)

) = ω(a,b)(aA,bA) = 1

2
(āaA − Āb̄b − Āāa + b̄bA)

= (āa + b̄b)A = A,

since Ā = −A. We have thus proved that ω is, in fact, a connection in the bundle
πH : S7 → S4.

(ii) In order to obtain the explicit expressions of σN and σS , we first suppose that
(u, v) ∈ S7 satisfies ψS(u, v) = (x,1). We then have

ψS(u, v) =
(

ϕS

(
2vū, |u|2 − |v|2), u

|u|
)

=
(

2vū

1 + |u|2 − |v|2 ,
u

|u|
)

= (x,1).

Then u = k ∈R
+, and after some computations one has

σS(x) =
(

1√
1 + r2

,
x√

1 + r2

)
.
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Denote by s the coordinate on H such that s(x) = x, x ∈ H, and by r1, r2 the
coordinates in H×H such that r1(x, y) = x, r2(x, y) = y. Then we can write

ω = 1

2

(
r̄1 dr1 − (dr̄2)r2 − (dr̄1)r1 + r̄2 dr2

)
.

To compute σ ∗
S ω, we substitute

r1 = 1√
1 + r2

, r2 = s√
1 + r2

,

and after a calculation we obtain

σ ∗
S ω = 1

2(1 + r2)
(s̄ ds − ds̄ · s),

which is well-defined in all of H.
Excluding the origin, we can write s = rγ so that s̄ = rγ −1, and we obtain

by computation

σ ∗
S ω = r2

1 + r2
γ −1 dγ.

A similar calculation shows that we have the formula for σ ∗
Nω in the statement.

Problem 5.31 Let [w] denote the standard generator of the group H 2(CP1,Z) ∼=
Z, that is,

∫
CP1 w = 1, where the canonical orientation as a complex manifold of

CP1 is considered. Prove that the Chern class of the tautological line bundle E over
CP1 is equal to −[w].

Solution Let (P = C
2 \ {0},p,CP1,C∗) be the principal bundle over CP1 with

group C
∗ corresponding to the tautological line bundle E. The differential 1-form

ω on P defined by

ωz=(z0,z1) = z̄0 dz0 + z̄1 dz1

z̄0z0 + z̄1z1

is a connection form on P . In fact, it takes values on the Lie algebra C of C∗. More-
over, consider ωU = ωσU

and ωV = ωσV
for two sections σU , σV on two intersecting

open subsets U , V of CP1. Then, if σV = λUV σU on U ∩ V , that is, λUV ∈ C
∗ is

the transition function, we have

ωV = ωσU λUV
= ωU + dλUV

λUV

,

on p−1(U ∩ V ), that is, as λUV takes values in C
∗,

ωV = λ−1
UV dλUV + λ−1

UV ωUλUV = λ−1
UV dλUV + Ad

λ−1
UV

◦ ωU .
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The curvature form of ω is

Ω = dω + ω ∧ ω = 1

(z̄0z0 + z̄1z1)2

{(
z̄0z0 + z̄1z1)(dz̄0 ∧ dz0 + dz̄1 ∧ dz1)

− (z̄0 dz0 + z̄1 dz1)∧ (z0 dz̄0 + z1 dz̄1)}.

Denote by U the open subset of CP1 defined by z0 �= 0, and set w = z1/z0. Then
w can be taken as a local coordinate on U . Substituting z1 = z0w into the expression
for the curvature form above, we have that

Ω = dw̄ ∧ dw

1 + ww̄2
.

The first Chern form c1(E,ω) can thus be written on U as

c1(E,ω) = i

2π

dw̄ ∧ dw

(1 + ww̄)2
.

Taking polar coordinates, w = r e2π it , one obtains

∫

CP1
c1(E,ω) =

∫ 1

0

(∫ ∞

0

2r dr

(1 + r2)2

)
dt = −1,

as wanted.

Problem 5.32 (Godbillon–Vey Exotic Class for Codimension 1 Foliations) Let M

be a C∞ n-manifold, and let F be a foliation of codimension 1 (that is, the leaves
have dimension n − 1) on M , defined by a nowhere-vanishing global differential
1-form ω, which is integrable, that is, ω ∧ dω = 0. As ω(p) �= 0, for all p ∈ M , this
condition can be written as

dω = ω ∧ ω1, (�)

for a certain ω1. Consider the differential 3-form

Ξ = −ω1 ∧ dω1.

Prove:

(i) The form Ξ defines a cohomology class [Ξ ] ∈ H 3
dR(M,R).

(ii) [Ξ ] is an invariant of the foliation, that is, it does not change if either F is
defined by ω′ = f ω, with f ∈ C∞M nowhere-vanishing or if we take another
form ω′

1 satisfying (�).

The relevant theory is developed, for instance, in Godbillon and Vey [3].
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Solution

(i) Taking the exterior derivative of both members of (�), we obtain 0 = −ω∧dω1,
from which

dω1 = ω ∧ ω2,

and thus dΞ = −ω ∧ ω2 ∧ ω ∧ ω2 = 0.
(ii) If F is defined by ω′ = f ω, with f ∈ C∞M nowhere-vanishing, we have

dω′ = df ∧ ω + f ω ∧ ω1 = ω′ ∧
(

ω1 − df

f

)
.

Hence

Ξ ′ = −ω′
1 ∧ dω′

1 = −ω1 ∧ dω1 − df

f
∧ dω1 = Ξ − d

(
log |f |dω1

)
,

from which [Ξ ′] = [Ξ ].
If we choose another form, say ω′

1, satisfying (�), then from this equation
and dω = ω ∧ ω′

1 we have ω ∧ (ω1 − ω′
1) = 0, that is, ω1 − ω′

1 belongs to
the ideal generated by ω. Hence, the general expression for such forms ω1 is
ω′′

1 = ω1 + hω, h ∈ C∞M . Now, we have

ω′′
1 ∧ dω′′

1 = (ω1 + hω) ∧ (dω1 + dh ∧ ω + hω ∧ ω1) = ω1 ∧ dω1 + d(hdω),

hence [Ξ ′′] = [Ξ ].
Problem 5.33 (Roussarie’s Example of a Foliation with Non-zero Godbillon–Vey
Class) Consider the Lie group

G = PSL(2,R) = SL(2,R)
/{

±
(

1 0
0 1

)}
,

its subgroup

H =
{(

a b

0 a−1

)
, a > 0

}
,

a discrete co-compact subgroup Γ of G, and the (hence compact) quotient M =
Γ \G.

Consider the basis
{
X =

(
1 0
0 −1

)
, Y =

(
0 1
0 0

)
, Z =

(
0 0
1 0

)}

of the Lie algebra sl(2,R) of PSL(2,R). Then {X,Y } is a basis of the Lie algebra h

of H and it is immediate that

[X,Y ] = 2Y, [X,Z] = −2Z, [Y,Z] = X.

Let {α̃, β̃, γ̃ } be the basis of left-invariant differential 1-forms dual to {X,Y,Z}.
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Since X and Y span h, the form γ̃ defines a foliation F̃ of G by the left cosets
of H , which passes to a foliation F on M .

Prove that the 1-form ω̃1 = −2α̃ induces a non-zero Godbillon–Vey class of F .

Hint Since both the given vector fields and 1-forms are invariant under left transla-
tions by elements of H , we have

dα̃(U,V ) = U
(
α̃(V )

)− V
(
α̃(U)

)− α̃
([U,V ])= −α̃

([U,V ]), U,V ∈ g,

and similarly for β̃ and γ̃ . Compute dγ̃ and then dω̃1.
The relevant theory is developed, for instance, in Bott [2].

Solution We have

dγ̃ (X,Y ) = 0, dγ̃ (X,Z) = 2, dγ̃ (Y,Z) = 0,

So (using the same notation as in Problem 5.32),

dγ̃ = 2α̃ ∧ γ̃ = γ̃ ∧ ω̃1,

where ω̃1 = −2α̃.
In turn, one has

dω̃1(X,Y ) = 0, dω̃1(X,Z) = 0, dω̃1(Y,Z) = 2,

hence dω̃1 = 2β̃ ∧ γ̃ , and thus

ω̃1 ∧ dω̃1 = −4α̃ ∧ β̃ ∧ γ̃

is a nowhere-vanishing 3-form on G.
Since γ̃ and ω̃1 are invariant under left translations by elements of H , they de-

scend to well-defined forms γ and ω1 on M .
The differential 1-form γ defines the foliation F . Moreover, dγ = γ ∧ ω1 and

ω1 ∧ dω1 is a nowhere-vanishing 3-form on M . But M is a compact, orientable
3-manifold without boundary, so that

∫

M

ω1 ∧ dω1 �= 0,

implying that

[ω1 ∧ dω1] ∈ H 3(M,R)

is not zero.

Problem 5.34 Consider on C
2 \ {(0,0)} = {(z,w) �= (0,0)} the differential 1-form

given, for fixed λ1, λ2 ∈ C \ {0}, by

ω = λ1w dz + λ2zdw.
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Since it depends only on z,w and their differentials, it is completely integrable, so
defining a codimension 1 (see Definition 2.16) complex foliation F on the manifold
C

2 \ {0}.
(i) Find a differential 1-form ω1 (with the notation in Problem 5.32) such that

dω = ω ∧ ω1.

(ii) Prove that, for suitable λ1, λ2, the form

ω1 ∧ dω1

defines a non-zero Godbillon–Vey class of the corresponding foliation F (Bott
example of non-zero Godbillon–Vey class of a foliation).

Hint Take

ω1 = LXω,

where X stands for the differentiable (although not holomorphic) vector field

X = 1

λ1

w̄

|z|2 + |w|2
∂

∂z
+ 1

λ2

z̄

|z|2 + |w|2
∂

∂w
,

which satisfies ω(X) = 1.

The relevant theory is developed, for instance, in Bott [2].

Solution

(i) According to the hint, we choose

ω1 = LXω = (dιX + ιX d)ω = d(1) + ιX dω = ιX dω.

Then, since

dω = (λ2 − λ1)dz ∧ dw,

we have

ω1 = λ2 − λ1

|z|2 + |w|2
(

1

λ1
w̄ dw − 1

λ2
z̄ dz

)
,

and

ω ∧ ω1 = λ2 − λ1

|z|2 + |w|2 (λ1w dz + λ2z dw) ∧
(

1

λ1
w̄ dw − 1

λ2
z̄ dz

)

= λ2 − λ1

|z|2 + |w|2
(|w|2 + |z|2)dz ∧ dw = dω.
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(ii) Since on S3 we have |z|2 + |w|2 = 1, we get

dω1 = (λ2 − λ1)

(
1

λ1
dw̄ ∧ dw − 1

λ2
dz̄ ∧ dz

)

and, also on S3,

ω1 ∧ dω1 = (λ2 − λ1)
2
(

1

λ1
w̄ dw − 1

λ2
z̄ dz

)
∧
(

1

λ1
dw̄ ∧ dw − 1

λ2
dz̄ ∧ dz

)

= (λ2 − λ1)
2

λ1λ2
(z̄ dz ∧ dw ∧ dw̄ + w̄ dz ∧ dz̄ ∧ dw).

Now, since the form z̄ dz ∧ dw ∧ dw̄ + w̄ dz ∧ dz̄ ∧ dw depends neither on λ1

nor on λ2, for suitable values of λ1 and λ2, which is always possible, we obtain
∫

S3
ω1 ∧ dω1 =

∫

S3

λ2 − λ1

λ1λ2
(z̄ dz ∧ dw ∧ dw̄ + w̄ dz ∧ dz̄ ∧ dw) �= 0,

hence the cohomology class

[ω1 ∧ dω1] ∈ H 3(
C

2 \ {0},R)∼= H 3(S3,R
)

is not zero.

Problem 5.35 Let (P,M,G) be a principal bundle over the C∞ manifold M and
let Γ, Γ̃ be connections in P , whose connection forms (resp., curvature forms) can
be described on trivialising open subsets of M by the g-valued differential 1-forms
A, Ã (resp., 2-forms F, F̃ ).

(i) Let I ∈ I r (G) be a G-invariant polynomial, and consider the global 2r-forms
I (F r) and I (F̃ r ) (see Definitions 6.17 and [4]). Deduce from the Chern–
Simons Formula in Theorem 6.18 for the difference I (F r) − I (F̃ r ), the for-
mula for the particular case where G is a matrix group, I (F 2) = tr(F ∧F), and
Ã = 0:

tr(F ∧ F) = d tr

(
(dA) ∧ A + 2

3
A ∧ A ∧ A

)
. (�)

(ii) Let ξ be the map ξ : R4 → M(2,C),

ξ(x) =
(

x4 − ix3 −x2 − ix1

x2 − ix1 x4 + ix3

)
.

Consider on R
4 with the Euclidean metric the differential forms

A1 = r2

r2 + c2
γ −1 dγ, A2 = γA1γ

−1 + γ dγ −1 = c2

r2 + c2
γ dγ −1,
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where r2 = (x1)2 + (x2)2 + (x3)2 + (x4)2, c ∈R, and

γ : R4 \ {0} → SU(2), γ (x) = r−1ξ(x),

identifies S3(r) with SU(2).
The form A1 is regular at x = 0 as it follows taking the formulas

A1 = − r dr

r2 + c2
+ r2

r2 + c2
ξ−1 dξ, det ξ = r2,

into account, but A2 is singular at x = 0. Let N,S denote the north and south
poles of S4. Identify R

4 with U1 = S4 \ {S} and on the other hand with U2 =
S4 \ {N} under convenient stereographic projections (see [4, 10.7]). Then one
can accordingly define A1 on U1 and A2 on U2, since the singularity of A2 at
the origin manifests as a singularity at the north pole, which does not belong to
U2; in such a way that A1 and A2 are local representatives of a connection in a
principal SU(2)-bundle P ′ over S4, whose transition function g21 is γ .

Express the Chern number c(2)(P
′) in terms of γ −1dγ , by means of the

Chern–Simons formula (�).

Remark In Physics, the differential form A with local representatives as in (ii) is
called an instanton potential. It solves the Euclidean Yang–Mills equation, that is,
D � F = 0, where F = dA + A ∧ A and � stands for the Hodge star operator (see
Problem 6.112).

The relevant theory is developed, for instance, in Göckeler and Schücker [4].

Solution

(i) As G is a matrix group, we can write F = dA + 1
2 [A,A] as F = dA + A ∧ A.

In the particular case I (F 2) = tr(F ∧ F), we have

tr(F ∧ F) − tr(F̃ ∧ F̃ ) = dQ(A, Ã).

Putting α = A − Ã, one has

Q(A, Ã) = 2
∫ 1

0
tr
(
α ∧ (dÃ + tdα) + α ∧ (Ã + tα) ∧ (Ã + tα)

)
dt

= 2
∫ 1

0
tr
(
α ∧ dÃ + tα ∧ dα + α ∧ Ã ∧ Ã + tα ∧ Ã ∧ α

+ tα ∧ α ∧ Ã + t2α ∧ α ∧ α
)

dt

= 2 tr

(
α ∧ dÃ + 1

2
α ∧ dα + α ∧ Ã ∧ Ã + 1

2
α ∧ Ã ∧ α

+ 1

2
α ∧ α ∧ Ã + 1

3
α ∧ α ∧ α

)
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= tr

(
2α ∧ F̃ + α ∧ dα + 2α ∧ Ã ∧ α + 2

3
α ∧ α ∧ α

)
.

For Ã = 0, this expression reduces to the formula in the statement.
(ii) Let S4+ (resp., S4−) denote the upper (resp., lower) hemisphere of S4, that is, the

subset with last coordinate � 0 (resp., � 0). Then, on account of

A1 = γ −1A2γ + γ −1dγ,

F1 = dA1 + A1 ∧ A1, F2 = dA2 + A2 ∧ A2, F1 = γ −1F2γ,

we can write

c(2)

(
P ′)= 1

8π2

∫

S4
tr(F ∧ F) = 1

8π2

∫

S4+
tr(F1 ∧ F1) + 1

8π2

∫

S4−
tr(F2 ∧ F2)

= 1

8π2

∫

S3
tr

(
dA1 ∧ A1 + 2

3
A1 ∧ A1 ∧ A1

)

− 1

8π2

∫

S3
tr

(
dA2 ∧ A2 + 2

3
A2 ∧ A2 ∧ A2

)
(by Stokes’ Th.)

= 1

8π2

∫

S3
tr

(
F1 ∧ A1 − 1

3
A1 ∧ A1 ∧ A1 − F2 ∧ A2

+ 1

3
A2 ∧ A2 ∧ A2

)

= 1

8π2

∫

S3
tr

(
γ −1dA2 ∧ A2γ + γ −1A2 ∧ A2 ∧ A2γ

+ γ −1dA2 ∧ dγ + γ −1A2 ∧ A2 ∧ dγ

− 1

3
γ −1A2 ∧ A2 ∧ A2γ − 1

3
γ −1A2 ∧ A2 ∧ dγ

− 1

3
γ −1A2 ∧ dγ ∧ γ −1A2γ − 1

3
γ −1A2 ∧ dγ ∧ γ −1 dγ

− 1

3
γ −1 dγ ∧ γ −1A2 ∧ A2γ − 1

3
γ −1 dγ ∧ γ −1A2 ∧ dγ

− 1

3
γ −1 dγ ∧ γ −1 dγ ∧ γ −1A2γ − 1

3
γ −1 dγ ∧ γ −1 dγ ∧ γ −1 dγ

− dA2 ∧ A2 − A2 ∧ A2 ∧ A2 + 1

3
A2 ∧ A2 ∧ A2

)

= 1

8π2

∫

S3
tr

(
γ −1 dA2 ∧ A2γ + γ −1A2 ∧ A2 ∧ A2γ

+ γ −1dA2 ∧ dγ γ −1γ + γ −1A2 ∧ A2 ∧ dγ
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− 1

3
γ −1A2 ∧ A2 ∧ A2γ − 1

3
γ −1A2 ∧ A2 ∧ dγ

− 1

3
γ −1A2 ∧ A2 ∧ dγ − 1

3
γ −1A2 ∧ dγ ∧ γ −1 dγ

− 1

3
γ −1A2 ∧ A2 ∧ dγ − 1

3
γ −1A2 ∧ dγ ∧ γ −1 dγ

− 1

3
γ −1A2 ∧ dγ ∧ γ −1 dγ − 1

3
γ −1 dγ ∧ γ −1 dγ ∧ γ −1 dγ

− dA2 ∧ A2 − A2 ∧ A2 ∧ A2 + 1

3
A2 ∧ A2 ∧ A2

)

= 1

8π2

∫

S3
tr

(
dA2 ∧ dγ γ −1 − γ −1A2 ∧ dγ ∧ γ −1 dγ

− 1

3
γ −1 dγ ∧ γ −1 dγ ∧ γ −1 dγ

)

= 1

8π2

∫

S3

(
d
(
tr
(
A2 ∧ dγ γ −1))− 1

3
tr
(
γ −1 dγ ∧ γ −1 dγ ∧ γ −1 dγ

))

= − 1

24π2

∫

S3
tr
(
γ −1 dγ ∧ γ −1 dγ ∧ γ −1 dγ

)
(by Stokes’ Th.).

Remark The last expression for c(2)(P
′) is the opposite to a certain winding number

(the topological charge), which is an element of the homotopy group π3(SU(2)) ∼=
Z, associated to a map from the equator S3 in S4 to SU(2) ∼= S3. It is important in
Physics as it corresponds to a minimum of the Yang–Mills action functional.

5.5 Linear Connections

Problem 5.36 Given a linear connection ∇ on the C∞ manifold M , one defines
the conjugate or opposite connection ∇̂ on M by

∇̂XY = ∇Y X + [X,Y ], X,Y ∈X(M).

(i) Prove that ∇̂ is a linear connection.
(ii) Compute the local components Γ̂ i

jh of ∇̂ in terms of the components of ∇ .

Solution

(i) Since ∇ is a linear connection and from the expression

[f X,gY ] = fg[X,Y ] + f (Xg)Y − g(Yf )X, f,g ∈ C∞M,
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we deduce by some computations that ∇̂ satisfies the properties:

(a) ∇̂X(Y + Z) = ∇̂XY + ∇̂XZ; (b) ∇̂X+Y Z = ∇̂XZ + ∇̂Y Z;
(c) ∇̂f XY = f ∇̂XY ; (d) ∇̂Xf Y = (Xf )Y + f ∇̂XY.

That is, ∇̂ is a linear connection.
(ii) One has ∇̂ ∂

∂xi

∂
∂xj =∑k Γ̂ k

ij
∂

∂xk , in terms of the local coordinates x1, . . . , xn and

also

∇̂ ∂

∂xi

∂

∂xj
= ∇ ∂

∂xj

∂

∂xi
+
[

∂

∂xi
,

∂

∂xj

]
= ∇ ∂

∂xj

∂

∂xi
=
∑

k

Γ k
ji

∂

∂xk
.

That is, Γ̂ k
ij = Γ k

ji .

Problem 5.37 Let ϕ : M → M ′ be a diffeomorphism. Given a linear connection ∇
on M , let ∇′ = ϕ · ∇ be defined by

∇′
X′Y ′ = ϕ · (∇ϕ−1·X′ϕ−1 · Y ′), X′, Y ′ ∈ X

(
M ′).

Prove:

(i) ∇′ is a linear connection on M ′.
(ii) If ϕt is the flow of a vector field X ∈X(M) such that ϕt · ∇ = ∇ , t ∈R, then

LX ◦ ∇Y − ∇Y ◦ LX = ∇[X,Y ], X,Y ∈X(M). (�)

Solution

(i) We prove one property only: For any f ∈ C∞M ′,

∇′
X′f Y ′ = ϕ · (∇ϕ−1·X′ϕ−1 · (f Y ′))= ϕ · (∇ϕ−1·X′(f ◦ ϕ)ϕ−1 · Y ′)

= ϕ · {((ϕ−1 · X′)(f ◦ ϕ)
)
ϕ−1 · Y ′ + (f ◦ ϕ)∇ϕ−1·X′ϕ−1 · Y ′}

= (X′f
)
Y ′ + f ∇′

X′Y ′.

(ii) Applying both sides of (�) to a function f ∈ C∞M , we obtain

X
(
Y(f )

)− Y
(
X(f )

)= [X,Y ](f ),

which trivially holds. Applying now both sides of (�) to a vector field Z, one
has

LX∇Y Z = lim
t→0

1

t

(∇Y Z − ϕt · (∇Y Z)
)

= lim
t→0

1

t
(∇Y Z − ∇ϕt ·Y Z) + lim

t→0

1

t

(∇ϕt ·Y Z − ∇ϕtY (ϕt · Z)
)
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= ∇limt→0
1
t
(Y−ϕt ·Y)

Z + ∇Y

(
lim
t→0

1

t
(Z − ϕt · Z)

)

= ∇LXY Z + ∇Y LXZ = ∇[X,Y ]Z + ∇Y LXZ.

As LX and ∇Y are type-preserving derivations that commute with contractions,
for every tensor field T we have

(LX ◦ ∇Y − ∇Y ◦ LX)(T ) = ∇[X,Y ]T .

Problem 5.38 Let M be a C∞ n-manifold endowed with a torsionless linear con-
nection. Prove that in a system of normal coordinates with origin p, all the Christof-
fel symbols at p vanish.

Solution In a system of normal coordinates {xi}, i = 1, . . . , n, around p, the equa-
tions of the geodesics through p are given by xi = λit , with λi constants. These
functions must satisfy the differential equations of the geodesics, i.e.

d2xi

dt2
+

n∑

j,k=1

Γ i
jk

dxj

dt

dxk

dt
= 0, i = 1, . . . , n,

that now reduce to
∑

i,j Γ k
ij (p)λiλj = 0, for k = 1, . . . , n. As the connection is

torsionless, it is immediate that Γ k
ij (p) = 0, for i, j, k = 1, . . . , n.

Problem 5.39 The Lie derivative L is another kind of directional derivative of vec-
tor fields on a differentiable manifold M .

(i) Prove that the map

L : T M × T M −→ T M

(X,Y ) �−→ LXY

is not a connection.
(ii) Show that there are vector fields V and W on R

2 such that

V = W = ∂

∂x

along the x-axis but with

LV

∂

∂y
�= LW

∂

∂y

along the x-axis.

Remark This shows that Lie differentiation does not give a well-defined way to take
directional derivatives of vector fields along curves.

The relevant theory is developed, for instance, in Lee [5].
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Solution

(i) Since

Lf XY = [f X,Y ] = f [X,Y ] − (Yf )X = f LXY − (Yf )X,

for all f ∈ C∞M and X,Y ∈ X(M), imposing Lf XY = f LXY , it follows that
(Yf )X = 0. As X is arbitrary, this implies Yf = 0, and since Y is also arbitrary,
one gets that f is a locally constant function.

In conclusion, one has that

Lf XY = f LXY, X,Y ∈ X(M),

if and only if f is a constant function. Hence the map is not a connection.
(ii) The vector fields

V = ∂

∂x
+ y

∂

∂y
, W = ∂

∂x
− y

∂

∂y

are equal to ∂
∂x

along y = 0, but

LV

∂

∂y
= − ∂

∂y
, LW

∂

∂y
= ∂

∂y

do not coincide.

5.6 Torsion and Curvature

Problem 5.40 Consider a linear connection on a C∞ manifold, with components

Γ̃ i
jk = Γ i

jk + 2δi
kθj ,

where the Γ i
jk are the components of another linear connection (it is said that they

are projectively related connections), θ is a differential 1-form, and δi
j denotes the

Kronecker delta. Calculate the difference tensor R̃i
hjk − Ri

hjk of their respective
curvature tensors fields.

Solution Putting ∂j = ∂/∂xj , we have

R̃i
hjk = ∂j Γ̃

i
kh − ∂kΓ̃

i
jh +

∑

r

Γ̃ r
khΓ̃

i
jr −

∑

r

Γ̃ r
jhΓ̃

i
kr

= ∂j

(
Γ i

kh + 2δi
hθk

)− ∂k

(
Γ i

jh + 2δi
hθj

)+
∑

r

(
Γ r

kh + 2δr
hθk

)(
Γ i

jr + 2δi
rθj

)

−
∑

r

(
Γ r

jh + 2δr
hθj

)(
Γ i

kr + 2δi
rθk

)
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= Ri
hjk + 2δi

h∂j θk − 2δi
h∂kθj + 2Γ i

khθj + 2Γ i
jhθk + 4δi

hθkθj

− 2Γ i
jhθk − 2Γ i

khθj − 4δi
hθj θk

= Ri
hjk + 2δi

h(∂j θk − ∂kθj ),

from which we obtain

R̃i
hjk − Ri

hjk = 2δi
h(∂j θk − ∂kθj ).

Problem 5.41 Let M be a C∞ manifold, with a linear connection having com-
ponents Γ i

jk with respect to a local coordinate system. Write the formulas for the
covariant derivative of the following tensor fields on M :

(i) A vector field with components Xi .
(ii) A differential 1-form with components θi .

(iii) A (1,1) tensor field with components J i
j .

(iv) A (0,2) tensor field with components τij .

Moreover, prove:

(v) If the given connection is torsionless, for a vector field with components Xi ,
one has

Xi
;jk − Xi

;kj = −
∑

r

XrRi
rjk,

where Xi
;jk

= (Xi
;j );k , and Ri

jkl are the components of the curvature tensor
field of the given connection.

(vi) For a differential 1-form with components θi , one has

θi;jk − θi;kj =
∑

r

(
θrR

r
ijk − 2θi;rT r

jk

)
,

where T i
jk and Ri

jkl are the components of the torsion and curvature tensor
fields of the given connection, respectively.

Solution Let ∂j = ∂/∂xj , where {xj } stand for local coordinates. Then:

(i)

∇∂j

(∑

i

Xi∂i

)
=
∑

i

(
∂jX

i
)
∂i +

∑

i,r

XiΓ r
ji∂r .

Hence

Xi
;j = ∂jX

i +
∑

r

Γ i
jrX

r .

(ii)

θj ;i = (∇∂i
θ)∂j = ∇∂i

(θ∂j ) − θ(∇∂i
∂j )
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= ∇∂i

((∑

l

θl dxl

)
∂j

)
− θ

(∑

r

Γ r
ij ∂r

)

= ∂iθj −
∑

r

Γ r
ij θr .

(iii)

(∇∂i
J )∂j = ∇∂i

J ∂j − J∇∂i
∂j =

∑

r

(∇∂i
J r

j ∂r − JΓ r
ij ∂r

)

=
∑

r

(
∂iJ

r
j

)
∂r +

∑

r,s

J r
j Γ s

ir∂s −
∑

r,s

Γ r
ij J

s
r ∂s .

Hence

J i
j ;k = ∂kJ

i
j +

∑

r

J r
j Γ i

kr −
∑

r

Γ r
kj J

i
r .

(iv)

τij ;k = (∇∂i
τ )(∂j , ∂k) = ∇∂i

τjk −
∑

r

(
τ
(
Γ r

ij ∂r , ∂k

)+ τ
(
∂j ,Γ

r
ik∂r

))

= ∂iτjk −
∑

r

Γ r
ij τrk −

∑

r

Γ r
ikτjr .

(v) We have

Xi
;jk = ∂k

(
∂jX

i +
∑

r

Γ i
jrX

r

)
+
∑

r

(
Xr

;jΓ
i
kr − Γ r

kjX
i
;r
)

= ∂k∂jX
i +

∑

r

((
∂kΓ

i
jr

)
Xr + Γ i

jr∂kX
r + Xr

;jΓ
i
kr − Γ r

kjX
i
;r
)

= ∂k∂jX
i +

∑

r

((
∂kΓ

i
jr

)
Xr + Γ i

jrX
r
;k −

∑

s

XsΓ i
jrΓ

r
ks

+ Xr
;jΓ

i
kr − Γ r

kjX
i
;r
)

= ∂k∂jX
i +

∑

r

(
Xr

(
∂kΓ

i
jr −

∑

s

Γ i
jsΓ

s
kr

)
+ Γ i

jrX
r
;k

+ Γ i
krX

r
;j − Γ r

kjX
i
;r
)

,

and

Xi
;kj = ∂j ∂kX

i +
∑

r

(
Xr

(
∂jΓ

i
kr −

∑

s

Γ i
ksΓ

s
jr

)
+ Γ i

krX
r
;j

+ Γ i
jrX

r
;k − Γ r

jkX
i
;r
)

,
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hence

Xi
;jk −Xi

;kj = Xr
∑

r

(
∂kΓ

i
jr −∂jΓ

i
kr +

∑

s

(
Γ s

jrΓ
i
ks −Γ s

krΓ
i
js

))=
∑

r

XrRi
rkj .

(vi)

θi;jk =
(

∂j θi −
∑

r

Γ r
jiθr

)

;k

= ∂k

(
∂j θi −

∑

r

Γ r
jiθr

)
− Γ r

kj

∑

r

(
∂rθi −

∑

s

Γ s
riθs

)

− Γ r
ki

(
∂j θr −

∑

s

Γ s
jrθs

)
.

Expanding this formula and the similar one for θi;kj , we obtain

θi;jk − θi;kj =
∑

r

(
∂jΓ

r
ki − ∂kΓ

r
ji +

∑

s

(
Γ s

kiΓ
r
js − Γ s

jiΓ
r
ks

))
θr

+
∑

r

(
Γ r

jk − Γ r
kj

)(
∂rθi −

∑

s

Γ s
riθs

)

=
∑

r

(
Rr

ijkθr + 2T r
jkθi;r

)
.

Problem 5.42 Consider the linear connection on the half-plane y > 0 of R
2

defined by the components Γ i
jk = 0, except Γ 1

12 = 1, with respect to the frame
(e1 = ∂/∂x, e2 = ∂/∂y). Consider the frame

(
ē1 = ∂

∂x
, ē2 = x

∂

∂x
+ y

∂

∂y

)
.

Compute the components of the connection and the components of the torsion tensor
with respect to this frame.

Solution We have ∇ēj
ēi = Γ̄ k

ij ēk , and

∇ē1 ē1 = ∇e1e1 = 0, ∇ē1 ē2 = ∇e1(xe1 + ye2) = (1 + y)e1 = (1 + y)ē1,

∇ē2 ē1 = ∇xe1+ye2e1 = 0, ∇ē2 ē2 = ∇xe1+ye2(xe1 + ye2) = xyē1 + ē2.

Thus the non-vanishing components of ∇ with respect to the frame (ē1, ē2) are

Γ̄ 1
12 = 1 + y, Γ̄ 1

22 = xy, Γ̄ 2
22 = 1,

and the only non-vanishing component of the torsion tensor is T̄ 1
12 = y.
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Problem 5.43 Let M and N be C∞ manifolds with linear connections ∇ and ∇′,
respectively. A C∞ map ϕ : M → N is said to be connection-preserving if

ϕ∗(∇XY)p = (∇′
X′Y ′)

ϕ(p)
, (�)

for all p ∈ M , where X,Y are ϕ-related to X′, Y ′, respectively. Prove that if ϕ is
also a diffeomorphism, then:

(i)

ϕ · (R(X,Y )Z
)= R′(ϕ · X,ϕ · Y)(ϕ · Z),

where R and R′ are the curvature tensor fields of ∇ and ∇′, respectively.
(ii)

ϕ · (T (X,Y )
)= T ′(ϕ · X,ϕ · Y),

where T and T ′ stand for the torsion tensors of ∇ and ∇′, respectively.

Solution

(i) First, we remark (see also Problem 5.37) that if ϕ is a diffeomorphism, then the
formula (�) means

ϕ · (∇XY) = ∇′
ϕ·Xϕ · Y.

Thus,

ϕ · (R(X,Y )Z
)= ϕ · (∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z)

= ϕ · ∇X∇Y Z − ϕ · ∇Y ∇XZ − ϕ · ∇[X,Y ]Z

= ∇′
ϕ·X(ϕ · ∇Y Z) − ∇′

ϕ·Y (ϕ · ∇XZ) − ∇′
ϕ·[X,Y ]ϕ · Z

= ∇′
ϕ·X∇′

ϕ·Y ϕ · Z − ∇′
ϕ·Y ∇′

ϕ·Xϕ · Z − ∇′[ϕ·X,ϕ·Y ]ϕ · Z
= R′(ϕ · X,ϕ · Y)(ϕ · Z).

(ii)

ϕ · (T (X,Y )
)= ϕ · (∇XY − ∇Y X − [X,Y ])

= ϕ · ∇XY − ϕ · ∇Y X − ϕ · [X,Y ]
= ∇′

ϕ·Xϕ · Y − ∇′
ϕ·Y ϕ · X − [ϕ · X,ϕ · Y ] = T ′[ϕ · X,ϕ · Y ].

Problem 5.44 If ω is a differential r-form on a C∞ manifold M equipped with a
torsionless linear connection ∇ , prove that

dω(X0, . . . ,Xr) =
r∑

i=0

(−1)i(∇Xi
ω)(X0, . . . , X̂i , . . . ,Xr),

X0, . . . ,Xr ∈ X(M), where the hat symbol denotes that the corresponding vector
field is dropped.
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Hint If ω is a differential r-form, the formula relating the bracket product and the
exterior differential is

(dω)(X0, . . . ,Xr) =
r∑

i=0

(−1)iXi

(
ω(X0, . . . , X̂i , . . . ,Xr)

)

+
∑

i<j

(−1)i+jω
([Xi,Xj ],X0, . . . , X̂j , . . . , X̂i , . . . ,Xr

)
.

Remark The more used cases are those of differential 1-forms and 2-forms:

dω(X,Y ) = (∇Xω)Y − (∇Y ω)X, ω ∈ Λ1M,

dω(X,Y,Z) = (∇Xω)(Y,Z) + (∇Y ω)(Z,X) + (∇Zω)(X,Y ), ω ∈ Λ2M.

Solution

r∑

i=0

(−1)i(∇Xi
ω)(X0, . . . , X̂i , . . . ,Xr)

=
r∑

i=0

(−1)iXi

(
ω(X0, . . . , X̂i , . . . ,Xr)

)

−
∑

j<i

(−1)iω(X0, . . . ,∇Xi
Xj , . . . , X̂i , . . . ,Xr)

−
∑

j>i

(−1)iω(X0, . . . , X̂i , . . . ,∇Xi
Xj , . . . ,Xr)

=
r∑

i=0

(−1)iXi

(
ω(X0, . . . , X̂i , . . . ,Xr)

)

−
∑

j<i

(−1)i+jω(∇Xi
Xj ,X0, . . . , X̂j , . . . , X̂i , . . . ,Xr)

+
∑

j>i

(−1)i+jω(∇Xi
Xj ,X0, . . . , X̂i , . . . , X̂j , . . . ,Xr)

=
r∑

i=0

(−1)iXi

(
ω(X0, . . . , X̂i , . . . ,Xr)

)

+
∑

i<j

(−1)i+jω(∇Xi
Xj − ∇Xj

Xi,X0, . . . , X̂i , . . . , X̂j , . . . ,Xr)

= dω(X0, . . . ,Xr).
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Problem 5.45

(i) Prove that if ∇ is a flat connection on a connected manifold M whose parallel
transport is globally independent of curves, then there exists a C∞ global field
of frames on M .

(ii) Prove that if ∇ is a flat connection on a connected manifold M , then its curva-
ture tensor field vanishes.

Solution

(i) Let us fix a point p0 ∈ M and a basis {v1, . . . , vn} of Tp0M . Given an arbitrary
point p ∈ M , there exists a differentiable arc γ : [0,1] → M such that γ (0) =
p0, γ (1) = p. We define Xi |p = τγ (vi), i = 1, . . . , n, where τγ : Tp0M → TpM

is the parallel transport along γ . The definition makes sense by virtue of the
hypothesis and (X1, . . . ,Xn) is a frame as τγ is an isomorphism.

(ii) According to the definition of a flat connection, given a point p ∈ M , there
exist an open neighbourhood U of p such that the parallel transport in U is
independent of curves. Hence from (i) it follows that U admits a linear frame
(X1, . . . ,Xn) invariant under parallel transport, that is, ∇XXi = 0, for all X ∈
X(U). Then R(Xi,Xj )Xk = 0 and hence R = 0.

Problem 5.46 Find the (equivalent) expression of Cartan’s equation of structure
Ω = dω+ω∧ω, that is, of Ωi

j = dωi
j +∑k ωi

k ∧ωk
j , when one considers transpose

matrices, i.e. when the upper index denotes the column and the lower index denotes
the row of the corresponding matrix.

Solution When one considers the transpose matrices of ω and Ω , it is immediate
to see that

Ωi
j = dωi

j +
∑

k

ωk
j ∧ ωi

k = dωi
j −

∑

k

ωi
k ∧ ωk

j ,

that is, Ω = dω − ω ∧ ω.

Remark Some authors prefer to use this expression of Cartan’s equation of struc-
ture.

Problem 5.47 Find the holonomy group of:

(i) The Euclidean space R
n.

(ii) The sphere S2 with its usual connection.

Moreover, prove:

(iii) The holonomy group, at any point, of a connection in the principal bundle

(
S2n+1,π,CPn, S1)

is S1.
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Fig. 5.2 An element β of the
holonomy group of S2

(iv) The holonomy group of a connection in the principal fibre bundle
(
S4n+3,π,HPn, S3)

is either S1 or S3.

The relevant theory is developed, for instance, in Bishop and Crittenden [1].

Solution

(i) Let ∇ be the usual flat connection, then Hol(∇) = {0}, as the parallel transport
along any closed curve is the identity map.

(ii) Let ∇ be the usual connection. As S2 is orientable, the holonomy group Hol(∇)

is a subgroup of SO(2).
We shall see geometrically that Hol(∇) = SO(2). Consider, with no loss

of generality, any orthonormal basis {e1, e2} of TNS2, N being the north pole
(0,0,1), and do its parallel transport along the piecewise C∞ curve in S2,
given (see Fig. 5.2 for a certain vector tangent starting as (i) at the north pole)
by the half-meridian determined by e1 until the equator, then the curve along
the equator by a rotation of angle β of the equatorial plane, and then the half-
meridian of return to N . The net result of the transport is a rotation of angle β .
As β can take any value β ∈ [0,2π], in fact Hol(∇) = SO(2).

(iii) Let Γ be a connection in (S2n+1,π,CPn, S1). Since CPn is simply connected,
the holonomy group G = Hol(Γ ) at a point u ∈ S2n+1 coincides with the
corresponding restricted holonomy group Hol0(Γ ) . Hence either G = S1 or
G = {1}. In the latter case, π : S2n+1 → CPn should admit a G-reduction
π : P → CPn, which should be trivial as CPn is simply connected and the re-
duction P is a covering. Hence P admits a global section σ : CPn → P which
induces a section of π , as P ⊂ S2n+1. Consequently, the bundle π : S2n+1 →
CPn should be trivial, that is, S2n+1 ∼= CPn × S1. This leads to a contradiction
as H 2(S2n+1,Z) = 0 while, by Künneth’s Theorem, H 2(CPn × S1,Z) = Z.

(iv) As in the previous case (iii), G = Hol(Γ ) = Hol0(Γ ), since the quaternionic
projective space HPn is simply connected. Hence G cannot be discrete because
in this case, since H 4(S4n+3,Z) = 0, an argument similar to the one above
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applies. If dimG = 1, then G = S1. The case dimG = 2 cannot occur by virtue
of Problem 4.46, and dimG = 3 implies G = S3.

5.7 Geodesics

Problem 5.48 Let x1 = x, x2 = y be the usual coordinates on R
2. Define a linear

connection ∇ of R2 by Γ i
jk = 0 except Γ 1

12 = Γ 1
21 = 1.

(i) Write and solve the differential equations of the geodesics.
(ii) Is ∇ complete?

(iii) Find the particular geodesic σ with

σ(0) = (2,1), σ ′(0) = ∂

∂x
+ ∂

∂y
.

(iv) Do the geodesics emanating from the origin go through all the points of the
plane?

(v) If σ and σ̃ are geodesics with σ(0) = σ̃ (0) and σ ′(0) = kσ̃ ′(0), k ∈ R, prove
that σ(t) = σ̃ (kt) for all possible t .

Solution

(i) The differential equations are

d2x

dt2
+ 2

dx

dt

dy

dt
= 0,

d2y

dt2
= 0.

Now we obtain the equations of the geodesics through a given point (x0, y0),
that is, such that σ(0) = (x0, y0).

From the second equation we have y = At + y0.
Let A = 0. Then the solutions are

x = Bt + x0, y = y0. (�)

Let A �= 0. Then from d2x

dt2 + 2A dx
dt

= 0, that is, d
dt

( dx
dt

)/ dx
dt

= −2A, one has

log dx
dt

= −2At +C, so that dx
dt

= De−2At , D �= 0. Therefore, the equations are

x = D

2A

(
1 − e−2At

)+ x0, y = At + y0, D �= 0. (��)

(ii) From equations (�) and (��) in (i), we see that ∇ is complete because the
geodesics are defined for t ∈ (−∞,+∞).

(iii) Since dy/dt = 1, the geodesic is of the type A �= 0, and one has

x0 = 2, y0 = 1, x′(0) = D = 1, y′(0) = A = 1,
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Fig. 5.3 The points (0, y),
y �= 0, are never reached from
(0,0)

hence

x = −1

2
e−2t + 5

2
, y = t + 1.

(iv) Suppose A = 0. Then such a geodesic is of the type x = Bt , y = 0. For A �= 0
one has

x = D

2A

(
1 − e−2At

)
, y = At.

That is,

x = D

2A

(
1 − e−2y

)

is the family of geodesics with A �= 0 emanating from the origin. The points
(0, y), y �= 0, are never reached from (0,0) (see Fig. 5.3).

In fact, if x = 0, since D/2A �= 0 we have e−2y = 1, thus y = 0. Obviously,
those points are not reached either from (0,0) with a geodesic such that A = 0.

(v) Suppose A = 0. Then from σ(0) = σ̃ (0) it follows that

(x0)σ = (x0)σ̃ , (y0)σ = (y0)σ̃ ,

and from σ ′(0) = kσ̃ ′(0) we deduce Bσ = kBσ̃ . Hence

σ(t) = (Bσ t + (x0)σ , (y0)σ
)= (kBσ̃ t + (x0)σ̃ , (y0)σ̃

)= σ̃ (kt).

Suppose now A �= 0. Then from σ(0) = σ̃ (0) it follows that

(x0)σ = (x0)σ̃ , (y0)σ = (y0)σ̃ ,

and from σ ′(0) = kσ̃ ′(0) we deduce Aσ = kAσ̃ , Dσ = kDσ̃ . Thus

σ(t) =
(

Dσ

2Aσ

(
1 − e−2Aσ t

)+ (x0)σ , Aσ + (y0)σ

)

=
(

Dσ̃

2Aσ̃

(
1 − e−2kAσ̃ t

)+ (x0)σ̃ , kAσ̃ t + (y0)σ̃

)
= σ̃ (kt).
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Problem 5.49 Consider the linear connection ∇ on R
2 = {(x1, x2)} with compo-

nents Γ k
ij = 0 except Γ 1

12 = 1, and the curve

σ(t) = (σ 1(t), σ 2(t)
)= (−2e−t + 4, t + 1

)
.

Compute the vector field obtained by parallel transport along σ of its tangent vector
at σ(0). Is γ a geodesic curve?

Solution The tangent vector to σ at σ(t) is

σ ′(t) = 2e−t ∂

∂x1

∣∣∣∣
σ(t)

+ ∂

∂x2

∣∣∣∣
σ(t)

.

Let

Yσ(t) = Y 1(t)
∂

∂x1

∣∣∣∣
σ(t)

+ Y 2(t)
∂

∂x2

∣∣∣∣
σ(t)

be the requested vector field. The parallelism conditions are

dσ i(t)

dt
+
∑

j,k

Γ i
jk

dσ j (t)

dt
Y k = 0,

that is,

dY 1(t)

dt
+ 2e−t Y 2(t) = 0,

dY 2(t)

dt
= 0.

One easily obtains that Y 1(t) = 2Ae−t + B . For t = 0, the vector Yσ(0) is, by hy-
pothesis, σ ′(0). Thus A = 1, B = 0, and

Y = 2e−t ∂

∂x1
+ ∂

∂x2
.

Hence the curve is a geodesic.

Problem 5.50 Let M be a C∞ manifold with two linear connections ∇ and ∇̃ with
Christoffel symbols Γ i

jk and Γ̃ i
jk , respectively, such that Γ i

jk + Γ i
kj = Γ̃ i

jk + Γ̃ i
kj .

(i) Have ∇ and ∇̃ the same geodesics?
(ii) What intrinsic meaning does the previous condition have?

Hint (to (ii)) Use the difference tensor of ∇ and ∇̃ .
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Solution

(i) The geodesics γ (t) = (x1(t), . . . , xn(t)) for ∇ and ∇̃ are given by the systems
of differential equations

d2xi

dt2
+
∑

j,k

Γ i
jk

dxj

dt

dxk

dt
= 0 and

d2xi

dt2
+
∑

j,k

Γ̃ i
jk

dxj

dt

dxk

dt
= 0, i = 1, . . . , n,

respectively. We have
∑

j,k Γ i
jk

dxj

dt
dxk

dt
=∑j,k Γ i

kj
dxj

dt
dxk

dt
, from which

∑

j,k

Γ i
jk

dxj

dt

dxk

dt
= 1

2

∑

j,k

(
Γ i

jk + Γ i
kj

)dxj

dt

dxk

dt
.

If Γ i
jk + Γ i

kj = Γ̃ i
jk + Γ̃ i

kj , then

∑

j,k

Γ i
jk

dxj

dt

dxk

dt
= 1

2

∑

j,k

(
Γ i

jk + Γ i
kj

)dxj

dt

dxk

dt
= 1

2

∑

j,k

(
Γ̃ i

jk + Γ̃ i
kj

)dxj

dt

dxk

dt

=
∑

j,k

Γ̃ i
jk

dxj

dt

dxk

dt
,

thus ∇ and ∇̃ have the same geodesics.
(ii) It is immediate that the previous condition means that the difference tensor

A = ∇ − ∇̃ is skew-symmetric.

Problem 5.51 Let x1, x2 be the usual coordinates on R
2. Consider the linear

connection ∇ of R2 with components Γ k
ij = 0 except Γ 2

22 = 2, and the curve σ(t) =
(e−4t + 5,3t + 7).

(i) Compute the vector field Yσ(t) obtained by parallel transport along σ of its
tangent vector at σ(2).

(ii) Is σ a geodesic curve?

Result

(i) Yσ(t) = −4e−8 ∂

∂x1 + 3e12−6t ∂

∂x2 .
(ii) No.

5.8 Almost Complex Manifolds

Problem 5.52 An almost complex structure on a C∞ manifold M is a differen-
tiable map J : T M → T M , such that:
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(a) J maps linearly TpM into TpM for all p ∈ M .
(b) J 2 = −I on each TpM , where I stands for the identity map.

Prove:

(i) If M admits an almost complex structure (it is said that M is an almost complex
manifold), then M has even real dimension 2n.

(ii) M admits an almost complex structure if and only if the structure group of the
bundle of linear frames FM can be reduced to the real representation of the
general linear group GL(n,C), given by

ρ : GL(n,C) → GL(2n,R)

A + iB �→
(

A B

−B A

)
.

Hint Let f be the linear transformation of R2n with matrix
( 0 In

−In 0

)
. Prove that the

subset

P = {z ∈ FM : f (ξ) = (z−1 ◦ J ◦ z
)
(ξ), ξ ∈ R

2n
}

of the bundle of linear frames FM over M is a GL(n,C)-structure on M . The
reference z ∈ FM is viewed as an isomorphism z : R2n → Tπ(z)M .

Solution

(i) TpM admits a structure of complex vector space defining a product by complex
numbers by

(a + ib)X = aX + bJpX, X ∈ TpM, a, b ∈R.

Thus the real dimension of TpM is even, and so it is for M .
(ii) We have

ρ
(
GL(n,C)

)= {Λ ∈ GL(2n,R) : Λf = f Λ
}
.

In fact, decomposing Λ in n × n blocks,

Λ =
(

A B

C D

)
,

and by imposing Λf = f Λ, we obtain C = −B , D = A. And conversely.
An almost complex structure J on M is a (1,1) tensor field on M such that

J 2 = −I . The subset P of the bundle of linear frames over M , described in the
hint above, determines a GL(n,C)-structure. In fact, a linear frame z at p ∈ M

is an isomorphism z : R2n → TpM (see Fig. 5.4). Let us see that the acting
group is GL(n,C). In fact, given z, z′ ∈ P , with π(z) = π(z′), we have

f = z−1 ◦ J ◦ z ⇔ z ◦ f ◦ z−1 = J.
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Fig. 5.4 Linear frames
adapted to an almost complex
structure

Then

z−1 ◦ z′ ◦ f ◦ z′−1 ◦ z = z−1 ◦ J ◦ z = f.

that is, z−1 ◦ z′ ∈ GL(n,C).
Conversely, given a GL(n,C)-structure P on M , we consider the operator

Jp in TpM such that

JpX = (z−1 ◦ J ◦ z
)
(X), X ∈ TpM, z ∈ π−1(p) ⊂ P.

By the definition of frame as an isomorphism of R2n on TpM , JpX is an el-
ement of TpM . JpX does not depend, by the definition of GL(n,C), on the
element z ∈ π−1(p). In fact, if z, z′ ∈ π−1(p), then there exists g ∈ GL(n,C)

such that z′ = zg, and then

J ′
pX = (z′ ◦ f ◦ z′−1)

(X) = (z ◦ g ◦ f ◦ g−1 ◦ z−1)(X) = (z ◦ f ◦ z−1)(X).

Moreover, J 2 = z ◦ f ◦ z−1 ◦ z ◦ f ◦ z−1 = −I .

Problem 5.53

(i) Does the sphere S2 admit a structure of complex manifold?
(ii) And what about the sphere S3?

Hint Use the stereographic projections onto the equatorial plane, and identify this
one with the complex plane C.

Solution

(i) Let ϕ1 be the stereographic projection onto the plane z = 0 from the north pole
N = (0,0,1) ∈ S2, and ϕ2 the stereographic projection onto the plane z = 0
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from the south pole S = (0,0,−1) ∈ S2. We have (see Problem 1.28)

ϕ1(a, b, c) =
(

a

1 − c
,

b

1 − c

)
, ϕ2(a, b, c) =

(
a

1 + c
,

b

1 + c

)
,

so the changes of coordinates are

ϕ1 ◦ ϕ−1
2 = ϕ2 ◦ ϕ−1

1 : R2∖{(0,0)
}→ R

2\{(0,0)
}

(a, b) �→
(

a

a2 + b2
,

b

a2 + b2

)
.

Identifying the plane z = 0 with C, we can write

ϕ1(a, b, c) = a

1 − c
+ i

b

1 − c
, ϕ2(a, b, c) = a

1 + c
+ i

b

1 + c
,

so

ϕ1 ◦ ϕ−1
2 = ϕ2 ◦ ϕ−1

1 : C \ {0} → C \ {0}
z = x + iy �→ x

x2 + y2
+ i

y

x2 + y2
.

To see that the changes of coordinates are holomorphic, we have to show
that they satisfy the Cauchy–Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= − ∂v

∂x
,

where u(x, y) = x

x2+y2 , v(x, y) = y

x2+y2 . A computation shows that

∂u

∂x
= −∂v

∂y
,

∂u

∂y
= ∂v

∂x
,

that is, the change of coordinates is anti-holomorphic, instead of holomorphic.
This could be expected from the fact that ϕ2 ◦ ϕ−1

1 changes the orientation (see
Fig. 5.5).

In order for the equations of Cauchy–Riemann to be satisfied, we have to
change the sign of one of the (real or imaginary) components of the change of
coordinates. Consider, instead of ϕ2, the new chart ψ2 = ϕ̄2 given by

ψ2(a, b, c) = a

1 + c
− i

b

1 + c
.

The map ψ2 is a homeomorphism of S2 \{N} on C\{0}, as it is the composition
map

S2 \ {N} ϕ2→ C \ {0} j→ C \ {0},
where j denotes the conjugation map. The new changes of coordinates are

(
ψ2 ◦ ψ−1

1

)
(x + iy) = x

x2 + y2
− i

y

x2 + y2
,
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Fig. 5.5 The map ϕ2 ◦ ϕ−1
1

changes the orientation

and it is immediate that they satisfy the Cauchy–Riemann equations.
(ii) S3 does not admit any complex structure because a complex manifold necessar-

ily has even real dimension (see Problem 5.52).

Problem 5.54 Consider the torus T 2 = S1 × S1 and let (x, y) be the canonical
coordinates (0 < x < 2π, 0 < y < 2π) on T 2. The corresponding coordinate fields
define global fields denoted by ∂/∂x, ∂/∂y. Let J be the almost complex structure
on T 2 given by

J
∂

∂x
= −(1 + cos2 x

) ∂

∂y
, J

∂

∂y
= 1

1 + cos2 x

∂

∂x
.

(i) Show that J is integrable.
(ii) Find the corresponding chart of complex manifold.

Solution

(i) A necessary and sufficient condition for a complex structure J to be integrable
is that its Nijenhuis tensor NJ be identically zero. Since NJ is skew-symmetric
in the covariant indices, we only have to show that NJ ( ∂

∂x
, ∂

∂y
) vanishes. Sub-

stituting, we have

NJ

(
∂

∂x
,

∂

∂y

)
=
(

∂

∂x

(
1 + cos2 x

)) 1

1 + cos2 x

∂

∂y

+
(

∂

∂x

1

1 + cos2 x

)(
1 + cos2 x

) ∂

∂y
= 0.

(ii) We must find coordinates u,v such that

J
∂

∂u
= ∂

∂v
, J

∂

∂v
= − ∂

∂u
.
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We must have

∂

∂x
= ∂u

∂x

∂

∂u
+ ∂v

∂x

∂

∂v
,

∂

∂y
= ∂u

∂y

∂

∂u
+ ∂v

∂y

∂

∂v
, (�)

and applying J in (�),
⎧
⎪⎪⎨

⎪⎪⎩

−(1 + cos2 x)
∂

∂y
= ∂u

∂x

∂

∂v
− ∂v

∂x

∂

∂u
,

1

1 + cos2 x

∂

∂x
= ∂u

∂y

∂

∂v
− ∂v

∂y

∂

∂u
.

(��)

From (�) and (��) it follows that
⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂x

∂

∂u
+ ∂v

∂x

∂

∂v
= (1 + cos2 x)

∂u

∂y

∂

∂v
− (1 + cos2 x)

∂v

∂y

∂

∂u
,

∂u

∂y

∂

∂u
+ ∂v

∂y

∂

∂v
= − 1

1 + cos2 x

∂u

∂x

∂

∂v
+ 1

1 + cos2 x

∂v

∂x

∂

∂u
.

(�)

Both equations in (�) imply

∂u

∂x
= −(1 + cos2 x

)∂v

∂y
,

∂u

∂y
= 1

1 + cos2 x

∂v

∂x
. (��)

It suffices to give a particular solution of (��). From the equations

v = y,
du

dx
= −(1 + cos2 x

)
,

one has a solution of (��), given by

u = A − 3

2
x − 1

2
sinx cosx, v = y.

Problem 5.55 Let π : M → N be a topological covering.

(i) Prove that if N is a complex manifold, then M also is a complex manifold.
Equivalently, M has a unique structure of complex manifold such that π is a
local diffeomorphism.

(ii) If M is a complex manifold, is necessarily N another one?

Solution Let p ∈ M . We define the chart (Up,Φp) around p in the following way:
Let x = π(p) and let Ux be a neighbourhood of x such that Ux is the domain of a
chart (Ux,ϕx) and π : U → π(U) is a homeomorphism. Then we define

Φp = ϕx ◦ (π |Up),

where Up denotes the neighbourhood of p homeomorphic to Ux by π . Thus we
define an atlas on M , and we have to prove that the changes of coordinates in M
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are holomorphic. Notice that dimM = dimN . Let p,q ∈ M such that Up ∩Uq �= ∅,
and let x = π(p), y = π(q). Then we have to prove that the map

Φq ◦ Φ−1
p : Φp(Up ∩ Uq) → Φq(Up ∩ Uq)

is holomorphic. But

Φq ◦ Φ−1
p = ϕy ◦ (π |Up∩Uq ) ◦ (ϕx ◦ (π |Up∩Uq )

)−1

= ϕy ◦ (π |Up∩Uq ) ◦ (π |Up∩Uq )
−1 ◦ ϕ−1

x = ϕy ◦ ϕ−1
x ,

which is holomorphic because N is a complex manifold.
(ii) It is not true, in general. In fact, the map π : S2 → RP2 is a double covering.

S2 is a complex manifold, as we have seen in Problem 5.53, but RP2 is not because
it is not orientable (see Problem 3.10), and every complex manifold is orientable.

Problem 5.56 Let (M,J ) be an almost complex manifold. If ∇ is a linear connec-
tion on M whose torsion tensor T∇ vanishes, define the linear connection ∇̃ by

∇̃XY = ∇XY − 1

4

(
(∇JY J )X + J (∇Y J )X + 2J (∇XJ )Y

)
.

(i) Prove that J∇XJ = −(∇XJ )J .
(ii) Compute the torsion tensor T∇̃ in terms of the Nijenhuis tensor of J .

Solution

(i)

(∇XJ )J + J∇XJ = ∇XJ 2 = ∇X(−I ) = 0.

(ii)

T∇̃(X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

= T∇(X,Y ) − 1

4

(
(∇JY J )X − (∇JXJ )Y − J (∇Y J )X + J (∇XJ )Y

)

= −1

4

(
(∇JY J )X − (∇JXJ )Y + (∇Y J )JX − (∇XJ )JY

)

= −1

4
(∇JY JX − J∇JY X − ∇JXJY + J∇JXY

− ∇Y X − J∇Y JX + ∇XY + J∇XJY )

= −1

4

([JY,JX] + [X,Y ] + J [JX,Y ] + J [X,JY ])= 1

4
N(X,Y ),

where N denotes the Nijenhuis tensor of J and we have applied (i) above in the
third equality.
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Problem 5.57 Let (M,J ) be an almost complex manifold. Prove that the torsion
tensor T and the curvature operator R(X,Y ) of an almost complex linear connection
∇ (that is, a linear connection such that (∇XJ )Y = 0, X,Y ∈ X(M)), satisfy the
following identities:

(i)

T (JX,JY ) − JT (JX,Y ) − JT (X,JY ) − T (X,Y ) = −N(X,Y ),

where N denotes the Nijenhuis tensor of J .
(ii) R(X,Y ) ◦ J = J ◦ R(X,Y ).

Solution

(i)

T (JX,JY ) − JT (JX,Y ) − JT (X,JY ) − T (X,Y )

= J∇JXY − J∇JY X − [JX,JY ] − J∇JXY − ∇Y X + J [JX,Y ]
+ ∇XY + J∇JY X + J [X,JY ] − ∇XY + ∇Y X + [X,Y ] = −N(X,Y ).

(ii)

R(X,Y )JZ = J∇X∇Y Z − J∇Y ∇XZ − J∇[X,Y ]Z = JR(X,Y )Z.

Problem 5.58 Let M be a complex manifold of complex dimension n. Let
{zk}, k = 1, . . . , n, be a system of complex coordinates around a given p ∈ M . If
zk = xk + iyk , let {xk, yk} be the corresponding system of real coordinates around p.
Let TpM , T h

p M , and T
1,0
p M be the real tangent space at p, the holomorphic tan-

gent space at p, and the space of vectors of type (1,0) at p, respectively (see Defi-
nitions 5.11). Prove that there exist unique C-linear isomorphisms

Φp : TpM → T h
p M, Ψp : T h

p M → T 1,0
x M,

with respect to the natural complex structure of each of these spaces given in Defi-
nitions 5.11, such that for every system {zk}, k = 1, . . . , n, we have

Φp

(
∂

∂xk

∣∣∣∣
p

)
= ∂

∂zk

∣∣∣∣
p

, k = 1, . . . , n,

Ψp

(
∂

∂zk

∣∣∣∣
p

)
= 1

2

(
∂

∂xk
− i

∂

∂yk

)

p

, k = 1, . . . , n. (�)

Solution Uniqueness. An R-basis of TpM is {∂/∂xk|p, ∂/∂yk|p}. As we have

i

(
∂

∂xk

∣∣∣∣
p

)
= J

(
∂

∂xk

∣∣∣∣
p

)
= ∂

∂yk

∣∣∣∣
p

,
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it is clear that {∂/∂xk|p} is a C-basis of TpM . Hence Φp is unique. Also Ψp is
unique as {∂/∂zk|p} is a C-basis of T h

p M and

{
1

2

(
∂

∂xk
− i

∂

∂yk

)

p

}

is a C-basis of T
1,0
p M (see Definitions 5.11).

Existence. Each X ∈ TpM is an R-derivation X : C∞
p M →R. Tensoring with C,

we obtain a C-derivation

X ⊗ 1 : C∞
p M ⊗C → C.

As OpM ⊂ C∞
p M ⊗C, restricting X ⊗ 1 to OpM , we obtain

X̃ := (X ⊗ 1)|OpM ∈ T h
p M.

We define Φp : TpM → T h
p M by Φ(X) = X̃. From the very definition of Φp , we

have

Φp(X + Y) = Φp(X) + Φp(Y ), Φp(λX) = λΦp(X),

for all X,Y ∈ TpM , λ ∈R. Moreover, we have

(JX ⊗ 1)zk = JXxk + iJXyk = (dxk
)
p
JX + i

(
dyk

)
p
JX

= J ∗((dxk
)
p

)
X + iJ ∗((dyk

)
p

)
X = −(dyk

)
p
X + i

(
dxk

)
p
X

= i
(
dzk
)
p
X = i

(
(X ⊗ 1)zk

)
.

Hence, Φp is C-linear.
Let us compute Φp(∂/∂xk|p). From the definition, we obtain

dzα
∣∣
p

(
∂

∂xk

∣∣∣∣
p

)̃
=
(

∂

∂xk

∣∣∣∣
p

)̃ (
zα
)=

((
∂

∂xk

∣∣∣∣
p

)
⊗ 1

)(
zα
)= δk

α.

Hence
(

∂

∂xk

∣∣∣∣
p

)̃
= δk

α

∂

∂zα

∣∣∣∣
p

= ∂

∂zk

∣∣∣∣
p

.

Let Θp : T
1,0
p M → T h

p M be the map given by

Θp(Z) = Z̃ = Z|Op(M), Z ∈ T 1,0
p M.
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From its very definition, it follows that Θp is C-linear. Let us compute its expression
in the standard basis (cf. Definitions 5.11). We have

dzα
∣∣
p

(
1

2

(
∂

∂xk
− i

∂

∂yk

)

p

)̃
=
(

1

2

(
∂

∂xk
− i

∂

∂yk

)

p

)̃ (
zα
)

=
(

1

2

(
∂

∂xk
− i

∂

∂yk

)

p

)(
xα + iyα

)= δk
α.

Hence

Θp

(
1

2

(
∂

∂xk
− i

∂

∂yk

)

p

)̃
= δk

α

∂

∂zα

∣∣∣∣
p

= ∂

∂zk

∣∣∣∣
p

.

Therefore, Ψp = Θ−1
p . Moreover, the isomorphisms Φp and Ψp on each fibre extend

naturally to complex vector bundle isomorphisms (see Definitions 5.11)

Φ : T M → T hM, Ψ : T hM → T 1,0M.

We identify the bundles T M , T hM and T 1,0M via Φ and Ψ . Under the isomor-
phisms Φ and Ψ , both T M and T 1,0M are also holomorphic vector bundles.

Finally, we remark:

(a) The election in (�) is motivated by the fact that if f is a holomorphic function,
i.e. ∂f/∂z̄k = 0, then

∂f

∂xk
= ∂f

∂zk
= 1

2

(
∂f

∂xk
− i

∂f

∂yk

)
.

(b) The identification Φ is always tacitly assumed, i.e. one always writes

∂

∂zk
for

1

2

(
∂

∂xk
− i

∂

∂yk

)
and

∂

∂z̄k
for

1

2

(
∂

∂xk
+ i

∂

∂yk

)
.

5.9 Almost Symplectic Manifolds

Problem 5.59 Denote by (q1, . . . , qn,p1, . . . , pn) the usual Cartesian coordinates
of the space R

2n, on which we consider:

(a) The 2-form Ω =∑i dpi ∧ dqi .
(b) A hypersurface S defined by the implicit equation H(q,p) = const.
(c) The vector field X such that iXΩ = −dH .

Prove:

(i) dH(X) = 0, that is, X is tangent to S, and LXΩ = 0.
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(ii) If ω2n−1 is a (2n − 1)-form such that

Ω∧ (n)· · · ∧Ω = ω2n−1 ∧ dH,

then LX(ω2n−1|S) = 0.

Solution

(i) We have to prove that XH = 0, but

XH = (dH)(X) − (iXΩ)(X) = −Ω(X,X) = 0.

(ii) Considering the Lie derivative with respect to X of both sides of the equality

Ω∧ (n)· · · ∧Ω = ω2n−1 ∧ dH , we obtain

n∑

i=1

Ω ∧ · · ·∧
ith place
LXΩ ∧· · · ∧ Ω = (LXω2n−1) ∧ dH + ω2n−1 ∧ LX dH. (�)

As

LXΩ = iX dΩ + diXΩ = diXΩ = −d(dH) = 0

and

LX dH = dLXH = d(XH) = 0,

equation (�) reduces to

(LXω2n−1) ∧ dH = 0. (��)

Let (x1, . . . , x2n−1,H) be a local coordinate system adapted to S, that is, such
that (dH)|S = 0. Then, for some (2n− 2)-form ω2n−2, from (��) it follows that

LXω2n−1 = ω2n−2 ∧ dH + λdx1 ∧ · · · ∧ dx2n−1,

so

0 = (LXω2n−1) ∧ dH = λdx1 ∧ · · · ∧ dx2n−1 ∧ dH,

and thus λ = 0. Hence LXω2n−1 = ω2n−2 ∧ dH , so one has

LX(ω2n−1|S) = ω2n−2|S ∧ (dH)|S = 0

because (dH)|S = 0.

Problem 5.60 Let π : T ∗M → M be the cotangent bundle over a C∞ n-
manifold M . The canonical 1-form ϑ on T ∗M is defined by

ϑω(X) = ω(π∗X), ω ∈ T ∗M, X ∈ TωT ∗M.
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1. Compute the local expression of ϑ and prove that the 2-form Ω = dϑ is non-
degenerate, that is, that iXΩ = 0 implies X = 0.

2. Show that Ω∧ (n)· · · ∧Ω �= 0 at each point. Hence T ∗M is orientable. Ω is called
the canonical symplectic form on T ∗M .

Let H ∈ C∞(T ∗M) and let σ : (a, b) → T ∗M be a C∞ curve with tangent
vector σ ′.

3. Write locally the differential equations

iσ ′(Ω ◦ σ) + dH ◦ σ = 0 (Hamilton equations).

4. Show that if σ is a solution, H ◦ σ is a constant function.
5. Solve the Hamilton equations for the case M = Rn, and

H = 1

2
k
(
q1)2 + 1

2
m

n−1∑

i=1

p2
i + 1

2
p2

n,

where k and m stand for constants.

Solution

1. Given local coordinates (q1, . . . , qn) on M , they induce local coordinates
(q1, . . . , qn,p1, . . . , pn) on T ∗M putting ωx = pi(ωx)dqi |x for ωx ∈ T ∗M ,
x ∈ M . If

X =
n∑

i=1

(
λi ∂

∂qi

∣∣∣∣
ωx

+ μi ∂

∂pi

∣∣∣∣
ωx

)
∈ Tωx T

∗,

then from the definition of ϑ it follows that

ϑ(X) = ωx(π∗Xωx ) = ωx

(
n∑

i=1

λi ∂

∂qi

∣∣∣∣
x

)
=
∑

j

(
pj (ωx)dqj

∣∣
x

)
(

n∑

i=1

λi ∂

∂qi

∣∣∣∣
x

)

= λipi(ωx) =
∑

i

pi(ωx)
(
dqi
∣∣
ωx

)
(X) =

(∑

i

pi dqi

)
(X),

and so ϑ =∑i pi dqi ; hence Ω = dϑ =∑i dpi ∧ dqi , which is obviously non-
degenerate.

2. From part 1 we have, Sn being the group of permutations of order n, and sgnσ

the sign of the permutation σ ∈ Sn:

Ωn = (dp1 ∧ dq1 + · · · + dpn ∧ dqn
)∧ · · · ∧ (dp1 ∧ dq1 + · · · + dpn ∧ dqn

)

=
∑

σ∈Sn

dpσ(1) ∧ dqσ(1) ∧ · · · ∧ dpσ(n) ∧ dqσ(n)



5.9 Almost Symplectic Manifolds 331

= (−1)1+2+···+n
∑

σ∈Sn

dqσ(1) ∧ · · · ∧ dqσ(n) ∧ dpσ(1) ∧ · · · ∧ dpσ(n)

= (−1)
n(n+1)

2
∑

σ∈Sn

(sgnσ)2 dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn

= n!(−1)
n(n+1)

2 dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn �= 0.

3. Put σi = qi ◦ σ , σ̃i = pi ◦ σ . We have σ ′ =∑i (
dσi

dt
∂

∂qi + dσ̃i

dt
∂

∂pi
). Therefore,

iσ ′(Ω ◦σ) =
∑

i

(
σ ′(pi)dqi

∣∣
σ

−σ ′(qi
)

dpi

∣∣
σ

)=
∑

i

(
dσ̃i

dt
dqi
∣∣
σ

− dσi

dt
dpi |σ

)
.

Hence

iσ ′(Ω ◦σ)+dH ◦σ =
∑

i

((
dσ̃i

dt
+ ∂H

∂qi
◦σ

)
dqi
∣∣
σ
+
(

∂H

∂pi

◦σ − dσi

dt

)
dpi |σ

)
,

and the Hamilton equations are

dσ̃i

dt
+ ∂H

∂qi
◦ σ = 0,

∂H

∂pi

◦ σ − dσi

dt
= 0.

4. If σ is a solution, then dσ̃i

dt
= − ∂H

∂qi ◦ σ and dσi

dt
= ∂H

∂pi
◦ σ . So

d

dt
(H ◦ σ) =

∑

i

((
∂H

∂qi
◦ σ

)
dσi

dt
+
(

∂H

∂pi

◦ σ

)
dσ̃i

dt

)
= 0.

Thus H ◦ σ is a constant function.
5. (a)

dσ̃1

dt
= − ∂H

∂q1
◦ σ = −kσ1,

dσ̃i

dt
= −∂H

∂qi
◦ σ = 0,

for i = 2, . . . , n, hence:
(b) σ̃i = Ai , i = 2, . . . , n, with Ai constants;
(c) dσi

dt
= ∂H

∂pi
◦ σ = mσ̃i , for i = 1, . . . , n − 1;

(d) dσn

dt
= ∂H

∂pn
◦ σ = σ̃n.

From (b) and (c), it follows that σi = mAit +Bi , for i = 2, . . . , n−1, Ai,Bi ∈R.
From (a) and (c), we deduce that dσ1

dt
= mσ̃1 and dσ̃1

dt
= −kσ1, hence

d2σ1

dt2
+ kmσ1 = 0,

and we have four cases:

(i) k �= 0, m = 0, σ1 = A, σ̃1 = −kAt + B;
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(ii) k = 0, m �= 0, σ1 = mCt + D, σ̃1 = C;
(iii) km = ω2 > 0, σ1 = E cosωt + F sinωt, σ̃1 = − ω

m
(E sinωt − F cosωt);

(iv) km = −ω2 < 0, σ1 = G coshωt + H sinhωt ,

σ̃1 = − ω

m
(G sinhωt + H coshωt).

Finally, from (b) and (d), we have dσn

dt
= An, thus σn = Ant +Bn, for An,Bn ∈R.

Problem 5.61 Consider the trivial principal bundle π : M × U(1) over the C∞
n-manifold M . We use the same notations as in Problem 5.26.

(i) Let Φt be the flow of a vector field X ∈ X(P ). Prove that X is U(1)-invariant
if and only if Φt is an automorphism of P , for all t ∈R.

(ii) Let p : T ∗M → M be the cotangent bundle over M . Each coordinate system
(U,q1, . . . , qn) on M induces a coordinate system (p−1(U), q1, . . . , qn,p1,

. . . , pn) by setting w =∑i pi(w)dqi |x for all covector w ∈ T ∗
x M .

If Φt is the flow of a U(1)-invariant vector field X ∈ X(P ), then Φ̃t is a
flow on T ∗M , which generates a vector field X̃. Prove that

X̃ =
∑

i

(
f i ∂

∂qi
−
(

∂g

∂qi
+
∑

h

∂f h

∂qi
ph

)
∂

∂pi

)
,

where

X =
∑

i

f i
(
q1, . . . , qn

) ∂

∂qi
+ g

(
q1, . . . , qn

) ∂

∂α
,

and α stands for the local coordinate on U(1).
(iii) Let ϑ be the canonical form on T ∗M and let Φ(x,α) = (φ(x),α + ψ(x)) be

an automorphism of P . Compute Φ∗ϑ .
(iv) Conclude that every automorphism of P leaves the canonical symplectic form

dϑ invariant.
(v) Prove that LX̃ dϑ = 0, for every U(1)-invariant vector field X.

Solution

(i) The vector field X is U(1)-invariant if and only if for every z ∈ U(1) we have
Rz · X = X. This means that Rz commutes with Φt ; i.e. Rz ◦ Φt = Φt ◦ Rz, or
equivalently, Φt(u) · z = Φt(u · z), thus proving that Φt is an automorphism.

(ii) If Φ(x,α) = (φ(x),α + ψ(x)), from part 4 in Problem 5.26, we have

Φ̃(w) = (φ−1)∗w − (d(ψ ◦ φ−1))
φ(x)

, w ∈ T ∗
x M.

As p ◦ Φ̃ = φ ◦ p, we have

qi ◦ Φ̃ = qi ◦ φ. (�)
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Moreover, from the very definition of the coordinates (pi), we obtain

(pi ◦ Φ̃)(w) = pi

((
φ−1)∗w − (d(ψ ◦ φ−1))

φ(x)

)

=
∑

h

ph(w)pi

((
φ−1)∗(dqh

∣∣
x

))

−
∑

j

∂(ψ ◦ φ−1)

∂qj

(
φ(x)

)
pi

(
dqj

∣∣
φ(x)

)

=
∑

h

ph(w)
∂(qh ◦ φ−1)

∂qi

(
φ(x)

)− ∂(ψ ◦ φ−1)

∂qi

(
φ(x)

)
.

Hence

pi ◦ Φ̃ =
∑

h

ph

(
∂(qh ◦ φ−1)

∂qi
◦ φ

)
− ∂(ψ ◦ φ−1)

∂qi
◦ φ. (��)

If

Φt(x,α) = (φt (x),α + ψt(x)
)
,

then substituting Φ̃t for Φ̃ in (�), (��), taking derivatives with respect to t , and
then t = 0, we obtain the formula for X̃ in the statement.

(iii) We have

Φ̃∗ϑ =
∑

i

(∑

h

ph

(
∂(qh ◦ φ−1)

∂qi
◦ φ

)
− ∂(ψ ◦ φ−1)

∂qi
◦ φ

)
d
(
qi ◦ φ

)

=
∑

i,h

ph

(
∂(qh ◦ φ−1)

∂qi
◦ φ

)
d
(
qi ◦ φ

)− φ∗ d
(
ψ ◦ φ−1)

=
∑

h

ph dqh − φ∗ d
(
ψ ◦ φ−1)= ϑ − dψ.

(iv) From the previous formula, we have

Φ∗ dϑ = dϑ.

(v) It follows taking derivatives in Φ∗
t dϑ = dϑ , for all t ∈ R.

Problem 5.62 Let ϑ be the canonical 1-form on the cotangent bundle T ∗M over a
C∞ n-manifold M . Prove that dϑ is the only 2-form Ω on T ∗M such that:

(i) The vertical bundle of the natural projection p : T ∗M → M is a Lagrangian
foliation, that is, the fibres of p are totally isotropic submanifolds.
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(ii) If η is a differential 1-form on M and we denote by τη the translation

τη : T ∗M → T ∗M, τη(w) = w + η(x), w ∈ T ∗
x M, x ∈ M,

then

τ ∗
η Ω = Ω + p∗ dη.

(iii) LX̃Ω = 0, for every U(1)-invariant vector field X ∈ X(M × U(1)) (see Prob-
lem 5.26).

Solution First we prove that dϑ satisfies (i), (i) and (iii). Item (i) follows directly
from the local expression Ω =∑i dpi ∧ dqi , as the tangent space to the fibres of p

is locally spanned by ∂/∂pi . As for (iii), it follows from Problem 5.26.
Moreover, if η =∑i fi dqi , fi ∈ C∞M , then the equations of τη are

qi ◦ τη = qi, pj ◦ τη = pj + fj .

Hence

τ ∗
η dϑ = dτ ∗

η ϑ =
∑

i

d
(
(pi ◦ τη)d

(
qi ◦ τη

))=
∑

i

d(pi + fi) ∧ dqi

=
∑

i

(
dpi ∧ dqi + dfi ∧ dqi

)= dϑ + p∗ dη.

Conversely, assume Ω satisfies (i)–(iii). From (i) we have

Ω =
∑

i

(
Ahi dqh ∧ dqi + Bh

i dph ∧ dqi
)
,

Ahi + Aih = 0, Ahi,B
h
i ∈ C∞(T ∗M

)
.

Let us impose condition (ii) on Ω . We have

τ ∗
η Ω =

∑

h,i

(
(Ahi ◦ τη)dqh ∧ dqi + (Bh

i ◦ τη

)
(dph + dfh) ∧ dqi

)

=
∑

h,i

(
Ahi dqh ∧ dqi + Bh

i dph ∧ dqi
)+

∑

i

dfi ∧ dqi.

Hence

Ahi ◦ τη +
∑

j

(
B

j
i ◦ τη

) ∂fj

∂qh
= Ahi +

∑

j

∂fj

∂qh
δij ,

Bh
i ◦ τη = Bh

i .

(�)
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Let X = ∂/∂ql in (iii). Then, we obtain

LX̃Ω =
∑

h,i

(
∂Ahi

∂ql
dqh ∧ dqi + ∂Bh

i

∂ql
dph ∧ dqi

)
= 0.

Accordingly,

∂Ahi

∂ql
= ∂Bh

i

∂ql
= 0,

that is, Ahi and Bh
i depend only on (p1, . . . , pn).

Next, let X = ql∂/∂α in (iii). Then we obtain X̃ = −∂/∂pl , and

LX̃Ω =
∑

h,i

(
−∂Ahi

∂pl

dqh ∧ dqi − ∂Bh
i

∂pl

dph ∧ dqi

)
= 0.

Hence

∂Ahi

∂pl

= ∂Bh
i

∂pl

= 0.

Therefore Ahi and Bh
i are constant functions.

Now, let us impose condition (iii) for X = qk∂/∂ql , for two given indices k, l.
We have

X̃ = qk ∂

∂ql
− pl

∂

∂pk

.

Hence

LX̃Ω =
∑

k<i

(Ali − Ail)dqk ∧ dqi +
∑

i<k

(Ail − Ali)dqi ∧ dqk

−
∑

i

(
Bk

i dpl ∧ dqi − Bi
l dpi ∧ dqk

)= 0.

Thus Ali = Ail . As Ail + Ali = 0, we have Ali = 0. Accordingly, the equation (�)
now reads as

∑

j

(
B

j
i − δij

) ∂fj

∂qh
= 0.

As the functions ∂fj /∂qh are arbitrary, we have B
j
i = δij , thus concluding.

Problem 5.63 Let (M,Ω) be an almost symplectic manifold and let F1, . . . ,Fk be
smooth functions on M . Suppose that

N = {p ∈ M : F1(p) = 0, . . . ,Fk(p) = 0
}

is a submanifold of the manifold M of codimension k.
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(i) Prove that the corresponding Hamiltonian vector fields

{XFi
}, iXFi

Ω = −dFi, i = 1, . . . , k,

are independent at each point of N .
Denote by A(p) = (aij (p)) the matrix-function on M with

aij (p) = Ω(XFi
,XFj

)(p).

(ii) Prove that (N,Ω|N) is an almost symplectic manifold (see Definitions 5.12) if
and only if the restriction of the function M → R, p �→ detA(p), to N ⊂ M is
nowhere-vanishing.

Solution Fix a point p ∈ N ⊂ M . Denote by Wp the subspace of TpM spanned by
the vectors XF1(p), . . . ,XFk

(p). Since

TpN = {Y ∈ TpM : dFi(p)(Y ) = 0
}

and by definition −dFi = iXFi
Ω , we obtain that the tangent space TpN is the or-

thogonal complement to the subspace Wp in TpM with respect to the form Ω .
Therefore, the restrictions Ωp|TpN and Ωp|Wp of the form Ωp have the same kernel,
which is equal to TpN ∩ Wp . Now, the form Ωp|Wp is non-degenerate if and only if
detA(p) �= 0.

Problem 5.64 Denote by (x1, . . . , xn, y1, . . . , yn) the usual Cartesian coordinates
of the vector (x, y) of the space R

n ×R
n, on which we consider:

(a) The 2-form Ω =∑n
i=1 dyi ∧ dxi .

(b) The subset (the total space of the tangent bundle of the n-sphere)

M =
{

(x, y) ∈R
n ×R

n : F1(x, y) =
n∑

i=1

(
xi
)2 = 1, F2(x, y) =

n∑

i=1

xiyi = 0

}
.

(c) The function H(x,y) =∑n
i=1(y

i)2.

Prove:

1. The set M is a submanifold of Rn ×R
n and the restriction Ω|M of the 2-form Ω

determines a symplectic structure on M .
2. The Hamiltonian vector field Xh of the restriction h = H |M with respect to the

form Ω|M has the following form

Xh(x, y) = 2
n∑

i=1

yi ∂

∂xi
− 2

(
n∑

j=1

(
yj
)2
)

n∑

i=1

xi ∂

∂yi
, (x, y) ∈ M.
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Solution

(i) To simplify the notation denote by 〈· , ·〉 the canonical scalar product in R
n

and by vX + wY , where v = (v1, . . . , vn),w = (w1, . . . ,wn) ∈ R
n, the tan-

gent vector
∑n

i=1 vi∂/∂xi +∑n
i=1 wi∂/∂yi . Similarly, we put v dx + w dy =∑n

i=1 vi dxi +∑n
i=1 widyi .

The set M is a submanifold of the manifold R
n×R

n because the differentials
dF1 = 2x dx and dF2 = y dx + x dy are linearly dependent if and only if x = 0.

Since Ω(vX + wY,v′X + w′Y) = 〈w,v′〉 − 〈v,w′〉, it is easy to check that
the Hamiltonian vector fields XF1 and XF2 of the function F1 and F2 have the
form

XF1(x, y) = −2xY, XF2(x, y) = xX − yY,

respectively. Because of the relation

Ω(XF1 ,XF2) = −dF1(XF2) = (−2x dx)(xX − yY ) = −2〈x, x〉,
the pair (M,Ω|M) is an almost symplectic manifold (see Problem 5.63). The
form Ω|M is closed because so is Ω .

(ii) To find the Hamiltonian vector field Xh of the function h = H |M , note that the
Hamiltonian vector field XH of the function H on Rn × Rn is equal to 2yX

(dH = 2y dy). This vector field is not tangent to M because

dF2(XH ) = (x dy + y dx)(2yX) = 2〈y, y〉.
Since the vector fields XF1 and XF2 are orthogonal to the tangent space of M

with respect to the form Ω , they are independent and transversal to M (at each
point of M), the Hamiltonian vector field Xh coincides on M with the vector
field

Z = XH + a1(x, y)XF1 + a2(x, y)XF2 = 2yX − 2a1xY + a2(xX − yY ),

where the functions a1, a2 are defined uniquely by the condition that Z is tan-
gent to M at each point of M . As

x dx(Z) = a2〈x, x〉 and (x dy + y dx)(Z) = 2〈y, y〉 − 2a1〈x, x〉,
we have a2(x, y) = 0 and a1(x, y) = 〈y, y〉 on M .

Problem 5.65 Let (M,Ω) be a symplectic manifold.
Prove:

(i) The Poisson bracket

{· , ·} : C∞M × C∞M → C∞M,

{H1,H2} = −XH1(H2) = −dH2(XH1) = Ω(XH2 ,XH1),
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where Hj ∈ C∞M and

iXHj
Ω = −dHj, j = 1,2,

(XHj
is the Hamiltonian vector field of Hj ) determines a Lie algebra structure

on C∞M and satisfies the Leibniz rule, i.e.

{H1,H2} = −{H2,H1} (skew-symmetry),
{{H1,H2},H3

}= {H1, {H2,H3}
}− {H2, {H1,H3}

}
(Jacobi identity),

{H1,H2H3} = H2{H1,H3} + H3{H1,H2} (Leibniz rule).

(ii) The vector field [XH1 ,XH2] is the Hamiltonian vector field of the function
−{H1,H2}.

(iii) The Lie bracket of two locally Hamiltonian vector fields is Hamiltonian.

Solution

(i) The Poisson bracket is skew-symmetric because so is the symplectic form Ω .
Moreover,

LXHj
Ω = iXHj

dΩ + diXHj
Ω = diXHj

Ω = −d(dHj) = 0. (�)

To prove the Jacobi identity, let us prove that the vector field [XH1,XH2] is
the Hamiltonian vector field of the function −{H1,H2}. We have

i[XH1 ,XH2 ]Ω = LXH1
(iXH2

Ω) − iXH1
(LXH2

Ω)

= LXH1
(iXH2

Ω) (by (�))

= −LXH1
(dH2) (by the definition of XH2)

= −(iXH1
◦ d + d ◦ iXH1

)(dH2) (by formula (7.3))

= −d(iXH1
dH2)

= d{H1,H2}.
Now from the definition of the Poisson bracket we obtain that

{{H1,H2},H3
}= −X{H1,H2}H3 = [XH1 ,XH2]H3

= XH1(XH2H3) − XH2(XH2H3)

= {H1, {H2,H3}
}− {H2, {H1,H3}

}
.

To prove the Leibniz rule it is sufficient to note that by definition

XH1(H2H3) = H2(XH1H3) + H3(XH1H2).
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(ii) Let X1 and X2 be two locally Hamiltonian vector fields on M . Then for any
point x ∈ M there exists a connected neighbourhood U ⊂ M and local func-
tions f U

1 , f U
2 ∈ C∞U such that

iXj
Ω = −df U

j , j = 1,2.

Since the functions f U
1 , f U

2 on U are defined uniquely up to constant sum-
mands, the Poisson brackets {f U

1 , f U
2 } determine a well-defined smooth func-

tion on M (it is clear that constant functions lie in the centre of the Lie algebra
(C∞M, {·, ·})).

(iii) As we proved above, the Hamiltonian vector field of this function coincides up
to sign with the Lie bracket [X1,X2].

Problem 5.66 Let G be a Lie group acting on the left on a symplectic manifold
(M,Ω) and let g be the Lie algebra of G. Suppose that each diffeomorphism g ∈ G

preserves the symplectic form Ω , i.e. g∗Ω = Ω .
Prove:

(i) For any X ∈ g the vector field X̂ generated by one-parameter group exp tX ⊂ G

is locally Hamiltonian, i.e.

d(i
X̂
Ω) = 0.

Suppose, in addition, that each vector field X̂, X ∈ g, is Hamiltonian with
Hamiltonian function fX : M →R (i.e. −dfX = i

X̂
Ω) and the map X �→ fX is

linear. Let {·, ·} denote the standard Poisson bracket on the symplectic manifold
(M,Ω). Prove:

(ii) For arbitrary fixed elements g ∈ G and X ∈ g, the difference
(
g−1)∗fX − fAdg X

is constant on each connected component of M .
(iii) For arbitrary fixed elements X,Y ∈ g, the difference

{fX,fY } − f[X,Y ]

is constant on each connected component of M .
(iv) If

(
g−1)∗fX = fAdg X, X ∈ g, g ∈ G, (∗)

then

{fX,fY } = f[X,Y ], X,Y ∈ g. (∗∗)

(v) If the manifold M and the Lie group G are connected then the two conditions
(∗) and (∗∗) are equivalent, i.e. the linear map X �→ fX is a homomorphism
from the Lie algebra g into the Lie algebra C∞M with respect to the standard
Poisson bracket on (M,Ω) if and only if the map X �→ fX is G-equivariant
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with respect to the adjoint action of G on g and the standard action of G on
C∞M .

Solution

(i) It is sufficient to note that the symplectic form Ω is closed, that is, dΩ = 0,
and G-invariant. In particular, (exp tX)∗Ω = Ω and, consequently, L

X̂
Ω = 0.

But

LX = d ◦ iX + iX ◦ d

(see equation (7.3)). Therefore,

d(i
X̂
Ω) = (d ◦ i

X̂
+ i

X̂
◦ d)Ω = L

X̂
Ω = 0.

(ii) It is sufficient to note that

d
(
g∗fX

) = g∗(dfX) = −g∗(i
X̂
Ω) = −i

(g−1·X̂)

(
g∗Ω

)

= −iÂd
g−1 X

Ω = d(fAd
g−1 X)

because X̂ is the Hamiltonian vector field of the function fX .
(iii) Note that the bracket [X̂, Ŷ ] of the vector fields X̂ and Ŷ is the Hamiltonian

vector field of the function −{fX,fY } and

[X̂, Ŷ ] = −[̂X,Y ]

(see Problems 4.92 and 5.65). Now (iii) follows immediately from the follow-
ing chain of expressions

−d{fX,fY } = i−[X̂,Ŷ ]Ω = i[̂X,Y ]Ω = −df[X,Y ].

(iv) It is sufficient to note that the condition (∗∗) is an infinitesimal version of (∗):

d

dt

∣∣∣∣
t=0

{(
exp(−tY )

)∗
fX − fAdexp tY X

}

= dfX(−Ŷ ) − f[Y,X] = Ω(X̂, Ŷ ) + f[X,Y ]
= −{fX,fY } + f[X,Y ]

because by definition {fX,fY } = −Ω(X̂, Ŷ ) and the map X �→ fX is linear.
Suppose now that the manifold M and the Lie group G are connected. Since

the map X �→ fX is linear, by (ii) there exists a unique linear function Zg ∈ g∗
such that

(
g−1)∗fX − fAdg X = Zg(X). (�)
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Then to prove (iv) consider for a fixed vector X ∈ g the function Zg(X) defined
by (�) as a function on the Lie group G. Then, as we showed above,

d

dt

∣∣∣∣
t=0

Zexp tY (X) = d

dt

∣∣∣∣
t=0

{(
exp(−tY )

)∗
fX − fAdexp tY X

}

= f[X,Y ] − {fX,fY } (��)

for any vector Y ∈ g. Moreover, by definition,

Zgh(X) = ((gh)−1)∗fX − fAdgh X

= (g−1)∗[(h−1)∗fX − fAdh X

]+ [(g−1)∗fAdh X − fAdgh X

]

= (g−1)∗(Zh(X)
)+ Zg(Adh X) = Zh(X) + Zg(Adh X)

for all g,h ∈ G, X ∈ g. In particular, for any Y ∈ g we have

Z(exp tY )h(X) = Zh(X) + Zexp tY (Adh X).

In other words, the derivative of the function Z : G → g∗, g �→ Zg , with re-
spect to g at any point h ∈ G in each direction vanishes if and only if the
derivative of this function at the identity e in each direction vanishes. There-
fore, the map Z vanishes if and only if

d

dt

∣∣∣∣
t=0

Zexp tY (X) = 0, X,Y ∈ g,

because Ze = 0 by definition and the Lie group G is connected. Now taking
into account relations (�) and (��) we conclude (v).
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Chapter 6
Riemannian Geometry

Abstract The chapter begins with some definitions and results on Riemannian ge-
ometry. Then, it presents a collection of problems covering the following topics:
Riemannian connections, geodesics, the exponential map, curvature and Ricci ten-
sors, characteristic classes, isometries, homogeneous Riemannian manifolds and
Riemannian symmetric spaces, and left-invariant metrics on Lie groups. Some
examples of the topics under study include problems dedicated to operators on
Riemannian manifolds: Gradient, divergence, codifferential, curl, Laplacian, and
Hodge star operator. Other problems consider affine, Killing, conformal, projec-
tive, harmonic or Jacobi vector fields. We focus further on some cases of submani-
folds, surfaces in R

3, and pseudo-Riemannian manifolds. Cartan method of moving
frames is used in a number of problems as a means of putting the reader in touch
with this powerful method. Some problems are related to constant curvature, in or-
der to show whether the Riemannian manifold under study has this property or not,
thus granting the reader an approach to the techniques used in this setting. In the
present edition, the section concerning Riemannian connections has been enlarged,
including six new problems on almost complex structures. The section on Rieman-
nian geodesics also includes four new problems on special metrics. Moreover, a
completely new section is devoted to a generalisation of Gauss’ Lemma. The sec-
tion on homogeneous Riemannian and Riemannian symmetric spaces contains two
new problems about general properties of homogeneous Riemannian manifolds and
two new problems on specific three-dimensional Riemannian spaces. Moreover, a
short novel section deals with some properties of the energy of Hopf vector fields.
The section on left-invariant metrics on Lie groups contains in particular two new
problems: One gives in a detailed way the structure of the Kodaira–Thurston mani-
fold; and the other furnishes the de Rham cohomology of a specific nilmanifold.

. . . evolvamus primum conditiones, ut expressio
∑

βι,ι′ dsι dsι′ (. . . ), in for-
mam

∑
αι,ι′ dsι dsι′ , constantibus coefficientibus αι,ι′ affectam transformari

possit (. . . ) Expressionem
∑

αι,ι′ dsι dsι′ , si est, id quo supponimus, forma
positive ipsarum dx, semper in formam

∑
ι dx

2
ι redigi posse constat. Unde

si
∑

βι,ι′ dsι dsι′ in formam
∑

αι,ι′ dsι dsι′ transformari potest, redigi etiam
potest in formam

∑
ι dx

2
i et vice versa. Quaeramus igitur, quando in formam
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∑
ι dx

2
i transformari possit. Sit determinans

∑±b1,1b2,2 · · ·bn,n = B et de-
terminantes partiales= βι,ι′ ; quo pacto erit

∑
ι βι,ι′bι,ι′ = B et

∑
ι βι,ι′bι,ι′ = 0

si ι �= ι′. Iam (. . . ) expressionibus eruitur

2
∑

ν

∂2xν

∂sι′∂sι′′
∂xν

∂sι
= ∂bι,ι′

∂sι′′
+ ∂bι,ι′′

∂sι′
− ∂bι′,ι′′

∂sι

et si haec quantitas per pι,ι′,ι′′ designatur (. . . ) Quantitatibus pι,ι′,ι′′ iterum
differentiatis (. . . ) substitutis valoris (. . . )1

∂2bι,ι′′

∂sι′∂sι′′′
+ ∂2bι′,ι′′′

∂sι∂sι′′
− ∂2bι,ι′′′

∂sι′∂sι′′
− ∂2bι′,ι′′

∂sι∂sι′′′

+ 1

2

∑

ν,ν′
(pν,ι′,ι′′′pν′,ι,ι′′ − pν,ι,ι′′′pν′,ι′,ι′′)βν,ν′

B
= 0.

BERNHARD RIEMANN, “Commentatio mathematica, qua respondere tentatur
ab Illma Academia Parisiense propositae: (. . . ).” Gesammelte Math. Werke,
ed. Heinrich Weber, 2nd ed., Teubner 1892, pp. 391–404. (With kind permis-
sion from Springer publishers.)

J’ai été conduit à la théorie des espaces symétriques (. . . ) par la considéra-
tion des espaces riemanniens dont la courbure est conservée par le transport
paralèlle (. . . ) Le nom de espaces riemanniens symétriques, que je leur ai
donné plus tard, tient à ce qu’ils sont encore caractérisés par la condition que
la symétrie par rapport a un point (. . . ) soit une transformation isométrique
(. . . ) j’ai determiné les espaces riemanniens symétriques (. . . ) ils admettent un
group transitif de déplacements G. J’indique alors deux méthodes differents
(. . . ) La première consiste a déterminer le group d’isotropie (. . . ) q’indique
comme les vecteurs issues d’un point O sont transformés par le subgroup of

1“(. . . ) Let us first set out the conditions under which the expression
∑

βι,ι′ dsι dsι′ , (. . . ) can
be transformed to the form

∑
αι,ι′ dsι dsι′ , with constant coefficients αι,ι′ . (. . . ) If the expres-

sion
∑

αι,ι′ dsιdsι′ is, as we supposed, a positive form in the dx themselves, we know that
it can always be rewritten in the form

∑
ι dx

2
ι . Hence, if

∑
βι,ι′ dsι dsι′ can be transformed

to the form
∑

αι,ι′ dsι dsι′ , it can also be rewritten in the form
∑

ι dx
2
i and conversely. Let∑±b1,1b2,2 · · ·bn,n = B denote the determinant and let βι,ι′ denote the partial determinants, with

the conditions that
∑

ι βι,ι′bι,ι′ = B and
∑

ι βι,ι′bι,ι′ = 0 if ι �= ι′. Now (. . . ) denoting the obtained
quantities

2
∑

ν

∂2xν

∂sι′∂sι′′
∂xν

∂sι
= ∂bι,ι′

∂sι′′
+ ∂bι,ι′′

∂sι′
− ∂bι′,ι′′

∂sι

by pι,ι′,ι′′ (. . . ) differentiating again the quantities pι,ι′,ι′′ (. . . ) and substituting values (. . . ) then

∂2bι,ι′′

∂sι′∂sι′′′
+ ∂2bι′,ι′′′

∂sι∂sι′′
− ∂2bι,ι′′′

∂sι′∂sι′′
− ∂2bι′,ι′′

∂sι∂sι′′′
+ 1

2

∑

ν,ν′
(pν,ι′,ι′′′pν′,ι,ι′′ − pν,ι,ι′′′pν′,ι′,ι′′ )βν,ν′

B
= 0.
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G qui laisse invariant ce point. La seconde méthode consiste á déterminer
directment le group G lui-même et conduit en fin de compte à la recherche
des formes reelles des groupes simples, problème que j’avait resolu en 1914
(. . . ).2

ÉLIE CARTAN, “Notice sur les travaux scientifiques, XII. Les espaces
symétriques: (. . . ).” Oeuvres Complètes, Publiées avec le concours du
C.N.R.S, vol. I, p. 92, Gauthier-Villars, Paris, 1952. (Reproduced with kind
permission from Dunod Éditeur, Paris. Not for re-use elsewhere).

6.1 Some Definitions and Theorems on Riemannian Geometry

Definitions 6.1 Let V be a vector space of dimension n with a non-degenerate
symmetric bilinear form. It is said that V has signature (k, n− k) if, expressing the
form as a sum of squares, there are k negative squares and n− k positive squares.

A metric tensor g on a differentiable manifold M is a symmetric non-degenerate
(0,2) tensor field on M of constant signature. A (pseudo)-Riemannian manifold is
a pair (M,g) of a differentiable manifold M and a metric tensor g on M . If there is
no danger of confusion, one simply writes M .

Let t1, . . . , tn be the canonical coordinates on R
n, and let ϕ be a coordinate map

with domain U ⊂M , such that xi = t i ◦ ϕ. If ϕ is a conformal map from U onto
R
n, with respect to the usual metric of R

n, it is said that the coordinate system
(U,x1, . . . , xn) is isothermal or conformal (hence it is also orthogonal).

Given a Riemannian metric g on a connected manifold M , we define the distance
function dg(p, q) on M as follows. The distance dg(p, q) between two points p
and q is, by definition, the infimum of the lengths of all piecewise differentiable
curves of class C1 joining p and q . The function dg defines the metric on the set
M , in particular, dg(p, q)= 0 only if p = q . The topology defined by the distance
function (metric) dg is the same as the manifold topology of M .

Definition 6.2 Let (M1, g1), (M2, g2) be pseudo-Riemannian manifolds, and let f
be a C∞ function on the manifold M1. The warped product M =M1 ×f M2 is the
product manifold M1 ×M2 equipped with the metric

g = π∗1 g1 + (f ◦ π1)
2π∗2 g2,

where πi : M→Mi , i = 1,2, denote the projection maps.

2“I was led to the theory of symmetric spaces (. . . ) when considering the Riemannian spaces whose
curvature is preserved under parallel transport (. . . ) The name Riemannian symmetric spaces I gave
them later reflects that they are characterised by the condition that the symmetry with respect to
a point be an isometric transformation (. . . ) I determined the symmetric spaces (. . . ) they admit a
transitive group of motions G (. . . ) I point out two different methods (. . . ) The first one consists in
determining the isotropy group, which indicates how the vectors from a point O are transformed
by the subgroup of G keeping this point invariant. The second method consists in determining
directly the group G and actually leads to the research of the real forms of simple groups, problem
which I had solved in 1914 (. . . ).”
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Definition 6.3 Let (M,g) be a Riemannian manifold with a linear connection ∇ ,
with connection map κ : T TM→ TM (see Definitions 5.1). The Sasaki metric or
connection metric g̃(· , ·) on the manifold TM is defined by

g̃(U,V )= g(π∗U,π∗V )+ g(κU,κV ), U,V ∈X(TM).

(Notice that it is a metric on the total space of the bundle T TM over TM , and not on
the total space of the bundle TM overM . Note also that although a linear connection
on M is considered, the connection map is defined in terms of a connection on the
total space of TM (see Definitions 5.1), this connection being defined by the linear
connection on M .)

Theorem 6.4 (Koszul Formula for the Levi-Civita Connection) The only torsion-
less metric connection ∇ on a (pseudo)-Riemannian manifold (M,g) is given by

2g(∇XY,Z)=Xg(Y,Z)+ Yg(Z,X)−Zg(X,Y )
+ g([X,Y ],Z)− g([Y,Z],X)+ g([Z,X], Y ).

Definitions 6.5 Let R denote the curvature tensor field of a linear connection ∇ on
a differentiable manifold M . Given Xp,Yp,Zp ∈ TpM , one defines R(Xp,Yp)Zp
by

R(Xp,Yp)Zp =∇Xp∇YZ −∇Yp∇XZ −∇[X,Y ]pZ,
whereX,Y,Z are vector fields onM whose values at p are respectivelyXp,Yp,Zp .
Similarly, if (M,g) is a (pseudo)-Riemannian manifold, one defines, given the vec-
tor fields X,Y,Z,W ∈X(M),

R(Xp,Yp,Zp,Wp)= g
(
R(Zp,Wp)Yp,Xp

)
.

Definitions 6.6 A Riemannian manifold M or a Riemannian metric g on M is
said to be geodesically complete if its Riemannian connection is complete, that is,
if every geodesic of M can be extended for arbitrarily large values of its canonical
parameter.

Let N be a submanifold of M , and ν(N) its normal bundle. The exponential map
of M gives, by restriction, a map exp : ν(N)→M , which is a diffeomorphism on
a neighbourhood of the zero section. For p ∈ N , let νp(N) be the fibre of ν(N)
over p. Then q ∈ νp(N) is a focal point of N if exp∗ is singular at q . If ρ is the ray
from 0 to q in νp(N), then expq is called a focal point of N along ρ, which is a
geodesic perpendicular to N . When N is a single point, say p, so that ν(N)= TpM ,
then a focal point is called a conjugate point to p. The order of a focal point is the
dimension of the linear space annihilated by exp∗.

A minimal segment is a geodesic segment which minimizes arc length between
its ends. A minimal point q of p along a geodesic γ is a point on γ such that the
segment of γ from p to q is minimal but no larger segment from p is minimal. The
set of all minimal points of p is called the minimum (or cut) locus of p.
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Theorem 6.7 For a connected Riemannian manifold (M,g) the following condi-
tions are mutually equivalent:

(a) (M,g) is geodesically complete.
(b) (M,dg) is a complete metric space (with respect to the distance function dg).
(c) Every bounded subset of (M,dg) is relatively compact (has compact closure).

Moreover, for a connected geodesically complete Riemannian manifold M , any
two points p and q of M can be joined by a minimizing geodesic, in particular,
expp(TpM)=M for any p ∈M .

Proposition 6.8 Let N be the subset of the total space TM of the tangent bun-
dle over M such that if (p,X) ∈ N then expp X is defined, and define the map
exp : N→M by exp(p,X)= expp X. Then N is an open set and exp is C∞ on N .
Let TM0 be the zero section of TM , that is, TM0 = {(p,0) ∈ TM : p ∈ M} ⊂
TM ; then there exists an open subset N̂ in TM such that TM0 ⊂ N̂ ⊂ N . Let
Φ : N̂→M ×M be defined by Φ(p,X)= (p, expp X). Then Φ is C∞ and Φ∗ is
non-singular and surjective at all points of TM0.

Definition 6.9 Let γ be a C∞ curve in the n-manifold M that is an injective map
on the open interval I ⊂R. Let e1, . . . , en be vector fields on γ that are independent
at each γ (t) and with en(t)= γ ′(t) for all t ∈ I . Let {θ1, . . . , θn} be the basis dual
to {e1, . . . , en} for each t . By Proposition 6.8, there exists a neighbourhood V of
TM0 such that the map Φ is a diffeomorphism of V onto a neighbourhood UM of
the diagonal in M ×M . Let

U = {(p,X) ∈ V : p = γ (t), θn(X)= 0 for some t ∈ I}.
Then Ψ =Φ|U is a one-to-one C∞ map of the submanifold U into M ×M . More-
over, Ψ∗ is non-singular at each point of U , so that Ψ is an embedding of U into
M ×M . The map Υ = pr2 ◦Ψ then gives a one-to-one C∞ map of U onto an open
neighbourhood W of the image set γ (I). Define Fermi coordinates xi on q ∈W
by letting Υ −1(q) = (γ (t), Y ) in W and xi(q) = θi(Y ) for i = 1, . . . , n − 1 and
xn(q)= t .

More special types of Fermi coordinates can be defined by taking e1, . . . , en to be
parallel along a geodesic, and in the Riemannian case, one can take an orthonormal
parallel basis along a geodesic.

Definition 6.10 A Riemannian metric g on a homogeneous space M = G/H is
called a G-invariant metric (or simply an invariant metric) if each a ∈G acts on M
as an isometry, that is, gap(a∗X,a∗Y) = gp(X,Y ) for each p ∈M , X,Y ∈ TpM ,
a ∈G. In this case, (M =G/H,g) is called a homogeneous Riemannian space.

Definition 6.11 The divergence of a (0, r) tensor field α on the Riemannian mani-
fold (M,g) is defined by

(divα)p(v1, . . . , vr )=
∑

i

(∇ei α)(ei, v1, . . . , vr−1),
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∇ being the Levi-Civita connection, vi ∈ TpM and {ei} an orthonormal basis of
TpM , p ∈M .

In the particular case of α being a differential form on (M,g), its codifferential
is defined by

δα =−divα.

Definition 6.12 Let (M,g) be an n-dimensional Riemannian manifold. Then the
Clifford multiplication on forms is defined as follows. If θ ∈ Λ1M and ω ∈ ΛrM ,
then

θ ·ω= θ ∧ω− ιθ�ω, ω · θ = (−1)r (θ ∧ω+ ιθ�ω).
By declaring the product to be bilinear and associative, we can use these properties
to define the product of any two forms.

Definition 6.13 Let (M,g) be an n-dimensional Riemannian manifold. Then the
Dirac operator on forms is defined as

Dω=
n∑

i=1

θi · ∇eiω, ω ∈ΛrM,

where {ei}, i = 1, . . . , n, is any local frame and {θi} its metrically dual local
coframe.

Definition 6.14 Let Δ = dδ + δd be the Laplacian on a Riemannian manifold
(M,g). The elements of

Hr = {ω ∈ΛrM :Δω= 0
}

are called the harmonic r-forms on M .

Definition 6.15 Let M be a Riemannian 4n-manifold. The Hodge star operator de-
composes the space of harmonic forms H 2n on M into subspaces H 2n± with eigen-
values ±1. The Hirzebruch signature is defined by

τ(M)= dimH 2n+ − dimH 2n− .

This signature equals the usual topological signature.

Theorem 6.16 (Hirzebruch Signature Formula for Dimension 4) The signature
τ(M) of a 4-dimensional compact oriented differentiable manifold M is related
to its first Pontrjagin form p1(M) by

τ(M)= 1

3

∫

M

p1(M).
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Definition 6.17 Let (M,g) be a 3-dimensional compact orientable Riemannian
manifold. Let Ω = (Ωi

j ) denote the curvature form of the Levi-Civita connection ∇ ,
and consider the closed form T P1(Ω) on the bundle O+(M) of positively-oriented
orthonormal frames on M , given by

1

2
T P1(Ω)= 1

8π2

∑

1�i<j�3

ωij ∧Ωi
j −

1

8π2
ω1

2 ∧ω2
3 ∧ω3

1,

where ωij andΩi
j denote, respectively, the connection forms and the curvature forms

of the linear connection ∇ .
The differential form 1

2T P1(Ω) gives rise to a Chern–Simons invariant J (M,g)

∈ R/Z as follows: Since such an M is globally parallelisable, a section s : M →
O+(M) exists. The integral

I (s)=
∫

s(M)

1

2
T P1(Ω)

is a real number, and for another section s′ the difference I (s)− I (s′) is an integer.
The invariant J (M,g) is defined to be I (s) mod 1.

Let Γ, Γ̃ be two connections in a principal bundle P = (P,M,G). On a trivial-
ising neighbourhood, any such Γ can be described by a g-valued differential 1-form
A and the corresponding curvature by

F = dA+ 1

2
[A,A].

Then, if I ∈ I r (G) denotes a G-invariant polynomial on g, it can be proved that
the differential 2r-form I (F r) does not depend on the particular trivialisation of P .
Hence, the various locally defined differential forms I (F r) fit together to yield a
differential 2-form on M , again denoted by I (F r), which is closed.

Let Ã, F̃ be the connection form and the curvature form corresponding to Γ̃ .
Then consider the connection 1-form

At = Ã+ t (A− Ã), t ∈ [0,1],
with corresponding curvature form

Ft = dAt + 1

2
[At,At ].

One has the following transgression formula, sometimes called Chern–Simons for-
mula:

Theorem 6.18

I
(
F r
)− I(F̃ r

)= dQ(A, Ã),
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where Q(A, Ã) is defined by

Q(A, Ã)= r
∫ 1

0
I (A− Ã,Ft , . . . ,Ft )dt.

Definitions 6.19 Given a linear connection ∇ on a differentiable manifold M and
a geodesic γ on M , a Jacobi field along γ is a vector field Y along γ satisfying

∇γ ′∇γ ′Y +∇γ ′
(
T
(
Y,γ ′

))+R(Y,γ ′)γ ′ = 0,

where T denotes the torsion tensor of ∇ .

Theorem 6.20 Let M,N be pseudo-Riemannian manifolds, with N connected, and
let Φ : M→N be a local isometry. Suppose that given any geodesic γ : [0,1]→N

and a point p ∈M such that Φ(p) = γ (0), there exists a lift γ̃ : [0,1] →M of γ
through Φ such that γ̃ (0)= p. Then Φ is a pseudo-Riemannian covering map.

Definition 6.21 Let (P,π,M,G) a principal bundle. The holonomy group (resp.,
restricted holonomy group) of the connection Γ in P with reference point p ∈M is
the group HolM(p) (resp., Hol0M(p)) consisting of diffeomorphisms of the fiber
π−1(p) onto itself obtained under parallel transport along closed curves (resp.,
closed curves homotopic to zero) starting and ending at p. Since the holonomy
groups at two points of a manifold are conjugated subgroups of G, we shall write
simply Hol(Γ ) or Hol0(Γ ) for a given manifold M and Γ as above.

Theorem 6.22 Let Φ,Ψ : M→N be isometries of pseudo-Riemannian manifolds.
If M is connected and Φ(p) = Ψ (p), Φ∗p = Ψ∗p , at some point p ∈ M , then
Φ = Ψ .

Definition 6.23 An affine symmetric space is a triple (G,H,σ) consisting of a Lie
group G, a closed subgroup H of G, and an involutive automorphism σ (that is,
σ 2 = id) of G such that

Gσ
0 ⊂H ⊂Gσ ,

where Gσ denotes the closed subgroup of G consisting of all the elements left fixed
by σ , and Gσ

0 stands for the identity component of Gσ .

Definition 6.24 A (pseudo)-Riemannian manifold (M,g) is said to be an Einstein
manifold if the Ricci tensor is proportional to the metric, r = λg, for some con-
stant λ.

Definition 6.25 A Riemannian manifold of constant sectional curvature is called a
(real) space form.
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Definition 6.26 The generalised Heisenberg group or Heisenberg group H(p,q)

is the Lie group of matrices of the form
⎛

⎝
Iq A v

0 Ip w

0 0 1

⎞

⎠ , A ∈M(q × p,R), v ∈Rq, w ∈Rp.

Definition 6.27 A vector field X on a Riemannian manifold (M,g) is harmonic if
the differential form dual with respect to the metric, X�, defined at each p ∈M by
X
�
p(Y )= gp(Xp,Yp), Y ∈X(M), is harmonic.

Theorem 6.28 (Hodge Decomposition Theorem) For each integer r with 0 � r � n,
the space Hr defined in Definition 6.14 is finite-dimensional, and we have the fol-
lowing direct sum decompositions of ΛrM :

ΛrM =Δ(ΛrM
)⊕Hr = dδ

(
ΛrM

)⊕ δd
(
ΛrM

)⊕Hp

= d
(
Λr−1M

)⊕ δ(Λr+1M
)⊕Hp.

Consequently, the equation Δω = α has a solution ω ∈ ΛrM if and only if the
differential r-form α is orthogonal to the space of harmonic r-forms.

Corollary 6.29 (Corollary of Green’s Theorem) Let M be a compact Riemannian
manifold with volume form v. Then

∫

M

Δf v = 0, f ∈ C∞M.

Theorem 6.30 (Generalised Gauss’ Theorema Egregium) Let M be a hypersurface
of a Riemannian manifold M̃ , let P be a subspace of dimension 2 of TpM , p ∈M ,
and let K(P ), K̃(P ) be the sectional curvature of P in M and M̃ , respectively; then

K̃(P )=K(P )− detL,

where L is the Weingarten map.

Remark 6.31 When M̃ is 3-dimensional, the above theorem shows that the deter-
minant of L is independent of the embedding (i.e. independent of L) and depends
only on the Riemannian structure of M̃ and M .

Definition 6.32 A C∞ map Φ : (M,g)→ (M̃, g̃) between Riemannian mani-
folds is said to be a strictly conformal map of ratio λ if there exists a strictly
positive function λ ∈ C∞M such that, for all p ∈M and X,Y ∈ TpM , it satisfies
g̃(Φ∗X,Φ∗Y)= λ(p)g(X,Y ).

Theorem 6.33 Let (M,g) be a Riemannian manifold of dimension n and let
I (M,g) be its isometry group, which is a Lie group. If n �= 4, then I (M,g) does not
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contain any closed subgroup of dimension r with

1

2
n(n− 1)+ 1< r <

1

2
n(n+ 1).

Moreover, (M,g) has constant curvature if and only if dim I (M,g)= 1
2n(n+ 1).

(See [18, Chap. II, Theorem 3.2].)

Definitions 6.34 Let M be an m-dimensional manifold isometrically immersed in
an (m+ n)-dimensional manifold N . Let ∇′ denote covariant differentiation in N .
Given X,Y ∈X(N), since (∇′XY)p is defined at each p ∈M , we decompose it into
tangential and normal components,

(∇′XY
)
p
= (∇XY)p + αp(X,Y ),

where (∇XY)p ∈ TpM and αp(X,Y ) ∈ (TpM)⊥. Then it is proved [19, II, p. 11]
that ∇XY is the covariant differentiation for the Levi-Civita connection of M . One
can show that the map α : X(M)×X(M)→ (X(M))⊥ is a symmetric bilinear map
called the second fundamental form of M (for the given immersion in N ).

We may locally choose n−m fields of unit normal vectors ξ1, . . . , ξm−n that are
orthogonal at each point and we may then express α by

α(X,Y )=
m−n∑

i=1

hi(X,Y )ξi .

Let X ∈X(M) and ξ ∈ (X(M))⊥. Writing the decomposition

(∇′Xξ
)
p
=−(AξX)p + (DXξ)p,

into tangential (to M) and normal components of (∇′X)p , one can easily prove that
both the tangent and the normal vector fields are differentiable. Moreover [19, II,
p. 14],

g(AξX,Y )= g
(
α(X,Y ), ξ

)

and Aξ is a symmetric linear transformation of TpM with respect to gp . Since for
any p ∈M , we have a map

ξ ∈ (TpM)⊥ �→Aξ ,

it follows that 1
n

trAξ is a linear function on (TpM)⊥. The unique element H ∈
(TpM)⊥ such that

1

n
trAξ = g(ξ,H), ξ ∈ (TpM)⊥,
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is called the mean curvature normal at p. If ξ1, . . . , ξm−n is an orthonormal basis of
(TpM)⊥, then

1

n
trAξi = g(ξi,H), i =m+ 1, . . . ,m+ n,

so that

H = 1

n

m+n∑

i=m+1

(trAξi )ξi .

The submanifold M is said to be a minimal submanifold of N (for the given isomet-
ric immersion) if the mean curvature normal H vanishes at each point.

Definitions 6.35 Let (M̃, g, J ) be an almost Hermitian manifold with metric g
and almost complex structure J . An isometrically immersed real submanifold M of
M̃ is said to be a complex submanifold (resp., a totally real submanifold) of M̃ if
each tangent space to M is mapped into itself (resp., into the subspace normal with
respect to g) by the almost complex structure J .

Let Φ be an isometric immersion of the Riemannian manifold M into the Rie-
mannian manifold M̃ . Then M is said to be an invariant submanifold of M̃ if for
all X,Y ∈ TM , the map R̃(Φ∗X,Φ∗Y), where R̃ denotes the Riemann curvature
tensor on M̃ , leaves the tangent space to Φ(M) invariant.

A Kähler manifold is called a complex space form if it has constant holomorphic
sectional curvature.

Theorem 6.36 An invariant submanifold M of a complex manifold M̃ is either a
complex or a totally real submanifold. If M is a complex submanifold, then it is a
minimal submanifold.

Theorem 6.37 Let x1 : U ⊂R
2→ S1 and x2 : U ⊂R

2→ S2 be two parametrisa-
tions of the surfaces S1, S2 in R

3. If the metrics inherited on S1 and S2 by the usual
metric of R

3 are proportional with constant of proportionality λ > 0, then the map
x2 ◦ x−1

1 : x1(U)→ S2 is locally conformal.

Definition 6.38 A pseudo-Riemannian submanifold N of a pseudo-Riemannian
manifold (M,g) is a submanifold such that the metric tensor inherited by g on N is
non-degenerate.

6.2 Riemannian Manifolds

Problem 6.39 Prove that on any differentiable manifold M there exists some Rie-
mannian metric.

Hint The manifold M is paracompact (see Definitions 1.1).
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Solution Consider some atlas on M consisting of coordinate systems {(Uα,ϕα) :
α ∈A} satisfying the following property: For all α ∈A the image ϕα(Uα) is an open
unit ball in R

n and the closure Ūα is compact. Since the manifold M is paracompact
there exists a locally finite covering {Vβ}β∈B which is a refinement of {Uα}α∈A.
Each V̄β is compact as closed subset of some Ūα .

By the axiom of choice there exists a function c : B→A such that for each β ∈ B
one has Vβ ⊂ Uc(β). The standard Riemannian structure on R

n and the map ϕα|Vβ ,
α = c(β), determine a Riemannian metric gβ on each open set Vβ . By the Partition
of Unity Theorem 1.2, one has a partition of unity

∑
β ψβ = 1, where the support

of ψβ lies in Vβ . The formula

g =
∑

β

ψβgβ

determines a well-defined metric g on M because each ψβ � 0.

Problem 6.40 Let (M,g) be a Riemannian n-manifold. Prove:

(i) Given α,β ∈ T ∗pM and an orthonormal basis {ei}, i = 1, . . . , n, of TpM , and

denoting by g−1 the contravariant metric associated to g, one has

g−1(α,β)=
∑

i

α(ei)β(ei).

(ii) For X ∈ TpM , one has

g−1(α,X�
)= α(X)= g(α�,X),

where

� : TpM→ T ∗pM, X� = g(X, ·), � : T ∗pM→ TpM,

α� = g−1(α, ·),

are the musical isomorphisms (named “flat” and “sharp”, respectively) associ-
ated to g.

Solution

(i) In general, if (gij (p)) is the matrix of g with respect to {ei}, then (gij (p)) =
(gij (p))

−1 is the matrix of g−1 with respect to the dual basis {θi} to {ei} in
T ∗pM . In this case, (gij (p))= (δij ) with respect to {ei}, so

g−1(α,β)=
∑

i,j

gijαiβj =
∑

i,j

δij αiβj =
∑

i

αiβi =
∑

i

α(ei)β(ei).
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(ii)

g−1(α,X�
)=
∑

i,j,k

gij (p)αigkj (p)X
k =
∑

i,k

δikαiX
k =
∑

i

αiX
i = α(X),

g
(
α�,X

)=
∑

i,j,k

gij (p)g
ki(p)αkX

j =
∑

j,k

δkj αkX
j =
∑

j

αjX
j = α(X).

Problem 6.41 Let X1 and X2 be the coordinate vector fields for a set of orthogonal
coordinates on a surface. Prove that there are isothermal coordinates (also called
conformal coordinates) with the same domain of definition and the same coordinate
curves (as images) if and only if

X2X1

(

log
g11

g22

)

= 0,

where g =∑2
i,j=1 gij dxi ⊗ dxj is the metric.

Solution We have orthogonal coordinates x1, x2 with coordinate fields X1 =
∂/∂x1, X2 = ∂/∂x2. Since g(X1,X2)= 0, the metric is

g = g11 dx1 ⊗ dx1 + g22 dx2 ⊗ dx2.

If there exist coordinates y1, y2 with the same coordinate curves (as images) it must
be that

∂x1

∂y2
= ∂x2

∂y1
= ∂y1

∂x2
= ∂y2

∂x1
= 0

and thus

Y1 = ∂

∂y1
= ∂x1

∂y1

∂

∂x1
, Y2 = ∂

∂y2
= ∂x2

∂y2

∂

∂x2
. (�)

If the coordinates are isothermal, there exists ν such that

g̃ = ν(dy1 ⊗ dy1 + dy2 ⊗ dy2).

That is, g̃11 = g̃22 = ν, where g̃ij are the components of g in the new coordinate
system; but the change of metric is

gij =
∑

k,l

g̃kl
∂yk

∂xi

∂yl

∂xj
,

that is,

g11 = g̃11
∂y1

∂x1

∂y1

∂x1
+ g̃22

∂y2

∂x1

∂y2

∂x1
=
(
∂y1

∂x1

)2

g̃11 = λ
(
x1)g̃11,
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g22 = g̃11
∂y1

∂x2

∂y1

∂x2
+ g̃22

∂y2

∂x2

∂y2

∂x2
=
(
∂y2

∂x2

)2

g̃22 = μ
(
x2)g̃22.

Since g̃11 = g̃22 it follows that g11
g22
= λ(x1)

μ(x2)
. Since g is positive definite, g11 and

g̃11 are positive, hence λ > 0, and similarly μ > 0. Thus λ(x1)/μ(x2) > 0. Taking
logarithms, we have

∂

∂x2

∂

∂x1
log

g11

g22
= ∂

∂x2

∂

∂x1

{
logλ

(
x1)− logμ

(
x2)}= 0.

Conversely, if X2X1(log g11
g22
)= 0, then

log
g11

g22
= ϕ(x1)−ψ(x2),

for some functions ϕ,ψ , thus g11
g22
= eϕ(x

1)

eψ(x2)
. We define

Y1 = 1
√

eϕ(x1)
X1, Y2 = 1

√
eψ(x2)

X2,

and coordinates y1, y2 such that ∂

∂y1 = Y1, ∂

∂y2 = Y2, or equivalently,

dy1 =
√

eϕ(x1) dx1, dy2 =
√

eψ(x2) dx2.

The change of coordinates is possible, as the determinant of the Jacobian matrix is

∂(x1, x2)

∂(y1, y2)
= 1
√

eϕ(x1)+ψ(x2)
�= 0.

In the new coordinates, the metric g̃ is given by

g̃11 = g11
∂x1

∂y1

∂x1

∂y1
+ g22

∂x2

∂y1

∂x2

∂y1
= g11

1

eϕ(x1)
,

g̃22 = g11
∂x1

∂y2

∂x1

∂y2
+ g22

∂x2

∂y2

∂x2

∂y2
= g22

1

eψ(x2)
,

g̃12 = g̃21 = 0.

Hence

g̃11

g̃22
= g11

g22

eψ(x
2)

eϕ(x1)
= 1.

Thus y1, y2 are isothermal coordinates, with the same coordinate curves (as images)
as x1, x2.
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Problem 6.42 Write the line element of R3 \ {0} in spherical coordinates, and iden-
tify R

3 \ {0} as a warped product.

Solution With the parametrisation (see Remark 1.4) in the spherical coordinates

x = r sin θ cosϕ,

y = r sin θ sinϕ, r ∈R+, θ ∈ (0,π), ϕ ∈ (0,2π),

z= r cos θ,

we get

ds2 = dx2 + dy2 + dz2 = (d(r sin θ cosϕ)
)2 + (d(r sin θ sinϕ)

)2 + (d(r cos θ)
)2

= dr2 + r2(dθ2 + sin2 θ dϕ2).

Moreover, we have the diffeomorphism

R
3 \ {0}→R

+ × S2, v �→
(

|v|, v|v|
)

,

and since for r = 1, ds2 furnishes the line element on S2, we have, with the notation
as in Definition 6.2,

R
3 \ {0} ∼=R

+ ×r S2,

where ∼=, means “isometric to.”

Problem 6.43 (The Round Metric on Sn) Let ϕn : [−π
2 ,

π
2 ]n−1×[−π,π]→R

n+1

be the map defined by the equations:
⎧
⎪⎪⎨

⎪⎪⎩

x1 = sin θ1,

xi = (∏i−1
j=1 cos θj ) sin θi, i = 2, . . . , n,

xn+1 =∏n
j=1 cos θj ,

(�)

with −π
2 � θi � π

2 , i = 2, . . . , n; −π � θn � π .
Prove:

(i) imϕn = Sn.
(ii) The restriction of ϕn to (−π

2 ,
π
2 )

n is a diffeomorphism onto an open subset of
the sphere.

(iii) If g(n) = ϕ∗n((dx1)2 + · · · + (dxn+1)2), then

g(n) =
n∑

i=1

(
i−1∏

j=1

cos2 θj

)
(
dθi
)2
, ∀n� 1,

with
∏k

j=1 cos2 θj = 1 for k < 1.
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Solution

(i) Let ϕn = (ϕ1
n, . . . , ϕ

n+1
n ) be the components of ϕn. From the very definition of

this map it follows that

⎧
⎪⎨

⎪⎩

ϕin = ϕin−1, i = 1, . . . , n− 1,

ϕnn = ϕnn−1 sin θn,

ϕn+1
n = ϕnn−1 cos θn.

(��)

These formulas show, by induction on n, that imϕn = Sn, taking into account
that for n= 1 we have ϕ1(θ

1)= (sin θ1, cos θ1) and hence the statement holds
obviously in this case.

(ii) From the formulas (�) we obtain

∂(x1, . . . , xn)

∂(θ1, . . . , θn)
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

cos θ1 0 0 · · · 0
∗ cos θ1 cos θ2 0 · · · 0

∗ ∗ . . . · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · ∏n
j=1 cos θj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= cos θ1 · (cos θ1 cos θ2) · · ·
(

n∏

j=1

cos θj
)

= cosn θ1 · cosn−1 θ2 · · · · · cos θn.

Hence on the open subset (−π
2 ,

π
2 )

n−1 × ((−π,−π
2 )∪ (−π

2 ,
π
2 )∪ (π2 ,π)) we

have

∂(x1, . . . , xn)

∂(θ1, . . . , θn)
�= 0.

Moreover, ϕn is injective on (−π
2 ,

π
2 )

n−1 × (−π,π), for ϕn(θ)= ϕn(θ ′), with
θ = (θ1, . . . , θn), θ ′ = (θ ′1, . . . , θ ′n), means according to (��):

ϕin(θ)= ϕin
(
θ ′
)
, i = 1, . . . , n− 1, (†)

ϕnn−1(θ) sin θn = ϕnn−1

(
θ ′
)

sin θ ′n, (††)

ϕnn−1(θ) cos θn = ϕnn−1

(
θ ′
)

cos θ ′n. (†††)

As ϕnn−1(θ) > 0, ϕnn−1(θ
′) > 0, from equations (††)–(†††) we obtain ϕnn−1(θ)=

ϕnn−1(θ
′); hence θn = θ ′n, and proceeding by recurrence on n, from equations

(�) we conclude that θ = θ ′.
(iii) We have g(1) = (dθ1)2 obviously. Hence the formula in the statement of (iii)

holds true in the case n= 1. Assume n� 2. We have
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g(n) = (dϕ1
n

)2 + · · · + (dϕn−1
n

)2 + (dϕnn
)2 + (dϕn+1

n

)2

= (dϕ1
n−1

)2 + · · · + (dϕn−1
n−1

)2 + (sin θn dϕnn−1 + ϕnn−1 cos θn dθn
)2

+ (cos θn dϕnn−1 − ϕnn−1 sin θn dθn
)2

= (dϕ1
n−1

)2 + · · · + (dϕn−1
n−1

)2 + (dϕnn−1

)2 + (ϕnn−1

)2(dθn
)2

= ϕ∗n−1

((
dx1)2 + · · · + (dxn)2)+ (ϕnn−1

)2(dθn
)2

= g(n−1) + (ϕnn−1

)2(dθn
)2

=
n−1∑

i=1

(
i−1∏

j=1

cos2 θj

)
(
dθi
)2 +

(
n−1∏

j=1

cos2 θj

)
(
dθn
)2

(by the induction hypothesis)

=
n∑

i=1

(
i−1∏

j=1

cos2 θj

)
(
dθi
)2
.

6.3 Riemannian Connections

Problem 6.44 Let M be an n-dimensional Riemannian manifold, and Y a vector
field defined along a curve γ (t) in M . The covariant derivative DY(t)/dt of Y(t)=
Yγ (t) is defined by

DY(t)

dt
=∇dγ /dt Y,

where ∇ denotes the Levi-Civita connection of the metric. If Y is given by
Y(t) = Y i(t)(∂/∂xi)γ (t) in local coordinates xi and γ (t) is given by γ (t) =
(γ 1(t), . . . , γ n(t)), then

dγ

dt
=

n∑

i=1

dγ i(t)

dt

∂

∂xi

and

DY(t)

dt
=

n∑

i=1

(
dY i(t)

dt
+

n∑

j,k=1

Γ i
jk

dγ j (t)

dt
Y k(t)

)
∂

∂xi
, (�)

where Γ i
jk are the Christoffel symbols of ∇ with respect to that local coordinate

frame, given by

∇ ∂

∂xi

∂

∂xj
=

n∑

k=1

Γ k
ij

∂

∂xk
.
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Let U be an open neighbourhood of (u0, v0) in R
2 with coordinates (u, v) and let

f : U→M be a C∞ map. Consider the two tangent vector fields ∂f/∂u and ∂f/∂v
to the curves v = const and u= const, respectively, and let DX/∂u, DX/∂v be the
covariant derivatives of any vector field X along these respective curves.

(i) Using the previous expression (�) for DY/dt , prove by direct computation that

D

∂v

∂f

∂u
= D

∂u

∂f

∂v
.

(ii) Which property of the Levi-Civita connection does the equality in (i) corre-
spond to?

The relevant theory is developed, for instance, in Hicks [16].

Solution

(i) We have

∂f

∂u
= f∗ ∂

∂u
,

∂f

∂v
= f∗ ∂

∂v
,

and

D

∂v

∂f

∂u
= covariant derivative along t �→ f (u, t) of

∂f

∂u
,

D

∂u

∂f

∂v
= covariant derivative along t �→ f (t, v) of

∂f

∂v
.

Let

∂f

∂u
=

n∑

i=1

λi
(

∂

∂xi
◦ f
)

,
∂f

∂v
=

n∑

i=1

μi
(

∂

∂xi
◦ f
)

,

where λi , μi are functions on U .
Then,

D

∂v

∂f

∂u
=∇ ∂

∂v

n∑

i=1

λi
(

∂

∂xi
◦f
)

=
n∑

i=1

(
∂λi

∂v
+

n∑

j,k=1

(
Γ i
jk ◦f

)
μjλk

)(
∂

∂xi
◦f
)

.

Similarly,

D

∂u

∂f

∂v
=

n∑

i=1

(
∂μi

∂u
+

n∑

j,k=1

(
Γ i
jk ◦ f

)
λjμk

)(
∂

∂xi
◦ f
)

.

But since

∂f

∂u
=

n∑

i=1

λi
(

∂

∂xi
◦ f
)

= f∗ ◦ ∂

∂u
=

n∑

i=1

∂(xi ◦ f )
∂u

(
∂

∂xi
◦ f
)

,
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we have λi = ∂(xi◦f )
∂u

. Hence

∂λi

∂v
= ∂2(xi ◦ f )

∂v ∂u
= ∂μi

∂u
.

Thus, as Γ i
jk = Γ i

kj , the claim proceeds.
(ii) The property used is that ∇ is torsionless. The converse is immediate from the

above local expressions of D
∂v

∂f
∂u

and D
∂u

∂f
∂v

.

Problem 6.45 Let (M,g) be a Riemannian manifold. Prove that for X ∈X(M) one
has

|LXg|2 = 2|∇X|2 + 2 tr(∇X ◦ ∇X) ∈ C∞M,

with respect to the extension of g to a metric on T ∗M ⊗ T ∗M , where:

(a) |LXg| denotes the length of the Lie derivative LXg.
(b) ∇ denotes the Levi-Civita connection of g.
(c) |∇X|2 =∑i g(∇eiX,∇eiX), where (ei) is a g-orthonormal frame on a neigh-

bourhood of p ∈M .
(d) tr(∇X ◦ ∇X)=∑i g(∇∇ei XX, ei).
The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution The extension of g to a metric on the fibre bundle T ∗M ⊗ T ∗M is the
map

〈· , ·〉 : (⊗2T ∗M
)⊗ (⊗2T ∗M

)→R

defined by

〈η1 ⊗ η2,μ1 ⊗μ2〉 = g
(
η
�
1,μ

�
1

)
g
(
η
�
2,μ

�
2

)
, η1, η2,μ1,μ2 ∈ T ∗M.

Given a g-orthonormal basis {ei} at p ∈M , we have g(X,Y )=∑i g(X, ei)g(Y, ei).
Hence for any η1 ⊗ η2 ∈ T ∗M ⊗ T ∗M we have

〈η1 ⊗ η2, η1 ⊗ η2〉 =
∑

i,j

g
(
η
�
1, ei

)2
g
(
η
�
2, ej

)2 =
∑

i,j

η1(ei)
2η2(ej )

2

=
∑

i,j

(
(η1 ⊗ η2)(ei, ej )

)2
,

so that for any h ∈ T ∗M ⊗ T ∗M one has 〈h,h〉 =∑i,j (h(ei, ej ))
2.

In particular, the length of the Lie derivative of g with respect to a local orthonor-
mal frame (ei) in a neighbourhood of p ∈M is given by

|LXg|2 =
∑

i,j

(
(LXg)(ei, ej )

)2
.
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Hence

|LXg|2 =
∑

i,j

(
(LXg)(ei, ej )

)2 =
∑

i,j

(
LXg(ei, ej )− g(LXei, ej )− g(ei,LXej )

)2

=
∑

i,j

(
Xδij − g(∇Xei, ej )+ g(∇eiX, ej )− g(ei,∇Xej )+ g(ei,∇ej X)

)2

=
∑

i,j

(
g(∇eiX, ej )+ g(ei,∇ej X)

)2

= 2
∑

i,j

(
g(∇ej X, ei)g(∇ej X, ei)+ g(∇eiX, ej )g(∇ej X, ei)

)

= 2
∑

i

(∑

j

g
(∇ej X,g(∇ej X, ei)ei

)+ g(∇∑
j g(∇ei X,ej )ej X, ei)

)

= 2
∑

i

(
g(∇eiX,∇eiX)+ g(∇∇ei XX, ei)

)= 2
(|∇X|)2 + 2 tr(∇X ◦ ∇X).

Problem 6.46 Let g be a Hermitian metric on an almost complex manifold (M,J ),
i.e. a Riemannian metric satisfying

g(JX,JY )= g(X,Y ), X,Y ∈X(M).

We define a tensor field F of type (0,2) on M by

F(X,Y )= g(X,JY ), X,Y ∈X(M).

Prove:

(i) F is skew-symmetric (thus it is a 2-form on M , called the fundamental 2-form
of the almost Hermitian manifold (M,g,J )).

(ii) F is invariant by J , that is, F(JX,JY )= F(X,Y ).
Suppose, moreover, that ∇ is any linear connection such that ∇g = 0. Then

prove:
(iii) (∇XF)(Y,Z)= g(Y, (∇XJ )Z).
(iv) g((∇XJ )Y,Z)+ g(Y, (∇XJ )Z)= 0.

Solution

(i)

F(Y,X) = g(Y,JX)= g(JY,J 2X
)=−g(JY,X)=−g(X,JY )

= −F(X,Y ).
(ii)

F(JX,JY ) = g
(
JX,J 2Y

)=−g(JX,Y )=−g(J 2X,JY
)= g(X,JY )

= F(X,Y ).
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(iii)

∇XF(Y,Z)= (∇XF)(Y,Z)+ F(∇XY,Z)+ F(Y,∇XZ),
∇Xg(Y,JZ)= (∇Xg)(Y,JZ)+ g(∇XY,JZ)+ g(Y,∇XJZ)

= g(∇XY,JZ)+ g
(
Y, (∇XJ )Z

)+ g(Y,J∇XZ)
= F(∇XY,Z)+ g

(
Y, (∇XJ )Z

)+ F(Y,∇XZ).
Thus, (∇XF)(Y,Z)= g(Y, (∇XJ )Z).

(iv) Since F is skew-symmetric, ∇XF is also skew-symmetric. In fact,

(∇XF)(Y,Z)=∇XF(Y,Z)− F(∇XY,Z)− F(Y,∇XZ)
=−∇XF(Z,Y )+ F(Z,∇XY)+ F(∇XZ,Y )
=−(∇XF)(Z,Y ).

Thus, by (iii),

g
(
(∇XJ )Y,Z

) = g
(
Z, (∇XJ )Y

)= (∇XF)(Z,Y )=−(∇XF)(Y,Z)
= −g(Y, (∇XJ )Z

)
.

Problem 6.47 The complex tangent space T c
pM of a manifold M at p is the com-

plexification of the tangent space TpM , i.e.

T c
pM = TpM ⊗R C.

The complex conjugation in T c
pM is the real linear endomorphism defined by

Z =X+ iY �→ Z̄ =X− iY, X,Y ∈ TpM.

Let J be an almost complex structure on a manifold M of dimension 2n. Then J

can be uniquely extended to a complex linear endomorphism of each complex space
T c
pM , p ∈M , and the extended map, also denoted by J , satisfies the equation

J 2 =−I.
Set

T 1,0
p M = {Z ∈ T c

pM : JZ = iZ
}
, T 0,1

p M = {Z ∈ T c
pM : JZ =−iZ

}
.

Prove that for any p ∈M :

(i) There exist elements X1, . . . ,Xn ∈ TpM such that

{X1, . . . ,Xn, JX1, . . . , JXn}
is a basis of TpM .
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(ii) T
1,0
p M ⊕ T 0,1

p M = T c
pM (complex vector space direct sum).

(iii)

T 1,0
p M = {X− iJX,X ∈ TpM}, T 0,1

p M = {X+ iJX,X ∈ TpM}.
(iv) The complex conjugation in T c

pM defines a real linear isomorphism between

T
1,0
p M and T 0,1

p M .

Solution

(i) As we showed above (see the proof of Problem 5.52), the linear map
Jp : TpM → TpM defines a complex structure in the 2n-dimensional (real)
vector space TpM . Let X1, . . . ,Xn be a basis of TpM as a complex vector
space. Then the set

{X1, . . . ,Xn, JX1, . . . , JXn}
is a basis for TpM as a real vector space.

(ii) By definition, the set {X1, . . . ,Xn, JX1, . . . , JXn} is a basis of the complex
space T c

pM . Therefore, the two sets of vectors

{X1 − iJX1, . . . ,Xn − iJXn}, {X1 + iJX1, . . . ,Xn + iJXn}, (�)

form a basis of T c
pM .

(iii) Denote by V 1,0 and V 0,1 the (complex) subspaces of T c
pM spanned by the sets

in (�). By definition J 2
p =−I . The eigenvalues of Jp are therefore i and−i. It is

easy to verify that V 1,0 ⊂ T 1,0
p M and V 0,1 ⊂ T 0,1

p M . But V 1,0⊕V 0,1 = T c
pM

and by definition T
1,0
p M ∩ T 0,1

p M = 0, So that V 1,0 = T
1,0
p M and V 0,1 =

T
0,1
p M . Then (iii) follows noting that

i(Xj− iJXj )= JXj− iJ (JXj ), i(Xj+ iJXj )= (−JXj )+ iJ (−JXj ).

(iv) It is now evident.

Problem 6.48 Let F be a smooth complex distribution on a manifold M , i.e. Fp ⊂
T c
pM , such that

Fp + F̄p = T c
pM, Fp ∩ F̄p = 0, p ∈M.

Prove that there exists a unique almost complex structure J on M such that

Fp = T 0,1
p M = {X+ iJX;X ∈ TpM}

for each p ∈M .

Solution From the formula T c
pM =Fp ⊕ F̄p it follows that

dimC Fp = dimC F̄p =
(
dimC T

c
pM
)/

2= n.
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Let {Z1, . . . ,Zn} be a basis of the complex space Fp ⊂ T c
pM , with Zj = Xj +

iYj , Xj ,Yj ∈ TpM . Since T c
pM =Fp ⊕ F̄p , the vectors {Xj ,Yj }, j = 1, . . . , n,

span the complex space T c
pM . These vectors form a basis of T c

pM because 2n =
dimC T

c
pM . It is easy to verify that the map J such that J (Xj ) = Yj and J (Yj ) =

−Xj defines an almost complex structure on M with the space T 0,1
p M =Fp .

Problem 6.49 Let (M,Ω) be an almost symplectic manifold and let F be a com-
plex distribution on M . Suppose that for each p ∈M :

(a) Fp + F̄p = T c
pM .

(b) Fp ∩ F̄p = 0.
(c) Ω(Fp,Fp)= 0.
(d) −iΩ(Z, Z̄) > 0, Z ∈Fp \ {0}.
Prove:

1. There exists a unique almost Hermitian structure (J, g) on M , where J is an
almost complex structure and g is a Riemannian metric, such that

F = T 0,1M

and Ω is the fundamental form of g.
2. If, in addition, the form Ω is closed and the complex distribution F is involutive,

i.e.

[X̃, Ỹ ] ∈F , X̃, Ỹ ∈F ,

then (J, g) is a Kähler structure on M .

Solution

1. By (a) and (b), there exists an almost complex structure J : TM → TM such
that Fp = {X+ iJX,X ∈ TpM} (see Problem 6.48). Put by definition

g(X,Y )=Ω(JX,Y )

for any X,Y ∈ TpM . But by (c), Ω(X+ iJX,Y + iJY )= 0. Therefore,
[
Ω(X,Y )−Ω(JX,JY )

]+ i
[
Ω(X,JY )+Ω(JX,Y )

]= 0, X,Y ∈ TpM,

and, consequently,

g(X,Y )= g(JX,JY ) and g(X,Y )= g(Y,X)
because the form Ω is skew-symmetric. Let us prove that the symmetric tensor
g is positive definite. Indeed, by (d),

−iΩ(X+ iJX,X− iJX)= 2Ω(JX,X)= 2g(X,X) > 0 if X �= 0.

By definition the form Ω is the fundamental form of (J, g).
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2. It is sufficient to note that according to Newlander–Nirenberg’s Theorem the
almost complex structure is a complex structure if and only if the distribution
T 0,1M of (0,1)-vectors is involutive. In this case, by definition, (J, g) is a Kähler
structure if dΩ = 0 (see Definitions 5.10). Remark that it can be proved that this
is equivalent to ∇J = 0, where ∇ denotes the Levi-Civita connection of g.

Problem 6.50 Let (M,J,g) be an almost Hermitian manifold with fundamental
form Ω . Let F be the distribution T 0,1M of (0,1)-vectors of J .

Prove that for each p ∈M :

(i) Fp + F̄p = T c
pM .

(ii) Fp ∩ F̄p = 0.
(iii) Ω(Fp,Fp)= 0.
(iv) −iΩ(Z, Z̄) > 0 for all Z ∈Fp \ {0}.

Solution Since J is an almost complex structure, the distribution F = T 0,1M sat-
isfies conditions (i) and (ii) (see Problem 6.47(ii) and (iv)).

(iii) By definition Ω(X,Y ) = g(X,JY ), X,Y ∈ TpM . But g is a Hermitian met-
ric, i.e. g(X,Y ) = g(JX,JY ). Since J 2 = −I , we obtain that g(JX,Y ) =
−g(X,JY ). In particular, g(JX,X)= 0 because g is symmetric. Therefore,

Ω(X+ iJX,Y + iJY )= g(X+ iJX,JY − iY)

= [g(X,JY )+ g(JX,Y )]+ i
[
g(JX,JY )− g(X,Y )]

= 0.

(iv) Similarly,

2g(X,X)= [g(X,X)+ g(JX,JX)]− i
[
g(X,JX)− g(JX,X)]

=−ig(X+ iJX,JX+ iX)

=−iΩ(X+ iJX,X− iJX) > 0 if X �= 0.

Problem 6.51 Denote by (x1, . . . , xn, y1, . . . , yn) the usual Cartesian coordinates
of the vector (x, y) of the space M =R

n ×R
n, on which we consider:

(a) The 2-form Ω =∑n
j=1 dyj ∧ dxj .

(b) Three smooth operator-functions R, S and J given by

R : M→Aut
(
R
n
)
, p �→Rp, S : M→ End

(
R
n
)
, p �→ Sp,

J : M→ End
(
R
n ×R

n
)
, p �→ Jp, Jp =

( −R−1
p Sp −R−1

p

Rp + SpR−1
p Sp SpR

−1
p

)

.
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Prove:

1. The map p �→ Jp , p ∈M , where each endomorphism Jp is considered as an
endomorphism of the tangent space TpM ∼=R

n×R
n, defines an almost complex

structure (denoted again by) J on M .
2. The almost complex structure J is an almost Hermitian structure with fundamen-

tal form Ω if and only if for all p ∈M the endomorphisms Rp,Sp are symmet-
ric and the endomorphism Rp is positive definite (with respect to the canonical
scalar product 〈· , ·〉 in R

n).

Hint Show that the complex distribution generated by the vector fields

n∑

j=1

(

vj
∂

∂xj
+ i

n∑

k=1

(Rp + iSp)jkv
k ∂

∂yj

)

,
(
v1, . . . , vn

) ∈Cn,

is the distribution of (0,1)-vectors of J .

Solution

1. It is easy to verify that J 2
p =−I for each p ∈M . In fact, with an obvious notation

we have:
(
J 2
p

)
11 =R−1

p SpR
−1
p Sp −R−1

p

(
Rp + SpR−1

p Sp
)=−In,

(
J 2
p

)
12 =R−1

p SpR
−1
p −R−1

p SpR
−1
p = 0,

(
J 2
p

)
21 =−

(
Rp + SpR−1

p Sp
)
R−1
p Sp + SpR−1

p

(
Rp + SpR−1

p Sp
)= 0,

(
J 2
p

)
22 =−

(
Rp + SpR−1

p Sp
)
R−1
p + SpR−1

p SpR
−1
p =−In.

The structure J is smooth because so is the map p �→ Jp .
2. Let us describe the distribution of (0,1)-vectors of the almost complex struc-

ture J . To simplify the notation denote by vX+wY , where v = (v1, . . . , vn),w =
(w1, . . . ,wn) ∈Cn, the vector

n∑

i=1

(

vi
∂

∂xi
+wi ∂

∂yi

)

∈ T c
pM.

The space T 0,1
p M is the set

{
(vX+wY)+ i

[(−R−1
p Spv−R−1

p w
)
X

+ (Rpv + SpR−1
p Spv+ SpR−1

p w
)
Y
] : v,w ∈Rn

}
.

Since this complex space is n-dimensional, the vectors (with v = 0)
{
wY + i

[−(R−1
p w

)
X+ (SpR−1

p w
)
Y
] :w ∈Cn

}

= {wX+ i(Rpw+ iSpw)Y :w ∈Cn
}
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span this space. Now to prove part 2, it is sufficient to show that Ω(T
0,1
p M,

T
0,1
p M) = 0 and −iΩ(Z, Z̄) > 0 for all Z ∈ T 0,1

p M \ {0} (see Problems 6.49
and 6.50).

Note that by definition

Ω
(
vX+wY,v′X+w′Y )= 〈w,v′〉− 〈v,w′〉,

where for v,w ∈ Cn we put 〈w,v〉 =∑n
j=1w

jvj . Denote by Pp the operator
Rp + iSp . Then let a be defined by

a
(
w,w′

)=Ω(wX+ i(Ppw)Y,w
′X+ i

(
Ppw

′)Y
)= 〈i(Ppw),w′

〉− 〈w, i
(
Ppw

′)〉.

The function a vanishes for all w,w′ ∈ Cn if and only if the operators Rp and
Sp are symmetric. Similarly, if b is the function defined, for arbitrary vectors
w,w′ ∈Rn, by

b
(
w,w′

)=−iΩ
((
w+ iw′

)
X+ i

(
Pp
(
w+ iw′

))
Y,
(
w− iw′

)
X

− i
(
P̄p
(
w− iw′

))
Y
)

= i
〈
w+ iw′,−iP̄w

(
w− iw′

)〉− i
〈
w− iw′, iPp

(
w+ iw′

)〉

= (〈(P̄p + Pp)w,w
〉+ 〈(P̄p + Pp)w′,w′

〉)

− i
(〈
(Pp − P̄p)w,w′

〉− 〈(Pp − P̄p)w′,w
〉)

= (〈2Rpw,w〉 +
〈
2Rpw

′,w′
〉)− i

(〈
2iSpw,w

′〉− 〈2iSpw
′,w
〉)
,

then, since the operator Sp is symmetric, the function b(w,w′) is positive if and
only if the symmetric operator Rp is positive, i.e. 〈Rpw,w〉> 0, w ∈Rn \ {0}.

Problem 6.52 Let (M,Ω) be an almost symplectic manifold. An almost complex
structure J on the manifold M is called compatible with the almost symplectic
structure Ω , if g(X,Y )=Ω(JX,Y ) is an Hermitian metric on M , i.e.

(a) Ω(JX,X) > 0 for any non-zero tangent vector X ∈ TpM , p ∈M .
(b) Ω(JX,Y )+Ω(X,JY )= 0 for any tangent vectors X,Y ∈ TpM , p ∈M .

Prove that on any almost symplectic manifold (M,Ω) there exists an almost
complex structure J which is compatible with Ω .

The relevant theory is developed, for instance, in Gromov [14] and Aebisher et
al. [1].

Solution Let us choose an arbitrary (smooth) Riemannian metric g0 on the man-
ifold M (see Problem 6.39). Define linear endomorphisms Ap : TpM → TpM ,
p ∈M , by

g0(X,ApY )=Ω(X,Y ), X,Y ∈ TpM.
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Then each Ap is skew-symmetric with respect to the metric g0. Therefore, −A2
p is

symmetric (and non-degenerate) and

g0
(
X,−A2

pX
)=Ω(X,−ApX)=Ω(ApX,X)= g0(ApX,ApX) > 0

provided X �= 0. Thus −A2
p is a symmetric positive definite operator. Define

Bp =
√
−A2

p to be the symmetric positive definite square-root of −A2
p . Since the

domain D = C \ (−∞,0] contains the spectra of all operators −A2
p , p ∈M , and

each of these spectra is compact, this can be done canonically and smoothly by us-
ing the Cauchy integral. Indeed, choosing the positive determination of F , that is,
the branch F(z) of the square root in D with F(1)= 1, we can define a real-analytic
function F̃ : S+ → S+ on the set of all symmetric positive definite matrices by

F̃ : Ap �→ 1

2πi

∫

Γ

F (ζ )(ζ Id−Ap)
−1 dζ,

where Γ is a contour in D enclosing the spectrum of Ap . Clearly, each Bp is
invertible and commutes with Ap . Put Jp = B−1

p Ap . Then J 2
p = −Idp , where

Idp : TpM→ TpM stands for the identity map. The operator Jp is antisymmetric
with respect to the metric g0:

g0(JpX,Y ) = g0
(
B−1
p ApX,Y

)= g0
(
ApX,B

−1
p Y

)= g0
(
X,−ApB

−1
p Y

)

= −g0(X,JpY ).

Moreover,

Ω(JpX,X)=Ω
(
B−1
p ApX,X

)= g0
(
B−1
p ApX,ApX

)
> 0, X ∈ TpM \ {0},

because B−1
p is also symmetric and positive definite. Now to prove that the (1,1)-

tensor field J is compatible with Ω it is sufficient to remark that

Ω(JpX,Y )= g0(JpX,ApY )= g0
(
B−1
p ApX,ApY

)=−g0
(
X,ApB

−1
p ApY

)

=−Ω(X,JpY ).

Thus the formula g(X,Y ) =Ω(JX,Y ) defines an Hermitian metric g on M . Re-
mark also that this construction of such an almost complex structure J on M de-
pends on a choice of an arbitrary start-up Riemannian metric g0 on M . After this
choice the construction of J becomes canonical.

6.4 Geodesics

Problem 6.53 Consider M =R
2 \ {(0,0)} with the usual metric g = dx2+dy2 and

consider the distance function dg given by



370 6 Riemannian Geometry

dg : M ×M→ R
+

(p, q) �→ dg(p, q)= inf
∫ 1

0

√
g
(
γ ′(t), γ ′(t)

)
dt,

where γ denotes a piecewise C∞ curve with γ (0)= p and γ (1)= q .

(i) Compute the distance between p = (−1,0) and q = (1,0).
(ii) Is there a geodesic minimizing the distance between p and q?

(iii) Is the topological metric space (M,dg) complete?
(iv) A Riemannian manifold is said to be geodesically complete if every geodesic

γ (t) is defined for every real value of the parameter t . Is in the present case M
geodesically complete?

(v) Find an open neighbourhoodUp for each point p ∈M , such that for all q ∈Up ,
the distance dg(p, q) be achieved by a geodesic.

Solution

(i) Let γa be the piecewise C∞ curve obtained as the union of the line segment
from (−1,0) to (0, a) and the line segment from (0, a) to (1,0). Since

dg
(
(−1,0), (0, a)

)= dg
(
(0, a), (1,0)

)=
√

1+ a2,

we have

dg
(
(−1,0), (1,0)

)
� inf

a→0

{
2
√

1+ a2
}= 2.

On the other hand, as M is an open subset of R
2, if dR2 stands for the

Euclidean distance, we have

dg
(
(−1,0), (1,0)

)
� dR2

(
(−1,0), (1,0)

)= 2,

thus dg(p, q)= 2.
(ii) Since M is an open subset of R2, the geodesics of M are the ones of R2 in-

tersecting with M . There is only one geodesic γR2 in R
2 joining p and q ,

but γ = γR2 ∩M is not connected, and so the distance is not achieved by a
geodesic.

(iii) (M,dg) is not complete. It is enough to give a counterexample: The sequence
{(1/n,1/n)}n∈N is a Cauchy sequence in (M,dg) which is not convergent.

(iv) (M,dg) is not geodesically complete, because none of the lines passing (in
R

2) through the origin is a complete geodesic for the Levi-Civita connection.
In fact, the geodesics x = at , y = bt do define, for t = 0, no point of M .

(v) Given p ∈M , take as Up the open ball B(p, |p|).

Problem 6.54

(i) Find an example of a connected Riemannian manifold (M,g) to show that the
property “Any p,q ∈M can be joined by a geodesic whose arc length equals
the distance dg(p, q)” (see Problem 6.53) does not imply that M is complete.
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(ii) Find an example of a connected Riemannian manifold to show that a minimal
geodesic between two points need not be unique; in fact, there may be infinitely
many.

Solution

(i) The open ball

M = B(0,1)= {x ∈Rn : |x|< 1
}⊂ (Rn, g

)
,

where g denotes the usual flat metric, and M is equipped with the inherited
metric.

(ii) The sphere (Sn, g), g being the usual metric. There exist infinitely many mini-
mal geodesics joining two antipodal points.

Problem 6.55 Consider on R
3 the metric

g = (1+ x2)dx2 + dy2 + ez dz2.

(i) Compute the Christoffel symbols of the Levi-Civita connection of g.
(ii) Write and solve the differential equations of the geodesics.

(iii) Consider the curve γ (t) with equations x = t , y = t , z= t . Obtain the parallel
transport of the vector (a, b, c)(0,0,0) along γ .

(iv) Is γ a geodesic?
(v) Calculate two parallel vector fields defined on γ , X(t) and Y(t), such that

g(X(t), Y (t)) is constant.
(vi) Are there two parallel vector fields defined on γ , Z(t) and W(t), such that

g(Z(t), W(t)) is not constant?

Solution

(i) We have

g ≡
⎛

⎝
1+ x2 0 0

0 1 0
0 0 ez

⎞

⎠ , g−1 ≡
⎛

⎝
1/(1+ x2) 0 0

0 1 0
0 0 e−z

⎞

⎠ .

Taking x1 = x, x2 = y, x3 = z, the only non-vanishing Christoffel symbols are

Γ 1
11 =

x

1+ x2
, Γ 3

33 =
1

2
. (�)

(ii) The differential equations of the geodesics are, by (�),

(a)
d2x

dt2
+ x

1+ x2

(
dx

dt

)2

= 0, (b)
d2y

dt2
= 0,
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(c)
d2z

dt2
+ 1

2

(
dz

dt

)2

= 0.

The solutions are:
(a) We can write

x′′

x′
+ xx′

1+ x2
= 0,

hence logx′ + 1
2 log(1 + x2) = logA, or equivalently, x′ = A√

1+x2
. We

have
√

1+ x2 dx =Adt and
∫

Adt =At +B =
∫ √

1+ x2 dx = 1

2

(
x
√

1+ x2 + log
(
x +

√
1+ x2

))
.

(b) y = Ct +D.

(c) Let p = dz
dt . Then we have dp

dt + p2

2 = 0, from which 1
p
= t

2 + E
2 . Thus

2
t+E = dz

dt , so one has

z= 2 log(t +E)+ 2 logF = log(F t +G)2.
(iii) The equations of parallel transport of the vector X = (a1, a2, a3) along a curve

γ are ∇γ ′X = 0, that is,

dai

dt
+
∑

j,h

Γ i
jh

dxj

dt
ah = 0, i = 1,2,3.

In this case, we have the equations:

(a)
da1

dt
+ x

1+ x2

dx

dt
a1 = 0, (b)

da2

dt
= 0,

(c)
da3

dt
+ 1

2

dz

dt
a3 = 0,

along the curve x = t , y = t , z= t , that is, the previous equations are reduced
to:

(a)
da1

dt
+ t

1+ t2 a
1 = 0, (b)

da2

dt
= 0, (c)

da3

dt
+ 1

2
a3 = 0.

Integrating we have:
(a) loga1 = − 1

2 log(1 + t2) + logA, thus one has a1 = A/
√

1+ t2, with

a1(0)= a, so a1 = a/√1+ t2.
(b) a2 =A, with a2(0)=A; thus a2 = b.
(c) a3 =Ae−t/2, with a3(0)= c=A; thus a3 = c e−t/2.
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(iv) The curve must verify the equations of the geodesics obtained in (ii). Since
x(t)= t , y(t)= t , z(t)= t , we have

d2x

dt2
+ x

1+ x2

(
dx

dt

)2

= t

1+ t2 �= 0

unless t = 0, so it is not a geodesic.
(v) We have obtained in (iii) the vector field obtained by parallel transport from

(a, b, c)(0,0,0), that is,

ai(t)=
(

a√
1+ t2 , b, c e−t/2

)

.

Taking X(0)= (1,0,0), Y(0)= (0,1,0), one obtains under parallel transport
the vector fields

X(t)=
(

1√
1+ t2 ,0,0

)

, Y (t)= (0,1,0),

that satisfy g(X(t), Y (t))= 0.
(vi) No. In fact, consider the vectors Z(0)= (a, b, c), W(0)= (λ,μ, ν). Then the

vector fields Z(t), W(t) obtained by parallel transport of the vectors along γ ,
satisfy

g
(
Z(t),W(t)

)= (1+ t2) aλ

1+ t2 + bμ+ et
cν

et
= aλ+ bμ+ cν,

which is a constant function.
This can be obtained directly considering that ∇ is the Levi-Civita connec-

tion of g, and for all the Riemannian connections the parallel transport pre-
serves the length and the angle.

Problem 6.56 Prove with an example that there exist Riemannian manifolds on
which the distance between points is bounded, that is, d(p,q) < a, for a > 0 fixed,
but on which there is a geodesic with infinite length but that does not intersect itself.

Solution The flat torus T 2 is endowed with the flat metric obtained from the metric
of R

2 by the usual identification T 2 = R
2/Z2. It is thus clear that the maximum

distance is
√

2/2.
Nevertheless, the image curve of a straight line through the origin of R2 with

irrational slope is a geodesic of infinite length which does not intersect itself in T 2

(see Problem 4.52).

Problem 6.57 Give an example of a Riemannian manifold diffeomorphic to R
n but

such that none of its geodesics can be indefinitely extended.
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Fig. 6.1 The vertical lines of
the Poincaré upper half-plane
are geodesics

Solution The open cube (−1,1)n ⊂ R
n, with center at (0, . . . ,0) ∈ Rn, is diffeo-

morphic to R
n by the map

ϕ : Rn→ (−1,1)n,
(
y1, . . . , yn

) �→ (
tanhy1, . . . , tanhyn

)
.

In fact, ϕ is one-to-one and C∞, and its inverse map on each component is also C∞.
Take now on (−1,1)n the flat metric, restriction of g =∑n

i=1 dxi ⊗ dxi on R
n.

It is obvious that none of the geodesics which are the connected open segments of
straight lines of Rn in (−1,1)n can be indefinitely extended.

Problem 6.58 Prove that the vertical lines x = const in the Poincaré upper half-
plane H 2 are complete geodesics.

Solution We have the Riemannian manifold (M,g), where

M = {(x, y) ∈R2 : y > 0
}
, g = dx2 + dy2

y2

(see Fig. 6.1). That is, gij = (1/y2)δij and gij = y2δij , i, j = 1,2. Taking x1 = x,
x2 = y, the non-vanishing Christoffel symbols are

Γ 1
12 = Γ 1

21 =−Γ 2
11 = Γ 2

22 =−1/y,

so the differential equations of the geodesics are

d2x

dt2
− 2

y

dx

dt

dy

dt
= 0,

d2y

dt2
+ 1

y

(
dx

dt

)2

− 1

y

(
dy

dt

)2

= 0.

Suppose x(0)= x0, y(0)= y0, dx/dt = 0, dy/dt = 1, that is, one considers the
vertical line through (x0, y0). The previous equations are satisfied, and one has the
equations

d2x

dt2
= 0,

d2y

dt2
= 1

y

(
dy

dt

)2

.

The conditions x(0) = x0, y(0) = y0, (dx/dt)0 = 0, (dy/dt)0 = 1, determine a
unique geodesic. Integrating, we have x = At + B; and, from y′′/y′ = y′/y, one
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has log y′ = logy + C, or equivalently, y = eC t+D . By the previous conditions, it
follows that

x = x0, y = y0et/y0 ,

which proves t ∈ (−∞,+∞), that is, the given geodesic is complete.

Problem 6.59 Consider R2 with the usual flat metric g = dx2 + dy2. Is the curve
γ (t) given by x = t3, y = t3, a geodesic?

Remark The fact that a curve is a geodesic depends both on its shape and its
parametrisation, as it is shown by the curve σ(t)= (t, t) in R

2 and the curve above.

Solution Write γ (t)= (t3, t3). Then

dγ

dt
= 3t2

∂

∂x
+ 3t2

∂

∂y
.

As D
dt = d

dt on (R2, g), we have

D

dt

dγ

dt
= d

dt

(

3t2
∂

∂x
+ 3t2

∂

∂y

)

= 6t
∂

∂x
+ 6t

∂

∂y
�= 0,

hence γ (t) is not a geodesic.
Another solution is as follows: Since γ is a geodesic curve, one should have

|γ ′(t)| = const, but actually |γ ′(t)| = 3
√

2t2.

Problem 6.60 Let (M,g) be a connected Riemannian manifold. Let H : M→ R

be a smooth function on M with gradient vector field gradH , i.e.

dH(Z)= g(gradH,Z), Z ∈X(M),

and let

D = {p ∈M : |gradH |(p) �= 0
}
,

where

|gradH | =√g(gradH,gradH).

Suppose that there exists a smooth function α ∈ C∞(H(D)) such that

|gradH | = α ◦H
on the subset D ⊂M .

Prove that the unit vector field

U = gradH

|gradH |
is a geodesic vector field on the subset D, that is, its integral curves are geodesics
of the metric g.
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Solution Put β = 1/α on the interior of the set H(D) ⊂ R (where α > 0). Then
U = β(H) · gradH and

UH = dH(U)= g(gradH,U)= β(H)|gradH |2 = |gradH | = α(H).

To prove that ∇UU = 0 consider the Koszul formula (6.4) for the Levi-Civita con-
nection,

2g(∇UU,Z)= 2Ug(U,Z)−Zg(U,U)+ 2g
([Z,U ],U).

Taking the definition of the vector field gradH into account, we obtain that

Ug(U,Z)+ g([Z,U ],U)=Ug(β(H)gradH,Z
)+ g(β(H)gradH, [Z,U ])

=U(β(H) · dH(Z)
)+ β(H)dH

([Z,U ])

= β ′(H) ·UH ·ZH + β(H) ·U(ZH)

+ β(H)
(
Z(UH)−U(ZH)

)

= β ′(H)α(H) ·ZH + β(H)α′(H) ·ZH
= (αβ)′(H) ·ZH = 0.

Thus ∇UU = 0 on D ⊂M because |U | = 1.

Problem 6.61 We retain the hypotheses and notation of Problem 6.60. Suppose in
addition that:

(a) H(M)= [0,+∞).
(b) gradH(p)= 0 if and only if H(p)= 0, and
(c) For each number c ∈R the subset {p ∈M :H(p)� c} is compact.

Prove:

1. One has that limτ→0+ α(τ)= 0 and the improper integral

∫ 1

0

dτ

α(τ)

converges.
2. The metric dg on M is complete if and only if the improper integral

∫ +∞

0

dτ

α(τ)

diverges.

Solution Using the unit geodesic vector field

U = gradH

|gradH |
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we shall calculate the distance between the level sets {H = c0} and {H = c} in M

with respect to the distance function (metric) dg induced by the metric tensor g.
Recall that by definition |gradH |(p) = α(H(p)) > 0 if H(p) > 0, that is,

α(τ) > 0 for all τ > 0. Consider some level set {H = c} with positive c > 0. By
compactness of this set, there exists a local one-parametric group ϕt of U defined
on some neighbourhood of {H = c} for all t ∈ [0, t0] with t0 > 0 (the vector field U
is smooth on the set D = {H > 0} ⊂M). But

H
(
ϕt0(p)

)=H(p)+
∫ t0

0
α
(
H
(
ϕt (p)

))
dt > H(p) (�)

because the function

UH = |gradH | = α ◦H
is a positive constant on the set {H = c}. Then, again by the compactness of {H = c}
one has

min
p∈{H=c}H

(
ϕt0(p)

)
> c.

In other words, for each c > 0 there exists δ(c) > 0 such that any point p ∈ {H = c}
is connected by an integral curve of U with some point of the level set {H = d},
where c � d � c + δ(c). Therefore, for arbitrary 0 < c0 � c < +∞ and any point
p0 ∈ {H = c0}, there is an integral curve γ (t), t ∈ [0, t0], of the vector field U with
initial point p0 ∈ {H = c0} such that H(p)= c, where p = γ (t0).

Let γ (t), t ∈ [0, t0], be the integral curve of the vector field U with initial point
p0 ∈ {H = c0}, c0 > 0. There exists a smooth function h : (0,+∞)→ R such that
the function h(H(γ (t))) is linear in t . It is easy to verify that

h′(s)= 1

α(s)
and h(s)=

∫ s

1

dτ

α(τ)

because α(τ) > 0 for all τ > 0 and

d

dt
h
(
H
(
γ (t)

))= h′(H (γ (t)))dH
(
γ ′(t)

)= h′(H (γ (t))) · α(H (γ (t)))= 1.

Let p = γ (t0) and H(p)= c. As we showed above, c > c0 (see (�)). However, the
curve γ (t) is a geodesic. Therefore, the length of the curve γ (t), t ∈ [0, t0], from p0
to p is

t0 = h
(
H(p)

)− h(H(p0)
)= h(c)− h(c0).

For any other curve λ(t), t ∈ [0, t̃0], with |λ′(t)| = 1, starting from a point p̃0 ∈
{H = c0}, ended at a point p̃ ∈ {H = c} and belonging to the set {H > 0}, we have

d

dt
h
(
H
(
λ(t)

))= h′(H (λ(t))) · dH (λ′(t))= h′(H (λ(t))) · g((gradH)λ(t), λ
′(t)
)

� h′
(
H
(
λ(t)

)) · |gradH |(λ(t)) · ∣∣λ′(t)∣∣= ∣∣λ′(t)∣∣= 1.
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Thus h(H(λ(t)))− h(H(p0))� t and, consequently,

h
(
H
(
λ(t)

))
� h(c0)+ t � h(c0)+ t0 � h(c), t ∈ [0, t0].

Since h is an increasing function and H(λ(t)) > 0, we have

H
(
λ(t)

)
< c for all 0 � t < t0, and H

(
λ(t0)

)
� c.

Therefore, t̃0 � t0 and the length of the curve λ(t) from p̃0 to p̃ is not smaller than
the length of the geodesic curve γ (t), t ∈ [0, t0]. So the distance between the level
sets {H = c0} and {H = c}, 0< c0 � c, is (h(c)− h(c0)). We have

lim
τ→0+α(τ)= 0

because all level sets {H = τ }, τ � 0, are compact and the functionsH , |gradH | are
continuous on the manifold M . Moreover, since the distance between the compact
level sets {H = 0} and {H = c}, c > 0, is finite and each smooth curve connecting
these two sets intersects all sets {H = c0}, where 0 � c0 � c, this distance is equal
to the converging improper integral

∫ c

0

dt

α(t)
= h(c)− h(0).

2. Taking into account that all level surfaces {H = c}, c � 0, are compact sets,
the metric dg on M is complete if and only if the metric on the set [0,+∞) induced
by the function h is complete, that is, if and only if

∫ +∞

0

dt

α(t)
=+∞.

Problem 6.62 Consider the standard linear action of the Lie group SO(n) on R
n

with standard global coordinates x = (x1, . . . , xn). Let g be an SO(n)-invariant Rie-
mannian metric on R

n.
Prove:

(i) There exist unique smooth positive even functions a, b : R→R
+, a(0)= b(0),

such that g(x)= (gij (x)), i, j = 1, . . . , n, where

gij (x)= a(r)− b(r)
r2

xixj + b(r)δij ,

r = r(x)=
√
(
x1
)2 + · · · + (xn)2.

(�)

(ii) For each pair a, b of smooth positive even functions on R, the relations (�)
determine an SO(n)-invariant metric on R

n.
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(iii) The metric dg on R
n is complete if and only if the improper integral

∫ +∞

0

√

a(
√
τ)

τ
dτ

diverges.

Solution

(i) Denote by Px the matrix with entries

gij (x)= g
(

∂

∂xi

∣
∣
∣
∣
x

,
∂

∂xj

∣
∣
∣
∣
x

)

, i, j = 1, . . . , n.

Since the action of the group K = SO(n) on R
n is linear and At = A−1 for

each A ∈ SO(n), the metric g is SO(n)-invariant if and only if

Px =A−1 · PAx ·A, x ∈Rn, A ∈ SO(n).

In particular,

A · Px = Px ·A for all elements in Kx = {A ∈K :Ax = x} ⊂K. (��)

If x is a nonzero vector, then R
n = 〈x〉⊕ 〈x〉⊥, where 〈x〉 is a one-dimensional

trivial Kx -module generated by the vector x and 〈x〉⊥ is the irreducible Kx -
module of all vectors orthogonal to x (as is well known, the group Kx

∼=
SO(n− 1) acts transitively on the set of all vectors of constant length in 〈x〉⊥).
Since 〈x〉 and 〈x〉⊥ are irreducible modules (over R) of the group Kx and the
matrix Px is symmetric (always has an eigenvector belonging to 〈x〉⊥), from
condition (��) above it follows that for each vector y ∈Rn its two components
corresponding to the decomposition R

n = 〈x〉 ⊕ 〈x〉⊥ are eigenvectors of Px
with eigenvalues α(x) and β(x), respectively:

Pxy = α(x)− β(x)
r2(x)

(
n∑

i=1

xiyi

)

x + β(x)y.

Moreover, P0y = a0y for some a0 > 0 because, by condition (��), the sym-
metric matrix P0 commutes with all elements of the isotropy group K0 =K =
SO(n) acting transitively on the set of all vectors of constant length in R

n. Now
taking into account that

PAxA=APx, x ∈Rn, A ∈K,
we obtain that α(Ax)= α(x) and β(Ax)= β(x) for all such x and A. There-
fore, there exist uniquely defined functions

a, b : [0,+∞)→R, α(x)= a(r(x)), β(x)= b(r(x)).
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Denote by a and b the even extensions of these functions to the whole line R.
Let us prove that the functions a and b are smooth and a(0)= b(0). Indeed,

fix two non-zero vectors x⊥y in R
n such that r(x)= r(y)= 1. Since the metric

g is smooth, we obtain that the two vector-functions

λ �→ Pλxx = a(λ) · x, λ �→ Pλxy = b(λ) · y,
are smooth functions of the parameter λ ∈R and, moreover, P0x = a(0)x and
P0y = b(0)y. Thus a and b are smooth even functions on R and a(0)= b(0)=
a0.

(ii) Now it is easy to see that relations (�) define a smooth SO(n)-invariant metric
on R

n (with a smooth extension to the zero point). To prove the last part of the
problem consider the smooth function H(x)= r2(x) on R

n. It is clear that

gradH(x)= 2

a(r)
x.

Then

|gradH |(x)= 2r(x)√
a(r(x))

= 2

√
H(x)

a(
√
H(x))

,

that is, |gradH |(x)= α(H(x)) on the subset {H > 0} with a smooth function
α : (0,+∞)→R.

(iii) By Problem 6.61, the metric dg on R
n is complete if and only if the improper

integral

∫ +∞

0

√

a(
√
τ)

τ
dτ

diverges.

Problem 6.63 Let (M,g) be a Riemannian manifold and let π : T ∗M→M be the
canonical projection of the cotangent bundle T ∗M onto the manifold M . The metric
g determines a natural isomorphism

ψg : TM→ T ∗M.

Denote by H the real-valued function on T ∗M such that

H(ω)= 1

2
g
(
ψ−1
g (ω), ψ−1

g (ω)
)(
π(ω)

)
.

The Hamiltonian flow on T ∗M generated by the Hamiltonian vector field XH of H
with respect to canonical symplectic form Ω on T ∗M , where, recall,

iXH
Ω =−dH,

is said to be the geodesic flow of g.
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Prove:

(i) The projection γ (t) = π(σ(t)) of any integral curve σ(t), t ∈ (a, b) ⊂ R, of
the vector field XH is a geodesic of the Levi-Civita connection of the metric g.

(ii) For any geodesic γ (t), t ∈ (a, b)⊂R, on (M,g) the curve

σ(t)=ψg

(
γ ′(t)

)⊂ T ∗M
is an integral curve of the vector field XH .

(iii) For any integral curve σ(t) of XH we have

σ(t)=ψg

(
λ′(t)

)
,

where λ(t)= π(σ(t)) is a geodesic on (M,g); moreover, the Riemannian man-
ifold (M,g) is geodesically complete if and only if the Hamiltonian vector field
XH is complete.

Solution

(i) It is sufficient to prove it locally. Let q = (q1, . . . , qn) denote local coordi-
nates on M . They induce local coordinates (q,p) = (q1, . . . , qn,p1, . . . , pn)

on T ∗M putting ωx =∑i pi(ωx)dqi |x for ωx ∈ T ∗M , x ∈M , and local coor-
dinates (q, y)= (q1, . . . , qn, y1, . . . , yn) on TM letting

vx =
∑

i

yi(vx)
∂

∂qi

∣
∣
∣
∣
x

, vx ∈ TM.

Then the isomorphisms ψg,ψ−1
g and the function H have the following form

in local coordinates:

ψg

(∑

i

yi
∂

∂qi

)

=
∑

i,j

gij (q)y
i dqj ,

ψ−1
g

(∑

i

pi dqi
)

=
∑

i,j

gij (q)pj
∂

∂qi
,

H(q,p)= 1

2

∑

i,j

gij (q)pipj ,

g(q) =∑i,j gij (q)dqi dqj being the metric tensor in the local coordinates

and
∑

j gij (q)g
jk(q)= δki by definition. Since Ω =∑i dpi ∧ dqi (see Prob-

lem 5.59), the vector field XH is described by the relation

XH(q,p)=
∑

j,k

gkj (q)pj
∂

∂qk
− 1

2

∑

i,j,k

∂gij

∂qk
(q)pipj

∂

∂pk
.
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Therefore, its integral curve σ(t) is a solution of the following equations:

dqk

dt
=
∑

j

gkj (q)pj ,
dpk
dt
=−1

2

∑

i,j

∂gij

∂qk
(q)pipj . (�)

Putting yk(t) = (dqk/dt)(t), we rewrite the first relation above as yk =∑
j g

kjpj and
∑

k gjky
k = pj . Differentiating this (first) relation, we obtain

that

dyk

dt
=
∑

j

(∑

l

∂gkj

∂ql

dql

dt
pj + gkj dpj

dt

)

=
∑

j,l

(
∂gkj

∂ql
ylpj − 1

2

∑

i

gkj
∂gil

∂qj
pipl

)

.

Let us show that the relations

dyk

dt
=
∑

i,j,l

(
∂gkj

∂ql
glipipj − 1

2
gkj

∂gil

∂qj
pipl

)

=
∑

i,j,l

(
∂gkj

∂ql
gli − 1

2
gkl

∂gij

∂ql

)

pipj , (��)

where pj =∑k gjky
k , are equivalent to the equations of the geodesics:

dyk

dt
=−

n∑

l,s=1

Γ k
lsy

lys =−1

2

n∑

j,l,s=1

gkj
(
∂gjs

∂ql
+ ∂gjl

∂qs
− ∂gls

∂qj

)

ylys,

where Γ k
ls are the Christoffel symbols of the Levi-Civita connection of the met-

ric g. Indeed,

dyk

dt
=

n∑

j,l=1

∂gkj

∂ql
ylpj − 1

2

n∑

i,j,l=1

gkj
∂gil

∂qj
pipl

=
n∑

j,l,s=1

∂gkj

∂ql
ylgjsy

s − 1

2

n∑

i,j,l,m,s=1

gkj
∂gil

∂qj
gimy

mglsy
s .

Taking into account that
∑

l g
ilgls = δis , we obtain that

∑

l

(
∂gil

∂qj
gls + gil ∂gls

∂qj

)

= 0
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and, consequently,

n∑

i,j,l,m,s=1

gkj
(
∂gil

∂qj
gls

)

gimy
mys =−

n∑

i,j,l,m,s=1

gkj
(
gimg

il
)∂gls

∂qj
ymys

=−
n∑

j,l,s=1

gkj
∂gls

∂qj
ylys .

Now, we can rewrite the previous expression for dyk

dt as

dyk

dt
=

n∑

j,l,s=1

(
∂gkj

∂ql
gjs + 1

2
gkj

∂gls

∂qj

)

ylys

=
n∑

j,l,s=1

(
1

2
gkj

∂gls

∂qj
− gkj ∂gjs

∂ql

)

ylys

=−1

2

n∑

j,l,s=1

gkj
(
∂gjs

∂ql
+ ∂gjl

∂qs
− ∂gls

∂qj

)

ylys =−
n∑

l,s=1

Γ k
lsy

lys

because
∑

l,s

∂gjs

∂ql
ylys = ∑l,s

∂gjl
∂qs

ylys . In other words, the curve γ (t) =
π(σ(t)),

γ (t)= (q1(t), . . . , qn(t)
)

is a geodesic in the Riemannian manifold (M,g).
(ii) Consider a geodesic γ (t) = (q1(t), . . . , qn(t)) and put γ ′(t) = (y1(t), . . . ,

yn(t)), where yk(t)= dqk(t)/dt . Then {yk(t)} satisfy the relations (��), where
pj =∑k gjk(q)y

k (and yk =∑j g
kjpj ). We remark here that, by the relations

for the isomorphism

ψg : TM→ T ∗M,

these functions {qk(t)} and {pj (t)} are the coordinates of the curveψg(γ ′(t))⊂
T ∗M . Now using (��) and differentiating the relations pm =∑k gmky

k , we
obtain that

dpm
dt
=

n∑

i,j,k,l=1

gmk

(
∂gkj

∂ql
gli − 1

2
gkl

∂gij

∂ql

)

pipj +
n∑

k,l=1

∂gmk

∂ql
ylyk

=
n∑

i,j,k,l=1

(

gmk
∂gkj

∂ql
gli − 1

2
gmkg

kl ∂g
ij

∂ql
+ ∂gmk

∂ql
gkj gli

)

pipj .
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But
∑

k gmkg
kl = δlm and, consequently,

∑
k

∂
∂ql

(gmkg
kj )= 0 and

dpm
dt
=−1

2

n∑

i,j=1

∂gij

∂qm
pipj .

So that

σ(t)= (q(t),p(t))

satisfies the relations (�), and therefore this curve is an integral curve of XH

( dqk

dt (t)= yk(t)=
∑

j g
kj (q(t))pj (t) by definition).

(iii) As it follows from the proofs of (i) and (ii), for any integral curve σ(t) of XH

we have

σ(t)=ψg
(
λ′(t)

)
, λ(t)= π(σ(t)).

Now to complete the proof of (iii) it is sufficient to note that for any point
x ∈M the map γ �→ψg(γ

′) determines a one-to-one correspondence between
the set of all geodesics on (M,g) through the point x and the set of all the
integral curves of the vector field XH through the points of the space T ∗x M .
Therefore, every maximal geodesic γ (t) on (M,g) is defined for every real
value of the parameter t if and only if so is the maximal integral curve σ(t)=
ψg(γ

′(t)) of XH .

6.5 The Exponential Map

Problem 6.64 Consider on R
n with the Euclidean metric the geodesic γ (t)

through p with unit initial velocity vp , and let (e1, . . . , en) be an orthonormal
frame along γ such that e1 = γ ′(t). Compute the Fermi coordinates (x1, . . . , xn)

on (Rn, γ ) relative to (e1, . . . , en) and p.
The relevant theory is developed, for instance, in Hicks [16].

Solution The geodesic γ (t) through p ∈ Rn with the initial velocity vector vp ∈
TpR

n is the straight line γ (t)= p+ tvp . Thus

expp : TpRn→ R
n

vp �→ σ(1)= p+ vp,
hence

x1

(

expγ (t)

(
n∑

j=2

tj ej

∣
∣
∣
∣
∣
γ (t)

))

= x1

(

γ (t)+
n∑

j=2

tj ej

∣
∣
∣
∣
∣
γ (t)

)

= t,

xi

(

expγ (t)

(
n∑

j=2

tj ej

∣
∣
∣
∣
∣
γ (t)

))

= t i , 2 � i � n.
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Fig. 6.2 A simple example
of Fermi coordinates

Since expp is a global diffeomorphism, we have a new set of coordinates on R
n. The

first coordinate is the distance from the origin p along γ and the other coordinates
are the orthogonal coordinates relative to e2, . . . , en (see Fig. 6.2).

Problem 6.65 Let M be an n-dimensional complete Riemannian manifold and let
q ∈M . Identify TqM with R

n as a manifold by choosing an orthonormal basis at q .
Then

expq : TqM→M

is a C∞ map of Rn onto M , mapping 0 to q .

(i) Suppose M = Sn, the unit sphere with its usual metric. Prove that

rank(expq)∗Xq < n if |Xq | = kπ, k = 1,2, . . . ,

without using Jacobi fields.
(ii) Find (expN)∗X(e1) and (expN)∗X(e2) for two orthonormal vectors e1, e2 ∈

TXTNS
2, and X = λe1, e1 ∈ TNS2. In particular, find the values of the two

above vectors if λ= 0, π/2, or π .

Solution

(i) The geodesic through q with initial vector Xq is (see Problem 6.101) the great
circle

γ (t)= (cos |Xq |t
)
q + (sin |Xq |t

) Xq

|Xq | ,

hence (see Fig. 6.3)

expq(Xq)= γ (1)=
(
cos |Xq |

)
q + (sin |Xq |

) Xq

|Xq | .
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Fig. 6.3 The exponential map on S2 at q

We can take, without loss of generality,

q = (0, . . . ,0,1)=N ∈ Sn ⊂R
n+1.

Thus, the map expq is given by

expN : TNSn→ Sn

X = (X1, . . . ,Xn) �→
(

sin |X|
|X| X1, . . . ,

sin |X|
|X| Xn,− cos |X|

)

(where we have simplified XN to X) and has Jacobian matrix (expN)∗ given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin |X|
|X| (1−

X2
1

|X|2 )+ cos |X|
|X|2 X2

1 (cos |X| − sin |X|
|X| )

X1X2
|X|2 . . .

(cos |X| − sin |X|
|X| )

X1X2
|X|2

sin |X|
|X| (1−

X2
2

|X|2 )+ cos |X|
|X|2 X2

2 . . .

...

(cos |X| − sin |X|
|X| )

X1Xn

|X|2 . . .

− sin |X|
|X| X1 . . .

(cos |X| − sin |X|
|X| )

X1Xn

|X|2
(cos |X| − sin |X|

|X| )
X2Xn

|X|2
...

sin |X|
|X| (1− X2

n

|X|2 )+ cos |X|
|X|2 X2

n

− sin |X|
|X| Xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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Suppose |X| = kπ , k = 1,2, . . . , then

(expN)∗X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

t
(−1)k

k2π2 X
2
1

(−1)k

k2π2 X1X2 . . .
(−1)k

k2π2 X1Xn

...
...

(−1)k

k2π2 X1Xn
(−1)k

k2π2 X2Xn . . .
(−1)k

k2π2 X
2
n

0 . . . . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since

det

(
(−1)k

k2π2
XiXj

)

=X2
1X

2
2 · · ·X2

n

(
(−1)k

k2π2

)n
det

⎛

⎜
⎝

1 . . . 1
...

...

1 . . . 1

⎞

⎟
⎠= 0,

we obtain rank(expN)∗X < n.
(ii) We have X = (X1,X2)= (λ,0)= λe1 ∈ TNS2, hence

(expN)∗λe1 =
⎛

⎝
cosλ 0

0 sinλ
λ− sinλ 0

⎞

⎠ .

In particular,

(expN)∗0e1 =
⎛

⎝
1 0
0 1
0 0

⎞

⎠ , (expN)∗ π2 e1 =
⎛

⎝
0 0
0 2

π−1 0

⎞

⎠ ,

(expN)∗πe1 =
⎛

⎝
−1 0
0 0
0 0

⎞

⎠ ,

hence

(expN)∗λe1(e1)= cosλe1 − sinλe3 =

⎧
⎪⎨

⎪⎩

e1 if λ= 0,

−e3 if λ= π
2 ,

−e1 if λ= π,

(expN)∗λe1(e2)= sinλ

λ
e2 =

⎧
⎪⎨

⎪⎩

e2 if λ= 0,
2
π
e2 if λ= π

2 ,

0 if λ= π,

where the vectors in parentheses e1, e2 ∈ Tλe1(TNS
2) (see Fig. 6.4).

Problem 6.66 Show that if a Riemannian manifold (M,g) is complete and contains
a point which has no conjugate points, then M is covered by R

n.
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Fig. 6.4 The differential of the exponential map on S2 at the north pole

Solution Let p ∈M be a point without conjugate points. As M is complete, the
exponential map

expp : TpM→M

is everywhere defined on the tangent space and it is surjective. Moreover, as is well
known (see Definitions 6.6), expp X is conjugate to p if and only if expp is critical
at X. Hence, by virtue of the hypothesis, expp has no critical point. Accordingly,
expp is a surjective local diffeomorphism. Endow TpM with the metric exp∗p g in-
duced by expp . Then it is clear that

expp :
(
TpM, exp∗p g

)→ (M,g)

is a local isometry. Since it applies each ray t �→ tv to the geodesic curve γv , one
deduces that these rays are geodesics, so that the manifold TpM is complete at 0.
The result thus follows from Theorem 6.20.

Problem 6.67 Compute the cut locus on:

(i) The sphere Sn with the round metric.
(ii) The real projective space RPn with the constant curvature metric.

(iii) The square torus T 2 ∼=R
2/Z2 with the flat metric.

(iv) The Klein bottle K with the flat metric.

The relevant theory is developed, for instance, in Kobayashi and Nomizu [19, vol. 2,
VIII.7].

Solution

(i) All the geodesics are minimizing up to distance π (see Fig. 6.5(a)). For a point
p ∈ Sn, we have that exp is a diffeomorphism on

Up = B(p,π)⊂ TpSn
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Fig. 6.5 (a) The cut locus on
the sphere Sn. (b) The cut
locus on the real projective
space RPn

and that

expp(Up)= Sn \ {−p}.
Hence

Cut(p)= exp(∂Up)= {−p},
that is, the cut locus reduces to the antipodal point of p.

(ii) The round metric on Sn induces under the projection pr : Sn → RPn−1 the
metric of constant curvature on RPn. Let p ∈RP2 correspond to the north and
south poles in Sn, p = {N,S}. All the geodesics are minimizing up to distance
π/2 (see Fig. 6.5(b)) so exp is a diffeomorphism on

Up = B
(

p,
π

2

)

⊂ Tp
(
RPn

)
.

Thus, denoting the equator of Sn simply by Sn−1, we have that

expp(Up)=RPn
∖{

pr
(
Sn−1)},

hence

Cut(p)= exp(∂Up)= pr
(
Sn−1)∼=RPn−1,

a naturally imbedded real projective space RPn−1.
(iii) Consider the usual identifications on the closed square [0,1]× [0,1] ∈R2 (see

Fig. 6.6). The flat metric on R
2 induces the flat metric on T 2. Let p = ( 1

2 ,
1
2 ). It

is immediate (see Fig. 6.6) that the cut locus of p ∈ T 2 consists of two closed
curves which form a basis of the first integer homology group H1(T

2,Z) ∼=
Z⊕Z.

(iv) Consider the usual identifications on the closed square [0,1]× [0,1] ∈R2 (see
Fig. 6.7). The flat metric on R

2 induces the flat metric on K . Let p = ( 1
2 ,

1
2 ). It

is immediate (see Fig. 6.7) that the cut locus of p ∈K consists of two closed
curves which form a basis of the first integer homology group H1(K,Z) ∼=
Z⊕Z2.
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Fig. 6.6 The cut locus on the
2-torus

Fig. 6.7 The cut locus on the
Klein bottle

6.6 Gauss’ Lemma for Covariant Symmetric Tensors

The problems in this section have as common aim proving the Gauss Lemma for
general covariant symmetric tensor fields of finite order. The explicit statement is
given in Problem 6.72.

Problem 6.68 Let M be a differentiable manifold of dimension n, ∇ a linear con-
nection on M , and p ∈M . Let exp denote the restriction of the exponential map to
TpM . There exists a star-shaped open neighbourhood V of 0 in TpM and an open
neighbourhood U of p in M such that expV =U and exp : V →U is a diffeomor-
phism. A fixed basis (u1, . . . , un) of TpM defines an isomorphism u : Rn→ TpM .
Let A= u−1(V )⊂R

n. Then (see Definition 5.8) the map ϕ = u−1 ◦ exp−1 is called
a system of normal coordinates at p (related to the connection ∇), and the maps
xi = ri ◦ϕ, ri being the coordinate functions ri : Rn→R, are called the coordinate
functions of ϕ; we thus have the diagram

M ⊃U exp−1

−→ V ⊂ TpM
xi ↓ ↘ ϕ ↓ u−1

R
ri←− A⊂R

n .

Consider now the functions Γ i
jk : A→R defined by

Γ i
jk =

(

dxi
(

∇ ∂

∂xj

∂

∂xk

))

◦ ϕ−1, i, j, k = 1, . . . , n.

Prove that if ∇ is torsionless, then

Γ i
jk(0)= 0.
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Hint Let ζ = (ζ 1, . . . , ζ n) ∈A and denote v = u(ζ ). Consider the geodesic

γv : [0,1]→M

with γ ′(0)= v ∈ TpM .

The reader can find the relevant theory developed, for instance, in O’Neill [26,
Chap. 5].

Solution For t ∈ [0,1] we have

(ϕ ◦ γv)(t)=
(
u−1 ◦ exp−1)(exp(tv)

)= u−1(u(tζ )
)= t ζ.

Hence, the components of γv in the chart ϕ are

γ iv (t)= ϕi
(
γv(t)

)= tζ i ,
so

γ ′v(t)=
n∑

i=1

ζ i
∂

∂xi

∣
∣
∣
∣
γv(t)

.

Notice that if ζ = ei , where (e1, . . . , en) is the canonical basis of Rn, then v = ui ,
so γ ′v = ∂

∂xi
◦ γv . Thus, taking values at t = 0, we have ui = ∂

∂xi
|p . The curve γv

must satisfy the equations of the geodesics. Hence, we have

0= dxi
(∇γ ′v γ ′v

)= dxi
(

∇γ ′v
(

n∑

j=1

ζ j
∂

∂xj
◦ γv
))

= dxi
(

n∑

j=1

ζ j∇γ ′v
(

∂

∂xj
◦ γv
))

=
n∑

j,k=1

ζ j ζ k
(
Γ i
jk ◦ ϕ ◦ γv

)
.

So,
n∑

j,k=1

Γ i
jk(tζ )ζ

j ζ k = 0.

Taking t = 0, we obtain that

Γ i
jk(0)+ Γ i

kj (0)= 0, i, j, k = 1, . . . , n,

hence Γ i
jk(0)= 0 if ∇ is torsionless.

Problem 6.69 With the definitions and notations of Problem 6.68, and ∇ being a
torsionless connection, consider now an r times (r � 1) covariant symmetric tensor
Tp ∈⊗r

T ∗pM . We can write it as

Tp =
∑

Ti1...ir
(
dxi1

)
p
⊗ · · · ⊗ (dxir )

p
, Ti1...ir ∈R.
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If v = u(ζ ) ∈ TpM , then clearly

Tp(v, . . . , v)=
∑

Ti1...ir ζ
i1 · · · ζ ir .

From this tensor we can define a (0, r) tensor field T on U by

T =
∑

Ti1...ir dxi1 ⊗ · · · ⊗ dxir

which has constant components. Let ρ ∈ X(U) be the vector field vector radius
given by

ρ =
n∑

i=1

xi
∂

∂xi
.

We define the function f ∈ C∞U by

f = T (ρ, . . . , ρ)=
∑

Ti1...ir x
i1 · · ·xir .

Let v = u(ζ ) and a = Tp(v, . . . , v) ∈R. Then

xi(expv)= ri(ϕ(expv)
)= ζ i .

Hence

f
(
exp(v)

)=
∑

Ti1...ir x
i1
(
exp(v)

) · · ·xir (exp(v)
)

=
∑

Ti1...ir ζ
i1 · · · ζ ir = Tp(v, . . . , v)= a.

We now define open subsets B , B+, B− ⊂U , letting

B+ = {p1 ∈U : f (p1) > 0
}
,

B− = {p1 ∈U : f (p1) < 0
}
, B = B+ ∪B−.

It is clear that if ζ ∈ ϕ(B) then tζ ∈ ϕ(B) for all t ∈ (0,1]. We moreover define the
levels of the function v ∈ TpM �→ Tp(v, . . . , v) ∈R and those of f as

Ha =
{
v ∈ V : Tp(v, . . . , v)= a

}
, H̃a =

{
p1 ∈U : f (p1)= a

}
,

so that obviously

H̃a = exp(Ha).

For instance, if g is a Riemannian metric on M and Tp = gp , then Ha would be the
sphere of radius a in TpM and H̃a the geodesic sphere of radius a centred at p.

We define on B the differentiable functions h and ξ i, i = 1, . . . , n, and the vector
field ξ ∈X(B) as follows:

h= |f | 1r , ξ i = xi

h
, ξ = 1

h
ρ =

n∑

i=1

ξ i
∂

∂xi
.
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So,

T (ξ, . . . , ξ)=
∑

Ti1...ir ξ
i1 · · · ξ ir = h−r

∑
Ti1...ir x

i1 · · ·xir = f

|f | .

Hence,

T (ξ, . . . , ξ)=
{

1 if ξ ∈ B+,
−1 if ξ ∈ B−.

The function h is semi-homogeneous of degree 1, in the sense that

h
(
exp(tv)

)= th(exp(v)
)
, t � 0,

and each function ξ i is semi-homogeneous of degree zero, that is,

ξ i
(
exp(tv)

)= ξ i(exp(v)
)
.

Hence ξ(ξ i)= ρ(ξ i)= 0 and ρ(h)= h, that is,

ξ
(
ξ i
)= dξ i(ξ)= 0, ξ(h)= dh(ξ)= 1.

Then:

(i) Prove that

∇ξ ξ = 0.

Now consider, for each i = 1, . . . , n, the vector field Xi ∈ X(U) obtained
under radial parallel transport of ui and let χi ∈ Λ1U , i = 1, . . . , n, be the
differentiable 1-forms dual to the vector fields Xi . Then, the forms χi are also
parallel along the curves

t �→ ϕ−1(tv), t ∈ [0,1], v ∈ V.
We thus have on B that

Xi |p = ui = ∂

∂xi

∣
∣
∣
∣
p

, ∇ξXi =∇ρXi = 0,

χi(Xj )= δij ,
(
χi
)
p
= (dxi)

p
, ∇ρχi =∇ξχi = 0.

Denote

ϕi = χi − ξ i dh ∈A1(B).

Then:
(ii) Prove that for each i = 1, . . . , n, one has

ϕi(ξ)= 0, χi(ξ)= ξ i .
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Hint (to (ii)) Compute the limit of

χi(ξ)=
n∑

j=1

ξjχi
∂

∂xj
,

when one goes to p along a radius.

Solution

(i) We have

dxi(∇ξ ξ)= ξ
(
ξ i
)+ 1

h2

n∑

j,k=1

Γ i
jkx

j xk = 0,

that is,

∇ξ ξ = 0.

(ii) In fact, we have

ϕi(ξ)= χi(ξ)− ξ i dh(ξ)= χi(ξ)− ξ i,
but

ξ
(
χi(ξ)− ξ i)= (∇ξχi

)
(ξ)+ χi(∇ξ ξ)− ξ

(
ξ i
)= 0,

so it follows that χi(ξ)− ξ i is constant along the radiuses. Let us see the limit
of

χi(ξ)=
n∑

j=1

ξjχi
(

∂

∂xj

)

when one goes to p along a radius. Since the functions ξj are constant along a
radius because ξ(ξj )= 0, we get that this limit is equal to

ξj
(
dxi
)
p

(
∂

∂xj

∣
∣
∣
∣
p

)

= ξ i .

So the limit of χ(ξ)− ξ i when one goes to p along a radius is zero. Since that
function is constant along radiuses, we conclude.

Problem 6.70 With the definitions and notations of Problems 6.68 and 6.69, sup-
pose now that ∇ is torsionless and that Tp is the value at p of an r times covariant
symmetric tensor field T̃ such that

∇T̃ = 0.

We restrict ourselves to B+ for the sake of simplicity, as the treatment for B− is
similar.
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Since T̃ is parallel, its value at a point exp(v) of U can be obtained by parallel
transport from Tp along the curve t �→ exp(tv). As

Tp =
∑

Ti1...ir
(
dxi1

)
p
⊗ · · · ⊗ (dxir )p =

∑
Ti1...ir χ

i1
p ⊗ · · · ⊗ χirp ,

we have

T̃ =
∑

Ti1...ir χ
i1 ⊗ · · · ⊗ χir .

Let β be a differential 1-form on B+ such that

β(ξ)= 0, ιξ dβ = 0,

where ιξ denotes the interior product by ξ .
Then prove that either β ≡ 0 or

lim
x→p

β(x)

does not exist.

Solution Put β =∑i βi dxi . Since ρ and ξ are proportional on B , we have β(ρ)=∑
i βix

i = 0, from which

∑

i

(
xi dβi + βi dxi

)= 0.

We also have that ιρ dβ = 0, so

ιρ dβ = ιρ
n∑

i=1

(
dβi ∧ dxi

)=
n∑

i=1

(
ρ(βi)dxi − xi dβi

)

=
n∑

i,j=1

∂βi

∂xj
xj dxi +

n∑

i=1

βi dxi =
n∑

i=1

( n∑

j=1

∂βi

∂xj
xj + βi

)

dxi = 0.

Hence, for each i = 1, . . . , n, we have that

n∑

j=1

∂βi

∂xj
xj =−βi.

This implies that βi is semi-homogeneous of degree −1, that is, for any ζ ∈ ϕ(B+)
and any t � 0 we have

βi
(
ϕ−1(tζ )

)= 1

t
βi
(
ϕ−1(ζ )

)
,

so that either βi(ϕ−1(ζ ))= 0 or limt→0 βi(ϕ
−1(tζ )) does not exist.
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Problem 6.71 With the definitions and notations of Problems 6.68, 6.69 and 6.70,
consider now the differential 1-form κ ∈A1(B+) defined by

κ =
∑

i

T

(

ξ, . . . , ξ,
∂

∂xi

)

ϕi.

Then prove:

(i)

κ ≡ 0.

(ii)

∇ξ dh=∇ρ dh= 0.

Solution

(i) Putting to be short

T
(
ξ (r), Y

)= T (ξ, (r). . . , ξ, Y ),
where Y stands for any vector field on B+, on the one hand, we have

n∑

i=1

T

(

ξ (r),
∂

∂xi

)

ξ i dh= T (ξ (r), ξ)dh= dh,

so that

κ =
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

χi − dh.

Differentiating now the expression hr =∑Ti1...ir x
i1 · · ·xir we have, because

of the symmetry of T , that

rhr−1 dh= r
∑

Ti1...ir x
i1 · · ·xir−1 dxir = rhr−1

∑
Ti1...ir ξ

i1 · · · ξ ir−1 dxir

= rhr−1
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

dxi.

Hence
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

ξ i dh=
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

dxi,

and consequently,

κ =
n∑

i=1

T

(

ξ (r),
∂

∂xi

)
(
χi − dxi

)
.
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We deduce that

κ(Xj )=
n∑

i=1

T

(

ξ (r),
∂

∂xi

)
(
δij − dxi(Xj )

)

goes to zero when we approximate to p, that is, κ goes to zero when we ap-
proach p.

On the other hand, we have

κ(ξ)=
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

θi(p)− dh(p)=
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

ξ i − h= 0.

According to the result in Problem 6.70, it suffices to prove that ιξ dκ = 0. To
this end, we shall prove that dκ(ξ,Xj )= 0.

We have

dκ(ξ,Xj )= ξ
(

n∑

i=1

T

(

ξ (r),
∂

∂xi

)

θi(Xj )

)

−Xj

(
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

θi(p)

)

− κ([ξ,Xj ]
)

=
n∑

i=1

ξ

(

T

(

ξ (r),
∂

∂xi

)

χi(Xj )− T
(

ξ (r),
∂

∂xi

)

ξ i dh(Xj )

)

− κ([ξ,Xj ]
)

= ξ
(

T

(

ξ (r),
∂

∂xj

)

−Xj(h)

)

−
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

χi
([ξ,Xj ]

)

+
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

ξ i dh
([ξ,Xj ]

)

= ξ
(

T

(

ξ (r),
∂

∂xj

))

− ξ(Xj(h)
)+

n∑

i=1

T

(

ξ (r),
∂

∂xi

)

χi(∇Xj
ξ)

+ ξ(Xj(h)
)−Xj

(
ξ(h)

)

= ξ
(

T

(

ξ (r),
∂

∂xj

))

+
n∑

i=1

T

(

ξ (r),
∂

∂xi

)

χi(∇Xj
ξ)

(since T (ξ, (r). . . , ξ)= 1, ξ(h)= 1, and [ξ,Xj ] = ∇ξXj −∇Xj
ξ =−∇Xj

ξ ).
Now,

T

(

ξ (r),
∂

∂xj

)

=
∑

Ti1...ir−1j ξ
i1 · · · ξ ir−1

=
∑

Ti1...ir χ
i1(ξ) · · ·χir−1(ξ)χir (Xj )= T̃

(
ξ (r),Xj

)
,
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so that

ξ

(

T

(

ξ (r),
∂

∂xj

))

= (∇ξ T̃ )
(
ξ (r),Xj

)+ (r − 1)T̃
(
ξ (r),∇ξ ξ,Xj

)

+ T̃ (ξ (r),∇ξXj

)= 0.

Finally, we have

n∑

i=1

T

(

ξ (r),
∂

∂xi

)

χi(∇Xj
ξ)=

n∑

i=1

T̃
(
ξ (r),Xi

)
χi(∇Xj

ξ)= T̃ (ξ (r),∇Xj
ξ
)

= 1

r
∇Xj

(
T̃ (ξ, . . . , ξ)

)= 1

r
Xj

(
T̃ (ξ, . . . , ξ)

)

= 1

r
Xj (1)= 0.

So indeed κ = 0.
(ii) We have

κ(Xi) = T

(

ξ (r),
∂

∂xi

)

−
n∑

j=1

T

(

ξ (r),
∂

∂xj

)

ξj dh(Xi)

= T̃
(
ξ (r),Xi

)− dh(Xi)= 0,

so that

∇ξ
(
T̃
(
ξ (r),Xi

)− dh(Xi)
)=−(∇ξ dh)(Xi)= 0,

and one immediately concludes.

Problem 6.72 Here we follow the definitions and notations of Problems 6.68, 6.69,
6.70 and 6.71.

Prove that if q ∈ H̃a , a �= 0, and X ∈ TqM is tangent to H̃a , then

T̃q(v, . . . , v,X)= 0,

where v ∈ TqM is tangent to the geodesic in U through p passing by q .

Remark Note that this result, when T̃ is a Riemannian metric on M and ∇ the
Levi-Civita connection, is the classical Gauss Lemma.

The reader can find the relevant theory developed, for instance, in O’Neill [26,
Chap. 5].
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Solution We have that q ∈ H̃a if and only if f (p)= a. Thus X(f )= 0, and from
this, dh(X)= 0. Hence

0= κq(X)= Tq
(

ξ (r)q ,
∂

∂xi

)
(
χi(X)− ξ i dh(X)

)

= T̃q
(
ξ (r)q ,Xi |p

)
χi(X)= T̃q

(
ξ (r)p ,X

)
.

As ξq is tangent at q to the geodesic in B with origin p through q , we conclude.

Problem 6.73 With the definitions and notations of Problems 6.68, 6.69, 6.70, 6.71
and 6.72, prove that, as a consequence of the result in Problem 6.72, one has

(i) If r = 1,
{
T̃ = dh on B+,
T̃ =−dh on B−.

(ii) If r = 2,

T̃ =
{

dh⊗ dh+∑i,j Tij θ
i ⊗ θj on B+,

−dh⊗ dh+∑i,j Tij θ
i ⊗ θj on B−.

(iii) If T̃ is a pseudo-Riemannian metric, and the basis u determining a normal
coordinate system is orthonormal, that is,

T̃ (ui, ui)= εi ∈ {−1,1}, T̃ (ui, uj )= 0, i �= j,
then we have on B+ that

T̃ = dh⊗ dh+
n∑

i=1

εiθ
i ⊗ θi,

and on B− that

T̃ =−dh⊗ dh+
n∑

i=1

εiθ
i ⊗ θi .

Solution

(i) We have

T̃ =
∑

i

Tiχ
i =
∑

i

(
Tiθ

i + Tiξ i dh
)= T (ξ)dh+ κ = T (ξ)dh.

Notice that in the case r = 1 we could have taken h= f instead of h= |f |, so
we had obtained T̃ = dh. This result is consistent with the fact that, T̃ being
parallel with respect to a torsionless connection ∇ , we have

(dT̃ )(X,Y )= (∇XT̃ )(Y )− (∇Y T̃ )(X)= 0,

that is, dT̃ = 0.
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(ii) One similarly has

T̃ =
n∑

i,j=1

Tij χ
i ⊗ χj =

n∑

i,j=1

Tij
(
θi + ξ i dh

)⊗ (θj + ξj dh
)

= T (ξ, ξ)dh⊗ dh+
n∑

i,j=1

(
Tij θ

i ⊗ θj + Tij ξ i dh⊗ θj + Tij θ i ⊗ ξj dh
)

= T (ξ, ξ)dh⊗ dh+
n∑

i,j=1

Tij θ
i ⊗ θj + dh⊗

n∑

j=1

T

(

ξ,
∂

∂xj

)

θj

+
n∑

j=1

T

(

ξ,
∂

∂xj

)

θj ⊗ dh

= T (ξ, ξ)dh⊗ dh+
n∑

i,j=1

Tij θ
i ⊗ θj ,

since
n∑

j=1

T

(

ξ,
∂

∂xj

)

θj = κ = 0.

(iii) Immediate.

6.7 Curvature and Ricci Tensors

Problem 6.74 Find the Riemann–Christoffel curvature tensor of the Riemannian
manifold (U,g), where U denotes the unit open disk of the plane R

2 and

g = 1

1− x2 − y2

(
dx2 + dy2).

Solution We have

g−1 ≡
(

1− x2 − y2 0
0 1− x2 − y2

)

.

So, taking x = x1, y = x2, the Christoffel symbols are

Γ 1
11 = Γ 2

12 = Γ 2
21 =−Γ 1

22 =
x

1− x2 − y2
,

−Γ 2
11 = Γ 1

12 = Γ 1
21 = Γ 2

22 =
y

1− x2 − y2
.
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Therefore,

R

(
∂

∂x
,
∂

∂y
,
∂

∂x
,
∂

∂y

)

= g
(

R

(
∂

∂x
,
∂

∂y

)
∂

∂y
,
∂

∂x

)

=− 2
(
1− x2 − y2

)2 .

Problem 6.75 Consider on R
3 the metric

g = e2z(dx2 + dy2 + dz2).

Compute R( ∂
∂x
, ∂
∂z
, ∂
∂x
, ∂
∂z
), where R denotes the Riemann–Christoffel curvature

tensor.

Solution

g−1 ≡
⎛

⎝
e−2z 0 0

0 e−2z 0
0 0 e−2z

⎞

⎠ .

So, taking x = x1, y = x2, z= x3, the only non-vanishing Christoffel symbols are

Γ 1
13 = Γ 2

23 =−Γ 3
11 =−Γ 3

22 = Γ 3
33 = 1.

Therefore,

R

(
∂

∂x
,
∂

∂z
,
∂

∂x
,
∂

∂z

)

= g
(

R

(
∂

∂x
,
∂

∂z

)
∂

∂z
,
∂

∂x

)

= 0.

Problem 6.76 Let (M,g) be a Riemannian n-manifold. Consider an orthonormal
basis {e1, . . . , en−1,X} of TpM , p ∈M . Let Pi be the plane section generated by
ei and X; K(Pi) the sectional curvature of Pi ; and r the Ricci tensor. Prove that

r(X,X)=
n−1∑

i=1

K(Pi).

Solution For R(X,ei)ei and R(X,ei,X, ei) as in Definition 6.5, we have

K(Pi)= R(X,ei,X, ei)

g(X,X)g(ei, ei)− g(X, ei)2 =
g(R(X, ei)ei,X)

g(X,X)g(ei, ei)− g(X, ei)2
= g(R(X,ei)ei,X

)
.

On the other hand, with respect to the given orthonormal basis we have

r(X,X)=
n−1∑

i=1

g
(
R(ei,X)X, ei

)
.

Therefore, r(X,X)=∑n−1
i=1 K(Pi).
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Problem 6.77 Prove the following consequence of the second Bianchi identity on
a Riemannian manifold (M,g):

ds= 2 div r,

where r and s denote the Ricci tensor and the scalar curvature of the Levi-Civita
connection.

The relevant theory is developed, for instance, in O’Neill [26, Chap. 3].

Solution Let us fix a point p ∈M and consider the normal coordinates with origin
p, associated to an orthonormal basis {εi} of TpM . We can get a local orthonormal
moving frame (ei) by parallel transport of {εi} along radial geodesics, so ei |p = εi ,
and ∇ei = 0, along a radial geodesic; in particular, (∇ei)p = 0, where ∇ stands for
the Levi-Civita connection.

Further, recall that (R(X,Y )Z)(p), the curvature tensor field at any point p,
depends only on the values of the vector fields X,Y,Z at p, so that if either Xp , or
Yp , or Zp is zero, then (R(X,Y )Z)(p)= 0.

On the other hand, since ∇ is torsionless, the second Bianchi identity can be
written as

g
(
(∇XR)(Y,Z)W,U

)+ g((∇YR)(Z,X)W,U
)+ g((∇ZR)(X,Y )W,U

)= 0,

X,Y,Z,W,U ∈X(M). Interchanging X and Y in the third summand and then con-
tracting all the summands with respect to X and U , we have
∑

i

{
g
(
(∇eiR)(Y,Z)W,ei

)+g((∇YR)(Z, ei)W, ei
)−g((∇ZR)(Y, ei)W, ei

)}= 0.

(�)
For the second summand in (�), we have

∑

i

g
(
(∇YR)(Z, ei)W, ei

)
(p)

=
∑

i

{
g
(∇Y

(
R(Z, ei)W

)
, ei
)− g(R(∇YZ, ei)W, ei

)

− g(R(Z,∇Y ei)W, ei
)− g(R(Z, ei)∇YW,ei

)}
(p)

=
{∑

i

Y
(
g
(
R(Z, ei)W, ei

))− r(∇YZ,W)− r(Z,∇YW)

}

(p)

= {Y (r(Z,W)
)− r(∇YZ,W)− r(Z,∇YW)

}
(p)= (∇Y r)(Z,W)(p).

Similarly, for the third summand in (�), we have

−
∑

i

g
(
(∇ZR)(Y, ei)W, ei

)
(p)=−(∇Zr)(Y,W)(p).
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So, at the point p we can write (�) as

{∑

i

g
(
(∇eiR)(Y,Z)W,ei

)+ (∇Y r)(Z,W)− (∇Zr)(Y,W)

}

(p)= 0. (��)

Contracting (��) with respect to Y and W , we obtain

∑

i,j

{
g
(
(∇eiR)(ej ,Z)ej , ei

)+ (∇ej r)(Z, ej )− (∇Zr)(ej , ej )
}
(p)= 0,

or equivalently,

0=
{∑

i,j

{
g
(∇ei

(
R(ej ,Z)ej

)
, ei
)− g(R(∇ei ej ,Z)ej , ei

)

− g(R(ej ,∇eiZ)ej , ei
)− g(R(ej ,Z)∇ei ej , ei

)}+ (div r)Z

−
∑

j

{
Z
(
r(ej , ej )

)− r(∇Zej , ej )− r(ej ,∇Zej )
}
}

(p)

=
{∑

j,j

{
ei
(
r(Z, ei)

)− g(R(ej ,Z)ej ,∇ei ei
)− r(∇eiZ, ei)

}+ (div r)Z −Zs
}

(p)

=
{∑

i

(∇ei r)(ei,Z)+ (div r)Z −Zs
}

(p)= {2(div r)Z −Z s
}
(p),

for every p ∈M , that is, ((2 div r− ds)Z)(p)= 0 for all Z ∈X(M) and all p ∈M .

6.8 Characteristic Classes

Problem 6.78 Consider the complex projective space CP1 equipped with the
Hermitian metric

g = h(z)(dz⊗ dz̄+ dz̄⊗ dz),

where

h(z)= 1

(1+ |z|2)2 . (�)

If w = 1/z is the coordinate at infinity, then the metric is given by

g = h(w)(dw⊗ dw̄+ dw̄⊗ dw).

Prove that the Chern class of the tangent bundle TCP1 is nonzero.
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Solution Since the Chern classes of a complex vector bundle do not depend on the
particular connection chosen to define them, we choose here the canonical Hermi-
tian connection, which, for a given h defined by

h(z0)= h
(
∂

∂z

∣
∣
∣
∣
z0

,
∂

∂z

∣
∣
∣
∣
z0

)

,

is the connection with connection form and curvature form relatives to the holomor-
phic moving frame ∂/∂z, given by

ω̃= h−1∂h= h−1 ∂h

∂z
dz, Ω̃ = ∂̄ω̃= ∂ω̃

∂z̄
dz̄,

respectively. Then we have, for the metric h in (�), the Chern form

c1
(
TCP1, ω̃

)= i

2π
Ω̃ = i

2π
∂̄
∂h(z)

h(z)
= i

2π
∂̄

(
(
1+ |z|2)2∂ 1

(1+ |z|2)2
)

= i

π(1+ |z|2)2 dz∧ dz̄= 2

π(1+ |z|2)2 dx ∧ dy.

By taking polar coordinates, it is easily seen that
∫

CP1
c1
(
TCP1, ω̃

)= 2.

By Stokes’ Theorem, the Chern form c1(TCP1, ω̃) cannot be exact. Thus the Chern
class is c1(TCP1) = 2α �= 0, where α denotes the standard generator of the co-
homology group H 2(CP1,Z) ∼= Z; and TCP1 is thus a non-trivial complex line
bundle.

Problem 6.79 Prove that the Pontrjagin forms of a space M of constant curvature
K vanish.

The relevant theory is developed, for instance, in Spivak [32].

Solution The curvature forms Ωi
j of the Levi-Civita connection on the bundle of

orthonormal frames are given in terms of the components θk of the canonical form
on the bundle of orthonormal frames (which is the restriction of the canonical form
on the bundle of linear frames) by

Ωi
j =Kθi ∧ θj .

Hence, by the formula on p. 576, the r th Pontrjagin form, denoted here by pr , is
given, for r = 1, . . . ,dimM/4, by

p∗(pr)= 1

(2π)2r (2r)!
∑

δ
j1...j2r
i1...i2r

Ω
i1
j1
∧ · · · ∧Ωi2r

j2r
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= K2r

(2π)2r (2r)!
∑

i1,...,i2r
j1,...,j2r

δ
j1...j2r
i1...i2r

θ i1 ∧ θj1 ∧ · · · ∧ θi2r ∧ θj2r ,

where p denotes the projection map of the bundle of orthonormal frames.
The δ’s vanish unless j1, . . . , j2r is a permutation of i1, . . . , i2r , but then the

wedge product of θ ’s has repeated factors, so p∗(pr) vanishes. As p∗ is injective,
pr also vanishes.

Problem 6.80 Let M be a 4-dimensional compact oriented C∞ manifold. Let Ωi
j ,

i, j = 1, . . . ,4, be the curvature forms of a linear connection on M , and let Ω̃i
j be

given by Ωj
i = σ ∗Ω̃i

j , the curvature forms relative to any fixed orthonormal moving
frame σ on M . Prove that the signature τ(M) can be expressed by

τ(M)=− 1

24π2

∫

M

∑

i<j

Ω̃i
j ∧ Ω̃j

i .

Hint Use Hirzebruch’s formula in Theorem 6.16.

Solution To apply the Hirzebruch Theorem, we need to compute a representative
form of the first Pontrjagin class of M , that is, of the first Pontrjagin class of the
tangent bundle TM . The principal GL(4,R)-bundle corresponding to TM is the
frame bundle (FM,p,M), where the given connection is defined. Now, by Weil’s
Theorem, the characteristic class does not depend on the chosen connection. Thus,
as we can always reduce the structure group to the orthogonal group O(4) (here,
even to SO(4), since M is oriented) or, equivalently, take a Riemannian metric on
M , the matrix of curvature 2-forms of the connection is skew-symmetric, as it takes
values in the Lie algebra so(4). We shall compute the Pontrjagin form p1(M) in
terms of the curvature forms of the metric connection in two related ways, which is
perhaps instructive. The form p1(M) is given by

p∗
(
p1(M)

)= term of det

(

I − 1

2π
Ω

)

quadratic in the Ω’s

= 1

4π2

(−Ω1
2 ∧Ω2

1 −Ω1
3 ∧Ω3

1 −Ω1
4 ∧Ω4

1 −Ω2
3 ∧Ω3

2

−Ω2
4 ∧Ω4

2 −Ω3
4 ∧Ω4

3

)

= 1

4π2

(

−1

2
tr(Ω ∧Ω)

)

.

We can also directly use the formula on p. 576, as follows. Let (i1, i2) be an
ordered subset of {1,2,3,4}, (j1, j2) a permutation of (i1, i2), and δj1j2

i1i2
the sign of
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the permutation. Then

p∗
(
p1(M)

)= 1

(2π)22!
∑

δ
j1j2
i1i2

Ω
i1
j1
∧Ωi2

j2

= 1

8π2

(−Ω1
2 ∧Ω2

1 −Ω1
3 ∧Ω3

1 −Ω1
4 ∧Ω4

1 −Ω2
1 ∧Ω1

2

−Ω2
3 ∧Ω3

2 −Ω2
4 ∧Ω4

2 −Ω3
1 ∧Ω1

3 −Ω3
2 ∧Ω2

3

−Ω3
4 ∧Ω4

3 −Ω4
1 ∧Ω1

4 −Ω4
2 ∧Ω2

4 −Ω4
3 ∧Ω3

4

)

=− 1

8π2
tr(Ω ∧Ω).

Furthermore, since for any given invariant polynomial in the curvature, the cor-
responding differential form on the base space (see, for instance, [24, p. 295], [29,
vol. IV, L. 22]) does not depend on the chosen orthonormal moving frame, by ap-
plying the Hirzebruch formula, we can write:

τ(M)= 1

3

∫

M

p1(M)=−1

3

∫

M

1

8π2

∑

i<j

Ω̃i
j ∧ Ω̃j

i ,

as stated.

Problem 6.81 Let M be a differentiable manifold and let F ⊂ TM be an involutive
sub-bundle of TM . A linear connection ∇ on the quotient bundle TM/F is said to
be a basic connection if the following property holds:

∇X
(
Y(mod F)

)= [X,Y ](mod F), X ∈ Γ (F), Y ∈X(M).

Prove:

(i) Basic connections exist.
(ii) For any basic connection ∇ , one has

R∇(X,Y )= 0, X,Y ∈ Γ (F).
Suppose that the normal vector bundle

E = TM/F,

has rank q (that is, the dimension of the fiber equals q).
Let Pontk(E) be the vector subspace of the cohomology group Hk(M,R)

consisting of the homogeneous polynomials of degree k in the Pontrjagin
classes pi(E) ∈H 4i (M,R).

(iii) Prove the Bott Theorem on Pontrjagin classes of foliated manifolds, namely

Pontk(E)= 0, k > 2q.
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Remark The basic connections are also called adapted linear connections. The rel-
evant theory is developed, for instance, in Bott [3], Heitsch [15], and Moscovici
[25].

Solution

(i) If g is a Riemannian metric on M , then TM = F ⊕ F⊥ and every X ∈ X(M)

decomposes uniquely as X = X′ + X′′, with X′ ∈ Γ (F), X′′ ∈ Γ (F⊥). We
define

∇X
(
Y(mod F)

)= [X′, Y ](mod F), X,Y ∈X(M),

and the definition makes sense, as for all Z ∈ Γ (F) one has

∇X
(
Y +Z(mod F)

)= [X′, Y +Z](mod F)= ([X′, Y ]+ [X′,Z])(mod F)

= [X′, Y ](mod F)=∇X
(
Y(mod F)

)

because [X′,Z] belongs to Γ (F), the sub-bundle F being involutive. Next we
check the properties of a connection for ∇ .

If f ∈ C∞(M), then (fX)′ = fX′ and one has

∇fX
(
Y(mod F)

)= [fX′, Y ](mod F)= (f [X′, Y ]− (Yf )X′)(mod F)

= f [X′, Y ](mod F)= f ∇X
(
Y(mod F)

)
,

as (Yf )X′ ∈ Γ (F). Finally,

∇X
(
f Y (mod F)

)= [X′, f Y ](mod F)= ((X′f )Y + f [X′, Y ])(mod F)

= (X′f )(Y(mod F)
)+ f∇X

(
Y(mod F)

)
.

(ii) If X,Y ∈ Γ (F), then from the definition of ∇ one obtains

R∇(X,Y )
(
Z(mod F)

)= (∇X∇Y −∇Y∇X −∇[X,Y ])
(
Z(mod F)

)

= ([X, [Y,Z]]− [Y, [X,Z]]− [[X,Y ],Z])(mod F)

= ([X, [Y,Z]]+ [Y, [Z,X]]+ [Z, [X,Y ]])(mod F)

= 0.

(iii) Since by the Weil Theorem the characteristic classes do not depend on the
chosen connection, we compute the Pontrjagin forms in terms of the curvature
forms of a basic connection ∇ . Let {e1, . . . , en} be a local frame field and let
{θ1, . . . , θn} be its dual basis of differential 1-forms. The curvature 2-form Ω

of ∇ is locally given by

Ω =
∑

i<j

Ωi
j θ

i ∧ θj ,
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and the kth Pontrjagin form pk(Ω) is furnished by the term of

det

(

I − 1

2π
Ω

)

of order 2k in the Ω’s, so it is given (up to a coefficient) by

pk(Ω)= tr
(
Ω ∧ (2k)· · · ∧Ω)=

∑
tr
(
Ω

i1
j1
, . . . ,Ω

i2k
j2k

)
θi1 ∧ θj1 ∧ · · ·∧ θi2k ∧ θj2k .

If k > 2q , at least one pair belongs to F . From (ii) above one gets

θi1 ∧ · · · ∧ θi2k = 0.

Problem 6.82 Let g be the bi-invariant metric on SO(3). Calculate the Chern–
Simons invariant J (SO(3), g).

Remark For the related definitions and results, see Definition 6.17. The relevant
theory is developed, for instance, in Chern and Simons [8].

Solution Let X1,X2,X3 be the standard basis of T S3, that is,

X1 = 1

2

(

−x1 ∂

∂x0
+ x0 ∂

∂x1
+ x3 ∂

∂x2
− x2 ∂

∂x3

)

,

X2 = 1

2

(

−x2 ∂

∂x0
− x3 ∂

∂x1
+ x0 ∂

∂x2
+ x1 ∂

∂x3

)

,

X3 = 1

2

(

−x3 ∂

∂x0
+ x2 ∂

∂x1
− x1 ∂

∂x2
+ x0 ∂

∂x3

)

.

From Problem 4.90, it follows that X1,X2,X3 are left-invariant vector fields, and
as the Lie groups S3 and SO(3) have the same Lie algebra, X1,X2,X3 can be con-
sidered as left-invariant vector fields on SO(3).

We have

[X1,X2] =X3, [X2,X3] =X1, [X3,X1] =X2.

Let αij =−αji , i, j = 1,2,3, be the Maurer–Cartan forms on SO(3), determined by

α3
2(Xi)= δ1i , α3

1(Xi)= δ2i , α2
1(Xi)= δ3i ,

so that the structure equations of the Lie group, are

dαij =
3∑

k=1

αik ∧ αkj , i, j = 1,2,3. (�)
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The bi-invariant metric on SO(3) is given by

g = α1
2 ⊗ α1

2 + α1
3 ⊗ α1

3 + α2
3 ⊗ α2

3 .

By writing these equations, one has chosen a basis of the Lie algebra of SO(3) and
hence, by right translations, a frame field on the manifold SO(3). It is convenient to
choose the notation so that the equations remain invariant under a cyclic permutation
of 1,2,3. Setting θi = αkj , i, j, k = cyclic permutation of 1,2,3, the invariant metric
becomes

g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3.

The connection and curvature forms ωij =−ωji , Ωi
j =−Ωj

i , are determined by the
Cartan structure equations

dθi =−
∑

j

ωij ∧ θj , dωij =−
∑

k

ωik ∧ωkj +Ωi
j .

Comparing these equations with the structure equations (�) of the Lie group, one
finds

ωij =
1

2
θk, Ωi

j =−
1

4
θi ∧ θj .

Hence

1

2
T P1(Ω)= 1

8π2

∑

1�i<j�3

ωij ∧Ωi
j −

1

8π2
ω1

2 ∧ω2
3 ∧ω3

1

=− 1

16π2
θ1 ∧ θ2 ∧ θ3. (��)

Let us compute the total volume of SO(3) with its bi-invariant metric. We have

volg
(
SO(3)

)= volg
(
RP3)= 1

2
volg

(
S3).

Hence we only need to calculate volg(S3). Write

θ1 ∧ θ2 ∧ θ3 = ρ dx0 ∧ dx1 ∧ dx2.

By calculation we obtain

(
θ1 ∧ θ2 ∧ θ3)(X1,X2,X3)= det

(
θi(Xj )

)=−1

and

(
dx0 ∧ dx1 ∧ dx2)(X1,X2,X3)= 1

8
det

⎛

⎝
−x1 −x2 −x3

x0 −x3 x2

x3 x0 −x1

⎞

⎠=−x
3

8
.
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Hence ρ = 8
x3 . By considering the parametrisation of S3 (see Remark 1.4) given by

x0 = sinu, x1 = cosu sinv, x2 = cosu cosv sinw,

x3 = cosu cosv cosw,

with u,v ∈ (−π/2,π/2), w ∈ (−π,π), we compute

∫

S3
θ1 ∧ θ2 ∧ θ3 = 8

(∫ π/2

−π/2
cos2 udu

)(∫ π/2

−π/2
cosv dv

)(∫ π

−π
dw

)

= 16π2.

Therefore,

volg
(
SO(3)

)= 8π2,

and from (��) we conclude

J
(
SO(3), g

)= 1

2
.

Remark The reader can check that the metric g is really bi-invariant by proving
that the forms θi are also right-invariant. This readily follows from formula (��) in
Problem 4.71.

6.9 Isometries

Problem 6.83 Let (M,g) be the Poincaré upper half-plane. We define an action of
SL(2,R) on M as follows: Identifying R

2 with C as usual, let z = x + iy. Given
s = ( a b

c d

) ∈ SL(2,R), we define

w = sz= az+ b
c z+ d .

(i) Prove that SL(2,R) is a group of isometries of (M,g) (called the group of
fractional linear transformations of the Poincaré upper half-plane).

(ii) Prove that under these isometries the half-circles with centre at the x-axis are
transformed either in the same type of half-circles or in vertical lines.

Hint One can obtain an Iwasawa decomposition of SL(2,R), writing each s ∈
SL(2,R) as the product of a matrix of SO(2) by a diagonal matrix with determinant
equal to 1 by an upper triangular matrix with the elements of the diagonal equal
to 1.

Solution

(i) Given z= x + iy ∈M we have y = Im z > 0. We also have Imw > 0. In fact,
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Imw = Im
az+ b
c z+ d =

Im z

|c z+ d|2 > 0,

and thus w ∈M .
Moreover, s2(s1z)= (s2s1)z. In fact, putting

s1 =
(
a b

c d

)

, s2 =
(
a′ b′
c′ d ′

)

,

we have

s2(s1z)= (a′a + b′c)z+ a′b+ b′d
(c′a + d ′c)z+ c′b+ d ′d = (s2s1)z.

The metric g can be written on {z ∈C : Im z > 0} as

g = 1

2

dz⊗ dz̄+ dz̄⊗ dz

(Im z)2
.

Moreover, it is easy to compute that

dw⊗ dw̄+ dw̄⊗ dw

(Imw)2
= dz⊗ dz̄+ dz̄⊗ dz

(Im z)2
.

As the expression of g is preserved in the new coordinates, the action of s is an
isometry. Thus SL(2,R) acts on M as a group of isometries.

(ii) From the Iwasawa decomposition of SL(2,R) in the hint, we can write each
element s ∈ SL(2,R) uniquely as a product

s =
(

cos θ − sin θ
sin θ cos θ

)(
λ 0
0 1/λ

)(
1 a

0 1

)

, λ �= 0.

Considering the previous property s2(s1z) = (s2s1)z, in order to study the
action of SL(2,R) on a half-circle of M with centre at the x-axis, it suffices to
see the consecutive action of the elements of the previous decomposition. The
action

z �→ az+ b
c z+ d

by an element of the type
( 1 a

0 1

)
is z �→ z + a. That is, the translation of the

half-circle by the vector a + 0 i, a ∈R (see Fig. 6.8(a)).
The action by an element of the type

( λ 0
0 1/λ

)
, λ ∈ R \ {0}, is z �→ λ2z. That

is, a homothety of ratio λ2 ∈R+ (see Fig. 6.8(b)).
From these results, it follows that to study the whole action it suffices to

consider the unit half-circle C with centre at (0,0).
We can parametrise that half-circle as

(x, y)= (cosβ, sinβ), β ∈ (0,π).
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Fig. 6.8 Variations of the image of the half-circle C

The action of an element s = ( cos θ − sin θ
sin θ cos θ

) ∈ SO(2) is

z �→ z cos θ − sin θ

z sin θ + cos θ
≡
(

x cos 2θ

1+ x sin 2θ
,

y

1+ x sin 2θ

)

.

The limits when y→ 0, that is when x→±1, are

(

− cos 2θ

1− sin 2θ
,0

)

,

(
cos 2θ

1+ sin 2θ
,0

)

,

respectively. So the centre of the half-circle image is at the point of the x-axis
with abscissa

1

2

cos 2θ

1− sin2 2θ
(1− sin 2θ − 1− sin 2θ)=− tan 2θ.
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Moreover, from

(
x cos 2θ

1+ x sin 2θ
+ tan 2θ

)2

+ y2

(1+ x sin 2θ)2
= r2,

one has r = 1/ cos 2θ . The image of C is thus the half-circle of centre − tan 2θ
and radius 1/ cos 2θ , if cos 2θ �= 0. The image of (0,1) is (0,1) (see Fig. 6.8(c)).

Let us now see how the image of C changes as a function of θ ∈ [0,2π].
If θ = 0, we have the identity C→ C.
For the interval 2θ ∈ (0,π/2) we obtain as images a family of half-circles of

the previous type, and (0,1) is preserved (see Fig. 6.8(d)).

For 2θ = π
2 the image is {(0,

√
1−x
1+x )}, so the part at the first quadrant goes

to the vertical segment from (0,0) to (0,1), and the part at the second quadrant
into the vertical half-line {(0, y) : y ∈ (1,∞)}. Thus C is transformed in the
half-line {(0, y) : y ∈ (0,∞)} (see Fig. 6.8(e)).

For the interval 2θ ∈ (π/2,π) we have the images obtained by reflection
in the y-axis of the ones corresponding to the interval (0,π/2) because cos 2θ
changes its sign, but sin 2θ does not (see Fig. 6.8(f)).

For 2θ = π the image is (−x, y), that is g(C) = C by reflection on the y-
axis.

For the interval 2θ ∈ (π,3π/2), the values of cos 2θ and sin 2θ change their
sign with respect to their values when 2θ ∈ (0,π/2). Therefore, changing the
sign of x, the values of x sin 2θ and x cos 2θ are preserved and if the value of y
does not change, we obtain that the image sets are the reflections with regard to
the y-axis of the ones corresponding to the interval (0,π/2) (see Fig. 6.9(g)).

For 2θ = 3π/2 one has

(x, y) �→
(

0,

√
1+ x
1− x

)

,

that is, again the half-line {(0, y) : y > 0}, but obtained from C in a different
way, as we can see in Fig. 6.9(h).

For the interval 2θ ∈ (3π/2,2π), we have that sin 2θ changes its sign with
respect to 2θ ∈ (0,π/2) and cos 2θ preserves it. Changing x by −x, we have
the symmetric situation with respect to the y-axis (see Fig. 6.9(i)).

For 2θ = 2π we have (x, y)→ (x, y); again the identity.
Summarising, from a half-circle of radius r with centre at the x-axis we can

obtain all the half-circles with centre at the x-axis and any radius, and all the
vertical lines (see Fig. 6.9(j)).

Problem 6.84

(i) Prove that the isometry group I (Sn) of Sn with the round metric, is O(n+ 1).
(ii) Prove that the isometry group of the hyperbolic space Hn, equipped with the

canonical metric of negative constant curvature, is the proper Lorentz group
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Fig. 6.9 Variations of the image of the half-circle C

O+(1, n), which is the group of all linear transformations of Rn+1 which leave
invariant the Lorentz product 〈·, ·〉 on R

n+1, defined by

〈(
x0, x1, . . . , xn

)
,
(
y0, y1, . . . , yn

)〉=−x0y0 +
n∑

i=1

xiyi .

Hint Apply Theorem 6.22.

Solution

(i) Let 〈·, ·〉 denote the Euclidean metric on R
n+1. The round metric on Sn is de-

fined by letting the embedding of Sn into R
n+1 be isometric, i.e.

〈
(p,u), (p, v)

〉
Sn
= 〈(p,u), (p, v)〉= 〈u,v〉 (�)

for p ∈ Sn and (p,u), (p, v) ∈ T Sn. The group O(n+ 1) acts on Sn by isome-
tries. In fact,

〈
a∗(p,u), a∗(p, v)

〉
Sn
= 〈(ap,au), (ap,av)〉

Sn

(
a ∈O(n+ 1)

)

= 〈au,av〉 (by (�))

= 〈u,v〉
= 〈(p,u), (p, v)〉

Sn
(by (�)).
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Now let a ∈ I (Sn). Fix p = e0 ∈ Sn and the orthonormal basis {(p, ej )} for
TpS

n. Let (q, ẽj ) = a∗(p, ej ) ∈ TqSn for q = a(p). Let b ∈ O(n + 1) take p
to q and ej to ẽj , j � 1. Since O(n + 1) acts on Sn by isometries we have
b ∈ I (Sn). As moreover b∗p = a∗p , applying Theorem 6.22, we obtain a = b ∈
O(n+ 1).

(ii) The proof is similar to that of (i) since the hyperbolic space Hn can be viewed
as the component

{
(
x0, x1, . . . , xn

) ∈Rn+1 : −(x0)2 +
n∑

i=1

(
xi
)2 =−1, x0 > 0

}

of the hyperboloid 〈· , ·〉−1(−1).

Problem 6.85 Let f : (M,g)→ (M ′, g′) be an isometry of Riemannian manifolds.
Prove that f preserves the Riemann–Christoffel curvature tensor field and the sec-
tional curvature.

Solution An isometry is a diffeomorphism that preserves the metric, that is,

g′(f ·X,f · Y)= (f ∗g′)(X,Y ) ◦ f−1 = g(X,Y ) ◦ f−1, (�)

then it is an affine map for the Levi-Civita connection, i.e. f · ∇XY = ∇′f ·Xf ·
Y , where ∇ and ∇′ denote the Levi-Civita connections of g and g′, respectively.
Hence, we conclude as in Problem 5.43 that for the respective Riemann–Christoffel
curvature tensors one has that

R′(f ·X,f · Y,f ·Z,f ·W)=R(X,Y,Z,W) ◦ f−1. (��)

Put p′ = f (p). If {Xp,Yp} is a basis of the 2-plane P of TpM , then {(f∗X)p′ ,
(f∗Y)p′ } is a basis of the 2-plane P = f∗P of Tp′M ′. Then, according to Defini-
tion 6.5, from (�) and (��) above we obtain for the sectional curvature

K ′(P )= R′((f∗X)p′ , (f∗Y)p′ , (f∗X)p′, (f∗Y)p′)
g′((f∗X)p′, (f∗X)p′)g′((f∗Y)p′ , (f∗Y)p′)− g′((f∗X)p′, (f∗Y)p′)2

= R(Xp,Yp,Xp,Yp)

g(Xp,Xp)g(Yp,Yp)− g(Xp,Yp)2
=K(P ).

Problem 6.86 Let (M,g) be a Riemannian manifold.

(i) Prove that if f is an isometry of (M,g) and ∇ denotes the Levi-Civita connec-
tion, then we have

f ∗∇ej β =∇f−1·ej f
∗β, β ∈Λ1M,

where (ej ) stands for a local orthonormal frame.
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(ii) Prove that the codifferential δ, defined by

δβ =−divβ =−
∑

k

iek∇ekβ, β ∈Λ∗M, (�)

{ek} being an orthonormal basis, commutes with isometries.

The relevant theory is developed, for instance, in Poor [28, Chap. 4].

Solution

(i) As f is an isometry, f preserves the Levi-Civita connection, that is, f · ∇XY =
∇f ·Xf · Y , so that ∇ej (f · X) = f · ∇f−1·ej X. Moreover, we recall that we

have (f ∗ω)(X) ◦ f−1 = ω(f ·X) for every ω ∈Λ1M , as it is readily checked.
Letting ω=∇ej β , we obtain that

(
f ∗∇ej β

)
(X) ◦ f−1 = (∇ej β)(f ·X)=∇ej

(
β(f ·X))− β(∇ej (f ·X)

)

= ej
((
f ∗β

)
(X) ◦ f−1)− β(f · ∇f−1·ej X)

= {(f−1 · ej
)((

f ∗β
)
(X)
)− (f ∗β)(∇f−1·ej X)

} ◦ f−1

= {∇f−1·ej
((
f ∗β

)
(X)
)− (f ∗β)(∇f−1·ej X)

} ◦ f−1

= {(∇f−1·ej f
∗β
)
(X)
} ◦ f−1.

(ii)

f ∗δβ =−f ∗ div β (by definition of div, and locally)

=−
∑

j

f ∗(iej∇ej β) (by (�))

=−
∑

j

if−1·ej f
∗∇ej β

=−
∑

j

if−1·ej∇f−1·ej f
∗β (by part (i) of this problem)

=−divf ∗β = δf ∗β.

6.10 Left-Invariant Metrics on Lie Groups

Problem 6.87 Let G be a Lie group equipped with a left-invariant Riemannian
metric g. Prove that the scalar curvature is constant.
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Solution Let e denote the identity element of G. Since the left translations by
elements a ∈ G are isometries, they preserve (see Problem 6.85) the Riemann–
Christoffel curvature tensor

R(La∗X1,La∗X2,La∗X3,La∗X4)=R(X1,X2,X3,X4), Xi ∈ Te(G).
As (La∗)e sends an orthonormal basis {ei} at e to an orthonormal basis, the scalar
curvature

s=
∑

i,j

R(ei, ej , ei, ej )

satisfies s(a)= s(e) for all a ∈G, that is, s is a constant function.

Problem 6.88 Consider the Heisenberg group H (see Problem 4.42) equipped with
the left-invariant metric

g = dx2 + (dy − x dz)2 + dz2.

1. Find the Levi-Civita connection, the Riemann–Christoffel curvature tensor, the
Ricci tensor and the scalar curvature of (H,g):
(a) In terms of the coordinate frame

(

Y1 = ∂

∂x
, Y2 = ∂

∂y
, Y3 = ∂

∂z

)

,

by using direct calculation.
(b) With respect to the orthonormal moving frame

σ =
(

X1 = ∂

∂x
, X2 = ∂

∂y
, X3 = x ∂

∂y
+ ∂

∂z

)

dual to the orthonormal moving coframe
(
θ̃1 = dx, θ̃2 = dy − x dz, θ̃3 = dz

)
, (�)

by using the Koszul formula.
(c) With respect to the moving frame in (b), by using Cartan’s structure equa-

tions.
2. Is (H,g) a space of constant curvature?
3. Is (H,g) a space of constant scalar curvature?

Hint (to 1(c)) Since one considers an orthonormal moving frame and the Levi-
Civita connection is torsionless, one should consider Cartan’s structure equations
for orthonormal moving frames (in Riemannian signature), that we can write (see
p. 597) as

dθ̃ i =−
∑

j

ω̃ij ∧ θ̃ j , ω̃ij + ω̃ji = 0,
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Ω̃i
j = dω̃ij +

∑

k

ω̃ik ∧ ω̃kj .

Solution 1(a) The matrices of g and its inverse g−1 are given in terms of the coor-
dinate frame by

g =
⎛

⎝
1 0 0
0 1 −x
0 −x 1+ x2

⎞

⎠ , g−1 =
⎛

⎝
1 0 0
0 1+ x2 x

0 x 1

⎞

⎠ .

From this we have that the non-zero Christoffel symbols

Γ i
jk =

1

2

∑

l

gil
(
∂glj

∂xk
+ ∂glk

∂xj
− ∂gjk

∂xl

)

are easily computed to be

Γ 2
12 = Γ 2

21 =−Γ 1
23 =−Γ 1

32 =−Γ 3
13 =−Γ 3

31 =−
1

2
x,

Γ 3
12 = Γ 3

21 =−Γ 1
23 =−Γ 1

32 =−
1

2
, Γ 2

13 = Γ 2
31 =

1

2

(
x2 − 1

)
, Γ 1

33 =−x.

The non-vanishing components of the curvature tensor

Ri
jkl =

∂Γ i
lj

∂xk
− ∂Γ i

kj

∂xl
+
∑

r

(
Γ r
lj Γ

i
kr − Γ r

kj Γ
i
lr

)

are then given by

R1
212 =−R1

221 =−R2
112 =R2

121 =−R3
223 =R3

232 =
1

4
,

R1
213 =−R1

231 =R1
312 =−R1

321 =R1
223 =R1

232 =R2
223 =−R2

232

=−R3
323 =−R3

332 =−
1

4
x,

R1
313 =−R1

331 =
1

4

(
x2 − 3

)
, R2

113 =−R2
131 = x,

R2
323 =−R2

332 =
1

4

(
x2 + 1

)
, R3

113 =−R3
131 =

3

4
,

so the nonzero components of the Riemann–Christoffel curvature tensor

Rijkl =
∑

h

gihR
h
jkl
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are given by

R1212 =−R1221 =−R2112 =R2121 =R2323 =−R2332 =−R3223 =R3232 = 1

4
,

R1213 =−R1231 =R1312 =−R1321 =R1223 =R1232 =−R2113 =R2131 =−1

4
x,

R1313 =−R1331 =−R3113 =R3131 = 1

4

(
x2 − 3

)
.

From the components of either the curvature tensor or the Riemann–Christoffel cur-
vature tensor we get that the non-null components of the Ricci tensor

rij =
∑

k

Rk
ikj =

∑

k,l

gklRikj l

are

r11 =−r22 =−1

2
, r23 = r32 =−1

2
x, r33 = 1

2

(
x2 − 1

)
,

and thus the scalar curvature

s=
∑

i,j,k,l

gij gklRikj l =
∑

i,j

gij rij

is

s=−1

2
.

1(b). This time, the matrices of g and its inverse g−1 are obviously given in terms
of the frame by

g = diag(1,1,1), g−1 = diag(1,1,1).

The Levi-Civita connection of g is given by the Koszul formula

2g(∇XY,Z)= g
([X,Y ],Z)− g([Y,Z],X)+ g([Z,X], Y ), X,Y,Z ∈ g.

Now, since (X1,X2,X3) is a basis of h, to determine ∇ we only have to know
∇Xi

Xj . The nonzero brackets [Xi,Xj ], for i, j = 1,2,3, are

[X1,X3] = −[X3,X1] =X2.

Hence,

g(∇X1X1,Xi)= 0, i = 1,2,3, so ∇X1X1 = 0. Similarly, ∇X2X2 =∇X3X3 = 0;
g(∇X1X2,X1)= 0, g(∇X1X2,X2)= 0 and 2g(∇X1X2,X3)=−1, thus∇X1X2 =
− 1

2X3. So, as ∇ is torsionless, it follows that ∇X2X1 =− 1
2X3;

g(∇X1X3,X1) = 0, 2g(∇X1X3,X2) = 1 and g(∇X1X3,X3) = 0, therefore
∇X1X3 = 1

2X2, and ∇X3X1 =− 1
2X2;
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2g(∇X2X3,X1) = 1, g(∇X2X3,X2) = 0 and g(∇X2X3,X3) = 0, so ∇X2X3 =
1
2X1 and ∇X3X2 = 1

2X1.

That is, we have that

∇X1X1 = 0, ∇X1X2 =∇X2X1 =−1

2
X3, ∇X1X3 =−∇X3X1 = 1

2
X2,

∇X2X2 = 0, ∇X2X3 =∇X3X2 = 1

2
X1, ∇X3X3 = 0.

The Riemann–Christoffel curvature tensor has thus components computed as, for
instance,

R1212 = g
(
R(X1,X2)X2,X1

)= g(∇X1∇X2X2 −∇X2∇X1X2 −∇[X1,X2]X2,X1)

= 1

2
g(∇X2X3,X1)= 1

4
g(X1,X1)= 1

4
,

giving that the nonzero components are

R1212 =R2323 = 1

4
, R1313 =−3

4
.

Hence, the non-null components of the Ricci tensor rij =∑k Rikjk are

r11 = r33 =−1

2
, r22 = 1

2
,

and the scalar curvature s=∑i rii is

s=−1

2
.

1(c). The Levi-Civita connection forms ω̃ij relative to σ satisfy Cartan’s first
structure equation

dθ̃ i =−
∑

j

ω̃ij ∧ θ̃ j . (��)

From (�) we have

dθ̃1 = dθ̃3 = 0, dθ̃2 =−θ̃1 ∧ θ̃2.

Thus (��) reduces to

0=−ω̃1
2 ∧ (dy − x dz)− ω̃1

3 ∧ dz,

−dx ∧ dz=−ω̃2
1 ∧ dx − ω̃2

3 ∧ dz,

0=−ω̃3
1 ∧ dx − ω̃3

2 ∧ (dy − x dz).
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The second equation is satisfied taking ω̃2
1 =− 1

2 dz, ω̃2
3 = 1

2 dx, and we have from
the other equations that

0=−1

2
dz∧ (dy − x dz)− ω̃1

3 ∧ dz, 0=−ω̃3
1 ∧ dx + 1

2
dx ∧ (dy − x dz),

which are satisfied i ω̃1
3 = 1

2 (dy − x dz). Since the forms θ̃ i determine uniquely a
set of connection forms ω̃ij , we have that

ω̃1
2 =

1

2
θ̃3, ω̃1

3 =
1

2
θ̃2, ω̃2

3 =
1

2
θ̃1.

From Cartan’s structure equation Ω̃i
j = dω̃ij+

∑
k ω̃

i
k∧ω̃kj , we thus get the curvature

forms relative to σ :

Ω̃1
2 =

1

4
θ1 ∧ θ2, Ω̃1

3 =−
3

4
θ1 ∧ θ3, Ω̃2

3 =
1

4
θ2 ∧ θ3.

Hence, from

Ω̃1
2 =R1

212θ̃
1 ∧ θ̃2 +R1

213θ̃
1 ∧ θ̃3 +R1

223θ̃
2 ∧ θ̃3,

Ω̃1
3 =R1

312θ̃
1 ∧ θ̃2 +R1

313θ̃
1 ∧ θ̃3 +R1

323θ̃
2 ∧ θ̃3,

Ω̃2
3 =R2

312θ̃
1 ∧ θ̃2 +R2

313θ̃
1 ∧ θ̃3 +R2

323θ̃
2 ∧ θ̃3,

we deduce that the non-vanishing components of the Riemann–Christoffel curvature
tensor are

R1212 =R2323 = 1

4
, R1313 =−3

4
,

as in part 1(b), so concluding that the scalar curvature is given by

s=−1

2
.

2. From the previous results it follows that (H,g) is not a space of constant
curvature.

3. Yes. (Note that this is an instance of the result in Problem 6.87).

Problem 6.89 Let

G=H ×R

be the direct product of the three-dimensional Heisenberg group with R. Write any
element of G as

(x, y, z, t), (x, y, z) ∈H, t ∈R.
The group law is given by

(x, y, z, t) · (x′, y′, z′, t ′)= (x + x′, y + y′ + xz′, z+ z′, t + t ′).
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Let Γ ⊂G be the integral lattice

Γ = {(x, y, z, t) : x, y, z, t ∈ Z}.

(i) Prove that the subgroup Γ of G is not normal.

The Kodaira–Thurston manifold is defined as the compact quotient

M = Γ \G.
Prove:

(ii) M is symplectic.
(iii) M is a symplectic 2-torus bundle over a 2-torus.
(iv) M is not a Kähler manifold.

Hint (to (ii)) Consider the 2-form

ω= dx ∧ (dy − x dz)+ dz∧ dt

on G.

Hint (to (iii)) Take the base space of the bundle given by x, y and the fiber by z, t .

Hint (to (iv)) The odd cohomology groups H 2r+1(M,Z) of a Kähler manifold M

vanish. Compute the first Betti number of M , recalling that, π1(M) denoting the
first homotopy group of M , the integer homology group of degree one is given by

H1(M,Z)= π1(M)
/[
π1(M),π1(M)

]
.

Remark This was the first known example of a symplectic non-Kähler manifold.

Solution

(i) In fact, given (a, b, c, d) ∈ Γ , one has (see, for instance, Problem 4.42(ii))

(x, y, z, t)(a, b, c, d)(−x, xz− y,−z,−t)
= (x + a, y + b+ xc, z+ c, t + d)(−x, xz− y,−z,−t)
= (a, b+ xc− az, c, d) /∈ Γ for some x, z ∈R.

(ii) We know (see, e.g. Problem 6.88) that

α1 = dx, α2 = dy − x dz, α3 = dz, α4 = dt

is a left G-invariant orthonormal coframe on G. Then it is immediate that the
differential 2-forms

ω1 = dx ∧ (dy − x dz)+ dz∧ dt, ω2 = dz∧ dy + dx ∧ dt
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are symplectic left G-invariant forms on G (ω2 is invariant because dz∧ (dy −
x dz) = dz ∧ dy). In particular, these symplectic forms are (left) Γ -invariant.
Hence the quotient space Γ \G also is a symplectic manifold with the symplec-
tic structure ω′1 (resp., ω′2) induced by the form ω1 (resp., ω2).

(iii) We now prove that (M,ω′1) is a symplectic 2-torus bundle over a 2-torus. In
fact, take the fiber of the bundle given by x, y and the base space by z, t . The
bundle with projection map

π1 : (x, y, z, t) �→ (z, t)

is trivial (a product) along the t-direction, but non-trivial (only a local product)
along the z-direction.

The left G-invariant symplectic form ω′1 is compatible with the bundle struc-
ture. This means that ω′1 is the sum of two forms. It is clear that the restriction of
the form dx∧ (dy− x dz) to every fiber is non-degenerate, and the form dz∧dt
is the pull-back under π∗1 of the symplectic form on the base space.

To prove that (M,ω′2) is a symplectic 2-torus bundle over a 2-torus note that
the action of the group Γ is generated by the four maps

τ1 : (x, y, z, t) �→ (1,0,0,0) · (x, y, z, t)= (x + 1, y + z, z, t),
τ2 : (x, y, z, t) �→ (0,1,0,0) · (x, y, z, t)= (x, y + 1, z, t),

τ3 : (x, y, z, t) �→ (0,0,1,0) · (x, y, z, t)= (x, y, z+ 1, t),

τ4 : (x, y, z, t) �→ (0,0,0,1) · (x, y, z, t)= (x, y, z, t + 1).

In this case, consider the bundle with projection map

π2 : (x, y, z, t) �→ (x, t),

taking the fiber of the bundle given by y, z and the base space by x, t .
Moreover, we can write the manifold M as a torus bundle over a torus,

putting

M =R
2 ×Z2 T

2,

where the action of Z2 on R
2 is the usual one, and that on T 2 is

Z
2 × T 2 −→ T 2

(
(m,n), (y, z)

) �−→ (y +mz, z).

Therefore,

M = (R× T 1 × T 2)/∼,
where

(x, t, y, z)∼ (x +m, t, y +mz, z), m ∈ Z.
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(iv) M cannot admit any Kähler structure because its first Betti number is

b1(M)= 3 �= 0.

In fact, the subgroup of Γ generated by the transformations τ2, τ3, τ4 is com-
mutative, [τ1, τ2] = τ1τ2τ

−1
1 τ−1

2 = 1 and the only non-trivial element [τi, τj ]
is

[τ1, τ3] = τ1τ3τ
−1
1 τ−1

3 = τ2,

hence,

H1(M,Z)= π1(M)
/[
π1(M),π1(M)

]= Γ/[Γ,Γ ] = Γ/〈τ2〉 ∼= Z
3.

Problem 6.90

(i) Let G be a compact Lie group equipped with a bi-invariant metric g and let g
be its Lie algebra. If X and Y are left-invariant vector fields on G and ∇ is the
Levi-Civita connection of g, prove that

∇XY = 1

2
[X,Y ].

(ii) Compute R(X,Y )Z, X,Y,Z ∈ g.
(iii) Show that the sectional curvature of g is non-negative.

Hint (to (i) and (iii)) If a metric is bi-invariant, each adX , X ∈ g, is skew-symmetric
with respect to g (see [28, p. 114]).

Solution

(i) By the result quoted in the hint, the Koszul formula reduces to

g(∇XY,Z)= 1

2

(
g
([X,Y ],Z)+g(adZ Y,X)+g(adZ X,Y )

)= 1

2
g
([X,Y ],Z).

That is, we have ∇XY = 1
2 [X,Y ].

(ii) From (i) one has for the curvature,

R(X,Y )Z =∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

= 1

4

[
X, [Y,Z]]− 1

4

[
Y, [X,Z]]− 1

2

[[X,Y ],Z]

=−1

4

(
S

XYZ

[[X,Y ],Z]
)
− 1

4

[[X,Y ],Z]

=−1

4

[[X,Y ],Z] (by Jacobi identity).
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(iii) Let X,Y ∈ g be orthonormal. Then, again by the result in the hint, we have for
the sectional curvature at e, hence at all points:

K(X,Y )= g(R(X,Y )Y,X)=−1

4
g
([[X,Y ], Y ],X)= 1

4
g
(
adY [X,Y ],X

)

=−1

4
g
([X,Y ], adY X

)= 1

4
g
([X,Y ], [X,Y ])= 1

4

∣
∣[X,Y ]∣∣2 � 0.

Problem 6.91 Consider the Lie group

G=
{(

1 0
x y

)

: x, y ∈R, y > 0

}

.

(i) Prove that its Lie algebra is g= 〈y ∂/∂x, y ∂/∂y〉.
(ii) Write the left-invariant metric g on G built with the dual basis to that in (i).

(iii) Determine the Levi-Civita connection ∇ of g.
(iv) Is (G,g) a space of constant curvature?
(v) Prove (without using (iv)) that (G,g) is an Einstein manifold.

Solution

(i) G is a Lie group with the product of matrices and with only one chart,

(G,ϕ), G
ϕ→U,

(
1 0
x y

)

�→ (x, y),

where U denotes the open subset {(x, y) ∈ R2 : y > 0} of R2, hence dimG= 2.
Thus dimg= 2, and so to prove that g is generated byX1 = y∂/∂x, X2 = y∂/∂y,
we shall only have to prove that X1, X2 are linearly independent and left-
invariant. They are linearly independent, as y > 0. To prove that they are left-
invariant vector fields, we have to prove that for all A ∈G, one has

(LA)∗B(Xi |B)=Xi |AB, B ∈G, i = 1,2. (�)

Let A= ( 1 0
a b

)
, B = ( 1 0

x0 y0

)
. As AB = ( 1 0

a+bx0 by0

)
, the right-hand side of (�) is

X1|AB = by0
∂

∂x

∣
∣
∣
∣
AB

, X2|AB = by0
∂

∂y

∣
∣
∣
∣
AB

.

To determine the left-hand side of (�), we compute the Jacobian matrix of LA
using the diagram

G
LA−−−−→ G

ϕ−1

-
⏐
⏐ ϕ

⏐
⏐
/

U
ϕ◦LA◦ϕ−1

−−−−−−→ U
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with

( 1 0
x y

) LA ( 1 0
a+bx by

)

ϕ

(x, y)

ϕ−1

ϕ◦LA◦ϕ−1

(a + bx, by).

It follows that the Jacobian matrix of ϕ ◦LA ◦ ϕ−1 is
(
b 0
0 b

)
, hence

(LA)∗BX1|B ≡
(
b 0
0 b

)(
y0
0

)

≡ by0
∂

∂x

∣
∣
∣
∣
AB

=X1|AB,

(LA)∗BX2|B ≡
(
b 0
0 b

)(
0
y0

)

≡ by0
∂

∂y

∣
∣
∣
∣
AB

=X2|AB.

(ii) The dual basis {β1, β2} to {X1,X2} is {β1 = dx/y, β2 = dy/y}. Therefore, the
left-invariant metric on G we are looking for is g = (1/y2)(dx2 + dy2).

(iii) From the formula for the Levi-Civita connection of a left-invariant metric g on
a Lie group and from

[X1,X1] = [X2,X2] = 0, [X1,X2] = −[X2,X1] = −X1,

we have:

g(∇X1X1,X1)= 0, 2g(∇X1X1,X2)= 2; thus ∇X1X1 =X2;
2g(∇X1X2,X1) = −2, g(∇X1X2,X2) = 0; so ∇X1X2 = −X1. As ∇ is tor-
sionless, one has ∇X2X1 = 0;
g(∇X2X2,X1)= g(∇X2X2,X2)= 0; that is, ∇X2X2 = 0.

(iv)

R(X1,X2,X1,X2)= g(∇X1∇X2X2 −∇X2∇X1X2 −∇[X1,X2]X2,X1)

=−g(X1,X1)=−1.

Thus G is a space of constant curvature −1.
(v) Let X,Y ∈X(G), X = f1X1 + f2X2, Y = h1X1 + h2X2. Thus,

r(X,Y )=R(X1, Y,X1,X)+R(X2, Y,X2,X)

=R(X1, h2X2,X1, f2X2)+R(X2, h1X1,X2, f1X1)

= (f1h1 + f2h2)R(X1,X2,X1,X2)=−(f1h1 + f2h2)=−g(X,Y ).
Therefore, G is an Einstein manifold.

Remark In Problem 6.107 below, it is proved that every Riemannian manifold
(M,g) of dimension n and constant curvature K is an Einstein manifold, with Ricci
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tensor r(X,Y ) =K(n− 1)g(X,Y ). Here we have a verification of this formula in
this example.

Problem 6.92 Let G be a Lie group and let Γ be a discrete co-compact subgroup
of G which acts on the left on G. Denote by Γ \G the quotient space of right cosets

Γ \G= {Γg : g ∈G}.

(i) Compute the de Rham cohomology of the compact quotient Γ \H of the
Heisenberg group

H =
⎧
⎨

⎩

⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠ , x, y, z ∈R
⎫
⎬

⎭

by its discrete subgroup

Γ =
⎧
⎨

⎩

⎛

⎝
1 a b

0 1 c

0 0 1

⎞

⎠ , a, b, c ∈ Z
⎫
⎬

⎭
.

Consider now (see Definition 6.26) the generalised Heisenberg group
H(2,1), that is, the group of real matrices of the form

H(2,1)=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

1 x1 x2 y

0 1 0 z1
0 0 1 z2
0 0 0 1

⎞

⎟
⎟
⎠ , x1, x2, y, z2, z2 ∈R

⎫
⎪⎪⎬

⎪⎪⎭

,

which is a five-dimensional connected, simply connected nilpotent Lie group,
and its discrete subgroup

Γ =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

1 a1 a2 b

0 1 0 c1
0 0 1 c2
0 0 0 1

⎞

⎟
⎟
⎠ , a1, a2, b, c1, c2 ∈ Z

⎫
⎪⎪⎬

⎪⎪⎭
.

(ii) Compute the cohomology of the compact quotient

Γ \H(2,1).

Hint Apply Stokes’ Theorem 3.3 and the definition of the de Rham cohomology
groups (see, for instance, Definitions 3.7).

Remark The given quotient manifolds are two examples of a nilmanifold, that is,
the quotient of a nilpotent Lie group by a closed subgroup.
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Solution

(i) We know (see, for instance, Problem 6.88) that

{dx, dy − x dz, dz}

is a basis of left-invariant differential 1-forms on H . In particular, they are pre-
served by Γ , and so they descend to 1-forms α,β, γ on the nilmanifold Γ \H ,
that is, if π denotes the canonical projection map

π : H → Γ \H,

then

π∗α = dx, π∗β = dy − x dz, π∗γ = dz. (�)

From (�) we have

dα = dγ = 0, dβ =−α ∧ γ. (��)

In fact, we have, for instance, π∗(dα)= d(π∗α)= 0. Moreover,

d(α ∧ β)= d(α ∧ γ )= d(β ∧ γ )= 0,

d(α ∧ β ∧ γ )= 0.
(���)

From (��) and (���) we have that α∧γ is closed but also exact. Hence the coho-
mology classes [α] and [γ ] generate the first cohomology groupH 1

dR(Γ \H,R).
Actually, they are a basis of that group. In fact, because of the definition of Γ ,
the manifold Γ \H contains the 2-torus product of

C1 = {y mod Z= 0, z mod Z= 0}

and

C2 = {x mod Z= 0, y mod Z= 0},
so that the variable is x mod Z on C1 and z mod Z on C2.

Suppose that

r[α] + s[β] = 0, (�)
for certain r, s ∈ R. Since the submanifolds C1 and C2 of Γ \H are closed
manifolds, i.e. ∂C1 = ∅ and ∂ C2 = ∅, then from (�) and Stokes’ Theorem 3.3
we have that

0=
∫

C1

(rα + sγ )=
∫ 1

x=0

(
rπ∗α + sπ∗γ )=

∫ 1

x=0
(r dx + s dz)= r,

and similarly for C2 and s. Thus r = s = 0.
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Analogously, [α ∧ β ] and [β ∧ γ ] generate H 2
dR(Γ \H,R). Suppose now

that

r[α ∧ β] + s[β ∧ γ ] = 0, (��)
for certain r, s. As the submanifold C1×C2 of Γ \H is a closed manifold, then
from (��) and again by Stokes’ Theorem 3.3 one has

0=
∫

C1×C2

(rα ∧ β + sβ ∧ γ )=
∫ 1

x=0

∫ 1

z=0

(
rπ∗(α ∧ β)+ sπ∗(β ∧ γ ))

=
∫ 1

x=0

∫ 1

z=0

(
r(dx ∧ dy − x dx ∧ dz)+ s dy ∧ dz

)=−1

2
r.

Consider now the surface S in Γ \H defined by

S = {x mod Z= 0}
(whose coordinates are y mod Z and z mod Z), which is a closed submanifold
of Γ \H . Then, since

π∗(β ∧ γ )= dy ∧ dz,

we get
∫

S

β ∧ γ =
∫ 1

0
dy
∫ 1

0
dz= 1.

On account of (��) and Stokes’ Theorem 3.3, this also implies that s = 0.
Let us prove that the 3-form α ∧ β ∧ γ is not exact. The manifold Γ \H is

oriented because the form α ∧ β ∧ γ is nowhere vanishing on this manifold.
This manifold is closed because the manifold R

3 ≡H is closed and the natural
projection π : H → Γ \H is a local homeomorphism. On account of Stokes’
Theorem 3.3, it is sufficient to show that

∫

Γ \H
(α ∧ β ∧ γ ) �= 0.

To this end consider the open subset

U = {(x, y, z) ∈H : x, y, z ∈ (0,1)
}

in H ≡ R
3 and its closure Ū = [0,1] × [0,1] × [0,1] ⊂ H . It is easy to ver-

ify that the map π |U : U → π(U) ⊂ Γ \H is a diffeomorphism. Moreover,
π(Ū) = Γ \H and the difference (Γ \H) \ {π(U)} is a set of zero measure,
as it is the union of a finite number of k-dimensional compact submanifolds
with k = 0,1,2. Therefore, since our 3-form on Γ \H is smooth, we have

∫

Γ \H
(α ∧ β ∧ γ )=

∫

π(U)

(α ∧ β ∧ γ ),
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and since

π∗(α ∧ β ∧ γ )= dx ∧ dy ∧ dz,

we get
∫

π(U)

(α ∧ β ∧ γ )=
∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz= 1.

Hence, the de Rham cohomology groups of Γ \H are

H 0
dR(Γ \H,R)=

〈[1]〉, H 1
dR(Γ \H,R)=

〈[α], [γ ]〉,
H 2
dR(Γ \H,R)=

〈[α ∧ β], [β ∧ γ ]〉, H 3
dR(Γ \H,R)=

〈[α ∧ β ∧ γ ]〉.

(ii) The set (x1, x2, y, z1, z2) is a global system of coordinates on H(2,1). More-
over, the differential 1-forms

dx1, dx2, dy − x1 dz1 − x2 dz2, dz1, dz2,

are a basis of left-invariant 1-forms on H(2,1). In fact, denoting (x1, x2, y, z1,

z2) simply by (x, y, z), we have for a fixed (x0, y0, z0) that
⎛

⎝
1 x′ y′
0 1 z′
0 0 1

⎞

⎠ =
⎛

⎝
1 x0 y0
0 1 z0
0 0 1

⎞

⎠

⎛

⎝
1 x y

0 1 z

0 0 1

⎞

⎠

=
⎛

⎝
1 x + x0 y + x0z+ y0
0 1 z+ z0
0 0 1

⎞

⎠ ,

that is,

x′ = x + x0, y′ = y + x0z+ y0, z′ = z+ z0,

so

dx′ = dx, dy′ − x′ dz′ = dy − x dz, dz′ = dz.

Hence, these forms are preserved by Γ , so they descend to 1-forms

α1, α2, β, γ1, γ2,

respectively, on the nilmanifold Γ \H(2,1). That is, if π denotes the canonical
projection map

π : H(2,1)→ Γ \H(2,1),

we have that

π∗αi = dxi, π∗β = dy − x1 dz1 − x2 dz2, π∗γi = d zi, i = 1,2.
(†)
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As in (i) above, from (†) we have

dαi = dγi = 0, dβ =−α1 ∧ γ1 − α2 ∧ γ2, i = 1,2.

Moreover,

d(αi ∧ αj )= d(αi ∧ γj )= d(γi ∧ γj )= 0,

d(α1 ∧ β)=−α1 ∧ α2 ∧ γ2, d(α2 ∧ β)= α1 ∧ α2 ∧ γ1,

d(γ1 ∧ β)= α2 ∧ γ1 ∧ γ2, d(γ2 ∧ β)=−α1 ∧ γ1 ∧ γ2,

d(αi ∧ αj ∧ γk)= d(αi ∧ γj ∧ γk)= 0, i, j, k = 1,2,

d(α1 ∧ α2 ∧ β)= d(α1 ∧ γ2 ∧ β)= d(α2 ∧ γ1 ∧ β)
= d(γ1 ∧ γ2 ∧ β)= 0,

d(α1 ∧ γ1 ∧ β)= d(α2 ∧ γ2 ∧ β)= α1 ∧ α2 ∧ γ1 ∧ γ2,

d(α1 ∧ α2 ∧ γ1 ∧ γ2)= d(α1 ∧ α2 ∧ γ2 ∧ β)= d(α1 ∧ γ1 ∧ γ2 ∧ β)
= d(α1 ∧ α2 ∧ γ1 ∧ β)
= d(α2 ∧ γ1 ∧ γ2 ∧ β)= 0,

d(α1 ∧ α2 ∧ γ1 ∧ γ2 ∧ β)= 0 (as the form is of maximal rank).

Proceeding analogously to part (i) above, one gets that the cohomology
classes of the given differential forms are a basis of the de Rham cohomology
groups of Γ \H(2,1), that is,

H 0(Γ \H(2,1),R
)= 〈[1]〉,

H 1(Γ \H(2,1),R
)= 〈[α1], [α2], [γ1], [γ2]

〉
,

H 2(Γ \H(2,1),R
)= 〈[α1 ∧ α2], [α1 ∧ γ1 − α2 ∧ γ2], [α1 ∧ γ2],
[α2 ∧ γ1], [γ1 ∧ γ2]

〉
,

H 3(Γ \H(2,1),R
)= 〈[α1 ∧ α2 ∧ β],

[
(α1 ∧ γ1 − α2 ∧ γ2)∧ β

]
,

[α1 ∧ γ2 ∧ β], [α2 ∧ γ1 ∧ β], [γ1 ∧ γ2 ∧ β]
〉
,

H 4(Γ \H(2,1),R
)= 〈[α1 ∧ α2 ∧ γ1 ∧ β], [α1 ∧ α2 ∧ γ2 ∧ β],
[α1 ∧ γ1 ∧ γ2 ∧ β], [α2 ∧ γ1 ∧ γ2 ∧ β]

〉
,

H 5(Γ \H(2,1),R
)= 〈[α1 ∧ α2 ∧ γ1 ∧ γ2 ∧ β]

〉
.

Notice that this is consistent with (the corresponding particular cases of) the
formula

dimHr
(
Γ \H(2,1),R

)=
(

4

r

)

−
(

4

r − 2

)

, r = 0,1,2,

given in [31] and then, by Poincaré duality, with the other present cases.
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6.11 Homogeneous Riemannian Manifolds and Riemannian
Symmetric Spaces

Problem 6.93 Let (M,g) be a Riemannian manifold. Prove that if a Lie group G

of isometries of M acts transitively on M , then the metric g is complete.

Solution Consider an arbitrary point p ∈ M . There is ε > 0 such that for each
direction at this point, i.e. for each v ∈ TpM , g(v, v) = 1, there exists a geodesic
segment of length ε in this direction with initial point p. Since G acts transitively
on M , this value ε is independent of p ∈M . This implies that each geodesic can be
continued indefinitely in any direction.

Indeed, for any T > 0, the chain of geodesic ε-segments γn(t), t ∈ [0, ε], such
that

γn−1(ε)= γn(0), γ ′n−1(ε)= γ ′n(0), n ∈ {1,2, . . . , k}, k =
[
T

ε

]

,

defines a unique geodesic γ : [0, T ]→M , with

γ (εn+ t)= γn(t), t ∈ [0, ε], n= 0,1, . . . , k,

such that γ (0)= γ0(0) and γ ′(0)= γ ′0(0).

Problem 6.94 Let (M = G/H,g) be a homogeneous Riemannian space where
the metric g is G-invariant (see Definition 6.10). Prove that the scalar curvature is
constant.

Solution Let e be the identity element of G and let o denote the base point o= eH
of G/H . Since the translations by elements a ∈G are isometries, they preserve (see
Problem 6.85) the Riemann–Christoffel curvature tensor,

R(a∗X1, a∗X2, a∗X3, a∗X4)=R(X1,X2,X3,X4), Xi ∈ ToM, i = 1, . . . ,4.

Since a∗o sends an orthonormal basis {ei} at o to an orthonormal basis, the scalar
curvature

s=
∑

i,j

R(ei, ej , ei, ej )

satisfies s(a(o))= s(o). As the action of G is transitive, s is a constant function.

Problem 6.95 Let G be a connected closed subgroup of the Lie group E(n) of
all the motions (i.e. isometries of the Euclidean metric) of Rn, acting transitively
on R

n.
Must G contain the full group of translations?
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Solution G need not contain the full group of translations, as the following coun-
terexample shows. Let n = 3, and let Φt be the rotation around the z-axis through
an angle t . Let Xt,Yt ,Zt be the translations by (t,0,0), (0, t,0) and (0,0, t), re-
spectively. Let

Ψt = Zt ◦Φt,

so Ψt is a screw motion around the z-axis. Then, the group generated by the Ψt , Xt ,
and Yt , as t varies over R, acts simply transitively on R

3 but does not contain the
translation in the z-direction.

Problem 6.96 Consider the action of the orthogonal group O(n) on the Riemannian
manifold (Rn, g), where g denotes the Euclidean metric.

(i) Is (Rn, g) a homogeneous Riemannian manifold with respect to that action?
(ii) Describe the possible isotropy groups Hp .

Solution

(i) No, because the action is not transitive. In fact, the origin is a fixed point (take
the origin 0 as one of the points p,q of Rn such that there might exist σ ∈O(n)
with σ(p)= q).

(ii) H0 = O(n) and Hp are mutually conjugate subgroups isomorphic to O(n− 1)
for every p �= 0.

Problem 6.97 Define a product on

E(n)= {(a,A) : a ∈Rn, A ∈O(n)
}

by

(a,A) · (b,B)= (a +Ab,AB).
Prove:

1. (E(n), ·) is a Lie group (in fact, this is a semi-direct product of the Abelian group
(Rn,+) and O(n), and it is called the group of Euclidean motions, or simply the
Euclidean group of Rn).

2. The subgroup of translations T (n) = {(a, I ) : a ∈ Rn} is a normal subgroup of
E(n).

Let E(n) act on R
n by setting (a,A) · x = a +Ax. Then:

3. Prove that the map x �→ (a,A) · x is an isometry of the Euclidean metric.
4. Compute the isotropy of a point x ∈ Rn. Are all these groups isomorphic? And

conjugated in E(n)?
5. Prove that E(n)/O(n)∼=R

n.

Let p : E(n)→R
n be the map p(a,A)= a. Prove:
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6. The map p is the projection map of a principal O(n)-bundle with respect to the
action of O(n) on E(n) given by (a,A) ·B = (a,AB).

7. The bundle above can be identified to the bundle of orthonormal frames over Rn

with respect to the Euclidean metric.

Solution

1(a) Associativity:
(
(a,A) · (b,B)) · (c,C)= (a +Ab,AB) · (c,C)

= (a +Ab+ (AB)c, (AB)C),
(a,A) · ((b,B) · (c,C))= (a,A) · (b+Bc,BC)= (a +A(b+Bc),A(BC))

= (a +Ab+ (AB)c, (AB)C).
1(b) Identity element: (a,A) · (0, I )= (0, I ) · (a,A)= (a,A).
1(c) Inverse element: (a,A)−1 = (−A−1 a,A−1).

We endow E(n) with the differentiable structure corresponding to E(n)∼=R
n ×

O(n). As O(n) is a Lie group, it follows from part 1(c) and the very definition of the
product law in E(n) that E(n) is also a Lie group.

2. We have

(a,A) · (b, I ) · (a,A)−1 = (a +Ab,A) · (−A−1 a,A−1)

= (a +Ab+A(−A−1 a
)
, I
)

= (Ab, I ) ∈ T (n).
3. Trivial.
4. The isotropy group E(n)x of a point x ∈Rn is defined by

E(n)x =
{
(a,A) ∈E(n) : (a,A) · x = x}.

So, (a,A) ∈E(n)x if and only if a +Ax = x, or equivalently, (I −A)x = a. In
particular,

E(n)0 =O(n)= {(0,A) :A ∈O(n)
}
.

For every A ∈O(n), we have

(x, I ) · (0,A) · (x, I )−1 = ((I −A)x,A) ∈E(n)x.
Hence the map ψ : E(n)0 → E(n)x is an isomorphism and all the isotropy
groups are conjugated in E(n), thus isomorphic.

5. We have a diffeomorphism x �→ (x, I ) mod O(n).
6. For every B ∈ O(n) we have p((a,A) · B) = p(a,AB) = a. Hence (a,A) ·

O(n)= p−1(a). Moreover, as (a,A) ·B = (a,A) implies B = I , the O(n)-action
is free. Thus, p : E(n)→R

n is a principal O(n)-bundle.
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7. Let

π : O(Rn
)→R

n

be the orthonormal frame bundle over Rn for the metric g = dx1 ⊗ dx1 + · · · +
dxn ⊗ dxn. Define a map ϕ : E(n)→O(Rn) by setting

ϕ(a,A)=
(

∂

∂x1

∣
∣
∣
∣
a

, . . . ,
∂

∂xn

∣
∣
∣
∣
a

)

·A.

It is immediate that π ◦ ϕ = p. Moreover, we have

ϕ
(
(a,A) ·B)= ϕ(a,AB)=

(
∂

∂x1

∣
∣
∣
∣
a

, . . . ,
∂

∂xn

∣
∣
∣
∣
a

)

· (AB)

=
((

∂

∂x1

∣
∣
∣
∣
a

, . . . ,
∂

∂xn

∣
∣
∣
∣
a

)

·A
)

·B = ϕ(a,A) ·B.

Finally, ϕ(a,A)= ϕ(b,B) means

(
∂

∂x1

∣
∣
∣
∣
a

, . . . ,
∂

∂xn

∣
∣
∣
∣
a

)

·A=
(

∂

∂x1

∣
∣
∣
∣
b

, . . . ,
∂

∂xn

∣
∣
∣
∣
b

)

·B.

This implies a = b and A= B , thus proving that ϕ is a principal bundle isomor-
phism.

Problem 6.98 Let H be a Lie group acting freely on a Riemannian manifold
(M,g). Suppose that each diffeomorphism h ∈H is an isometry, i.e. preserves the
metric g. Suppose that on the quotient space M̃ =M/H there exists a structure of
manifold such that the canonical projection π : M→ M̃ is a submersion. Then there
is an induced metric g̃ on M̃ defined by

g̃(π∗xvx,π∗xux)= g(vx,ux),

where vx,ux ∈ TxM are vectors orthogonal to the subspace kerπ∗x ⊂ TxM .
Prove:

(i) For each geodesic γ (t) on (M,g) such that g(γ ′(0),kerπ∗γ (0)) = 0 (it is or-
thogonal to the sub-bundle kerπ∗ ⊂ TM at the initial point) its direction γ ′(t)
is orthogonal to the space kerπ∗γ (t) ⊂ Tγ (t)M for all t .

(ii) The metric g̃ is well-defined and smooth. If each geodesic on (M,g) with a
direction orthogonal to kerπ∗ ⊂ TM at the initial point can be continued indef-
initely, the metric g̃ is complete.

Hint Use the fact that the image of the curve (γ (t), γ ′(t))⊂ TM under the natural
isomorphism TM→ T ∗M induced by the metric is an integral curve of the geodesic
flow on T ∗M (see Problem 6.63).
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Solution

(i) It is sufficient to prove it locally. Let q = (q1, . . . , qn) denote local coordinates
on some open subset U ⊂M . Since the natural projection π : M→ M̃ =M/H

is a submersion we can suppose that q̃ = (q̃1, . . . , q̃m), m� n, are local coordi-

nates on the open subset Ũ = π(U)⊂ M̃ such that the restriction π |U is given
in these coordinates by π(q1, q2, . . . , qn) = (q1, q2, . . . , qm). These local co-
ordinates on M induce local coordinates (q,p) = (q1, . . . , qn,p1, . . . , pn) on
T ∗M putting ωx =∑i pi(ωx)dqi |x for ωx ∈ T ∗M , x ∈M , and local coordi-
nates (q, y)= (q1, . . . , qn, y1, . . . , yn) on TM putting

vx =
n∑

i=1

yi(vx)
∂

∂qi

∣
∣
∣
∣
x

, vx ∈ TM.

Similarly, the local coordinates q̃ on M̃ induce local coordinates (q̃, p̃) =
(q̃1, . . . , q̃m, p̃1, . . . , p̃m) on T ∗M̃ and local coordinates (q̃, ỹ)= (q̃1, . . . , q̃m,

ỹ1, . . . , ỹm) on T M̃ .
The metric g on M induces the natural isomorphism ψg : TM→ T ∗M . The

maps ψg,ψ−1
g have the following form in local coordinates,

ψg

(∑

i

yi
∂

∂qi

)

=
∑

i,j

gij (q)y
i dqj ,

ψ−1
g

(∑

i

pi dqi
)

=
∑

i,j

gij (q)pj
∂

∂qi
,

g(q)=∑i,j gij (q)dqi dqj being the metric tensor in the local coordinates and
∑

j gij (q)g
jk(q) = δki by definition.

Note also that the kernel of the map π |U is generated by the n−m vector
fields ∂/∂qk , k =m+ 1, . . . , n, and that it is tangent to the orbits

H · x = {hx : h ∈H } ⊂M, x ∈U,

of the group H . Since the metric g is H -invariant, the local functions gij (q),
i, j = 1, . . . , n, are independent of the variables qm+1, . . . , qn (g is invariant
with respect to the one-parameter groups

(
q1, . . . , qk, . . . , qn

) �→ (
q1, . . . , qk + t, . . . , qn), m+ 1 � k � n,

generated by the vector fields ∂/∂qk , m+ 1 � k � n).
Recall now that by Problem 6.63, the curve γ (t)= q(t)= (q1(t), . . . , qn(t))

is a geodesic on (M,g) if and only if the curve (p(t), q(t)), for some smooth
map t �→ p(t), is an integral curve of the vector field XH described by the



6.11 Homogeneous Riemannian Manifolds and Riemannian Symmetric Spaces 437

relation

XH(q,p)=
∑

j,k

gkj (q)pj
∂

∂qk
−
∑

i,j,k

1

2

∂gij

∂qk
(q)pipj

∂

∂pk
(�)

(see Solution of Problem 6.63). Then pj (t) = yi(t)gij (q(t)), where yi(t) =
dqi (t)

dt . This vector field XH is the Hamiltonian vector field of the function

H(q,p)= 1

2

∑

i,j

gij (q)pipj

with respect to the canonical symplectic form on T ∗M .
Let γ (t)= (q1(t), . . . , qn(t)) be a geodesic in (M,g) and letψg(γ (t), γ ′(t))

= (p(t), q(t)) be the corresponding curve on T ∗M . Put yi(t)= dqi (t)
dt . If

g
(
σ ′(0),kerπ∗σ(0)

)= 0

then yi(0)gik(σ (0))= 0 for all k =m+ 1, . . . , n, because kerπ |U is generated
by ∂/∂qk , k =m+1, . . . , n. Taking into account that pj (t)=∑i y

i(t)gij (q(t)),
j = 1, . . . , n, to prove (i) it is sufficient to show that pk(t) = 0 for all t
if pk(0) = 0 with k = m + 1, . . . , n. But as we remarked above the curve
(p(t), q(t)) is an integral curve of the vector field XH . So we only need to
prove that XH is tangent to the submanifold

X0 =
{
(p, q) ∈ T ∗U : pm+1 = 0, . . . , pn = 0

}

of T ∗U ⊂ T ∗M . This fact follows immediately from the expression (�) for XH

and the independence of the functions gij (q) on the variables qm+1, . . . , qn.
(ii) The metric g̃ is well-defined because the metric g is H -invariant and π is a

submersion. Indeed, the restriction map π∗x : Vx → Tπ(x)M̃ of the orthogonal
complement Vx to kerπ∗x in TxM is an isomorphism and for vx ∈ TxM and
vhx ∈ ThxM , h ∈H , we have π∗xvx = π∗hxvhx if and only if vhx = h∗xvx (as
π ◦ h= π and h : M→M is a diffeomorphism). Therefore,

g̃(π∗xvx,π∗xux) = g(vx,ux)= g(h∗xvx,h∗xux)= g(vhx, uhx)
= g̃(π∗hxvhx,π∗hxuhx).

To prove the second assertion of (ii) it is sufficient to show that for each
geodesic γ (t) on (M,g) with directions γ ′(t) orthogonal to kerπ∗ ⊂ TM its
image π(γ (t)) is a geodesic of the metric g̃. It is enough to prove this fact
locally.

Let g̃(q̃) =∑a,b g̃ab(q̃)dqa dqb, a, b = 1, . . . ,m, be the metric tensor g̃
in local coordinates, with

∑
b g̃ab(q̃)g̃

bc(q̃) = δca by definition. Let γ̃ (t) =
(q̃1(t), . . . , q̃m(t)) be some smooth curve on M̃ . The curve γ̃ (t) is a geodesic
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of g̃ if and only if there exists a map t �→ p̃(t) such that the curve (p̃(t), q̃(t))
is an integral curve of the vector field

XH̃
=
∑

a,b

g̃ab(q̃)p̃b
∂

∂q̃a
− 1

2

∑

a,b,c

∂g̃ab

∂q̃c
(q̃)p̃ap̃b

∂

∂p̃c
,

i.e. if and only if

dq̃a

dt
=
∑

b

g̃ab(q̃)p̃b,
dp̃c

dt
=−1

2

∑

a,b

∂g̃ab

∂q̃c
(q̃)p̃ap̃b

(see Problem 6.63). In this case p̃b(t) =∑a ỹ
a(t)g̃ab(q̃(t)), where ỹa(t) =

dq̃a (t)
dt .
But π(q1, . . . , qn) = (q1, . . . , qm) and any geodesic of (M,g) lying in the

submanifold X0 ⊂ T ∗U satisfies the following relations (as it is an integral
curve of XH |X0 ):

dqa

dt
=
∑

b

gab(q)pb,
dqj

dt
=
∑

b

gjb(q)pb, j =m+ 1, . . . , n,

dpc

dt
=−1

2

∑

a,b

∂gab

∂qc
(q)papb,

where 1 � a, b, c�m. Therefore,

(
q1(t), . . . , qn(t),p1(t), . . . , pm(t)

)
,

(
q̃1(t), . . . , q̃m(t), p̃1(t), . . . , p̃m(t)

)
,

where q̃a(t)= qa(t) and p̃a(t)= pa(t) are simultaneously the solutions of the
corresponding relations if g̃ab(q1, . . . , qm) = gab(q1, . . . , qm, qm+1, . . . , qn)

(the matrix gij (q) is independent of qm+1, . . . , qn). Let us prove this fact.
Fix some point x ∈ U ⊂M with coordinates (q1, . . . , qm, . . . , qn) and its

image π(x) with coordinates (q1, . . . , qm). Put ei = ∂/∂qi , i = 1, . . . , n. Let
(
A B
C D

)
be the matrix qij (x)= g(ei, ej ), where A and D are respectively m×m

and (n−m)× (n−m) symmetric matrices and tB = C. For each tangent vector
ea , a = 1, . . . ,m, there exists a unique vector va =∑n

β=m+1 vaβeβ such that
g(ea + va, eβ) = 0, where β = m+ 1, . . . , n. Then by definition g̃ab(π(x)) =
g(ea + va, eb + vb). Put Ã = (g̃ab). It is easy to verify that the m× (n−m)-
matrix V = (vaβ) equals −BD−1 and

Ã=A+ VC +B tV + VD tV =A−BD−1C.

In particular, the metric g̃ is smooth because the matrix-functions A(q), B(q),
C(q) and D(q) are smooth.
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Let
(
A′ B ′
C′ D′

)
be the matrix qij (x), where A′ and D′ are respectively m×m

and (n−m)× (n−m) matrices. We need to prove that (Ã)−1 = A′. Indeed,
since

∑
j qij (x)q

jk(x)= δki , we have

AA′ +BC′ = Idm, CA′ +DC′ = 0, AB ′ +BD′ = 0,

CB ′ +DD′ = Idn−m.

Therefore,

ÃA′ = (A−BD−1C
)
A′ =AA′−BD−1(CA′

)=AA′−BD−1(−DC′)= Idm.

Problem 6.99 Identify as usual the sphere S3 and the Lie group SU(2) by the map

S3 ⊂C
2 −→ SU(2)

(z,w) �−→
(

z w

−w̄ z̄

)

.

Consider the basis {X1,X2,X3} of the Lie algebra su(2) of SU(2) given by

X1 =
(

i 0
0 −i

)

, X2 =
(

0 1
−1 0

)

, X3 =
(

0 i
i 0

)

.

Then

[X1,X2] = 2X3, [X2,X3] = 2X1, [X3,X1] = 2X2.

The one-parameter family

{gε : ε > 0}
of left-invariant Riemannian metrics on S3 ≡ SU(2) given at the identity, with re-
spect to the basis of left-invariant vector fields X1,X2,X3, by

⎛

⎝
ε 0 0
0 1 0
0 0 1

⎞

⎠ ,

are called the Berger metrics on S3; if ε = 1 we have the canonical (bi-invariant)
metric. The Berger spheres are the simply connected complete Riemannian mani-
folds

S3
ε =

(
S3, gε

)
, ε > 0.

Then:

(i) Compute the curvature tensor field, the Ricci tensor and the scalar curvature of
Berger 3-spheres.

(ii) Prove that for ε �= 1, a Berger 3-sphere is not a Riemannian symmetric space.
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The relevant theory is developed, for instance, in Petersen [27].

Solution

(i) The Koszul formula for the Levi-Civita connection of gε ,

2gε(∇XY,Z)= gε
([X,Y ],Z)− gε

([Y,Z],X)+ gε
([Z,X], Y ),

for all X,Y,Z ∈ su(2), gives us that the non-zero covariant derivatives between
generators are given (omitting the ε in ∇ε for the sake of simplicity) by

∇X1X2 = (2− ε)X3, ∇X1X3 = (ε− 2)X2, ∇X2X1 =−εX3,

∇X2X3 =X1, ∇X3X1 = εX2, ∇X3X2 =−X1.

The nonzero components of the curvature tensor field R, that is,

R(X,Y )Z =∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X,Y,Z ∈X(S3
ε

)
,

are thus given by

R(X1,X2)X1 =−ε2X2, R(X1,X2)X2 = εX1,

R(X1,X3)X1 =−ε2X3, R(X1,X3)X3 = εX1,

R(X2,X3)X2 = (3ε− 4)X3, R(X2,X3)X3 = (4− 3ε)X2.

We can obtain the nonzero components of the Riemann–Christoffel tensor

R(X,Y,Z,W)= gε
(
R(Z,W)Y,X

)
,

given in terms of the orthonormal basis

{X,X2,X3} =
{

1√
ε
X1,X2,X3

}

by

R(X,X2,X,X2)=R(X,X3,X,X3)= ε, R(X2,X3,X2,X3)= 4− 3ε.

The non-zero components of the Ricci tensor are thus given by

r(X,X)= 2ε, r(X2,X2)= r(X3,X3)= 4− 2ε,

and the scalar curvature by

s= r(X,X)+ r(X2,X2)+ r(X3,X3)= 2(4− ε).
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(ii) It suffices to find some vectors fields X,Y,Z,W,U satisfying

(∇XR)(Y,Z,W,U) �= 0.

Now, for instance, we have

(∇X2R)(X1,X2,X2,X3)

=X2
(
R(X1,X2,X2,X3)

)

−R(∇X2X1,X2,X2,X3)−R(X1,∇X2X2,X2,X3)

−R(X1,X2,∇X2X2,X3)−R(X1,X2,X2,∇X2X3)

=−R(∇X2X1,X2,X2,X3)−R(X1,X2,X2,∇X2X3)

=−εR(X2,X3,X2,X3)+R(X1,X2,X1,X2)

=−ε(4− 3ε)+ ε = 3ε(ε− 1),

which only vanishes for ε = 1, that is, for the canonical bi-invariant metric.
Hence a Berger sphere different from the canonical one, is not a Riemannian
symmetric space.

Problem 6.100 Consider the Riemannian manifold (M,g) given by

M =R
3, g =A(dx2 + dy2)+ (dz+B(x dy − y dx)

)2
, A > 0, B > 0.

Prove:

(i) The Lie algebra of the isometry group I (M,g) of (M,g) is the vector space

i(M,g)=
{

(ay+b) ∂
∂x
+ (c−ax) ∂

∂y
+ (B(cx−by)+d) ∂

∂z
: a, b, c, d ∈R

}

.

(ii) The manifold (M,g) is not a space of constant curvature.
(iii) The manifold (M,g) is not a Riemannian symmetric space.

Hint Let I (M,g) denote the isometry group of (M,g). Since n = 3, according to
Theorem 6.33, we have dim I (M,g) �= 5. Moreover, for dimension n= 3, if (M,g)

is not a space of constant curvature, then dim I (M,g)≤ 4.

The reader can find the relevant theory developed in É. Cartan [6, Chap. XII].

Solution

(i) As a direct calculation shows, the vector fields

y
∂

∂x
− x ∂

∂y
,

∂

∂x
−By ∂

∂z
,

∂

∂y
+Bx ∂

∂z
,

∂

∂z
,
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Fig. 6.10 For a reductive
homogeneous space one
identifies m≡ TpM

are R-linearly independent Killing vector fields. Since dim i(M,g)� 4 it fol-
lows that

dim i(M,g)= 4.

(ii) Let o = (0,0,0). In order to apply the results in [19, Chap. X, §3], let us
check that this homogeneous space is actually a naturally reductive space (see
Fig. 6.10 for the general case of a reductive homogeneous space), that is, that
the Lie algebra g = i(M,g) decomposes into the direct sum of h = 〈K〉 and
m= 〈X,Y,Z〉, with m being Ad(H)-invariant, satisfying

〈
U, [W,V ]m

〉+ 〈[W,U ]m,V
〉= 0, U,V,W ∈m,

where 〈· , ·〉 is the positive definite, Ad(H)-invariant, symmetric bilinear form
on m, given by 〈U,V 〉 = g(U,V )o.

Let us denote ∂1 = ∂/∂x, ∂2 = ∂/∂y, ∂3 = ∂/∂z and take the decomposition

g= h⊕m, h= 〈K〉, m= 〈X,Y,Z〉,

with

K = y∂1−x ∂2, X = ∂1−By ∂3, Y = ∂2+Bx ∂3, Z = ∂3+λK,
(�)

λ ∈ R being a parameter to be determined so that the decomposition be natu-
rally reductive. Calculating the brackets, we get

[K,X] = Y, [K,Y ] = −X, [K,Z] = 0,

[X,Y ] = 2B(Z − λK), [X,Z] = −λY, [Y,Z] = λX. (��)
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From (��) we deduce that m is Ad(H)-invariant. Using these formulas, we
have, for U,V ∈m, that

[U,V ] = 2B
(
U1V 2 −U2V 1)(Z − λK)− λ(U1V 3 −U3V 1)Y

+ λ(U2V 3 −U3V 2)X,

so that

[U,V ]m = 2B
(
U1V 2−U2V 1)Z−λ(U1V 3−U3V 1)Y+λ(U2V 3−U3V 2)X.

If U,V,W ∈m then
〈
U, [W,V ]m

〉= 2BU3(W 1V 2 −W 2V 1)− λAU2(W 1V 3 −W 3V 1)

+ λAU1(W 2V 3 −W 3V 2), (���)

hence
〈[W,U ]m,V

〉= 2BV 3(W 1U2 −W 2U1)− λAV 2(W 1U3 −W 3U1)

+ λAV 1(W 2U3 −W 3U2). (†)

Summing up equalities (���) and (†), one has
〈
U, [W,V ]m

〉+ 〈[W,U ]m,V
〉

= (2B − λA)(U3V 2W 1 −U3V 1W 2 +U2V 3W 1 −U1V 3W 2),

so if

λ= 2B

A

the previous decomposition g= h⊕m is naturally reductive.
Let R denote the Riemann–Christoffel curvature tensor of (M,g). Accord-

ing to [19, Chap. X, Proposition 3.4], the sectional curvature is given by

R(U,V,U,V )o = 1

4

〈[U,V ]m, [U,V ]m
〉− 〈[[U,V ]h,V

]
,U
〉

(††)

for U,V ∈m. From the polarization formula

R(U,W,V,W) = 1

2

{
R(U + V,W,U + V,W)−R(U,W,U,W)

−R(V,W,V,W)
}
,

it is clear that we can know the tensor R only calculating the three next possi-
bilities, obtained by using (††),

R(X,Y,X,Y )o =−3B2, R(X,Z,X,Z)o = B2

A
,
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R(Y,Z,Y,Z)o = B2

A
.

Since the sectional curvatures do not coincide, the manifold does not have con-
stant curvature.

(iii) By using the aforementioned results in [19], we now compute the covariant
derivative of the previous curvature tensor. We should calculate

(∇R)(U1, . . . ,U5)o = (∇U1R)(U2, . . . ,U5)o,

where U1 =X,Y,Z and (U2, . . . ,U5) denotes any of the previous quadruples
(X,Y,X,Y ), (X,Z,X,Z) and (Y,Z,Y,Z), so that we have 9 values to con-
sider. Let us calculate, for instance,

(∇XR)(X,Y,Z,X)o =X
(
R(X,Y,Z,X)

)
o
−R(X,∇XY,Z,X)o

−R(X,Y,∇XZ,X)o.
Then, denoting again by R the curvature tensor of type (1,3), we have on the
one hand that

X
(
R(X,Y,Z,X)

)=X(R(Z,X,X,Y ))=X(g(R(X,Y )X,Z))

=−X
(

g

(
3B2

A
Y,Z

))

=−3B2

A
X

(

−4B3

A
x
(
x2 + y2)

)

= 12B5

A2
(∂1 −By∂3)

(
x
(
x2 + y2))

= 12B5

A2

(
3x2 + y2),

from which we have that

X
(
R(X,Y,Z,X)

)
o
= 0. (†††)

On the other hand, one has that

R(X,∇XY,Z,X)o = 1

2
R
(
X, [X,Y ]m,Z,X

)
o
= BR(X,Z,Z,X)o

=−B
3

A
, (�)

R(X,Y,∇XZ,X)o = 1

2
R
(
X,Y, [X,Z]m,X

)
o
=−B

A
R(X,Y,Y,X)o

=−3B3

A
. (��)



6.11 Homogeneous Riemannian Manifolds and Riemannian Symmetric Spaces 445

Fig. 6.11 The symmetry of
S2 at a point o

Using now (†††), (�) and (��), we obtain that

(∇XR)(X,Y,Z,X)o = 4B3

A
,

which being nonzero permits us to conclude that M is not a symmetric space.

Problem 6.101 As the unit sphere in R
n+1, Sn ∼= SO(n+ 1)/SO(n) is a symmetric

space, with symmetry ζ at o= (1,0, . . . ,0) given (see Fig. 6.11) by
(
t0, t1, . . . , tn

) �→ (
t0,−t1, . . . ,−tn).

For the symmetric space Sn, find:

(i) The involutive automorphism σ of SO(n+ 1) such that

SO(n+ 1)σ0 ⊂ SO(n)⊂ SO(n+ 1)σ ,

where SO(n+ 1)σ denotes the closed subgroup of SO(n+ 1) of fixed points
of σ , and SO(n+ 1)σ0 its identity component.

(ii) The subspace

m= {X ∈ so(n+ 1) : σ∗X =−X
}
.

(iii) The Ad(SO(n))-invariant inner product on m.
(iv) The geodesics.
(v) The isomorphism p∗ : m∼= ToSn.

(vi) The linear isotropy action.
(vii) The curvature.

The relevant theory is developed, for instance, in O’Neill [26, Chap. 11].

Solution

(i) As ζ = diag(1,−1, . . . ,−1), for A ∈ SO(n+ 1) we have (see [26, Lemma 28,
p. 315]):

σ(A)= ζAζ
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=

⎛

⎜
⎜
⎜
⎝

a00 −a01 · · · −a0n
−a10
...

−an0

(aij )

⎞

⎟
⎟
⎟
⎠
, 1 � i, j � n.

So SO(n + 1)σ is S(O(1) × O(n)), and SO(n + 1)σ0 is the isotropy group
1× SO(n)∼= SO(n).

(ii) As ζ = ζ−1, we have σ(A)= ζAζ−1, so that σ is conjugation by ζ . Thus, σ∗
is also conjugation by ζ on the Lie algebra so(n+ 1). Hence

m=
{

X =
(

0 −tx
x 0

)}

,

where x denotes any column vector, regarded as an element of R
n. Write

X↔ x for the resulting correspondence between m and R
n.

(iii) Under X↔ x, the dot product x · y on R
n corresponds to

B(X,Y )=−1

2
tr XY = 1

2
X · Y

on m, where X ·Y denotes the scalar product in R
(n+1)2 . B is thus a multiple of

the Killing form on so(n+1) (see table in p. 557). One has SO(n)⊂ SO(n+1)
and the Killing form is Ad(SO(n+1))-invariant. It follows from (v) below that
the corresponding metric tensor on Sn is the usual one. In fact,

B

((
0 −tx
x 0

)

,

(
0 −ty
y 0

))

=
n∑

i=1

xiyi = x · y.

(iv) Let γ be a geodesic of Sn starting at o. Since Sn is symmetric, we have (see
[26, Proposition 31, p. 317])

γ (t)= exp(tX)o

for some X ∈m.
It is easily seen that

exp tX =
(

1− t2

2 x · x + · · · ∗
tx − t3

6 (x · x)x + · · · ∗

)

=
(

cos |x|t ∗
(sin |x|t) x

|x| ∗

)

,

where
( ∗
∗
)

stands for an ((n+ 1)× n)-matrix which does not matter for our

purpose. Thus,

(exp tX)o= (exp tX)

⎛

⎜
⎜
⎜
⎝

1
0
...

0

⎞

⎟
⎟
⎟
⎠
= (cos |x|t)o+ (sin |x|t) x|x| .
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Hence γ is the great circle parametrisation

(
cos |x|t)o+ (sin |x|t) x|x| ,

where X↔ x.
(v) In (iii), Rn is assumed to be identified with the last n coordinate subspace

of R
n+1. Hence the canonical isomorphism identifies ToSn with R

n. Then,
according to (iv), x = γ ′(0). But X is the initial velocity vector of the 1-
parameter subgroup projecting to γ . Hence, the isomorphism p∗ : m ∼= ToS

n

is X↔ x.
(vi) If h= ( 1 0

0 A

) ∈H = SO(n) and X ∈m, then

Adh X =
(

1 0
0 A

)(
0 −tx
x 0

)(
1 0
0 A−1

)

=
(

0 −tx A−1

Ax 0

)

(which is skew-symmetric since tA=A−1). Thus the linear isotropy action of
H on ToS

n is, via the identifications, the usual action of SO(n) on R
n, i.e.

(A,x) �→Ax.
(vii) In terms of the subspace m, we have

R(X,Y )Z =−[[X,Y ],Z].
If x, y, z denote the corresponding vectors in R

n ≡ ToSn, we obtain

[X,Y ] =
(

0 0
0 −(xiyj − xjyi)

)

=
(

0 0
0 −Ã

)

,

where (Ãi
j )= (xiyj − xjyi), so

R(X,Y )Z =−
(

0 0
0 −(xiyj − xjyi)

)(
0 −tz
z 0

)

+
(

0 −tz
z 0

)(
0 0
0 −(xiyj − xjyi)

)

=
(

0 −t(Ãz)
Ãz 0

)

.

Thus, under the identification, R(X,Y )Z corresponds to Ãz, that is, to

(y · z)x − (x · z)y.
Hence Sn has constant curvature 1.

Problem 6.102 The complex projective space

CPn ∼=U(n+ 1)/U(1)×U(n)∼= SU(n+ 1)/S
(
U(1)×U(n)

)

is a compact simply connected Hermitian symmetric space of dimension 2n. Find:
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(i) The involutive automorphism σ of U(n+ 1) such that

U(n+ 1)σ0 ⊂U(1)×U(n)⊂U(n+ 1)σ ,

U(n + 1)σ being the closed subgroup of U(n + 1) of fixed points of σ and
U(n+ 1)σ0 its identity component.

(ii) The subspace

m= {X ∈ u(n+ 1) : σ∗X =−X
}
.

(iii) The Ad(U(1)×U(n))-invariant inner product on m.
(iv) The linear isotropy action.

Moreover, prove:

(v) The scalar multiplication by i on C
n ∼=m gives a corresponding complex struc-

ture J0 on m, which is Ad(U(1)×U(n))-invariant, and so determines an almost
complex structure J on CPn making it a Kähler manifold.

(vi) CPn has constant holomorphic sectional curvature.

The relevant theory is developed, for instance, in O’Neill [26, Chap. 11].

Solution

(i) Let ζ = diag(−1,1, . . . ,1). The conjugation

σ : A �→ ζAζ−1

is an involutive automorphism of U(n + 1) whose fixed point set is U(1) ×
U(n), thus having

S
(
U(1)×U(n)

)=U(n+ 1)σ0 ⊂U(n+ 1)σ =U(1)×U(n).

(ii) The (−1)-eigenspace m of σ∗ consists of all the elements in u(n+ 1) of the

form X = ( 0 −tx̄
x 0

)
, where x is an n× 1 complex matrix.

(iii) The inner product

B(X,Y )=−1

2
trXY = 1

2
X · Ȳ

is a multiple of the Killing form on u(n+ 1) (see table on p. 557), and hence it
is Ad(U(1)×U(n))-invariant. Because of the factor 1

2 , B|m corresponds under
the identification m≡C

n to the real part of the natural Hermitian product x · ȳ
in C

n.
(iv) We have

Ad( eiθ 0
0 A

)
(

0 −tx̄
x 0

)

=
(

0 −t(e−iθAx)

e−iθAx 0

)

. (�)
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The linear isotropy action of U(1)×U(n) on m≡ C
n thus corresponds to the

action of U(1)×U(n) on C
n given by
(
eiθ ,A

)
x = e−iθAx.

(v) Scalar multiplication by i in C
n ≡m gives a complex structure J0 on m:

m≡C
n J0→ m

(
0 −tx̄
x 0

)

�→
(

0 i tx̄
ix 0

)

,

which is Ad(U(n) × U(1))-invariant. In fact, by (�) above we have with the
usual notations, for any X ∈m,

J0 Ad( eiθ 0
0 A

)X =
(

0 −t(i e−iθAx)

ie−iθAx 0

)

=Ad( eiθ 0
0 A

) J0X.

Therefore (see [26, Proposition 43, p. 325]), J0 determines an almost complex
structure J on CPn making it a Kähler manifold.

(vi) (a) As U(n) acts transitively on the complex lines in C
n (i.e. the holomorphic

planes in To(CPn)), from (�) it follows that for θ = 0, the action of the
linear isotropy group is transitive on complex lines.

(b) Let o ∈ CPn be the point corresponding to (1,0, . . . ,0) ∈ C
n+1. The

holomorphic sectional curvature is constant on To(CPn), so by homo-
geneity it is constant everywhere. In fact, multiplying B by 4, we have
B(X,Y )=−2 trXY . Let e1, e2 ∈m correspond to elements of the natural
basis of Cn ≡ m. From (a) above, an arbitrary tangent plane on CPn has
sectional curvature K(e1, Y ), where Y = cos θJ e1 + sin θe2. We have

e1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1 0 · · · 0
1 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, J e1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 i 0 · · · 0
i 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

e2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 −1 0 · · · 0
0 0 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, we deduce (see [26, Remark, p. 319]):

K(e1, Y )= B([e1, Y ], [e1, Y ])
B(e1, e1)B(Y,Y )−B(e1, Y )2
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= 1

16
B
(
cos θ [e1, J e1] + sin θ [e1, e2], cos θ [e1, J e1]

+ sin θ [e1, e2]
)

= 1

4

(
1+ 3 cos2 θ

)
.

Hence
1

4
�K � 1.

Taking θ = 0, so Y = Je1, shows that CPn has constant holomorphic sec-
tional curvature 1.

Problem 6.103 Let G = O(p, q + 1) and H = O(p, q). Show that the homoge-
neous space M =G/H is symmetric and can be represented as the hyperquadric

Q= {x = (x1, . . . , xp+q+1) ∈Rp+q+1 :
(
x1)2 + · · · + (xp)2 − (xp+1)2 − (xp+q+1)2 =−1

}
.

Hint Show that the map

σ : O(p, q + 1)→ O(p, q + 1)
a �→ ζ a ζ−1,

where ζ is the matrix ζ = (−Ip+q 0
0 1

)
in the canonical basis of Rp+q+1, is an involu-

tive automorphism (i.e. σ 2 = id) of O(p, q + 1).

Solution Since ζ−1 = ζ , the map σ is an involutive automorphism of O(p, q + 1).
The closed subgroup of O(p, q + 1) of fixed points of σ is Gσ = O(p, q + 1)σ =
O(p, q), and thus

SO(p, q)=O(p, q + 1)σ0 ⊂O(p, q)⊂O(p, q + 1)σ =O(p, q),

where O(p, q + 1)σ0 denotes the identity component of O(p, q + 1)σ . Hence M =
G/H is a symmetric space.

The map

ϕ : O(p, q + 1)/O(p, q)→ Q

a ·O(p, q) �→ a · x0,

where a ∈ O(p, q + 1) and x0 = (0, . . . ,0,1), is a diffeomorphism of M with the
orbit of x0 under O(p, q+1), which is the hyperquadric Q, since O(p, q+1) is the
group of linear transformations leaving invariant the quadratic form

q(x)=
p∑

i=1

(
xi
)2 −

p+q+1∑

j=p+1

(
xj
)2
.
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Problem 6.104 Find the involutive automorphism of SL(n,R) making the homo-
geneous space SL(n,R)/SO(n) into an affine symmetric space. Write the decom-
position involving the corresponding Lie algebras.

Solution The usual definition O(n)= {A ∈GL(n,R) : tAA= I } suggests us to take
the involutive automorphism σ given by

σ : SL(n,R)→ SL(n,R)
B �→ tB−1

for then, the closed subgroup of SL(n,R) of fixed points of σ ,

SL(n,R)σ = {B ∈ SL(n,R) : σ(B)= B}= SO(n),

and its identity component SL(n,R)σ0 , satisfy

SL(n,R)σ0 = SO(n)= SL(n,R)σ ,

so SL(n,R)/SO(n) is an affine symmetric space.
As for the Lie algebras, the differential

σ∗ : sl(n,R)→ sl(n,R), σ∗X =−tX,
induces the decomposition in (±1)-eigenspaces

sl(n,R)= σ∗+ ⊕ σ∗− =
{
X ∈ sl(n,R) : σ∗X =X

}⊕ {X ∈ sl(n,R) : σ∗X =−X
}

= o(n)⊕ sym(n,R),

where sym(n,R) denotes the subset of traceless symmetric matrices in gl(n,R).

6.12 Spaces of Constant Curvature

Problem 6.105 Let λ be any positive real number and let M be the subset of R
n

such that xn > 0. Prove, using Cartan’s structure equations, that the Riemannian
metric on M given by gij (x)= (λ2/(xn)2)δij has constant curvature K =−1/λ2.

Hint Take as connection forms

ω̃ij =
1

λ

(
δni θ̃

j − δnj θ̃ i
)
,

where θ̃ i = λdxi/xn, for i, j = 1, . . . , n.

The relevant theory is developed, for instance, in Wolf [36].
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Solution The frame

σ =
(

X1 = xn

λ

∂

∂x1
, . . . ,Xn = xn

λ

∂

∂xn

)

is an orthonormal moving frame, with dual moving coframe

(

θ̃1 = λdx1

xn
, . . . , θ̃n = λdxn

xn

)

.

The forms ω̃ij in the hint satisfy the conditions dω̃i =−ω̃ij ∧ θ̃ j and ω̃ij + ω̃ji = 0.
In fact,

dθ̃ i =− λ

(xn)2
dxn ∧ dxi =−

∑

j

1

xn

(
δni dxj − δnj dxi

)∧ λ

xn
dxj ,

and the other condition is obvious. Thus, the forms ω̃ij must be the connection forms
relative to σ , since these are determined uniquely by the first structure equation. The
second structure equation is

Ω̃i
j = dω̃ij +

∑

k

ω̃ik ∧ ω̃kj

= 1

λ

(
δni dθ̃ j − δnj dθ̃ i

)+
∑

k

1

λ

(
δni θ̃

k − δnkθ̃ i
)∧ 1

a

(
δnkθ̃

j − δnj θ̃ k
)

=− 1

λ2

(∑

k

δnkδnk

)

θ̃ i ∧ θ̃ j =− 1

λ2
θ̃ i ∧ θ̃ j .

Problem 6.106 Let (M,g) be a Riemannian manifold of constant curvature K . We
define a metric g̃ on M ×M by

g̃
(
(X1, Y1), (X2, Y2)

)= g(X1,X2) ◦ pr1 + g(Y1, Y2) ◦ pr2,

where pr1 and pr2 denote the projection map onto the first and the second factor,
respectively. Is (M ×M, g̃) a space of constant curvature?

Solution Let (U,x1, . . . , xn) and (V , xn+1, . . . , x2n) be coordinate systems on the
first and second factor of M ×M , respectively. Hence, (U × V,x1, . . . , x2n) is a
coordinate system of M ×M . If g = (gij (x)) on U and g = (gi+n,j+n(y)) on V ,
then g̃ has matrix

(
g̃AB(x, y)

)=
(
gij (x) 0

0 gi+nj+n(y)

)

, A,B = 1, . . . ,2n.
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Computing the Christoffel symbols

Γ̃ A
BC =

1

2

2n∑

D=1

g̃AD
(
∂g̃DB

∂xC
+ ∂g̃DC

∂xB
− ∂g̃BC

∂xD

)

, A,B,C = 1, . . . ,2n,

it is easy to see that all of them vanish except perhaps Γ̃ i
jk(x, y) = Γ i

jk(x) and

Γ̃ i+n
j+n,k+n(x, y)= Γ i

jk(y). Therefore, as one can easily compute, all the components

of the curvature tensor field

R̃A
BCD =

∂Γ̃ A
BD

∂xC
− ∂Γ̃ A

BC

∂xD
+
∑

E

(
Γ̃ A
ECΓ̃

E
BD − Γ̃ A

EDΓ̃
E
BC

)

vanish except perhaps

R̃i
jkl(x, y)=Ri

jkl(x), R̃i+n
j+n,k+n,l+n(x, y)=Ri

jkl(y).

Now, if (M ×M, g̃) is a space of constant curvature, say K̃ , we have

R̃i
jkl = K̃

(
δikgjl − gjkδil

)
.

Hence, by the considerations above we deduce that, in particular,

0= R̃k+n
j,k+n,j = K̃gjj .

Hence (M ×M, g̃) does not have constant curvature except when K̃ = 0.

Problem 6.107 Prove that a Riemannian manifold of constant curvature K is an
Einstein manifold.

Solution Let g denote the Riemannian metric, r the Ricci tensor and (ei), i =
1, . . . , n, a local orthonormal frame. Given any X,Y ∈X(M), one has

r(X,Y )=
n∑

i=1

g
(
R(ei, Y )X, ei

)=
n∑

i=1

XjY kg
(
R(ei, ek)ej , ei

)

=
n∑

i=1

XjY kRijik =
n∑

i

XjY kK(δiiδjk − δikδji)=K(n− 1)g(X,Y ).

Problem 6.108 Prove that a 3-dimensional Einstein manifold (M,g) is a space of
constant curvature.

Solution Suppose r= λg. Choose any plane P ∈ TpM , and any orthonormal basis
{e1, e2, e3} for TpM such that P = 〈e1, e2〉. Denote by Pij the plane spanned by ei
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and ej for i �= j , so that Pij = Pji . Then

r(ei, ei)=
∑

j �=i
K(Pij ),

where K(Pij ) stands for the sectional curvature determined by Pij . Thus we have

r(e1, e1)+ r(e2, e2)− r(e3, e3)= 2K(P ).

As r(ei, ei)= λg(ei, ei)= λ, we obtainK(P )= 1
2λ. As P is arbitrary, we conclude.

6.13 Gradient, Divergence, Codifferential, Curl, Laplacian,
and Hodge Star Operator on Riemannian Manifolds

Problem 6.109 Let (M,g) be a Riemannian manifold, TpM the tangent space at
p ∈M and T ∗pM its dual space. The musical isomorphisms � and � are defined (see
Problem 6.40) by

� : TpM→ T ∗pM, X �→ X�, X�(Y )= g(X,Y ),
and its inverse ω �→ ω�, respectively. The gradient of a function f ∈ C∞M is de-
fined as

gradf = (df )�.

(i) Prove that g(gradf,X)=Xf , X ∈X(M).

Given local coordinates {xi}:
(ii) Compute (∂/∂xi)�.

(iii) Calculate (dxi)�.
(iv) Write gradf in local coordinates.
(v) Verify that in the particular case of R3 equipped with the Euclidean metric, we

recover the classical expression of gradf .

Solution

(i) g(gradf,X)= g((df )�,X)= df (X)=Xf .
(ii) Since

(
∂

∂xi

)�(
∂

∂xj

)

= g
(

∂

∂xi
,
∂

∂xj

)

=
∑

k

gij = gik dxk
(

∂

∂xj

)

,

we have
(

∂

∂xi

)�
=
∑

k

gik dxk.
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(iii) From (ii) we have ∂
∂xi
=∑k gik(dx

k)�, since � and � are inverse maps. So we
obtain

(
dxj
)� =

∑

i

gji
∂

∂xi
.

(iv)

gradf = (df )� =
(∑

i

∂f

∂xi
dxi
)�
=
∑

i

∂f

∂xi

(
dxi
)� =

∑

i,j

gji
∂f

∂xi

∂

∂xj
.

(v) In this case,

gradf =
∑

i

∂f

∂xi

∂

∂xi
.

Problem 6.110 Let M be a C∞ manifold equipped with a linear connection ∇ . Let
{X1, . . . ,Xn} be a basis of TpM , and {θ1, . . . , θn} its dual basis. The divergence of
Z ∈X(M) is defined by

(divZ)(p)=
∑

i

θ i(∇Xi
Z).

(i) Prove that (div Z)(p) does not depend on the chosen basis.
(ii) Show that the divergence of a C∞ field on R

3 is the same as the definition given
in Advanced Calculus.

Solution

(i) Given another basis {X̃j =∑i a
i
jXi}, its dual basis is given by {θ̃ j =∑i b

j
i θ

i},
so that

∑
i b

j
i a

i
k =
∑

a
j
i b

i
k = δjk . Thus,

θ̃ j (∇X̃j
Z)=

∑

i,j,h

b
j
i θ

i(∇ahj Xh
Z)=

∑

i,j,h

ahj b
j
i θ

i(∇Xh
Z)

=
∑

i,h

δhi θ
i(∇Xh

Z)=
∑

i

θ i(∇Xi
Z).

(ii) Given the basis {(∂/∂x i)p} of TpR3, its dual basis is {(dxi)p}, i = 1,2,3, and
we have for Z =∑i Z

i∂/∂xi ∈X(R3), since the Christoffel symbols of the flat
connection on R

3 vanish, that

(divZ)(p) =
∑

i,j

(
dxi
)
p

(
∂

∂xi

∣
∣
∣
∣
p

(

Zj ∂

∂xj

))

=
∑

i,j

(
dxi
)
p

∂Zj

∂xi
(p)

∂

∂xj

∣
∣
∣
∣
p

=
∑

i

∂Zi

∂xi
(p).
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Problem 6.111 Let (M,g) be a Riemannian manifold, and let:

(a) ∇ be the Levi-Civita connection of g.
(b) gradf be the gradient of the function f ∈ C∞M .
(c) divX be the divergence (see the previous problem) of the vector field X ∈

X(M). For a local field of orthonormal frames (ei), i = 1, . . . , n, we have
divX =∑i g(∇eiX, ei).

(d) Hf be the Hessian of f ∈ C∞M , defined as the second covariant differential
∇(∇f ), that is,

Hf (X,Y )=XYf − (∇XY)f, X,Y ∈X(M).

(e) Δf be the Laplacian of f ∈ C∞M , defined by

Δf = div gradf.

Moreover, suppose dimM = 3.
Prove the following formulas for f,h ∈ C∞M , X,Y ∈X(M):

1. grad(f h)= f gradh+ hgradf .
2. div(fX)=Xf + f divX.
3. Hfh = fHh + hHf + df ⊗ dh+ dh⊗ df .
4. Δ(f h)= fΔh+ hΔf + 2g(gradf,gradh).

Solution

1.

g(gradf h,X)=X(f h)= (Xf )h+ fXh= g(gradf,X)h+ g(gradh,X)f

= g(hgradf + f gradh,X).

2.

div(fX)=
∑

i

g(∇ei fX, ei)=
∑

i

g
(
(eif )X+ f∇eiX, ei

)

=
∑

i

g(X, ei)eif + f
∑

i

g(∇eiX, ei)=Xf + f div X.

3.

Hfh(X,Y )=XYfh− (∇XY)f h=X
(
(Yf )h+ f Yh)

− ((∇XY)f
)
h− f (∇XY)h

= (XYf )h+ (Yf )(Xh)+ (Xf )(Yh)+ fXYh
− ((∇XY)f

)
h− f (∇XY)h

= (fHh + hHf + df ⊗ dh+ dh⊗ df
)
(X,Y ).
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4.

Δfh= div gradf h= div(f gradh+ hgradf )

= (gradh)f + fΔh+ (gradf )h+ hΔf
= fΔh+ hΔf + 2g(gradf,gradh).

Problem 6.112 Consider on R
n the metric g =∑n

i=1 dxi ⊗ dxi and the volume
element v = dx1 ∧ · · · ∧ dxn.

(i) Prove that given a form Ωk of degree k there is only one form �Ωk , of degree
n− k, such that

(�Ωk)(X1, . . . ,Xn−k)v =Ωk ∧X�
1 ∧ · · · ∧X�

n−k.

(ii) The Hodge star operator

� : Λk
R
n→Λn−k

R
n

is defined by the previous formula. Prove that this operator satisfies the follow-
ing equalities:

�2 = (−1)k(n−k), �−1 = (−1)k(n−k)�, Ωk ∧ (�Θk)=Θk ∧ (�Ωk).

(iii) The codifferential δ : Λk
R
n→Λk−1

R
n is defined by

δ = (−1)n(k+1)+1 � d � .

Prove that δ satisfies δ2 = 0.
(iv) The Hodge–de Rham Laplacian, or simply Laplacian, Δ : Λk

R
n→ Λk

R
n is

defined by

Δ= (d+ δ)2 = dδ + δd.

Prove that if f ∈ C∞R
n, then

Δf =−
n∑

i=1

∂2f

∂(xi)2
.

Solution

(i) We only have to prove the above properties for a basis of the exterior alge-
bra. Let {X1, . . . ,Xn} be an orthonormal basis of vector fields on R

n and
{θ1, . . . , θn} its dual basis. Consider multi-indexes i1 < · · · < ik , j1 < · · · <
jn−k . We have

{
�
(
θi1 ∧· · ·∧θik )}(Xj1 , . . . ,Xjn−k )v = θi1 ∧· · ·∧θik ∧θj1 ∧· · ·∧θjn−k , (�)
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which vanishes if (j1, . . . , jn−k) is not the complement of (i1, . . . , ik) in
(1,2, . . . , n). Denoting by (j1, . . . , jn−k) such ordered complement, we have

�
(
θi1 ∧ · · · ∧ θik )= sgn(i1, . . . , ik, j1, . . . , jn−k) θj1 ∧ · · · ∧ θjn−k (��)

(where sgn denotes the sign of a permutation). In fact, from (�) above we
deduce

{
�
(
θ i1 ∧ · · · ∧ θik )}(Xj1 , . . . ,Xjn−k )v = sgn(i1, . . . , ik, j1, . . . , jn−k) v.

(ii) From (��) above we have

�
{
�
(
θi1 ∧ · · · ∧ θik )}= �

{
sgn(i1, . . . , ik, j1, . . . , jn−k) θj1 ∧ · · · ∧ θjn−k}

= sgn(i1, . . . , ik, j1, . . . , jn−k) �
(
θj1 ∧ · · · ∧ θjn−k )

= sgn(i1, . . . , ik, j1, . . . , jn−k)

× sgn(j1, . . . , jn−k, i1, . . . , ik)θ i1 ∧ · · · ∧ θik

= (−1)i1+···+ik−
k(k+1)

2 +j1+···+jn−k− (n−k)(n−k+1)
2

× θi1 ∧ · · · ∧ θik
= (−1)k(n−k)θ i1 ∧ · · · ∧ θik .

From �2 = (−1)k(n−k) it follows that � = (−1)k(n−k)�−1, hence �−1 =
(−1)k(n−k)�.

Consider

Ωk = θi1 ∧ · · · ∧ θik , Θk = θj1 ∧ · · · ∧ θjk .

Then

Ωk ∧ (�Θk)=
{

0 if {i1, . . . , ik} �= {j1, . . . , jk},
v if {i1, . . . , ik} = {j1, . . . , jk}.

Proceed similarly for Θk ∧ (�Ωk).
(iii) δ2 = �d � �d�= (−1)(k−1)(n−k+1) � d2�= 0, since d2 = 0.
(iv) Since δf = 0 for f ∈ C∞R

n, we have Δf = δ df , hence

Δf = δ df =− � d � df =− � d �
∑

i

∂f

∂xi
dxi

=− � d(−1)i−1
∑

i

∂f

∂xi
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn
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=− � (−1)i−1
∑

i,j

∂2f

∂xi∂xj
dxj ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=− �

(
n∑

i=1

∂2f

∂(xi)2

)

dx1 ∧ · · · ∧ dxn =−
n∑

i=1

∂2f

∂(xi)2
.

Problem 6.113 A differential 2-form F on R
4 is said to be autodual if

�F = F,
where � stands for the Hodge star operator. Prove that the curvature 2-form (�) in
Problem 5.29 is autodual.

Remark A curvature form F satisfying �F = F is called an instanton. The instan-
tons described in Problem 5.29 are called Belavin–Polyakov–Schwartz–Tyupkin in-
stantons.

Solution The Hodge star operator on the 2-forms on the Euclidean space R
4 ≡H

is easily seen to be defined from

�
(
dx1 ∧ dx2)= dx3 ∧ dx4, �

(
dx2 ∧ dx3)= dx1 ∧ dx4,

�
(
dx1 ∧ dx3)=−dx2 ∧ dx4, �

(
dx2 ∧ dx4)=−dx1 ∧ dx3,

�
(
dx1 ∧ dx4)= dx2 ∧ dx3, �

(
dx3 ∧ dx4)= dx1 ∧ dx2.

Thus, the basis of autodual 2-forms is

{
dx1 ∧ dx2 + dx3 ∧ dx4, dx1 ∧ dx3 − dx2 ∧ dx4, dx1 ∧ dx4 + dx2 ∧ dx3}.

Now, due to the identification R
4 ≡H, one has

dx ∧ dx̄ = (dx1 + dx2 i+ dx3 j+ dx4 k
)∧ (dx1 − dx2 i− dx3 j− dx4 k

)

=−2
{(

dx1 ∧ dx2 + dx3 ∧ dx4)i+ (dx1 ∧ dx3 − dx2 ∧ dx4)j

+ (dx1 ∧ dx4 + dx2 ∧ dx3)k
}
.

Problem 6.114 Define on R
3 equipped with the usual flat metric g:

(a) divX = divX� =−δX� = �d �X�, X ∈X(R3).
(b) curlX = (�dX�)�.

Prove the formulas:

1. curl gradf = 0.
2. div curlX = 0.
3. Δω=−(grad divω� + curl curlω�)�, ω ∈Λ1

R
3.
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4. curl(fX)= (gradf )×X+ f curlX, where × denotes the usual vector product
in R

3.
5. div(fX)= (gradf ) ·X+ f divX.
6.

(
�(curlX)�

)
(Y,Z)= g(∇YX,Z)− g(∇ZX,Y ).

7. Prove that curlX coincides with its classical expression and then

div(X× Y)=X · curlY + (curlX) · Y,
where the dot denotes the usual scalar product in R

3.

Solution

1.

curl gradf = curl(df )� = (�d
(
(df )�

)�)� = (�d df )� = 0.

2.

div curlX = div
(
�dX�

)� = div
((

�dX�
)�)� =−δ � dX� = �d � �dX�

= (−1)2(3−2) � d dX� = 0.

3.

Δω= (dδ + δd)ω= d(−divω)+ δ dω=−d divω� − �d � dω

=−((d divω�
)�)� − �d

((
�d
(
ω�
)�)�)� =−(grad div ω�

)� − �d
(
curl ω�

)�

=−(grad divω� + curl curlω�
)�
.

4.

curl(fX)= (�d
(
fX�

))� = (�(df ∧X� + f dX�
))�

= (�(df ∧X�
))� + f curlX

= (gradf )×X+ f curl X,

since

(
�
(
df ∧X�

))� =
(

�

(
∂f

∂xi
dxi ∧ (Xj dxj

)
))�

=
(

�

{(
∂f

∂x1
X2 − ∂f

∂x2
X1

)

dx1 ∧ dx2 + · · ·
})�

=
({(

∂f

∂x1
X2 − ∂f

∂x2
X1

)

dx3 + · · ·
})�
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=
(
∂f

∂x2
X3 − ∂f

∂x3
X2

)
∂

∂x1
+
(
∂f

∂x3
X1 − ∂f

∂x1
X3

)
∂

∂x2

+
(
∂f

∂x1
X2 − ∂f

∂x2
X1

)
∂

∂x3
= gradf ×X.

5.

div(fX)= div(fX)� =−δ(fX)� = �d � (fX)� = �d
(
f
(
�X�

))

= �
(
df ∧ (�X�

)+ f d
(
�X�

))= �
(
X� ∧ (�df )

)+ f � d �X�

= �
(
(�df )∧X�

)+ f div X.

Now,

�
(
(�df )∧X�

)= �

((

�
∑

i

∂f

∂xi
dxi
)

∧
(∑

j

Xj dxj
))

= �

((
∂f

∂x1
dx2 ∧ dx3 − ∂f

∂x2
dx1 ∧ dx3 + ∂f

∂x3
dx1 ∧ dx2

)

∧
(∑

j

Xjdxj
))

= �

((∑

i

∂f

∂xi
Xi

)

dx1 ∧ dx2 ∧ dx3
)

= gradf ·X.

6.

(
�(curl X)�

)
(Y,Z)= (� � dX�

)
(Y,Z)= (dX�

)
(Y,Z)

= YX�(Z)−ZX�(Y )−X�
([Y,Z])

= Yg(X,Z)−Zg(X,Y )− g(X,∇YZ)+ g(X,∇ZY )
= g(∇YX,Z)− g(∇ZX,Y ).

7.

curl X = curl

(∑

i

Xi

∂

∂xi

)

= (�d
(
Xi dxi

))�

=
(

�

{(
∂X1

∂x2
dx2 + ∂X1

∂x3
dx3
)

∧ dx1 + · · ·
})�

=
(

�

{(

−∂X1

∂x2
+ ∂X2

∂x1

)

dx1 ∧ dx2 + · · ·
})�
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=
((

∂X2

∂x1
− ∂X1

∂x2

)

dx3 + · · ·
)�

=
(
∂X3

∂x2
− ∂X2

∂x3

)
∂

∂x1
−
(
∂X3

∂x1
− ∂X1

∂x3

)
∂

∂x2
+
(
∂X2

∂x1
− ∂X1

∂x2

)
∂

∂x3
.

From this, the formula

div(X× Y)=X · curlY + (curlX) · Y

follows.

Problem 6.115 Let g and g̃ be conformally equivalent metrics on the C∞ n-
manifold M , that is, such that g̃ = e2f g, f ∈ C∞M . Find the relation between:

(i) ∇̃XY and ∇XY , where ∇̃ and ∇ denote, respectively, the Levi-Civita connec-
tions of g̃ and g, and X,Y ∈X(M).

(ii) divg̃ X and divg X, X ∈X(M).

Solution

(i) The Levi-Civita connection of g̃ is given by the Koszul formula in Theorem 6.4.
Thus,

2e2f g(∇̃XY,Z)=Xe2f g(Y,Z)+ Y e2f g(Z,X)−Ze2f g(X,Y )

+ e2f g
([X,Y ],Z)− e2f g

([Y,Z],X)+ e2f g
([Z,X], Y )

= 2e2f {g(∇XY,Z)+ (Xf )g(Y,Z)+ (Yf )g(Z,X)
− (Zf )g(X,Y )}.

Hence

∇̃XY =∇XY + (Xf )Y + (Yf )X− g(X,Y )gradf.

(ii) Let (Ei) be a local g-orthonormal frame. Then the frame (e−f Ei) is a g̃-
orthonormal local frame and we have locally, by definition of divergence and
by (i):

divg̃ X =
∑

i

g̃
(∇̃e−f EiX, e−f Ei

)=
∑

i

e−2f g̃(∇̃EiX,Ei)=
∑

i

g(∇̃EiX,Ei)

=
∑

i

(
g(∇EiX,Ei)+ (Eif )g(X,Ei)+ (Xf )g(Ei,Ei)

− (Eif )g(Ei,X)
)

= divg X+ nXf.
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Problem 6.116 Prove that the Hodge–de Rham Laplacian Δ = δd + dδ and the
Hodge star operator � on an oriented Riemannian manifold commute:

Δ�= �Δ.

Remark Recall that the codifferential δ, defined as the opposite of the divergence,
satisfies

δω= (−1)n(k+1)+1 � d �ω, ω ∈ΛkMn.

Solution Suppose dimM = n and ω ∈ΛkM , then

Δ �ω= (δd+ dδ) �ω= (−1)n(n−k+2)+1 � d � d �ω+ (−1)n(n−k+1)+1 d � d � �ω

= (−1)n(n−k)+1 � d � d �ω+ (−1)n(n−k+1)+1+k(n−k)d � dω,

�Δω= �(δd+ dδ)ω= �(−1)n(k+2)+1 � d � dω+ (−1)n(k+1)+1 � d � d � ω

= (−1)nk+1+(n−k)k d � dω+ (−1)n(k+1)+1 � d � d �ω.

Now, (−1)n(n−k)+1 = (−1)n
2−nk+1 = (−1)n+nk+1 = (−1)n(k+1)+1, and on the

other hand

(−1)n(n−k+1)+1+k(n−k) = (−1)1−k = (−1)nk+1+nk−k.

Hence Δ�= �Δ.

Problem 6.117 Prove that a parallel differential form on a Riemannian manifold
(M,g) is harmonic.

Solution Let α ∈Λ∗M be parallel, that is, if ∇ stands for the Levi-Civita connec-
tion of g, we have ∇α = 0.

Therefore, α is closed. In fact, if α ∈ΛrM , one has in general

dα(X0, . . . ,Xr)=
r∑

j=0

(−1)j (∇Xj
α)(X0, . . . , X̂j , . . . ,Xr), Xj ∈X(M). (�)

Moreover, α is coclosed (δα = 0). In fact, we have in general

(δα)p(v1, . . . , vr−1)=−(divα)p(v1, . . . , vr−1) (by Definition 6.11)

=−
∑

i

(∇ei α)(ei, v1, . . . , vr−1), (��)

where {ei} is an orthonormal basis for TpM , and v1, . . . , vr−1 ∈ TpM . Since Δα =
(dδ + δd)α, we conclude.

Problem 6.118 If the Riemannian n-manifold M is compact, prove:
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(i) The codifferential δ is adjoint of the differential d with respect to the inner
product of integration, that is,

∫

M

〈δα,β〉v =
∫

M

〈α,dβ〉v, α,β ∈ΛrM, r ∈ {0, . . . , n},

where v denotes the volume form on the Riemannian manifold.
(ii) The Laplacian Δ= dδ+ δd on M is self-adjoint with respect to the inner prod-

uct of integration, that is,
∫

M

〈Δα,β〉v =
∫

M

〈α,Δβ〉v, α,β ∈ΛrM, r ∈ {0, . . . , n}.

Solution

(i) We have

0=
∫

M

d(α ∧ �β) (by Stokes’ Theorem)

=
∫

M

(
dα ∧ �β + (−1)rα ∧ d � β

)

=
∫

M

dα ∧ �β −
∫

M

α ∧ �δβ (by definition of δ).

By the definition of inner product of integration, we conclude.
(ii) By (i) above,

∫

M

〈Δα,β〉v =
∫

M

〈
(dδ + δd)α,β

〉
v =

∫

M

(〈δα, δβ〉 + 〈dα, dβ〉)v

=
∫

M

(〈α,dδβ〉 + 〈α, δdβ〉)v =
∫

M

〈α,Δβ〉v.

Problem 6.119 Prove that if a compact Riemannian n-manifold M admits a metric
of constant positive curvature, then

Hr
dR(M,R)= 0, r = 1, . . . , n− 1.

Hint Use: (i) Weitzenböck’s formula for the Laplacian on a Riemannian manifold
(M, 〈· , ·〉) of constant sectional curvature c; (ii) the formula

∫

M

Δf v = 0, f ∈ C∞M,

which follows from (ii) in Problem 6.118, taking α = f and β to be a constant
function.

The relevant theory is developed, for instance, in Poor [28, Chap. 4].
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Solution Integrating the two members of the Weitzenböck formula, we have in gen-
eral:

∫

M

〈Δα,α〉v =
∫

M

(
1

2
Δ|α|2 + |∇α|2 + r(n− r)c|α|2

)

v, α ∈ΛrM,

where v stands for the volume form on (M,g).
Let α be the harmonic representative of a class in Hr

dR(M,R). Then Δα = 0.
Moreover, by (ii) in the hint,

∫
M
Δ|α|2 = 0. Hence

0=
∫

M

(|∇α|2 + r(n− r)c|α|2)v.

If r �= 0, n, from c > 0, it follows that α = 0. Thus Hr
dR(M,R) = 0, r = 1, . . . ,

n− 1.

Problem 6.120 Let α and β be n-forms on a compact oriented Riemannian n-
manifold M such that

∫

M

α =
∫

M

β.

Prove that α and β differ by an exact form.

Hint Use:

(i) Hodge’s Decomposition Theorem 6.28.
(ii) Stokes’ Theorem 3.6.

Solution Denote here the degree r of a differential form by the subindex r . By
Hodge’s Decomposition Theorem, each r-form ωr over such a manifold is decom-
posed in a unique way as

ωr = dωr−1 + δωr+1 + θr ,

where θr is harmonic. In our case, the decomposition reduces to

α − β = dωn−1 + θn.

Applying Stokes’ Theorem, we have

0=
∫

M

α − β =
∫

M

dωn−1 +
∫

M

θn =
∫

M

θn.

As the n-form θn is harmonic and each cohomology class has a unique harmonic
representative, from

∫
M
θn = 0 it follows that θn = 0. Thus α − β = dωn−1.
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Problem 6.121 Let (M, 〈· , ·〉) be a compact oriented Riemannian manifold without
boundary. Then λ ∈ R is called an eigenvalue of the Laplacian if there exists f ∈
C∞M , not identically zero, such that

Δf = λf.
In this case, f is called an eigenfunction corresponding to λ.

(i) Prove that 0 is an eigenvalue of Δ, and that other values are strictly negative.
(ii) A function f is said to be harmonic if Δf = 0. Prove that the only harmonic

functions are the constants.
(iii) If f and h are eigenfunctions corresponding to distinct eigenvalues, show that

∫

M

fhv = 0,

where v stands for the Riemannian volume element.

Hint (to (i)) Use the first Green identity (see, for instance, Strauss [33, p. 176]) for
manifolds without boundary,

∫

M

(
f Δh+ 〈gradf,gradh〉)v = 0. (�)

The relevant theory is developed, for instance, in Lee [21].

Solution

(i) Taking f = h in (�) above, we have
∫

M

f Δf =−
∫

M

|gradf |2v. (��)

If f is an eigenfunction corresponding to a nonzero eigenvalue λ, then it fol-
lows that

λ

∫

M

f 2v =−
∫

M

|gradf |2v.
Compactness of M then implies λ � 0. If f is a constant function then
|gradf |2 = 0 and λ= 0.

(ii) Also from (��) it follows that if f is harmonic, it is necessarily a constant
function.

(iii) Let λ and μ be the eigenvalues of f and h, respectively. From Green’s identity
(�), we get

0=
∫

M

(fΔh− hΔf )v = (μ− λ)
∫

M

fhv.

As λ �= μ, the conclusion follows.
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Problem 6.122 Let (M,g) be an n-dimensional Riemannian manifold, let ∇ be
the Levi-Civita connection, and let R be the curvature tensor. Denote by a dot the
Clifford multiplication on forms (see Definition 6.12).

(i) Prove Leibniz’s rule for ∇:

∇X(α · β)= (∇Xα) · β + α · ∇Xβ, α ∈ΛrM, β ∈ΛsM.

(ii) Prove Leibniz’s rule for R:

R(X,Y )(α · β)= (R(X,Y )α) · β + α ·R(X,Y )β, α ∈ΛrM, β ∈ΛsM.

(iii) Let {ei}, i = 1, . . . , n, be any local basis of vector fields and {θi} its metrically
dual basis of 1-forms. Then prove that the square of the Dirac operator on
forms D (see Definition 6.13), can be written as

D2ω=
n∑

i,j=1

θi · θj · ∇2
ei ,ej

ω, ω ∈ΛrM.

(iv) Prove the Weitzenböck formula for the square of the Dirac operator on forms,
that is, that D2 may be written in terms of the rough Laplacian ∇∗∇ as

D2ω=∇∗∇ω+ 1

2

n∑

i,j=1

θi · θj ·R(ei, ej )ω, ω ∈ΛrM.

(v) Prove that

Dω= dω+ δω, ω ∈ΛrM,

that is, the Dirac operator on forms is the sum of the exterior differential and
the codifferential.

Hint (to (i)) Prove first that

∇X(ια�β)= ι∇Xα�β + ια�(∇Xβ), α ∈Λ1M, β ∈ΛrM.

Hint (to (ii)) Use (i) above.

Hint (to (iii)) First consider that

∇2
ei ,ej
=∇ei∇ej −∇∇ei ej

is tensorial in both ei and ej , so the right-hand side in (iii) is invariantly defined.
Then apply (i), and that

∇ei θj =
n∑

k=1

g−1(∇ei θj , θk
)
θk =

n∑

k=1

g(∇ei ej , ek)θk.
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Hint (to (iv)) First note that everything is invariant. Then use (iii), the properties

θi · θi =−1, θ i · θj =−θj · θi,
and recall that the rough Laplacian is defined by ∇∗∇ =− tr∇2, that is,

∇∗∇α =
n∑

i=1

(∇ei∇ei α −∇∇ei ei α), α ∈ΛrM.

Hint (to (v)) Recall that the differential exterior and the covariant derivative of a
form α ∈ΛrM are related (see Problem 5.44 or formula (7.6)) by

dα(X0, . . . ,Xr)=
r∑

j=0

(−1)j (∇Xj
α)(X0, . . . , X̂j , . . . ,Xr), Xj ∈X(M). (�)

The relevant theory is developed in Petersen [27, 7.4].

Solution

(i) Suppose first as in the hint that α ∈Λ1M and β ∈ΛrM . Then we have that

(∇X(ια�β)
)
(Y1, . . . , Yr−1)

=∇X
(
(ια�β)(Y1, . . . , Yr−1)

)−
r−1∑

k=1

(ια�β)(Y1, . . . ,∇XYk, . . . , Yr−1)

=∇X
(
β
(
α�,Y1, . . . , Yr−1

))−
r−1∑

k=1

β
(
α�,Y1, . . . ,∇XYk, . . . , Yr−1

)

= (∇Xβ)
(
α�,Y1, . . . , Yr−1

)+ β(∇Xα�,Y1, . . . , Yr−1
)

+
r−1∑

k=1

β
(
α�,Y1, . . . ,∇XYk, . . . , Yr−1

)

−
r−1∑

k=1

β
(
α�,Y1, . . . ,∇XYk, . . . , Yr−1

)

= (ια�(∇Xβ)+ ι∇Xα�β
)
(Y1, . . . , Yr−1).

Also

(∇Xα)� =∇X
(
α�
)
. (�)

Indeed, by the Koszul formula for the Levi-Civita connection in Theorem 6.4,

2g
(∇X

(
α�
)
, Y
)=Xg(α�,Y )+ α�g(Y,X)− Yg(X,α�)
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+ g([X,α�], Y )− g([α�,Y ],X)+ g([Y,X], α�),
2g
(
(∇Xα)�,Y

)= 2(∇Xα)(Y )= 2∇X
(
α(Y )

)− 2α(∇XY)
= 2Xg

(
α�,Y

)− 2g
(∇XY,α�

)

= 2Xg
(
α�,Y

)− [Xg(Y,α�)+ Yg(α�,X)− α�g(X,Y )
+ g([X,Y ], α�)− g([Y,α�],X)+ g([α�,X], Y )].

So (i) easily follows from the definition of Clifford multiplication, as

∇X(α · β)=∇X(α ∧ β − ια�β)
= (∇Xα)∧ β + α ∧ (∇Xβ)− ια�(∇Xβ)− ι∇Xα�β
= (∇Xα) · β + α · (∇Xβ).

The extension to any pair of forms is easy, due to Definition 6.12.
(ii) It follows from (i) that

R(X,Y )(α · β)= (∇X∇Y −∇Y∇X −∇[X,Y ])(α · β)
=∇X

(
(∇Y α) · β + α · (∇Y β)

)−∇Y
(
(∇Xα) · β + α · (∇Xβ)

)

− (∇[X,Y ]α) · β − α · (∇[X,Y ]β)
= (∇X∇Y α) · β + (∇Y α) · (∇Xβ)+ (∇Xα) · (∇Y β)
+ α · ∇X∇Y β
− (∇Y∇Xα) · β − (∇Xα) · (∇Y β)
− (∇Y α) · (∇Xβ)− α · ∇Y∇Xβ
− (∇[X,Y ]α) · β − α · (∇[X,Y ]β)
= (R(X,Y )α) · β + α ·R(X,Y )β.

(iii) Using invariance, we need only to prove the formula at a point p ∈M , where
the frame is assumed to be orthonormal; and normal, that is, we have

(∇ei)p = 0 hence
(∇θi)

p
= 0.

We can then compute at p,

D2ω=
n∑

i,j=1

θi · (∇ei
(
θj · ∇ej ω

))

=
n∑

i,j=1

(
θi · (∇ei θj

) · ∇ej ω+ θi · θj · ∇ei∇ej ω
)

(by (i) above)
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=
n∑

i,j,k=1

θi · g−1(∇ei θj , θk
)
θk · ∇ej ω+

n∑

i,j=1

θi · θj · ∇ei∇ej ω

=
n∑

i,j,k=1

θi · g(∇ei ej , ek)θk · ∇ej ω

+
n∑

i,j=1

θi · θj · ∇ei∇ej ω (by (�) above)

=−
n∑

i,j,k=1

θi · g(ej ,∇ei ek)θk · ∇ej ω

+
n∑

i,j=1

θi · θj · ∇ei∇ej ω ({ei} orthon.)

=−
n∑

i,j,k=1

θi · θk · ∇g(ej ,∇ei ek)ej ω+
n∑

i,j=1

θi · θj · ∇ei∇ej ω

=−
n∑

i,k=1

θi · θk · ∇∇ei ekω+
n∑

i,j=1

θi · θj · ∇ei∇ej ω

=
n∑

i,j=1

(−θi · θj · ∇∇ei ej ω+ θi · θj · ∇ei∇ej ω
)

=
n∑

i,j=1

θi · θj · ∇2
ei ,ej

ω.

(iv) Due to invariance, we can choose a frame orthonormal and normal at p ∈M ,
and then compute at p,

D2ω=
n∑

i,j=1

θi · θj · ∇2
ei ,ej

ω (by (iii) above)

=−
n∑

i=1

∇2
ei ,ei

ω+
∑

i �=j
θ i · θj · ∇2

ei ,ej
ω (as θi · θi =−1)

=−
n∑

i=1

∇2
ei ,ei

ω+
∑

i<j

θ i · θj · (∇2
ei ,ej
−∇2

ej ,ei

)
ω (as θi · θj =−θi · θj )

=−
n∑

i=1

∇2
ei ,ei

ω+
∑

i<j

θ i · θj ·R(ei, ej )ω (by Ricci identity)
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=−
n∑

i=1

∇2
ei ,ei

ω+ 1

2

n∑

i,j=1

θi · θj ·R(ei, ej )ω

=∇∗∇ω+ 1

2

n∑

i,j=1

θi · θj ·R(ei, ej )ω (since ∇∗∇ =− tr∇2).

(v) With the previous notations we have that

Dω=
n∑

i,j=1

θi · ∇eiω=
n∑

i=1

(
θi ∧∇eiω− ιei (∇eiω)

)

=
n∑

i=1

(
θi ∧∇eiω− (∇eiω)(ei, · , . . . , ·)

)

=
n∑

i=1

θi ∧∇eiω− divω. (See p. 592.)

Now,

n∑

i=1

(
θi ∧∇eiω

)
(X0,X1, . . . ,Xr)

=
n∑

i,j=1

n∑

r=0

(−1)jXi
j (∇eiω)(X0, . . . , X̂j , . . . ,Xr)

=
r∑

j=0

(−1)j (∇Xj
ω)(X0, . . . , X̂j , . . . ,Xr)

= dω(X0, . . . ,Xr), (by (�) in the hint)

for all X0, . . . ,Xr ∈ X(M), where Xj =∑i X
i
j ei . Hence, applying Defini-

tion 6.11,

Dω= dω− divω= dω+ δω.

6.14 Affine, Killing, Conformal, Projective, Jacobi,
and Harmonic Vector Fields

Problem 6.123 Find a non-affine projective vector field X on R
3.

Hint Let ∇ be the Levi-Civita connection of the Euclidean metric of R3. The vector
field X is projective if

(LX∇)(Y,Z)= θ(Y )Z + θ(Z)Y, Y,Z ∈X(R3), (�)
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Fig. 6.12 A non-affine
projective vector field on R

3

for some differential 1-form θ ∈Λ1
R

3, where

(LX∇)(Y,Z)= [X,∇YZ] − ∇[X,Y ]Z −∇Y [X,Z].
Moreover, one has d(divX)= (dimR

3 + 1)θ = 4θ .

The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution Let (see Fig. 6.12)

X = 2x(x + y + z) ∂
∂x
+ 2y(x + y + z) ∂

∂y
+ 2z(x + y + z) ∂

∂z
.

Then

θ = 1

4
d(divX)= 2(dx + dy + dz).

Because of the symmetry of the vector field X and the differential form θ , it suffices
to prove the formula (�) for a couple of coordinate vector fields, for example, ∂

∂x

and ∂
∂y

. We have

θ

(
∂

∂x

)
∂

∂y
+ θ
(
∂

∂y

)
∂

∂x
= 2

∂

∂y
+ 2

∂

∂x
,

and

(LX∇)
(
∂

∂x
,
∂

∂y

)

=−∇ ∂
∂x

[

X,
∂

∂y

]

=−∇ ∂
∂x

(

−2x
∂

∂x
+ (−2x − 4y − 2z)

∂

∂y
− 2z

∂

∂z

)

= 2
∂

∂x
+ 2

∂

∂y
.
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Fig. 6.13 A non-Killing
affine vector field on R

3

Problem 6.124 Prove that the vector field X =∑3
i=1 x

i∂/∂xi on R
3 with the Eu-

clidean metric is affine but not Killing. Is X a vector field of homotheties?
The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution

LXg =
∑

i,j

L
xi ∂

∂xi

(
dxj ⊗ dxj

)

=
∑

i,j

(

d

(

xi
∂xj

∂xi

)

⊗ dxj + dxj ⊗ d

(

xi
∂xj

∂xi

))

= 2g.

Hence X is not Killing (see Fig. 6.13).
Note that X is a conformal vector field, with the function h ∈ C∞R

n, such that
LXg = 2hg, equal to 1, i.e. it is a constant function. It is said that a conformal vector
field with h= const is a vector field of homotheties.

Let us see if X is affine. As the Levi-Civita connection is torsionless and the
curvature vanishes, the condition is ∇Y∇X = 0, Y ∈X(Rn). Now, as

∇YX =
3∑

i=1

Y
(
xi
) ∂

∂xi
= Y,

we have ∇X = I , hence any covariant derivative under ∇ of ∇X vanishes. Thus X
is affine.

Problem 6.125 Let (M,g) be a Riemannian manifold. Prove that X ∈ X(M) is a
Killing vector field if and only if LXg = 0.
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Solution A vector field X is Killing if ϕ∗t g = g for every t , where ϕt is the local
1-parameter group generated by X. Hence

LXg = lim
t→0

g− ϕ∗t g
t

= 0.

Conversely, assume LXg = 0. For any tensor field K we know (see Proposi-
tion 2.10) that

ϕs · (LXK)=−
(

d

dt
(ϕt ·K)

)

t=s
.

Hence, by virtue of the hypothesis, we have

0= ϕ∗s (LXg)=−
(

d

dt

(
ϕ∗t g
)
)

t=s
,

and consequently, ϕ∗t g does not depend on t . Therefore, ϕ∗t g = ϕ∗0g = g.

Problem 6.126 Show that the set of Killing vector fields of the Euclidean metric
g = dx2 + dy2 + dz2 on R

3 is the real Lie algebra generated by the vector fields

∂

∂x
,

∂

∂y
,

∂

∂z
, x

∂

∂y
− y ∂

∂x
, −y ∂

∂z
+ z ∂

∂y
, z

∂

∂x
− x ∂

∂z
.

The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution Let X =∑3
i=1 λ

i∂/∂xi , where λi is a function of x1 = x, x2 = y and
x3 = z. Then one has

LXg =
3∑

i,j=1

(
∂λj

∂xi
+ ∂λi

∂xj

)

dxi ⊗ dxj .

If X is Killing, that is, LXg = 0, we deduce:

(i)
∂λ1

∂x1
= 0, (ii)

∂λ2

∂x2
= 0, (iii)

∂λ3

∂x3
= 0,

(iv)
∂λ1

∂x2
+ ∂λ2

∂x1
= 0, (v)

∂λ1

∂x3
+ ∂λ3

∂x1
= 0, (vi)

∂λ2

∂x3
+ ∂λ3

∂x2
= 0.

From (i), (ii) and (iii), it follows that λ1 = λ1(x2, x3), λ2 = λ2(x1, x3), and λ3 =
λ3(x1, x2). Thus, from (iv) and (v), one has

∂2λ1

∂x2∂x2
= 0,

∂2λ1

∂x3∂x3
= 0,

from which

λ1 = a1x
2x3 + b1x

2 + c1x
3 + d1.
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Similarly,

λ2 = a2x
1x3 + b2x

3 + c2x
1 + d2, λ3 = a3x

1x2 + b3x
1 + c3x

2 + d3.

On account of (iv), (v) and (vi) above, these formulae reduce to

λ1 =−c2x
2 + c1x

3 + d1, λ2 =−c3x
3 + c2x

1 + d2,

λ3 =−c1x
1 + c3x

2 + d3.

Hence the generators are indeed the ones in the statement. By using the property
L[X,Y ] = [LX,LY ], it is easily checked that {X : LXg = 0} is a Lie algebra.

Problem 6.127 Calculate the divergence of a Killing vector field on a Riemannian
manifold.

The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution Let (M,g) be a Riemannian manifold with Levi-Civita connection ∇ and
let X ∈ X(M) be a Killing vector field. Since LXg = 0, ∇g = 0, and ∇ is torsion-
less, we have for any Y,Z ∈X(M):

0= (LXg)(Y,Z)=Xg(Y,Z)− g(LXY,Z)− g(Y,LXZ)
=Xg(Y,Z)− g([X,Y ],Z)− g(Y, [X,Z])= g(∇YX,Z)+ g(Y,∇ZX).

Hence, for any p ∈M , and any orthonormal basis {ei} of TpM , one has

(divX)(p)=
∑

i

g(∇eiX, ei)= 0,

that is, div X = 0.

Problem 6.128 Prove that a vector field X on a Riemannian manifold (M,g) is
Killing if and only if the Kostant operator A defined by

AX = LX −∇X,
where ∇ stands for the Levi-Civita connection of g, satisfies

g(AXY,Z)+ g(Y,AXZ)= 0, Y,Z ∈X(M).

Remark Notice that as ∇ is torsionless, AXY =−∇YX.

Solution As ∇Xg = 0 for all X ∈ X(M), the condition LXg = 0 is equivalent to
AXg = 0. Since AX is the difference of two derivations of the algebra of tensor
fields that commute with contractions, one has

AX

(
g(Y,Z)

)= (AXg)(Y,Z)+ g(AXY,Z)+ g(Y,AXZ), Y,Z ∈X(M).



476 6 Riemannian Geometry

On the other hand,

AXf = LXf −∇Xf =Xf −Xf = 0, f ∈ C∞M,

thus AX(g(Y,Z))= 0. Hence (AXg)(Y,Z)= 0 if and only if

g(AXY,Z)+ g(Y,AXZ)= 0,

as wanted.

Problem 6.129 Consider R2 equipped with the metric g = dx2 + dy2.

(i) Show that the vector field

X = (ax − by) ∂
∂x
+ (bx + ay) ∂

∂y
, a, b ∈R,

is a conformal vector field.
(ii) Let R3 \ {0} with the usual metric and let v denote the volume form. Write LYv,

Y ∈X(R3 \ {0}), in cylindrical coordinates.

The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution

(i)

L
(ax−by) ∂

∂x
+(bx+ay) ∂

∂y
(dx ⊗ dx + dy ⊗ dy)

= d(ax − by)⊗ dx + dx ⊗ d(ax − by)+ d(bx + ay)⊗ dy

+ dy ⊗ d(bx + ay)
= 2ag

(see Fig. 6.14).
(ii) One has

x = ρ cos θ, y = ρ sin θ, z= z, ρ > 0, θ ∈ (0,2π).

Hence, the volume form is v = dx ∧ dy ∧ dz= ρ dρ ∧ dθ ∧ dz. Let

Y = F ∂

∂ρ
+G ∂

∂θ
+H ∂

∂z
,

where F , G, H are functions of ρ, θ , and z. Therefore,

LY v = 1

2
LY
(
d
(
ρ2)∧ dθ ∧ dz

)

= 1

2

{

d

(

F
∂

∂ρ
ρ2
)

∧ dθ ∧ dz+ d
(
ρ2)∧ d

(

G
∂

∂θ
θ

)

∧ dz
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Fig. 6.14 The conformal
vector field
(x − y)∂/∂x + (x + y)∂/∂y

+ d
(
ρ2)∧ dθ ∧ d

(

H
∂

∂z
z

)}

=
(
F

ρ
+ ∂F

∂ρ
+ ∂G

∂θ
+ ∂H

∂z

)

v.

Problem 6.130 Consider the 1-parameter group ϕt , t ∈R, of automorphisms of R
2

defined by the equations

x(t)= x − cos t + y sin t, y(t)=−x sin t + y − cos t.

(i) Compute the infinitesimal generator X of ϕt .
(ii) If g = dx2 + dy2 and ω = dx ∧ dy, find the vector field Y on R

2 \ {(0,0)}
defined by

g(Y,Y )= 1, g(X,Y )= 0, ω(X,Y ) > 0,

and prove that [X,Y ] = 0.
(iii) Calculate LXg, LYg, LXω, and LYω.
(iv) Compute the first integrals of X and Y .
(v) Prove that in a certain neighbourhood of any point different from the origin

there is a local coordinate system (u, v) such that

X = ∂

∂u
, Y = ∂

∂v
.

Solution

(i) Since

dx(t)

dt
= y(t), dy(t)

dt
=−x(t),
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one has

X = y ∂

∂x
− x ∂

∂y
.

(ii) The vector field

Y = x
√
x2 + y2

∂

∂x
+ y
√
x2 + y2

∂

∂y

is a unit vector field with respect to g, which is normal to the circles with
centre at the origin, so g(X,Y ) = 0. Moreover, ω(X,Y ) = √x2 + y2 > 0 if
(x, y) �= (0,0). It is easily checked that [X,Y ] = 0.

(iii) Let ρ =√x2 + y2. Then:

LXg = Ly ∂
∂x
−x ∂

∂y
(dx ⊗ dx + dy ⊗ dy)= 0,

LY g = Lx
ρ

∂
∂x
+ y

ρ
∂
∂y
(dx ⊗ dx + dy ⊗ dy)

= 2

ρ3

(
y2 dx ⊗ dx − x y(dx ⊗ dy + dy ⊗ dx)+ x2 dy ⊗ dy

)
,

LXω= Ly ∂
∂x
−x ∂

∂y
(dx ⊗ dy − dy ⊗ dx)= 0,

LYω= Lx
ρ

∂
∂x
+ y

ρ
∂
∂y
(dx ⊗ dy − dy ⊗ dx)= 1

ρ
ω.

(iv) The first integrals of X and Y are, respectively, f (u1), where u1 = x2+y2 and
f (v1), where v1 = y/x.

(v) By (iv), we have

X = λ ∂

∂v1
, Y = μ ∂

∂u1
.

If moreover X = ∂
∂u

, we would have Xu = 1 = λ ∂u

∂v1 , thus ∂u

∂v1 = 1
λ

. Let us
compute λ. One has

λ=Xv1 =
(

y
∂

∂x
− x ∂

∂y

)
y

x
=−y

2

x2
− 1=−(1+ (v1)2),

that is,

∂u

∂v1
=− 1

1+ (v1)2
,

so u=− arctanv1 =−θ (in polar coordinates). Hence

u=− arctan
x

y
.
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Similarly, if Y = ∂
∂v

, we have Yv = 1= μ ∂v

∂u1 . Let us calculate μ. We have

μ= Yu1 = 2ρ = 2
√
u1.

Thus

∂v

∂u1
= 1

μ
= 1

2
√
u1
,

and v =√u1. That is, v =√x2 + y2.

Problem 6.131 Find two linearly independent harmonic vector fields on the 2-
torus T 2 with its usual embedding in R

3 as a surface of revolution.
The relevant theory is developed, for instance, in Poor [28, Chap. 5].

Solution Let us see if there exist f (ϕ, θ)∂/∂ϕ and h(ϕ, θ)∂/∂θ harmonic, ϕ and θ
being the parameters of the usual parametrisation (see Remark 1.4)

x = (R + r cosϕ) cos θ, y = (R + r cosϕ) sin θ, z= r sinϕ,

ϕ, θ ∈ (0,2π), R > r , and f (ϕ, θ), h(ϕ, θ) functions of these parameters. Such
vector fields would obviously be linearly independent. If j : T 2→ R

3 denotes the
usual embedding, the metric is

j∗
(
dx2 + dy2 + dz2)= r2 dϕ2 + (R + r cosϕ)2 dθ2.

If M is compact, as in our case, in order for a vector field Z to be harmonic (see
Definition 6.27) it suffices to have dZ� = 0, δZ� = 0.

Putting

X = f (ϕ, θ) ∂
∂ϕ

, Y = h(ϕ, θ) ∂
∂θ

,

one has

X� = r2f (ϕ, θ)dϕ, Y � = (R + r cosϕ)2h(ϕ, θ)dθ.

Thus, from

dX� = r2 ∂f

∂θ
dθ ∧ dϕ = 0,

we have f = f (ϕ). Suppose similarly h= h(ϕ). Then

dY � = ∂((R + r cosϕ)2h(ϕ))

∂ϕ
dϕ ∧ dθ = 0

implies

h(ϕ)= A

(R + r cosϕ)2
.
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Hence, for

X = f (ϕ) ∂
∂ϕ

, Y = A

(R + r cosϕ)2
∂

∂θ
, (�)

we have dX� = dY � = 0.
To compute δX� = −divX� and δY � = −divY � we use the formula, valid for

any oriented manifold M ,

LZv = (divZ)v, Z ∈X(M),

where v denotes the volume element on M , which in our case is

v =
√
g11g22 − g2

12 dϕ ∧ dθ = r(R + r cosϕ)dϕ ∧ dθ.

Applying moreover the general formula

LZ(f dϕ ∧ dθ)= (Zf )dϕ ∧ dθ + f d(Zϕ)∧ dθ + f dϕ ∧ d(Zθ),

f ∈ C∞M , to X and Y in (�), we obtain

(divX)dϕ ∧ dθ = L
f (ϕ) ∂

∂ϕ
r(R + r cosϕ)dϕ ∧ dθ

=
(

−f (ϕ)r2 sinϕ + r(R + r cosϕ)
df (ϕ)

dϕ

)

dϕ ∧ dθ,

(divY)dϕ ∧ dθ = L A

(R+r cosϕ)2
∂
∂θ
r(R + r cosϕ)dϕ ∧ dθ = 0.

Hence, δY � = 0. And δX� = 0 if

−f (ϕ)r sinϕ + (R + r cosϕ)
df (ϕ)

dϕ
= d

dϕ

(
f (ϕ)(R + r cosϕ)

)= 0,

that is, if

f (ϕ)= B

R + r cosϕ
.

In this case,

ΔX� = (dδ + δd)X� = 0, ΔY � = (dδ + δd)Y � = 0,

that is, X� and Y � are harmonic forms, and

X = B

R + r cosϕ

∂

∂ϕ
, Y = A

(R + r cosϕ)2
∂

∂θ

satisfy the conditions in the statement.
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Notice that in order to compute δX� and δY �, we can instead use the definition
divZ = tr∇Z and thus the Christoffel symbols of g, as follows. Taking x1 = ϕ,
x2 = θ , since

g =
(
r2 0
0 (R + r cosϕ)2

)

, g−1 =
(

1/r2 0
0 1/(R + r cosϕ)2

)

,

we deduce that the non-vanishing Christoffel symbols are

Γ 1
22 =

1

b
(R + r cosϕ) sinϕ, Γ 2

12 = Γ 2
21 =−

r sinϕ

R + r cosϕ
.

Let us calculate δX� and δY �:

δX� =−divX� =−divX

=−g
(

∇ 1
r

∂
∂ϕ
f (ϕ)

∂

∂ϕ
,

1

r

∂

∂ϕ

)

− g
(

∇ 1
R+r cosϕ

∂
∂θ
f (ϕ)

∂

∂ϕ
,

1

R + r cosϕ

∂

∂θ

)

=−df (ϕ)

dϕ
− f (ϕ)

(

− r sinϕ

R + r cosϕ

)

,

since Γ 1
11 = Γ 2

11 = Γ 1
21 = 0.

δY � =−divY =−g
(

∇ 1
r

∂
∂ϕ

A

(R+r cosϕ)2

∂

∂θ
,

1

r

∂

∂ϕ

)

− g
(

∇ 1
R+r cosϕ

∂
∂θ

A

(R + r cosϕ)2
∂

∂θ
,

1

R + r cosϕ

∂

∂θ

)

= 0,

since Γ 1
12 = Γ 2

22 = 0. That is, we obtain the same expressions as above.

Problem 6.132 Let (M,g) be a Riemannian manifold. Prove that if X ∈X(M) is
Killing and Y ∈X(M) is harmonic, then g(X,Y ) is a harmonic function.

Hint Apply the following results:

(i) If Z ∈X(M) is Killing, then

g
(
tr∇2Z,W

)=−r(Z,W), W ∈X(M),

where r denotes the Ricci tensor.
(ii) Z ∈X(M) is harmonic if and only if g(tr∇2Z,W)= r(Z,W).

(iii) Let K be a symmetric (i.e. self-adjoint) transformation of an inner product
space (E, 〈 , 〉), and let L be skew-symmetric. Then we have 〈K,L〉 = 0.

The relevant theory is developed, for instance, in Poor [28, Chap. 5].
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Solution Let (ei) be an orthonormal frame on a neighbourhood of the point p ∈M .
Then if ∇ denotes the Levi-Civita connection of g, we have
(
Δg(X,Y )

)
(p)= (δ dg(X,Y )

)
(p)=−(div d(X,Y )

)
(p)

=−
∑

i

((∇ei dg(X,Y )
)
(ei)
)
(p)

=−
∑

i

{∇ei
(
dg(X,Y )(ei)

)− (dg(X,Y ))(∇ei ei)
}
(p)

=−
∑

i

{∇ei eig(X,Y )− (∇ei ei)g(X,Y )
}
(p)

=−
∑

i

{
eig(∇eiX,Y )+ eig(X,∇ei Y )− g(∇∇ei eiX,Y )

− g(X,∇∇ei ei Y )
}
(p)

=−
∑

i

{
g(∇ei∇eiX,Y )+ g(∇eiX,∇ei Y )+ g(∇eiX,∇ei Y )

+ g(X,∇ei∇ei Y )− g(∇∇ei eiX,Y )− g(X,∇∇ei ei Y )
}
(p)

=−
∑

i

{
2g(∇eiX,∇ei Y )+ g

(
(∇ei∇ei −∇∇ei ei )X,Y

)

+ g(X, (∇ei∇ei −∇∇ei ei)Y
)}
(p)

= {−2g(∇X,∇Y)− g(tr ∇2X,Y
)− g(X, tr ∇2Y

)}
(p)

= {−2g(∇X,∇Y)− r(X,Y )+ r(X,Y )
}
(p)

= (−2g(∇X,∇Y))(p).
Now, since X is Killing, ∇X is skew-symmetric, i.e.

g(∇ZX,W)+ g(Z,∇WX)= 0

(see Problem 6.127) and as Y is harmonic, ∇Y is symmetric, i.e. g(∇ZY,W) =
g(Z,∇WY), each one with respect to g. Hence

g(∇ZX,∇WY)=−g(Z,∇∇WYX)=−g(∇WY,∇ZX),
for Z,W ∈X(M), and we conclude that Δg(X,Y )= 0.

Problem 6.133 Prove that the cohomology groupH 3(G,R) of a compact Lie group
G of dimension greater than 2 is not zero.

Hint In the non-Abelian case, consider the bi-invariant metric 〈· , ·〉 on G which is
the product of a Euclidean inner product on the centre z and minus the Killing form
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on the (semi-simple) derived group [g,g], and define α ∈Λ3G by

α(X,Y,Z)= 1

2

〈[X,Y ],Z〉.

Solution Suppose first that G is Abelian. Then it is a torus

T n = S1 × · · · × S1, n� 3,

so the result is immediate.
If G is non-Abelian, as it is compact, its Lie algebra g decomposes into the direct

sum of its centre z and its derived algebra [g,g], which is semi-simple, compact,
and has dimension greater than or equal to 3.

Consider the bi-invariant metric 〈· , ·〉 on G which is the product of a Euclidean
inner product on the centre z and the opposite of the Killing form on [g,g]. Define
α ∈Λ3G by

α(X,Y,Z)= 1

2

〈[X,Y ],Z〉.
As [g,g] is semi-simple then α is non-zero. Moreover, as (see Problem 6.90)

∇XY = [X,Y ], X,Y ∈ g,
by applying the Jacobi identity, we have

(∇Xα)(Y,Z,W)= 0− α(∇XY,Z,W)− α(Y,∇XZ,W)− α(Y,Z,∇XW)

=−〈[∇XY,Z],W
〉− 〈[Y,∇XZ],W

〉− 〈[Y,Z],∇XW
〉

=−1

2

{〈[[X,Y ],Z],W 〉+ 〈[Y, [X,Z]],W 〉+ 〈[Y,Z], [X,W ]〉}

=−1

2

{〈[[X,Y ],Z],W 〉+ 〈[Y, [X,Z]],W 〉− 〈[X, [Y,Z]],W 〉}

=−1

2

{〈[[X,Y ],Z]+ [[Y,Z],X]+ [[Z,X], Y ],W 〉}= 0.

So α is parallel, and G being compact, α is in particular harmonic, so that it is a
nonzero representative of H 3(G,R).

Problem 6.134 Determine the Jacobi fields on R
n with the Euclidean metric g.

The relevant theory is developed, for instance, in O’Neill [26, Chap. 8].

Solution The geodesics of (Rn, g) are the straight lines. Since the curvature van-
ishes, the Jacobi equation reduces to

d2X

dt2
= 0.
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Fig. 6.15 Some simple Jacobi fields

The Jacobi fields along a straight line γ are the fields of the form X = tY + Z,
where Y and Z are constant vector fields along γ (see Fig. 6.15).

Problem 6.135 Let

ϕ(u, v)= (u cosv,u sinv,f (u)
)
, u > 0, v ∈ (0,2π),

be a parametric surface of revolution in R
3 (see Remark 1.4), and let

Yv|ϕ(u,v) = ∂

∂v

∣
∣
∣
∣
ϕ(u,v)

.

Prove:

(i) Yv is a Jacobi field along meridians.
(ii) If g denotes the metric and s the arc length, then

d2|Yv|
ds2

=−K|Yv|,

where K stands for the Gauss curvature.

Hint For such a surface of revolution, one has

K = f ′f ′′

u(1+ (f ′)2)2 .

The relevant theory is developed, for instance, in O’Neill [26, Chap. 8].

Solution

(i) The vector fields Y and γ ′ in the torsionless case of Definition 6.19 are here
Y = ∂

∂v
and

γ ′ = ∂

∂u

/∣
∣
∣
∣
∂

∂u

∣
∣
∣
∣=

1
√

1+ (f ′(u))2
∂

∂u
.
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Fig. 6.16 A Jacobi field on a
surface of revolution

We must prove that

∇γ ′∇γ ′Y +∇Y∇γ ′γ ′ − ∇γ ′∇Y γ ′ − ∇[Y,γ ′]γ ′ = 0.

Now, since ∇ is torsionless we have ∇Y γ ′ −∇γ ′Y = [Y,γ ′]; but it is immediate
that in the present case [Y,γ ′] = 0. On the other hand, ∇γ ′γ ′ = 0, as γ ′ is the
tangent vector field to a geodesic curve. So we are done.

(ii) We have |Yv| = u. Moreover, the Gauss curvature of a surface of revolution is
given by the expression in the hint, with f ′ = df/du.

The arc length s(u) along the meridian is given, since v is constant, by

s(u)=
∫ u

0

√

g

(
∂ϕ

∂u
,
∂ϕ

∂u

)

du=
∫ u

0

√

1+ (f ′(u))2 du,

and thus

d2|Yv|
ds2

= d2u

ds2
= d

ds

1
√

1+ (f ′)2
= du

ds

d

du

1
√

1+ (f ′)2

=− 1
√

1+ (f ′)2
f ′f ′′

(1+ (f ′)2)3/2
=−Ku=−K|Yv|.

Notice that the lengths for the vector field Yv are larger where the distance
between the given geodesics (the meridians) grows, and are lower where that
distance decreases (see Fig. 6.16).

Problem 6.136 Let (M,g) be an n-dimensional space of constant curvature c. Let
γ̇ ,X1, . . . ,Xn−1 be an orthonormal frame invariant by parallelism along a geodesic
γ with unit tangent vector field γ̇ .

Prove that the vector fields

(i) γ̇ , sγ̇ , Yi = sin(
√
c s)Xi , Zi = cos(

√
c s)Xi ,
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(ii) γ̇ , sγ̇ , Yi = sinh(
√−c s)Xi , Zi = cosh(

√−c s)Xi ,
(iii) γ̇ , sγ̇ , Xi , sXi ,

i = 1, . . . , n− 1, where s denotes the arc length, are a basis of the space of Jacobi
vector fields along the geodesic, for c > 0 in case (i), c < 0 in case (ii), and c= 0 in
case (iii).

The relevant theory is developed in O’Neill [26, Chap. 8].

Solution That such γ̇ and sγ̇ are Jacobi fields is a general fact for Riemannian
manifolds, and its proof is immediate from the Jacobi equation

∇γ̇∇γ̇ Y +R(Y, γ̇ )γ̇ = 0.

In cases (i) and (ii), since (M,g) is a space of constant curvature c, we have

R(Yi, γ̇ )γ̇ = c
(
g(γ̇ , γ̇ )Yi − g(γ̇ , Yi)γ̇

)= cYi.
In case (i), we have, on the other hand,

∇γ̇∇γ̇ Yi =−c sin(
√
c s)Xi +√c cos(

√
c s)∇γ̇ Xi

+√c cos(
√
c s)∇γ̇ Xi + sin(

√
c s)∇γ̇∇γ̇ Xi (�)

=−cYi (as Xi is parallel).

Hence the Jacobi equation for a torsionless connexion,

∇γ̇∇γ̇ Yi +R(Yi, γ̇ )γ̇ = 0,

is satisfied, as wanted. The proof for Zi (and Yi , Zi in the case (ii)) is similar.
The case (iii) is trivially true as R = 0 for c= 0.

Problem 6.137 Determine the conjugate points and their orders for a point on an
n-sphere of constant curvature c.

Solution From Problem 6.136, it follows that the only point conjugate to the point
corresponding to s = 0 along a geodesic γ (s) is the point corresponding to s =
π/
√
c, with order n− 1, as a basis of the Jacobi fields vanishing at s = 0 and s =

π/
√
c is given by the vector fields Yi = sin(

√
c s)Xi .

Problem 6.138 Show that if M has non-positive sectional curvature, then there are
no conjugate points.

Solution Let Y be a Jacobi vector field along a geodesic γ (t). From the Jacobi
equation

∇γ ′∇γ ′Y +R
(
Y,γ ′

)
γ ′ = 0,
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we obtain by virtue of the hypothesis that

g(∇γ ′∇γ ′Y,Y )= g
(
R
(
γ ′, Y

)
γ ′, Y

)=−R(γ ′, Y, γ ′, Y )� 0,

from which

d

dt
g(∇γ ′Y,Y )= g(∇γ ′∇γ ′Y,Y )+ |∇γ ′Y |2 � 0. (�)

The function g(∇γ ′Y,Y ) is thus monotonically increasing (strictly if ∇γ ′Y �= 0). If
Y(0)= Y(t0)= 0 for certain t0 > 0, then g(∇γ ′Y,Y ) also vanishes at these points,
hence it must vanish along the interval [0, t0]. Thus, we have Y(0)= (∇γ ′Y)(0)= 0
by (�), so that Y vanishes identically, as Y is a solution of a second-order differential
equation.

Problem 6.139 Prove that the multiplicity of two points p and q conjugate along a
geodesic γ in a manifold M is less than the dimension of the manifold.

Solution Let dimM = n. Then the Jacobi vector fields vanishing on a given point
p ∈M constitute a space of dimension n, but (t− t1)γ̇ , where p = γ (t1), is a Jacobi
vector field vanishing at p but not at q .

6.15 Submanifolds. Second Fundamental Form

Problem 6.140 Prove:

1. Every strictly conformal map is an immersion.
2. If M is connected, then a strictly conformal map

f : (M,g)→ (M̄, ḡ)

of ratio λ transforms the Levi-Civita connection ∇ of g into the Levi-Civita con-
nection ∇̄ of ḡ, if and only if λ= const and the second fundamental form of the
immersed submanifold f (M) vanishes.

3. If λ = 1, that is, f is an isometry, and the second fundamental form of f (M)

vanishes, then if R and R̄ stand for the Riemann–Christoffel curvature tensors of
M and M̄ , respectively, one has f∗R = R̄|f (M).

Solution

1. Let X ∈ TpM such that f∗X = 0. Then

0= ḡ(f∗X,f∗X)= λ(p)g(X,X).

As λ(p) > 0 for all p ∈M , we have X = 0; that is, kerf∗p = 0 for all p ∈M .
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2. As M is connected, we only need to prove that λ is locally constant. Thus we
can assume that f is a diffeomorphism from M onto a submanifold f (M) of M̄ .
Denoting by X̄ the vector field image f ·X on f (M) of X ∈X(M), we have that
X �→ X̄ is an isomorphism. Hence if f transforms ∇ into ∇̄ , it follows that

X̄ḡ(Ȳ , Z̄)= ḡ(∇̄X̄Ȳ , Z̄)+ ḡ(Ȳ , ∇̄X̄Z̄)= ḡ(∇XY , Z̄)+ ḡ(Ȳ ,∇XZ)
= λg(∇XY,Z)+ λg(Y,∇XZ)= λXg(Y,Z).

On the other hand,

X̄ḡ(Ȳ , Z̄)=Xλg(Y,Z)= (Xλ)g(Y,Z)+ λXg(Y,Z).
Hence Xλ = 0 for all X. As M is connected, we deduce that λ is a constant
function. Furthermore, as ∇̄X̄Ȳ = ∇XY , it follows that ∇̄X̄Ȳ is tangent to the
submanifold f (M), thus the second fundamental form of f (M) vanishes.

Conversely, if we define on f (M) the connection ∇̄ by ∇̄X̄Ȳ = ∇XY , and
prove that ∇̄ parallelises the metric of f (M) and has no torsion, then it will
coincide with the Levi-Civita connection of the metric on f (M). Let k be the
constant function λ. One has:
(i)

X̄ḡ(Ȳ , Z̄)=X(kg(Y,Z))= k{g(∇XY,Z)+ g(Y,∇XZ)
}

= ḡ(∇XY , Z̄)+ ḡ(Ȳ ,∇XZ)
= ḡ(∇̄X̄Ȳ , Z̄)+ ḡ(Ȳ , ∇̄X̄Z̄).

(ii)

∇̄X̄Ȳ − ∇̄Ȳ X̄− [X̄, Ȳ ] = ∇XY −∇YX− [X,Y ] = T∇(X,Y )= 0.

3. Since f is an isometry, it transforms the Riemann–Christoffel curvature tensor
of M into that of f (M) (see Problem 6.85); but this one coincides with the
restriction in f (M) of the Riemann–Christoffel curvature tensor of M̄ , as the
second fundamental form of f (M) vanishes.

Problem 6.141 Let M be an n-dimensional (n� 3), totally umbilical submanifold
of a 2m-dimensional complex space form (M̃, g, J ) of holomorphic sectional cur-
vature c �= 0. Prove that M is one of the following submanifolds:

(i) A complex space form holomorphically immersed in M̃ as a totally geodesic
submanifold.

(ii) A real space form (i.e. a not necessarily simply connected space of constant
curvature) immersed in M̃ as a totally real and totally geodesic submanifold.

(iii) A real space form immersed in M̃ as a totally real submanifold with non-
vanishing parallel mean curvature vector.

The relevant theory is developed, for instance, in Chen and Ogiue [7].
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Solution As M is a totally umbilical submanifold, with the usual notations we have

α(X,Y )= g(X,Y )ξ, X,Y ∈X(M).

Thus the covariant derivative appearing in the Codazzi equation

(∇̂Xα)(Y,Z)=∇⊥X
(
α(Y,Z)

)− α(∇XY,Z)− α(Y,∇XZ),

reduces to

(∇̂Xα)(Y,Z)= g(Y,Z)∇⊥Xξ,
so the Codazzi equation is written as

νR̃(X,Y )Z = g(Y,Z)∇⊥Xξ − g(X,Z)∇⊥Y ξ. (�)

Since dimM � 3, for each X ∈X(M) one can choose a unit vector field Y ∈X(M)

orthogonal to X and JX. For such a Y , from (�) one has

νR̃(X,Y )Y =∇⊥Xξ.

On the other hand, since M̃ has constant holomorphic sectional curvature c �= 0, we
have

R̃(X,Y )Z = c

4

{
g(Y,Z)X− g(X,Z)Y + g(JY,Z)JX− g(JX,Z)JY
+ 2g(X,JY )JZ

}
,

from which we deduce R̃(X,Y )Y = c
4X, so νR̃(X,Y )Y = 0, hence

∇⊥Xξ = 0, X ∈X(M).

From (�) we then obtain

νR̃(X,Y )Z = 0, X,Y,Z ∈X(M).

Thus, by Proposition 6.36, M is either a complex or a totally real submanifold of M̃ .
If M is a complex submanifold, then M is minimal, hence totally geodesic in M̃ .
Therefore, from Gauss’ equation

R(X,Y,Z,W)= R̃(X,Y,Z,W)+ g(α(X,Z),α(Y,W)
)− g(α(Y,Z),α(X,W)

)
,

we obtain

R(X,Y,Z,W)= R̃(X,Y,Z,W).

That is, M is a complex space form of constant holomorphic sectional curvature c.
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If M is a totally real submanifold, from Gauss’ equation and from α(X,Y ) =
g(X,Y )ξ , it follows that

R(X,Y,Z,W)=
(
c

4
+ g(ξ, ξ)

)
(
g(X,Z)g(Y,W)− g(X,W),g(Y,Z)

)
,

that is, M is a real space form of constant (ordinary) sectional curvature c
4 +g(ξ, ξ).

Problem 6.142 Consider the flat torus T 2 =R
2/Γ defined by the lattice

Γ = Zv1 ⊕Zv2, v1 = (−π,π), v2 = (0,2π).

(i) Prove that

f (u, v)= (cosu cosv, cosu sinv, sinu cosv, sinu sinv)

for u,v ∈ (0,2π) (see Remark 1.4), is an isometric embedding of T 2 into the
unit sphere S3 of R4.

(ii) Prove that the total embedded curvature of f (T 2) in S3 is a constant.

Hint Use the Generalised Gauss Theorema Egregium 6.30.

Solution

(i) We have f (u, v) ∈ S3 since |f (u, v)| = 1. Moreover, f (u, v) = f (u′, v′) if and
only if (u′, v′)− (u, v) ∈ Γ . In fact, the previous equality is equivalent to

sin(u+ v)= sin
(
u′ + v′), (�)

sin(u− v)= sin
(
u′ − v′), (†)

cos(u+ v)= cos
(
u′ + v′), (��)

cos(u− v)= cos
(
u′ − v′). (††)

From (�), (��), and from (†), (††), we obtain

u′ + v′ = u+ v + 2k1π, u′ − v′ = u− v + 2k2π, k1, k2 ∈ Z,
respectively, from which

u′ = u+ h1π, v′ = v+ h2π, h1, h2 ∈ Z.
Now,

f (u+ h1π,v+ h2π)

= (−1)h1+h2(cosu cosv, cosu sinv, sinu cosv, sinu sinv).
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So, f (u, v)= f (u′, v′) if and only if h1 + h2 = 2h, thus

(u, v)∼ (u′, v′) ⇔ u′ − u= kπ, v′ − v = (2h− k)π.

Hence

(
u′, v′

) = (u, v)+ (kπ, (2h− k)π)= (u, v)+ k(π,−π)+ h(0,2π)

= (u, v)+ kv1 + hv2.

On the other hand, f is an immersion, as the rank of the Jacobian matrix

⎛

⎜
⎜
⎝

− sinu− cosv − cosu sinv
− sinu sinv cosu− cosv
cosu− cosv − sinu sinv

cosu sinv sinu− cosv

⎞

⎟
⎟
⎠

is equal to 2, as it is easily seen.
Let j be the inclusion of S3 in R

4. Then the metric induced on T 2 by the
embedding f , if g̃ denotes the Euclidean metric on R

4, is f ∗j∗g̃ = f ∗g̃.
If (x, y, z, t) denote the coordinates on R

4, then the Euclidean metric is

g̃ = dx2 + dy2 + dz2 + dt2

and the metric induced on T 2 is du2 + dv2. Hence f : T 2→ f (T 2)⊂ S3 is an
isometric embedding. In fact, as we have seen, it is an isometric immersion, and
as T 2 is compact, it is homeomorphic to its image with the induced topology
of S3.

(ii) The Generalised Gauss Theorema Egregium applies in our case to M = f (T 2)

and M̃ = S3. Now, since M̃ = S3 has constant curvature equal to 1, one has
K̃(P ) = 1. And as the metric on f (T 2) is flat, we have K(P ) = 0. So the
equation

K̃(P )=K(P )− detL,

where L stands for the Weingarten map, reduces to det L=−1. Hence the total
embedded curvature is equal to −1.

Problem 6.143 Let M be a Riemannian n-manifold endowed with the metric

g =
n−1∑

i,j=1

gij dxi ⊗ dxj + gnn dxn ⊗ dxn,

with the condition ∂gij /∂xn = 0. Show that any geodesic in the hypersurface xn =
const is a geodesic in M .
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Solution The metric given on M induces the metric

g̃ =
n−1∑

i,j=1

gij dxi dxj ,

on the given hypersurface S. The geodesics in the hypersurface S are the curves
having differential equations

d2xi

dt2
+

n−1∑

j,k=1

Γ̃ i
jk

dxj

dt

dxk

d t
= 0, i = 1, . . . , n− 1,

where Γ̃ i
jk are the Christoffel symbols of g̃. We have to prove that the functions

x1 = x1(t), . . . , xn−1 = xn−1(t), xn = const, satisfy the differential equations

d2xi

dt2
+

n−1∑

j,k=1

Γ i
jk

dxj

dt

dxk

dt
= 0, i = 1, . . . , n,

where Γ i
jk are the Christoffel symbols of the Levi-Civita connection of g. Con-

sider first the case i = n in the equation of the geodesics. As xn = const, we have
d2xn

dt2
= 0. On the other hand, one has Γ n

jk = 0 for j, k = 1, . . . , n− 1, as

g ≡

⎛

⎜
⎜
⎜
⎝

0

gij
...

0
0 . . . 0 gnn

⎞

⎟
⎟
⎟
⎠
,

and moreover ∂gij /∂xn = 0 by hypothesis. So, by virtue of the condition xn =
const, the functions defining the geodesics of S satisfy the case i = n of the equation
of the geodesics of M .

Consider now the cases i = 1, . . . , n− 1. For i, j, k = 1, . . . , n− 1, we have

Γ i
jk =

1

2

n−1∑

l=1

gil(glj,k + glk,j − gjk,l),

as gin = 0; that is, Γ i
jk = Γ̃ i

jk . Finally, if k = n (equivalently, j = n), one has

Γ i
jn =

1

2

n−1∑

l=1

gil(glj,n + gln,j − gjn,l)= 0,

by the hypotheses. We conclude that the geodesics in S are also geodesics in M .



6.15 Submanifolds. Second Fundamental Form 493

Fig. 6.17 The second
fundamental form

Problem 6.144 Let M1 and M2 be two hypersurfaces of R
n and let γ be a common

geodesic curve which is not a geodesic of R
n. Prove that M1 and M2 are tangent

along γ .

Solution Consider the Gauss equations (see Fig. 6.17)

∇̃XY =∇ iXY + αi(X,Y ), i = 1,2,

where ∇̃ denotes the Levi-Civita connection of the flat metric on R
n, ∇ i the Levi-

Civita connection of the metric on the hypersurface Mi , and αi the second funda-
mental form of the hypersurface Mi .

Since ∇ i
γ ′γ
′ = 0, i = 1,2, we have that ∇̃′γ γ ′ is normal to both M1 and M2. So,

at any p ∈ γ we have

TpR
n = TpM1 ⊕ ∇̃γ ′γ ′ = TpM2 ⊕ ∇̃γ ′γ ′,

hence TpM1 = TpM2.

Problem 6.145 Let x, y, z be the standard coordinate system on Euclidean space
R

3. Let a, b, c, d, e be the standard coordinate system on R
5. Let

Φ : R3→R
5

be the map defined by

a = 1√
3
yz, b= 1√

3
zx, c= 1√

3
xy,

d = 1

2
√

3

(
x2 − y2), e= 1

6

(
x2 + y2 − 2z2).

Show:

(i) The mapping Φ maps the sphere S2(
√

3) of radius
√

3 isometrically into the
sphere S4(1) of radius 1.
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(ii) By observing that (x, y, z) and (−x,−y,−z) map into the same point of
S4(1), show that the induced map Ψ is an embedding of the real projective
plane RP2 into S4(1).

(iii) The space RP2 is embedded into S4(1) as a minimal surface.

Hint (to (ii)) Let Φ : M→N be a one-to-one immersion. If M is compact, then Φ
is an embedding ([20, Chap. 6, Proposition 6.5]).

Hint (to (iii)) Take the Gauss equation for an m-dimensional Riemannian sub-
manifold (M,g) of an n-dimensional space (N, g̃) of constant curvature K (for-
mula (7.9) below), and compute from it the scalar curvature of (M,g). Then con-
sider the present particular case.

The relevant theory is developed, for instance, in Willmore [35, Chap. 4].

Solution

(i) At it is easily checked,

a2 + b2 + c2 + d2 + e2 = 1

9

(
x2 + y2 + z2)2 = 1.

We thus have the diagram

R
3 ↪→ R

5

j3 ↑ ↑ j5

S2(
√

3)
Φ
↪→ S4(1),

j3, j5 being the obvious embeddings.
The restriction g = j∗3 (gR3) of the flat metric

gR3 = dx2 + dy2 + dz2

to S2(
√

3), this with the parametrisation (see Remark 1.4)

x =√3 cos θ cosϕ,

y =√3 cos θ sinϕ, θ ∈ (−π/2,π/2), ϕ ∈ (0,2π),

z=√3 sin θ,

is easily seen to be

g = 3
(
dθ2 + cos2 θ dϕ2).

On the other hand, the restriction (j5 ◦Φ)∗(gR5) of the flat metric

gR5 = da2 + db2 + dc2 + dd2 + de2
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on R
5 to the image Φ(S2(

√
3))⊂ S4(1) gives us, after an easy calculation, the

same metric g on S2(
√

3). Hence Φ is indeed an isometric immersion.
(ii) Let τ be the quotient map τ : S2(

√
3)→ RP2. As Φ(x,y, z) = Φ(−x,−y,

−z), the map

Ψ : RP2→ S4(1), Ψ [x, y, z] =Φ(x,y, z)=Φ(−x,−y,−z),

is well-defined. Moreover, if

Φ(x,y, z)=Φ(x′, y′, z′), (x, y, z),
(
x′, y′, z′

) ∈ S2(
√

3),

then

yz= y′z′, (�)

zx = z′x′, (��)

x y = x′y′, (���)

x2 − y2 = x ′2 − y′2, (�)
x2 + y2 − 2z2 = x′2 + y′2 − 2z′2. (��)

As x′2 + y′2 + z′2 = 3, one has (x′, y′, z′) �= (0,0,0). If x′ �= 0, then from (��)
and (���), one obtains

z′ = x z

x′
, y′ = xy

x′
,

and replacing these equations into (�), one deduces (x′2 − x2)yz= 0. If x′2 �=
x2, then either y = 0 or z= 0. If y = 0, then from (�) one obtains x2 = x′2, thus
leading one to a contradiction; if z= 0, then by adding (�) and (��) one again
deduces x2 = x′2. Hence x′ = ±x. Hence, from (��) and (���) one obtains
z′ = ±z, y′=±y. The cases y′ �= 0 and z′ �= 0 are dealt with similarly. Hence
Ψ is one-to-one.

On the other hand, since Ψ ◦ τ =Φ and τ is a local diffeomorphism, Ψ is
C∞. Furthermore, we have

Ψ∗ = 1√
3

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 z y

z 0 x

y x 0
x −y 0

1√
3
x 1√

3
y − 2√

3
z

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Hence rankΨ∗ �= 3 implies x = y = z = 0, but (0,0,0) �∈ S2(
√

3) hence
τ(0,0,0) /∈RP2, so Ψ is an immersion. Since Ψ is a one-to-one immersion, it
follows from the compactness of RP2 that it is an embedding.
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(iii) According to the hint, we calculate the scalar curvature s of such an (M,g).
In terms of orthonormal bases, {ei}, i = 1, . . . ,m, of TpM and ξr , r = 1, . . . ,
n−m, of (TpM)⊥, respectively, we have

s=
m∑

i,j=1

R(ei, ej , ei, ej )

=
m∑

i,j=1

K(giigjj − gij gij )+
∑

i,j

n−m∑

r,s=1

(
g̃
(
αrii , α

s
jj

)− g̃(αrij , αsij
))

=Km(m− 1)+
m∑

i,j=1

n−m∑

r=1

(
αriiα

r
jj − αrij αrij

)=Km(m− 1)+m2|H |2 − $2,

$2 being the length of the second fundamental form α, so that the norm of the
mean curvature vector H at p ∈M is given in terms of K , s and $2, by

|H |2 = 1

m2

(
s−Km(m− 1)+ $2). (†)

In our case, m= 2, K = 1, and

sRP2 = sS2(
√

3) =
2∑

i,j=1

R(ei, ej , ei, ej )= 2

3
,

so (†) is now written as

|H |2 = 1

4

(

$2 − 4

3

)

.

Now, we can choose an orthonormal basis {e1, e2} at p of principal directions,
that is, eigenvectors of the second fundamental tensors Aξr , r = 1,2, so that
ξr , r = 1,2, being an orthonormal basis at p of (Tp(RP2))⊥, we have

$2 =
∑

i,j=1,2

g̃
(
α(ei, ei), α(ej , ej )

)

=
∑

i,j=1,2

∑

r,s=1,2

g̃
(
αr(ei, ei)ξr , α

s(ej , ej )ξs
)

=
∑

i,j=1,2

∑

r,s=1,2

g̃
(
g(Aξr ei, ei)ξr , g(Aξs ej , ej )ξs

)

=
∑

i=1,2

∑

r=1,2

(
g(Aξr ei , ei)

)2

=
∑

i=1,2

{(
g(Aξ1ei, ei)

)2 + (g(Aξ2ei, ei)
)2}
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=
∑

i=1,2

{
k2
i

(
g(ei, ei)

)2 + k2
i

(
g(ei, ei)

)2}

= k2
1 + k2

2 + k2
1 + k2

2 =
4

3
,

where the last line follows from the fact that

k1 = k2 = 1

r

on S2(r) (recall that the Gauss curvature of S2(r) is K = 1/r2, and the same
values hold for RP2).

Hence |H |2 = 0 or, equivalently, H = 0, and RP2 is indeed embedded in
R

5 as a minimal surface.

6.16 Energy of Hopf Vector Fields

In this section we follow Wood [38]. (We suggest the reader interested in the topic to
see also [37] and [17].) We shall denote by T S3 both the tangent bundle over the 3-
sphere S3 and the total space of that bundle, and similarly for the unit tangent bundle
T1(S

3). The context should in principle avoid confusion: For instance, a metric on
T S3 or T1(S

3) is obviously a metric on the corresponding total space, but a section
is one of the relevant bundle.

Problem 6.146 Consider the standard isometric embedding (S3, g) ↪→ (C2, 〈·, ·〉)
of the 3-sphere with the round metric into C

2 ≡R
4 with the flat metric.

(i) Prove that the mean curvature vector field H on S3 is the inward-pointing unit
normal field on S3,

H =−z=−(x1, x2, x3, x4),

x1, x2, x3, x4 being the coordinates of R4 ≡ C
2 = {z1 = x1 + ix2, z2 = x3 +

ix4}.
(ii) A Hopf vector field on S3 is a vector field tangent to the fibres of the Hopf

fibration πC : S3→ S2 (see Problem 5.17). The standard Hopf vector field U

on S3 is the restriction of the vector field

Uz = iz ∈X(C2). (�)

Prove that U coincides with the vector field (�) in Problem 5.28, that is, with

X∗
(z1,z2)

=−u2 ∂

∂u1
+ u1 ∂

∂u2
− u4 ∂

∂u3
+ u3 ∂

∂u4
,

z1 = u1 + iu2, z2 = u3 + iu4.
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(iii) Let ω be the restriction to S3 of the usual Kähler 2-form ω

〈iX,Y 〉, X,Y ∈X(C2),

on C
2 and denote by ∇ the Levi-Civita connection of g. Prove that

(∇Xω)(Y,Z)= g(X,Z)g(Y,U)− g(X,Y )g(Z,U), X,Y,Z ∈X(S3).
(��)

Hint (to (i)) Recall that the mean curvature vector field at any point p ∈ S3 is

Hp = 1

3

3∑

j=1

α(ej , ej ),

where α stands for the second fundamental form of S3 and e1, e2, e3 is any orthonor-
mal frame on S3 at p.

Hint (to (iii)) Apply that S3 is a totally umbilical hypersurface of C2 ≡R
4, so that

(see [26, p. 101]) the shape tensor (another usual name for the second fundamental
form) is given, as here r = 1, by

α(X,Y )=−g(X,Y )z. (���)

The reader can find the relevant theory developed, for instance, in Wood [38].

Solution

(i) Let ∇̃ denote the flat connection on R
4. We have the usual decomposition into

tangential and normal parts,

∇̃XY = (∇̃XY)tan + (∇̃XY)nor =∇XY + α(X,Y ), X,Y ∈X(S3).

Using the identification C
2 ≡R

4, we can write the position vector field on R
4

by z = (z1, z2) = (x1, x2, x3, x4). This is normal to S3 at each point p ∈ S3,
and (it is immediate that) it satisfies

∇̃Xz=X. (����)

Hence we have at any p ∈ S3 that, e1, e2, e3 being an orthonormal frame on S3

at p,

g(Hp, z)= 1

3

3∑

j=1

g
(
α(ej , ej ), z

)= 1

3

3∑

j=1

g
(
(∇̃ej ej )nor, z

)= 1

3

3∑

j=1

g(∇̃ej ej , z)
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=−1

3

3∑

j=1

g(ej , ∇̃ej z) (as g(ej , z)= 0)

=−1

3

3∑

j=1

g(ej , ej )=−1.

So indeed H =−z.
(ii) Immediate from the identification C

2 ≡R
4.

(iii) We have that

(∇Xω)(Y,Z)=∇X
(
ω(Y,Z)

)−ω(∇XY,Z)−ω(Y,∇XZ)
=X(ω(Y,Z))+ (ιZω)(∇XY)− (ιY ω)(∇XZ)
=X(ω(Y,Z))+ (ιZω)(∇̃XY)− (ιZω)

(
α(X,Y )

)

− (ιY ω)(∇̃XZ)+ (ιY ω)
(
α(X,Z)

)
(by Gauss eq.)

= (∇̃Xω)(Y,Z)− (ιZω)
(
α(X,Y )

)+ (ιY ω)
(
α(X,Z)

)

=−ω(g(X,Y )z,Z)−ω(Y,g(X,Z)z) (by ∇̃ω= 0 and (���))

= g(X,Y )ω(iU,Z)− g(X,Z)ω(iU,Y )
=−g(X,Y )g(U,Z)+ g(X,Z)(U,Y ).

Problem 6.147 Let T S3 be equipped with the Sasaki metric g (see Definition 6.3).
Prove that the energy functional of a unit vector field U ∈X(S3) is given by

E(U)= 1

2

∫

S3
|∇U |2v + 3π2,

where v denotes the Riemannian volume element.

Hint ViewingU as a map of S3 to T1(S
3), the differential mapU∗ splits into vertical

and horizontal components, U∗ =Uv∗ +Uh∗ , and since the Sasaki metric renders this
an orthogonal decomposition, the energy

E(U)= 1

2

∫

S3
|U∗|2v,

splits accordingly.

The reader can find the relevant theory developed, for instance, in Wood [38].

Solution Let π : T1(S
3)→ S3 be the bundle projection, and let

T
(
T1
(
S3))= V ⊕H
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denote the vertical/horizontal splitting induced by the Levi-Civita connection. Fur-
thermore, write

T S3 =U ⊕U ⊥,

where U denotes the line bundle generated by U , and U ⊥ is the orthogonal com-
plement. Thinking of U as a map from S3 to T1(S

3), the differential map U∗ splits
into vertical and horizontal components,

U∗ =Uv∗ +Uh∗ .

Since the Sasaki metric renders this an orthogonal decomposition, there is a corre-
sponding splitting of the energy of U ,

E(U)= 1

2

∫

S3
|U∗|2v = 1

2

∫

S3

∣
∣Uv∗
∣
∣2v + 1

2

∫

S3

∣
∣Uh∗
∣
∣2v.

If

κ : T T S3→ T S3

denotes the Levi-Civita connection map (see Definition 5.1), then
∣
∣Uv∗
∣
∣2 = ∣∣κ ◦Uv∗

∣
∣2 = |κ ◦U∗|2 = |∇U |2.

On the other hand, since π is a Riemannian submersion and U a section, then
e1, e2, e3 being an orthonormal frame field on S3, we have

∣
∣Uh∗
∣
∣2 = ∣∣π∗ ◦Uh∗

∣
∣2 = |π∗ ◦U∗|2 = |idT S3 |2 =

3∑

j=1

g
(
id(ej ), id(ej )

)

=
3∑

j=1

g(ej , ej )= 3,

the dimension of S3.
Therefore, the energy functional is (for vol(S3(1)) see the table on p. 581 and

take λ= 1)

E(U)= 1

2

∫

S3
|∇U |2v+ 3

2
vol
(
S3)= 1

2

∫

S3
|∇U |2v + 3π2.

Problem 6.148 Consider T S3 equipped with the Sasaki metric.

(i) Prove that a unit vector field U ∈ X(S3) is a harmonic section (see Remark 1
below) of the unit tangent bundle T1(S

3) if and only if U satisfies the Euler–
Lagrange equations (see, for instance, [4])

∇∗∇U = |∇U |2U, (†)

where ∇∗∇ is the trace Laplacian ∇∗∇U =− tr∇2U .
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(ii) Prove that (†) is equivalent to the similar equation for the 1-form U� metrically
dual to U ,

∇∗∇U� = ∣∣∇U�
∣
∣2U�. (††)

Hint Let {Ut : t ∈ I } be a one-parameter variation of U through unit vector fields,
for some open interval I containing 0, and define

Φ : S3 × I −→ T1
(
S3
)

(x, t) �−→ Φ(x, t)=Ut(x).

Let e1, e2, e3 be an orthonormal frame field on S3, and denote by ēj the natural
extension of ej to a vector field on S3× I . Then {ē1, ē2, ē3, ∂/∂t} is an orthonormal
frame field on S3 × I . Let ∇̄ denote the Levi-Civita connection of S3 × I , and R̄

the curvature tensor; note that R̄(T S3, T I )= 0, since S3× I is a product manifold.
Start computing d

dt |∇Ut |2 and d
dt |t=0E(Ut), E(Ut) being the energy of Ut . Then

note that

dUt

dt

∣
∣
∣
∣
t=0
∈X(S3),

and that

g

(
dUt

dt

∣
∣
∣
∣
t=0

,U

)

= 0,

since U is a unit vector field.

Remark 1 According to [38], a unit vector field U which is a critical point of the en-
ergy functional subject to the present constraints is called simply a harmonic section
of T1(S

3). This is weaker than asking for U to be a harmonic section (in the usual
sense, i.e. with respect to the Hodge–de Rham Laplacian Δ= dδ + δd) of T S3, as
in the latter case U should criticalise energy with respect to variations through all
nearby vector fields, not just those of unit length.

Remark 2 The trace Laplacian is also called the rough (or connection) Laplacian.

The reader can find the relevant theory developed, for instance, in Wood [38].

Solution

(i) According to the hint, we calculate

d

dt
|∇Ut |2 =

3∑

j=1

d

dt
g(∇ej Ut ,∇ej Ut )

=
3∑

j=1

(∇̄ ∂
∂t
g(∇̄ēj Φ, ∇̄ēj Φ)

)
t=0
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= 2
3∑

j=1

g(∇̄ ∂
∂t
∇̄ēj Φ, ∇̄ēj Φ)t=0

= 2
3∑

j=1

g
(∇̄2

∂
∂t
,ēj
Φ, ∇̄ēj Φ

)
t=0 (as ∇̄ ∂

∂t
ēj = 0)

= 2
3∑

j=1

g

(

∇̄2
ēj ,

∂
∂t

Φ + R̄
(
∂

∂t
, ēj

)

Φ, ∇̄ēj Φ
)

t=0
(by Ricci identity)

= 2
3∑

j=1

g
(∇̄2

ēj ,
∂
∂t

Φ, ∇̄ēj Φ
)
t=0 (as R̄(T S3, T I )= 0).

So, according to Problem 6.147, we have that the energy E(Ut) of Ut satisfies

d

dt

∣
∣
∣
∣
t=0

E(Ut)= d

dt

∣
∣
∣
∣
t=0

(
1

2

∫

S3
|∇Ut |2 v + 3π2

)

= d

dt

∣
∣
∣
∣
t=0

(
1

2

∫

S3
|∇Ut |2v

)

= 1

2

∫

S3

(
d

dt

∣
∣
∣
∣
t=0
|∇Ut |2

)

v =
∫

S3

3∑

j=1

g
(∇̄2

ēj ,
∂
∂t

Φ, ∇̄ēj Φ
)
t=0v

=
∫

S3

3∑

j=1

g(∇̄ēj ∇̄ ∂
∂t
Φ, ∇̄ēj Φ)t=0v

=−
∫

S3
g

(
∂Φ

∂t
,

3∑

j=1

∇̄ēj ∇̄ēj Φ
)

t=0

v (as g(∇̄ ∂
∂t
Φ, ∇̄ēj Φ)= 0)

=−
∫

S3
g

(
dUt

dt
,

3∑

j=1

∇ej∇ej Ut

)

t=0

v

=
∫

S3
g

(
dUt

dt
,∇∗∇Ut

)

t=0
v =

∫

S3
g

(
dUt

dt

∣
∣
∣
∣
t=0

,∇∗∇U
)

v.

Now, according to the Fundamental Lemma of the Calculus of Variations,
given a connected, compact and oriented manifold M , if

∫

M

h1h2 v = 0, h1, h2 ∈ C∞M,

for all h1, then h2 = 0.
In the present case, given an arbitrary vector field V in the subspace orthog-

onal to U , there exists a one-parameter variation Ut of U such that

V = dUt

dt

∣
∣
∣
∣
t=0

.
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Hence from the formula
∫

S3
g
(
V,∇∗∇U)v = 0

one obtains that ∇∗∇U should be proportional to U . In fact, if this were not so,
one could take a V such that the scalar product g(V,∇∗∇U) would be positive,
which is impossible.

Therefore, the Euler–Lagrange equations read

∇∗∇U = fU,
for some function f on S3. Taking {ej } to be at the centre of a system of normal
coordinates, it follows that

f = g(∇∗∇U,U)=−
3∑

j=1

g(∇ej∇ej U,U)

=
3∑

j=1

(−ej · g(∇ej U,U)+ g(∇ej U,∇ej U)
)

= |∇U |2 (since |U |2 = 1).

(ii) is immediate from (i).

Problem 6.149 Let U be a Hopf vector field on S3 viewed as a map of Riemannian
manifolds

U : S3→ T1
(
S3),

where T1(S
3) is endowed with the restriction of the Sasaki metric on T S3.

Prove that U is a critical point of the energy functional, that is, it is a critical
point with respect to variations through nearby unit vector fields.

Hint Let ω be the 2-form on S3 obtained by pulling back the Kähler form of C2.
Prove that ∇U� = ω and then that

∇∗∇U� = δω.

The reader can find the relevant theory developed, for instance, in Wood [38].

Solution From Gauss’ equation, we have for all X ∈ T S3 that

∇XU = ∇̃XU − α(X,U)
= ∇̃XU + g(X,U)z (by (���) in Problem 6.146)
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=
{
∇̃XU + g(X,U)z if X ∈U ,

∇̃XU if X ∈U ⊥

=
{
λi∇̃Uz+ λz,
i∇̃Xz if X ∈U ⊥

(as X = λU )
(by (�) in Problem 6.146)

=
{
λiU + λz,
i∇̃Xz if X ∈U ⊥

(see (����) in Problem 6.146)

=
{

0,

iX if X ∈U ⊥.

Therefore, if ω denotes the 2-form on S3 obtained by pulling back the Kähler form
of C2, we have for all X ∈U ⊥ that

(∇XU�
)
(Y )=∇X〈U,Y 〉 − 〈U,∇XY 〉 = 〈∇XU,Y 〉 = 〈iX,Y 〉 = ω(X,Y ).

Since moreover both sides of this equation vanish when X =U or Y =U it follows
that

∇U� = ω.
Hence,

|∇U |2 = ∣∣∇XU�
∣
∣2 = |ω|2 =

3∑

i,j=1

g
(
ω(ei, ej ),ω(ei, ej )

)= 2. (�)

Furthermore, we have
(∇2

X,YU
�
)
(Z)= (∇X∇YU� −∇∇XYU�

)
(Z)

=∇X
((∇YU�

)
Z
)− (∇YU�

)
(∇XZ)−ω(∇XY,Z)

=∇X
(
ω(Y,Z)

)−ω(Y,∇XZ)−ω(∇XY,Z)= (∇Xω)(Y,Z),
and consequently,

(∇∗∇U�
)
(Z)=−

(
3∑

j=1

∇ej∇ej U�

)

(Z)=−
3∑

j=1

(∇ej ω)(ej ,Z)= (δω)(Z). (��)

From formula (��) in Problem 6.146, it follows that

(δω)(Z)=−
3∑

j=1

(∇ej ω)(ej ,Z)=−
3∑

j=1

(
g(ej ,Z)g(U, ej )− g(ej , ej )g(U,Z)

)

= 2U�(Z).
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So from (�) and (��), we have

∇∗∇U� = ∣∣∇XU�
∣
∣2U�.

Taking into account formula (††) in Problem 6.148, one concludes that U is a har-
monic section of T1(S

3).

6.17 Surfaces in R
3

Problem 6.150 Let

S2
o = S2 \ {N ∪ S} ⊂R

3

denote the sphere of radius 1 in R
3 excluding the north and south poles. Let g

be the metric inherited from the ambient space R
3 and consider on S2

o the Nunes
connection, or navigator connection, ∇n defined by the following rule of parallel
transport:

A tangent vector at an arbitrary point of S2
o is parallel-transported along a curve

γ if it determines a vector field on γ such that at any point of γ the angle between
the transported vector and the vector tangent to the latitude line passing through that
point is constant during the transport.

(i) Prove that ∇n is a metric connection.
(ii) Find the curvature tensor and the torsion tensor of ∇n.

The relevant theory is developed, for instance, in Fernández and Rodrigues [10].

Solution

(i) Consider the spherical coordinates ψ ∈ (0,π), ϕ ∈ (0,2π), on S2 (see Re-
mark 1.4). The metric inherited from that of the ambient Euclidean metric on
R

3 is given by

g = dψ ⊗ dψ + sin2ψ dϕ ⊗ dϕ,

or, in terms of the basis of differential 1-forms

θ1 = dψ, θ2 = sinψ dϕ,

dual to the orthonormal basis of vector fields

e1 = ∂

∂ψ
, e2 = 1

sinψ

∂

∂ϕ
,

by

g = θ1 ⊗ θ1 + θ2 ⊗ θ2.
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The vector fields e1, e2 define an orthonormal basis of Tp(S2
o) for each point

p ∈ S2
o , and ∇n is clearly characterized by

∇n
ei
ej = 0.

Hence, for all i, j, k = 1,2, we have

0 = ∇n
ek
g(ei, ej )=

(∇n
ek
g
)
(ei, ej )+ g

(∇n
ek
ei, ej

)+ g(ei,∇n
ek
ej
)

= (∇n
ek
g
)
(ei, ej ).

(ii) The possibly nonzero components of the Riemann–Christoffel curvature and
torsion tensors are

Rn(e1, e2, e1, e2) = g
(
Rn
e1,e2

e2, e1
)= g((∇n

e1
∇n
e2
−∇n

e2
∇n
e1
−∇n[e1,e2]

)
e2, e1

)

= 0,

T n(e1, e2)=∇n
e1
e2 −∇n

e2
e1 − [e1, e2] = (cot ψ)e2.

That is, ∇n is flat but has non-zero torsion.

Remark P.S. Nunes (1502–1578) discovered the loxodromic curves and advocated
the drawing of maps in which loxodromic spirals would appear as straight lines. This
led to the celebrated Mercator projection, constructed along these recommendations
(see Fernández and Rodrigues [10]).

Problem 6.151 Let

x : U = (0,π)× (0,2π)⊂R
2→R

3

be the parametrisation of S2 (see Remark 1.4) given by

x(θ,ϕ)= (sin θ cosϕ, sin θ sinϕ, cos θ).

(i) Find the equation of the loxodromic curves (that is, the curves meeting the
meridians at a constant angle) in the coordinate neighbourhood V = x(U).

(ii) Prove that a new parametrisation of the coordinate neighbourhood V is given
by

y(u, v)= (sechu cosv, sechu sinv, tanhu).

Find the expression of the metric on S2 in terms of the coordinates u,v, and
conclude that y−1 : V ⊂ S2→ R

2 is a conformal map transforming the merid-
ians and parallels of S2 into straight lines of the plane. This map is called the
Mercator projection.

(iii) Consider a triangle on the unit sphere S2 whose sides are segments of lox-
odromic curves without any of the poles. Prove that the sum of the internal
angles of such a triangle is π .
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For the relevant theory of this problem and other similar in this chapter, see
do Carmo [5].

Solution

(i) The metric inherited on S2 from the Euclidean metric on R
3 is given by g =

dθ2 + sin2 θ dϕ2. A loxodromic curve σ(t) can be taken as the image under x
of a curve (θ(t), ϕ(t)) in the plane θϕ. At the point x(θ,ϕ) where the curve
meets the meridian ϕ = const at the angle, say, β we thus have

cosβ = g(xθ , σ ′(t))
|xθ ||σ ′(t)| =

g(xθ , θ ′(t)xθ + ϕ′(t)xϕ)
|σ ′(t)| = θ ′

√
θ ′2 + sin2 θ ϕ′2

.

From this one easily obtains tan2 β = sin2 θ ϕ′2/θ ′2. Thus

θ ′

sin θ
=± cotβ ϕ′.

Integrating, we obtain the equation of the loxodromic curves

log tan
θ

2
=± cotβ(ϕ +A).

The integration constant A is determined when a point in the curve is given.
(ii) It is immediate that the image points belong to S2. The metric inherited from

the Euclidean metric on R
3 is now

sech2 u
(
du2 + dv2).

The map y is a diffeomorphism which is clearly conformal. The meridians
and parallels are the images of the coordinate lines v = const and u = const,
respectively.

The fact that the Mercator projection y−1 is conformal has been useful in
cartography, since the angles are preserved.

(iii) Under the Mercator projection, the meridians are transformed into parallel
straight lines of the plane. As the Mercator projection is conformal, the lox-
odromic curves are also transformed into straight lines. So, the asked sum is
the same as that for a plane triangle.

Problem 6.152 Prove that if two families of geodesics on a surface of R
3 cut at a

constant angle, the surface is developable.

Solution Consider those families as local coordinate curves (u, v), and let Xu,
Xv be the respective coordinate vector fields. Thus [Xu,Xv] = 0 and ∇XuXu =
∇XvXv = 0, where ∇ denotes the Levi-Civita connection of the metric g on the
surface, inherited from the Euclidean metric on R

3. Hence ∇XuXv = ∇XvXu. As
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|Xu|, |Xv| are constant, it follows by the hypothesis of constant angle, say β , that
one has

g(Xu,Xv)= |Xu| |Xv| cosβ = const .

Thus,

g(∇XuXu,Xv)+ g(Xu,∇XuXv)= g(Xu,∇XuXv)= 0.

Similarly g(Xv,∇XuXv)= 0. So ∇ is flat, thus the Gauss curvature is zero, hence
the surface is developable.

Problem 6.153 Consider a surface of revolution around the z-axis in R
3, the vector

field X = y ∂
∂x
− x ∂

∂y
tangent to the parallels of the surface, and a unit vector field

Y on that surface. Show that if g(X,Y )= const, where g denotes the metric on the
surface, inherited from the Euclidean metric on R

3, then Y is invariant by X, that is,
LXY = 0.

Solution We have

(LXg)(X,Y )+ g
([X,X], Y )+ g(X, [X,Y ])= 0,

but LXg = 0 since X is the infinitesimal generator of the group of rotations; so that
we have g(X, [X,Y ])= 0. On the other hand, as g(Y,Y )= 1, one has

(LXg)(Y,Y )+ g
([X,Y ], Y )+ g(Y, [X,Y ])= 0,

that is, g(Y, [X,Y ])= 0. Therefore, [X,Y ] = LXY = 0.

Problem 6.154 Consider the following surfaces in R
3:

(a) The catenoid C with parametric equations (see Remark 1.4)

x = cosα coshβ, y = sinα coshβ, z= β, α ∈ (0,2π), β ∈R,
that is, the surface of revolution obtained rotating the curve x = cosh z around
the z-axis.

(b) The helicoid H with parametric equations

x = u cosv, y = u sinv, z= v, u, v ∈R,
generated by one straight line parallel to the plane xy that intersects with the
z-axis and the helix x = cos t , y = sin t , z= t (see Fig. 6.18).

Let g = dx2+dy2+dz2 be the Euclidean metric of R3 and denote by i : C ↪→R
3

and j : H ↪→R
3 the respective inclusion maps.

1. Compute i∗g and j∗g.
2. Prove that (C, i∗g) and (H, j∗g) are locally isometric. Are they isometric?
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Fig. 6.18 The catenoid (left).
The helicoid (right)

Solution

(i)

i∗g = cosh2 β
(
dα2 + dβ2), j∗g = du2 + (1+ u2)dv2.

(ii) The coefficient 1 + u2 of dv2 in j∗g suggests that we try the change u =
sinhβ , v = β , which is only a local isometry. There is a global isometry of
the catenoid with the open submanifold of the helicoid corresponding to any
interval v ∈ (2kπ,2(k + 1)π), k ∈ Z.

Problem 6.155 Let S be a surface of R3 with the metric induced from that of R3.
Say if the following statements are true or not:

(i) The geodesics of S are the intersections of S with the planes of R3, and con-
versely.

(ii) The geodesics of S are obtained intersecting S with some chosen planes.

Solution

(i) No. For example, the geodesics of S2 are only obtained when the plane goes
through the origin.

(ii) No. For example, the helices in the cylinder are not obtained in such a way.

Problem 6.156 Prove that there is no Riemannian metric on the torus T 2 = S1 ×
S1 with Gauss curvature either K > 0 in all points or K < 0 in all points.

Hint Use the Gauss–Bonnet Theorem.

Solution The Gauss–Bonnet Theorem establishes that for a connected, compact
and oriented 2-dimensional Riemannian manifold, one has

∫

M

K = 2πχ(M),

where χ(M) denotes the Euler characteristic of M . On the torus, since χ(T 2)= 0,
we have

∫
T 2 K = 0, and thus it follows that it is not possible either to be K > 0 for

all p ∈ T 2, or K < 0 for all p ∈ T 2.
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Problem 6.157 Determine the volume form for the Riemannian metric induced
by the Euclidean metric on R

3 on the unit sphere S2 in R
3, in terms of spherical

coordinates (ρ, θ,ϕ) with ρ = 1. Compute the volume vol(S2).

Solution The sphere S2 with radius ρ = 1 can be parametrised (see Remark 1.4) as

x = sin θ cosϕ, y = sin θ sinϕ, z= cos θ, θ ∈ (0,π), ϕ ∈ (0,2π).

Hence, the metric induced on S2 by the metric dx2 + dy2 + dz2 of R3 is dθ2 +
sin2 θ dϕ2. The volume element is

v =
√

det(gij )dθ ∧ dϕ = sin θ dθ ∧ dϕ,

and

vol
(
S2)=

∫

S2
v =

∫

S2
sin θ dθ ∧ dϕ =

∫ 2π

0

(∫ π

0
sin θ dθ

)

dϕ = 4π.

Problem 6.158 Compute the volume form for the Riemannian metric induced by
the Euclidean metric of R3 on the torus T 2 on R

3 obtained by rotating a circle with
radius a and centre (b,0,0), b > a > 0, around the z-axis. Determine the volume
vol(T 2).

Solution T 2 can be parametrised (see Remark 1.4) as

x = (R + r cosϕ) cos θ, y = (R + r cosϕ) sin θ, z= r sinϕ,

ϕ ∈ (0,2π), θ ∈ (0,2π), R > r . Hence, the metric induced by the metric dx2 +
dy2 + dz2 on R

3 is

g = r2 dϕ2 + (R + r cosϕ)2 dθ2,

the volume form is

v =
√
g11g22 − g2

12 dϕ ∧ dθ = r(R + r cosϕ)dϕ ∧ dθ,

and the volume is

vol
(
T 2)=

∫

T 2
v = r

∫

T 2
(R + r cosϕ)dϕ ∧ dθ = r

∫ 2π

0

∫ 2π

0
(R + r cosϕ)dϕ dθ

= 4π2Rr.

Problem 6.159

(i) Consider the flat torus T 2 =R
2/Z2.

Prove that the map induced on T 2 by the map Φ : R2→R
4 defined by

Φ(x,y)= 1

2π
(cos 2πx, sin 2πx, cos 2πy, sin 2πy),
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is an isometric embedding of T 2 in R
4.

(ii) Let Ψ : R3→R
4 be the map

Ψ (x, y, z)= (x2 − y2, xy, xz, yz
)
.

Since Ψ (−x,−y,−z) = Ψ (x, y, z), by restricting Ψ to the sphere S2 ⊂ R
3

and passing to the quotient, Ψ induces a map from the projective plane RP2 =
S2/∼ into R

4. Prove that this map is an embedding.
(iii) Compute the length of the circles z= const on S2 with respect to the metric

g = Ψ ∗(dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4)∣∣
S2 .

(iv) Prove that (S2, g), where g is the metric in (iii), is not isometric to S2 with the
standard round metric. (Actually, it is not even homothetic.)

Solution

(i) Let τ : R2→ T 2 denote the quotient map. Since

Φ(x +m,y + n)=Φ(x,y), m,n ∈ Z,
the map

ϕ : T 2→R
4, ϕ(p)=Φ(q), q ∈ τ−1(p),

is well-defined. Since ϕ ◦ τ =Φ and τ : R2→ T 2 is a local diffeomorphism, ϕ
is C∞. Moreover,

rankϕ∗ = rankΦ∗ = rank

⎛

⎜
⎜
⎝

−2π sin 2πx 0
2π cos 2πx 0

0 −2π sin 2πy
0 2π cos 2πy

⎞

⎟
⎟
⎠= 2.

Hence ϕ is an immersion. Let us see that it is isometric. We have, putting R
4 =

{(x1, x2, x3, x4)},
Φ∗
(
dx1 ⊗ dx1 + dx2 ⊗ dx2 + dx3 ⊗ dx3 + dx4 ⊗ dx4)= dx2 + dy2.

From the compactness of T 2 it follows that ϕ is an embedding. Hence, ϕ is an
isometric embedding.

(ii) As Ψ (p)= Ψ (−p), the restriction of Ψ (again denoted by Ψ ) to the unit sphere
with centre at the origin of R

3 induces a map ψ : RP2 → R
4 with ψ(p̃) =

Ψ (p), where p̃ denotes the class of p in RP2. Let us see that Ψ (hence ψ ) is an
immersion. We have

Ψ∗ =

⎛

⎜
⎜
⎝

2x −2y 0
y x 0
z 0 x

0 z y

⎞

⎟
⎟
⎠ .



512 6 Riemannian Geometry

Hence rankΨ∗ �= 3 implies x = y = 0. Given any X ∈ T(0,0,±1)S
2, then X =

t(a, b,0) and if Ψ∗X = ± t (0,0, a, b) = 0 then X = 0. Thus, if j : S2 → R
3

denotes the inclusion map, then Ψ ◦ j is an immersion.
The tangent bundle TRP2 can be defined as the set

TRP2 = {((q,Y ), (−q,−Y)), q ∈ S2, Y ∈ TqS2}

endowed with the differentiable structure inherited from the usual one of T S2.
Thus, from the diagram

RP2 ψ−−−−→ R
4

π

-
⏐
⏐

-
⏐
⏐Ψ

S2 j−−−−→ R
3

we conclude that ψ is an immersion.
On the other hand, ψ is injective, as it follows from calculation, due to the

condition x2 + y2 + z2 = 1. From the compactness of RP2, it follows that ψ is
an embedding.

(iii) Consider the parametrisation of the sphere (see Remark 1.4)

x = cos θ cosϕ, y = cos θ sinϕ,

z= sin θ, −π/2< θ < π/2, 0< ϕ < 2π.

As a simple computation shows, we have

g = ((2x dx − 2y dy)2 + (x dy + y dx)2 + (x dz+ zdx)2 + (y dz+ zdy)2
)∣
∣
S2

=
(

1− 3

4
sin2 2θ sin2 2ϕ

)

dθ2 + 3

2
cos2 θ sin 2θ sin 4ϕ dθ dϕ

+ cos2 θ
(
1+ 3 cos2 θ sin2 2ϕ

)
dϕ2.

The length with respect to g of the circle C defined by θ = θ0 is

lg(C)= cos θ0

∫ 2π

0

√

1+ 3 cos2 θ0 sin2 2ϕ dϕ.

Making the change of variables

t = 2ϕ − π

2
,

we obtain lg(C) in terms of an elliptic integral of the second kind,

lg(C)= cos θ0

√
1+ 3 cos2 θ0

∫ 7π/2

−π/2

√
1− k sin2 t dt,
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where

k =
√

3 cos θ0
√

1+ 3 cos2 θ0

.

(iv) The explicit expression of the Gauss curvature K = K(θ,ϕ) obtained by us-
ing the formula for the Gauss curvature of an abstract parametrised surface on
p. 597 is rather long, but, as a simple computation shows, K is not constant. In
fact, we have

K

(
π

4
,0

)

=−2 cos

(
π

4

)2

+ 9 cos

(
π

4

)4

− 3 cos

(
π

4

)8

+ 3 cos

(
π

4

)10

= 37

32
,

K

(
π

4
,
π

4

)

=−1973

2048
, K

(
π

4
,
π

3

)

=−16067107

48234496
.

This proves that g is not isometric to the round metric.
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Problem 6.160 Consider M =R
2 \ {0} equipped with the metric

g = dx ⊗ dy + dy ⊗ dx

x2 + y2
.

The multiplication by any nonzero real scalar is an isometry of M . Consider, in
particular, the isometry λ(x, y) = (2x,2y). The group Γ = {λn : n ∈ Z} generated
by λ acts properly discontinuously. Hence T =M/Γ is a Lorentz surface. Topo-
logically, T is the closed ring 1 � r � 2 with the points of the boundary identified
by λ. Consequently T is a torus, named the Clifton–Pohl torus; in particular, it is
compact.

(i) Show that T is not complete. According to [26, p. 202], it suffices to prove that
M is not complete. For this, prove that the curve

σ(t)=
(

1

1− t ,0

)

is a geodesic.
(ii) Find a group of eight isometries and anti-isometries of M .

(iii) Prove that s→ (tan s,1) is a geodesic, and deduce that every null geodesic of
M and T is incomplete.

(iv) Prove that X = x ∂/∂x + y ∂/∂y is a Killing vector field on M .
(v) If σ(s)= (x(s), y(s)) is a geodesic, then if r2 = x2+y2, prove that ẋẏ/r2 and

(xẏ + yẋ)/r2 are constant.
(vi) Show that the curve β : s→ (s,1/s) is a pregeodesic of finite length on [1,∞).

(A pregeodesic is a curve that becomes a geodesic by a reparametrization.)
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Remark This example shows that for pseudo-Riemannian manifolds compactness
does not imply completeness.

The relevant theory is developed, for instance, in O’Neill [26, Chaps. 7, 9].

Solution

(i) We have

g =
(

0 1
x2+y2

1
x2+y2 0

)

, g−1 =
(

0 x2 + y2

x2 + y2 0

)

,

so the only non-vanishing Christoffel symbols are

Γ 1
11 =−

2x

x2 + y2
, Γ 2

22 =−
2y

x2 + y2
,

and the differential equations of the geodesics are

d2x

dt2
− 2x

x2 + y2

(
dx

dt

)2

= 0,
d2y

dt2
− 2y

x2 + y2

(
dy

dt

)2

= 0,

which are easily seen to be satisfied by the given curve. The given geodesic is
not defined for t = 1, hence M is not complete.

(ii)

(x, y) �→ (x, y); (x, y) �→ (−x,−y); (x, y) �→ (−x, y);
(x, y) �→ (x,−y); (x, y) �→ (y, x); (x, y) �→ (−y, x);
(x, y) �→ (y,−x); (x, y) �→ (−y,−x).

(iii) We have

2 sin s

cos3 s
− 2 tan s

tan2 s + 1

1

cos4 s
= 0,

and the other equation of geodesics is trivially satisfied, for y = 1. The geodesic
is incomplete because it is not defined for ±π/2. The null curves are the ones
satisfying

2∑

i,j=1

gij
dxi

ds

dxj

ds
= 0,

that is,

2

x2 + y2

dx

ds

dy

ds
= 0,
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which are the curves x = const or y = const. Due to the symmetry in x and y of
the equations of geodesics, we can suppose y = const. Then the only equation
is

ẍ

ẋ
= 2xẋ

x2 + 1
,

so log ẋ = log A(x2 + 1), thus arctanx = As + B , that is, x = tan(As + B).
As the geodesic

s �→ (
tan(As +B),1

)

is a model for the null geodesics, it follows that these are incomplete for M . So
they are also incomplete for T .

(iv)

LXg = Lx ∂
∂x
+y ∂

∂y

1

x2 + y2
(dx ⊗ dy + dy ⊗ dx)= 0.

(v)

d

ds

ẋẏ

r2
= 1

2
g(σ̇ , σ̇ )= const.

As for (xẏ + yẋ)/r2, we have on account of the differential equations of the
geodesics:

d

ds

(
xẏ + yẋ

r2

)

= 1

r4

(
x3ÿ + x2ẍy + x y2ÿ + y3ẍ − 2x yẏ2 − 2x yẋ2)

= 1

r4

(

x3 2yẏ2

r2
+ x2 2xẋ2

r2
y + xy2 2yẏ2

r2

+ y3 2xẋ2

r2
− 2x yẏ2 − 2x yẋ2

)

= 0.

(vi) We have

dy

dx
= dy

dt

/
dx

dt
,

d2y

dx2
= x′y′′ − x′′y′

x′3
.

From the equations of the geodesics given in (i) it follows that

(
x′y′′ − x′′y′)(x2 + y2)= 2x′y′

(
yy′ − xx′).

Hence

d2y

dx2

(
x2 + y2)= 2

dy

dx

(

y
dy

dx
− x
)

, (�)

which are the equations of the geodesics for any parameter. The condition (�)
is satisfied if y = 1/x, as it is easily seen.
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The tangent vector along the curve is

β̇(s)= ∂

∂x

∣
∣
∣
∣
β(s)

− 1

s2

∂

∂y

∣
∣
∣
∣
β(s)

,

hence

∣
∣β̇(s)

∣
∣=
√∣
∣g
(
β̇(s), β̇(s)

)∣
∣=

√
2√

1+ s4
.

Since 1+ s−4 � 1 for s > 0, we obtain

∫ ∞

1

√
2 ds√

1+ s4
=
∫ ∞

1

√
2s−2 ds√
1+ s−4

�
∫ ∞

1

√
2s−2 ds =√2.

Problem 6.161 Consider on R
6 the scalar product

〈· , ·〉 = dx1⊗ dx3+ dx3⊗ dx1+ dx2⊗ dx4+ dx4⊗ dx2+ dx5⊗ dx5+ dx6⊗ dx6,

and the tensor of type (1,1) given by

J = ∂

∂x1
⊗dx1+ ∂

∂x2
⊗dx2− ∂

∂x3
⊗dx3− ∂

∂x4
⊗dx4+ ∂

∂x6
⊗dx5− ∂

∂x5
⊗dx6.

(i) Let W = 〈 ∂
∂xi
〉i=2,...,6. Calculate W⊥ = {v ∈R6 : v ⊥W }.

(ii) Let W = 〈 ∂
∂xi
〉i=3,...,6. Calculate W⊥.

(iii) Do we have dimW + dimW⊥ = 6 in (i) and (ii)?
(iv) Let U = 〈 ∂

∂xi
〉i=1,2 and V = 〈 ∂

∂xi
〉i=3,4. Prove that JX =X, X ∈U and JX =

−X, X ∈ V .
(v) Calculate a vector X /∈U ∪ V such that 〈JX,JX〉 = 0.

Solution

(i) W⊥ = 〈∂/∂x3〉.
(ii) W⊥ = 〈∂/∂x3, ∂/∂x4〉.

(iii) Yes.
(iv) Immediate.
(v) Take, for instance, X = (1,0,1,0,0,

√
2). Then

〈JX,JX〉 = 〈(1,0,−1,0,−√2,0), (1,0,−1,0,−√2,0)
〉= 0.

Problem 6.162 Consider the pseudo-Euclidean space R
n
k , that is, Rn with the

pseudo-Euclidean metric of signature (k, n− k):

g =−
k∑

i=1

dxi ⊗ dxi +
n∑

i=k+1

dxi ⊗ dxi . (�)

Compute the isometry group I (Rn
k) of R

n
k . For this prove:
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(i) The linear isometries of R
n
k (i.e. the isometries of R

n
k which belong to

GL(n,R)) form a subgroup O(k, n− k) of I (Rn
k).

(ii) The set T (n) of all translations of Rn
k is an Abelian subgroup of I (Rn

k) and it
is isomorphic to R

n (under vector addition) via τx↔ x.
(iii) Each isometry ϕ of R

n
k has a unique expression as τx ◦ A, with x ∈ Rn

k and
A ∈O(k, n− k).

(iv) The composition law in I (Rn
k) is

(τx ◦A)(τy ◦B)= τx+Ay ◦AB.

Hint (to (iii)) Suppose first ϕ(0)= 0.

The reader can find the relevant theory developed, for instance, in O’Neill [26,
Chap. 9].

Solution

(i) The group O(k, n−k) of linear isometries of Rn
k can be viewed as the subgroup

of matrices of GL(n,R) which preserve the scalar product

〈v,w〉 = −
k∑

i=1

viwi +
n∑

i=k+1

viwi, v,w ∈Rn.

(ii) Given x0 ∈ Rn
k , from (�) one has that the translation τx0 sending each v ∈ Rn

k

to v + x0 is an isometry. It is clear that T (n) is an Abelian subgroup of I (Rn
k)

isomorphic to R
n.

(iii) If ϕ(0) = 0, then the differential ϕ∗0 at 0 is a linear isometry, hence it cor-
responds under the canonical linear isometry T0R

n
k
∼= R

n
k to a linear isometry

A : Rn
k→R

n
k . But then A∗0 = ϕ∗0 and thus ϕ =A by Theorem 6.22.

Now, if ϕ ∈ I (Rn
k), let x = ϕ(0) ∈Rn

k . Thus (τ−x ◦ϕ)(0)= 0, so that by the
above results, τ−x ◦ ϕ equals some A ∈O(k, n− k). Hence ϕ = τx ◦A.

If τx ◦ A = τy ◦ B , then x = (τx ◦ A)(0) = (τy ◦ B)(0) = y, hence also
A= B .

(iv) Immediate.

Problem 6.163

(i) Find the exponential map for Rn
k .

(ii) Is expp , for p ∈Rn
k , a diffeomorphism?

(iii) Is expp an isometry when TpR
n
k has the metric induced by the canonical dif-

feomorphism TpR
n
k
∼=R

n
k?

The reader can find the relevant theory developed, for instance, in O’Neill [26,
Chap. 3].
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Solution

(i) The geodesic γ (t) through p with initial velocity vector vp ∈ TpRn
k is the

straight line γ (t)= p+ tv. Thus

expp : TpRn
k → R

n
k

vp �→ γ (1)= p+ v.
(ii) Yes, as expp is the composition of the canonical diffeomorphism TpR

n
k
∼= R

n
k

and the translation τp : x �→ x + p.
(iii) Yes, since both maps TpRn

k
∼=R

n
k and τp are isometries.

Problem 6.164 Consider the open submanifold

M = {(x, y) ∈R2 : x + y > 0
}

of the 2-dimensional Minkowski space
(
R

2, g = dx2 − dy2),

equipped with the inherited metric g|M , with which M is a flat simply connected
Lorentz manifold.

1. Prove that (M,g|M) is a non-complete G-homogeneous pseudo-Riemannian
manifold, where G is the non-Abelian group G=R×R with product

(u, v)
(
u′, v′

)= (u+ u′e−v, v+ v′),
under the action

(u, v) · (x, y)= (x − coshv+ y sinhv+ u,x sinhv+ y coshv− u). (�)

2. Does act G freely on M?
3. Can we identify M and G?

The relevant theory is developed, for instance, in Besse [2, 7.I].

Solution

1. (i) It is immediate that (M,g) is incomplete since its geodesics are the restric-
tions of the geodesics of (R2, g) to M , and these are the straight lines.

(ii) On the other hand, G acts on M : Writing (x′, y′)= (u, v) · (x, y), we have
x′ + y′ = ev(x + y) > 0, hence (x′, y′) ∈M .

(iii) The action is transitive: Given two points (x1, y1), (x2, y2) ∈M , there exists
(u, v) ∈G such that (u, v) · (x1, y1)= (x2, y2). In fact, take the parallels to
the straight line x + y = 0 through (x1, y1) and (x2, y2), and let (x′1, y′1)
and (x′2, y′2) be, respectively, the points of intersection with the branch of
the hyperbola x2 − y2 = 1 passing through (1,0). Then it suffices to con-
sider the composition of three transformations: The first one from (x1, y1)
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to (x′1, y′1), of type (u1,0); the second one from (x′1, y′1) to (x′2, y′2) along
the branch of hyperbola (with u = 0); and the third one from (x′2, y′2) to
(x2, y2), again of type (u2,0).

2. If (u, v) · (x, y)= (x, y), it is clear that we must have u= v = 0.
3. Yes, as the action (�) of G on M is simply transitive (that is, transitive and free,

see Definition 4.32 and Theorem 4.34).

Problem 6.165 Find, using Cartan’s structure equations, the Gauss curvature of
R

2 endowed with the pseudo-Riemannian metric

g = 4

c

(
cosh2 2y dx2 − dy2), 0 �= c ∈R.

Hint Consider an orthonormal moving frame and Cartan’s structure equations on
p. 597, that is,

dθ̃i =−
∑

j

ω̃ij ∧ (εj θ̃j ), ω̃ij + ω̃ji = 0, dω̃ij =−
∑

k

εkω̃jk ∧ ω̃ik + Ω̃ij .

Solution We have the orthonormal moving frame on R
2,

σ =
(

X1 =
√|c|

2

1

cosh 2y

∂

∂x
, X2 =

√|c|
2

∂

∂y

)

.

That is, g(Xi,Xi) = εi , i = 1,2, with ε1 = +1, ε2 = −1 if c > 0, and ε1 = −1,
ε2 =+1 if c < 0. Its dual moving coframe is

(

θ̃1 = 2√|c| cosh 2y dx, θ̃2 = 2√|c| dy
)

.

Let θ̃i = εi θ̃ i (no sum) and let ω̃ij be the connection forms relative to σ . Then

ω̃ij = εiω̃ij (no sum)

is the only set of differential 1-forms satisfying the first structure equation

ω̃ij + ω̃ji = 0, dθ̃i =−
∑

j

ω̃ij ∧ (εj θ̃j ).

We only have to calculate ω̃12. From

d(ε1θ̃1)= ε1 dθ̃1 = (ε1)
2 dθ̃1 = 4√|c| sinh 2y dy ∧ dx =−ε1ω̃12 ∧ ε2θ̃2

=−ω̃12 ∧ ε1(ε2)
2
(

2√|c| dy
)

=−ω̃12 ∧ ε1

(
2√|c| dy

)

,
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one obtains that

ω̃12 = 2ε1 sinh 2y dx.

The Gauss curvature of the pseudo-Riemannian manifold (R2, g) is the differen-
tiable real-valued function K defined by

dω̃12 =Kθ̃1 ∧ θ̃2,

that is, by

4ε1 cosh 2y dy ∧ dx = ε1ε2K
2√|c| cosh 2y dx ∧ 2√|c| dy.

Thus, as

K =−ε2|c| =
{
c if ε2 =−1 (c > 0),

−|c| = c if ε2 = 1 (c < 0),

we obtain that (R2, g) has constant Gauss curvature K = c.

Problem 6.166 Prove, by using the Koszul formula, that the half-space

H = {(x1, x2, x3, x4) ∈R4 : x1 > 0
}

endowed with the pseudo-Riemannian metric

g = 1

K

dx1 ⊗ dx1 + dx2 ⊗ dx2 − dx3 ⊗ dx3 − dx4 ⊗ dx4

(x1)2
, 0 �=K ∈R,

has constant curvature −K .

Solution Applying the Koszul formula in Theorem 6.4 to ei = ∂/∂xi , i = 1,2,3,4,
we obtain, on account of [ei, ej ] = 0, for instance, for ∇e1e1:

2g(∇e1e1, ei)= 2e1g(e1, ei)− eig(e1, e1)= 2e1

(
δ1i

K(x1)2

)

− ei
(

1

K(x1)2

)

= 2
δ1i

K

(

− 2

(x1)3

)

− 1

K

(

− 2δ1i

(x1)3

)

=− 2δ1i

K(x1)3
,

from which ∇e1e1 =− 1
x1 e1. Similarly, one obtains:

∇e1e1 =−∇e2e2 =∇e3e3 =∇e4e4 =− 1

x1
e1, ∇e1e2 =∇e2e1 =− 1

x1
e2,

∇e1e3 =∇e3e1 =− 1

x1
e3, ∇e1e4 =∇e4e1 =− 1

x1
e4,

∇e2e3 =∇e3e2 =∇e2e4 =∇e4e2 =∇e3e4 =∇e4e3 = 0.
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Thus

−R(e1, e2)e2 =R(e1, e3)e3 =R(e1, e4)e4 = 1

(x1)2
e1,

R(e2, e3)e3 =R(e2, e4)e4 = 1

(x1)2
e2, R(e3, e4)e4 = 1

(x1)2
e3.

So

−R1212 =R1313 =R1414 =R2323 =R2424 =−R3434 = K

(x1)4
.

Finally, the sectional curvature K(Pij ), 1 � i < j � 4, has values

K(P12)=K(P13)=K(P14)=K(P23)=K(P24)=K(P34)=−K.

Problem 6.167 Let M be a pseudo-Riemannian manifold of dimension n � 2.
Show, by using Cartan’s structure equations, that if there exist local coordinates xi

on a neighbourhood of each x ∈M in which the metric is given by

g =
∑

i εi dxi ⊗ dxi

(1+ K
4

∑
i εi(x

i)2)2
, εi =±1, i = 1, . . . , n, K ∈R,

then (M,g) has constant curvature K .

Hint See the hint in Problem 6.165.

The relevant theory is developed, for instance, in Wolf [36].

Solution Let r(x)= (εi(xi)2)1/2 and A(x)=− log(1+ (K/4)r2). Then (e−A ∂
∂xi

)

is an orthonormal moving frame, that is,

g

(

e−A ∂

∂xi
, e−A ∂

∂xj

)

=
{
εi if j = i,
0 if j �= i,

whose dual moving coframe is (θ̃ i = eA dxi). Therefore,

dθ̃ i = eA dA∧ dxi =
∑

j

eA
∂A

∂xj
dxj ∧ dxi =

∑

j

θ̃ j ∧ ∂A

∂xj
dxi

=
∑

j

θ̃ j ∧
(
∂A

∂xj
dxi − εiεj ∂A

∂xi
dxj
)

.

Let ω̃ij denote the term in parentheses. One has

ω̃ij = εiω̃ij = εi
∂A

∂xj
dxi − εj ∂A

∂xi
dxj =−ω̃ji ,
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hence ω̃ij are the connection forms relative to (e−A ∂
∂xi

). The second structure equa-
tion is thus

Ω̃ij = dω̃ij +
∑

k

εkω̃jk ∧ ω̃ik

=
∑

k

(

εi
∂2A

∂xk∂xj
dxk ∧ dxi − εj ∂2A

∂xk∂xi
dxk ∧ dxj

)

+
∑

k

εk

(

εj
∂A

∂xk
dxj − εk ∂A

∂xj
dxk
)

∧
(

εi
∂A

∂xk
dxi − εk ∂A

∂xi
dxk
)

.

Now, since

∂A

∂xi
=−

K
2 εix

i

1+ K
4 r

2
,

the three summands at the right hand side can be written, respectively, as

∑

k

εi
(1+ K

4 r
2)(−K

2 εj δjk)+ K
2 εj x

j K
2 εkx

k

(1+ K
4 r

2)2
dxk ∧ dxi,

−
∑

k

εj
(1+ K

4 r
2)(−K

2 εiδik)+ K
2 εix

i K
2 εkx

k

(1+ K
4 r

2)2
dxk ∧ dxj ,

and

∑

k

(

εkεj εi

K2

4 εkεkx
kxk

(1+ K
4 r

2)2
dxj ∧ dxi − εkεj εk

K2

4 εiεkx
ixk

(1+ K
4 r

2)2
dxj ∧ dxk

− εkεkεi
K2

4 εj εkx
jxk

(1+ K
4 r

2)2
dxk ∧ dxi

)

.

Substituting, we obtain

Ω̃ij = εiεjK

(1+ K
4 r

2)2
dxi ∧ dxj =Kεi θ̃ i ∧ εj θ̃ j =Kθ̃i ∧ θ̃j .

Problem 6.168 Consider, for each integer n� 1, the Lie group

G=
{(

sIn
tv

0 1

)

∈GL(n+ 1,R) : s > 0, v ∈Rn

}

.

(i) Prove that the Lie algebra g of G is

g=
{(

sIn
tv

0 0

)

∈M(n+ 1,R) : s ∈R, v ∈Rn

}

.
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(ii) Let {E0,E1, . . . ,En} be the basis of g given by

E0 =
(
In 0
0 0

)

, Ei =
(

0 tei
0 0

)

, 1 � i � n,

{ei} being the usual basis of Rn. Consider the left-invariant metric g on G such
that

g(E0,E0)=−c2, g(E0,Ei)= 0, g(Ei,Ej )= δij , 1 � i, j � n.

That is, {θ0, θ1, . . . , θn} being the basis dual to {ei},
g =− c2 θ0 ⊗ θ0 + θ1 ⊗ θ1 + · · · + θn ⊗ θn, c �= 0.

Prove that this metric is not bi-invariant on G.
(iii) Prove that the Lorentzian Lie group (G,g) is a manifold of positive constant

sectional curvature 1/c2.
(iv) Show that the given metric is not complete.

Hint (to (iv)) Find a specific geodesic in G, for instance, the geodesic γ (t) with
initial conditions

γ (0)= In+1, γ ′(0)= 1√
n

n∑

i=1

Ei |In+1 ,

and show that t ∈ (−∞,+∞) does not hold true.

The relevant theory is developed, for instance, in Poor [28, Chap. 6].

Solution

(i) We have for any element of g that

exp

(
s In

tv

0 0

)

= In+1 +
(
s In

tv

0 0

)

+ 1

2!
(
s2In s tv

0 0

)

+ 1

3!
(
s3In s2 tv

0 0

)

+ · · ·

=
(
(1+ s + s2

2! + s3

3! + · · · )In (1+ s
2! + s2

3! + · · · )tv
0 0

)

=
(

esIn tw

0 1

)

∈G.

(ii) One has

[Ei,Ej ] =
[(

0 tei
0 0

)

,

(
0 tej
0 0

)]

= 0, 1 � i, j � n,



524 6 Riemannian Geometry

[Ei,E0] =
[(

0 tei
0 0

)

,

(
In 0
0 0

)]

=−
(

0 tei
0 0

)

=−Ei.

Hence, for 1 � i, j � n, one has

g(adEi E0,Ej )+ g(E0, adEi Ej )=−δij ,
so g is indeed not bi-invariant.

(iii) As g is left-invariant, the Koszul formula for the Levi-Civita connection ∇
reduces to

2g(∇XY,Z)= g
([X,Y ],Z)− g([Y,Z],X)+ g([Z,X], Y ),

and we obtain that

∇E0E0 =∇E0Ei = 0, ∇EiE0 =−Ei,

∇EiEj =− 1

c2
δij E0, 1 � i, j � n.

(�)

The curvature tensor field has thus components

R(E0,Ei)E0 =Ei, R(Ei,Ej )Ei =− 1

c2
Ej , 1 � i �= j � n,

from which

R

(
1

c
E0,Ei,

1

c
E0,Ei

)

= 1

c2
, R(Ei,Ej ,Ei,Ej )= 1

c2
,

so (G,g) has in fact constant sectional curvature 1/c2.
(iv) G may be considered as the semi-direct product solvable Lie group R

n
�Ψ R

+
of the additive group R

n and the multiplicative group of positive real num-
bers R+ under the homomorphism Ψ : R+ → AutRn, Ψ (s)(v)= sv, s ∈ R+,
v ∈Rn, and g can be identified with the semi-direct product Rn

�ϕ R with
respect to the induced homomorphism ϕ : R→ EndRn. We can thus write

E0 = (0,1), Ei = (ei,0), 1 � i � n.

A curve γ in G is given by

γ (t)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v0(t) 0 . . . 0 v1(t)

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . . v0(t) vn(t)

0 . . . . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where v0, v1, . . . , vn are real differentiable functions and v0 is positive.
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Denote local coordinates on G by
(
x = (x1, . . . , xn

)
, x0).

To get the equations of a geodesic curve, one must take derivatives with respect
to the coordinates and then sum with respect to the coordinate vector fields;
but the coordinate vector fields are not left-invariant, i.e. they coincide with the
vector fields Ei only at the identity element of G, which is the identity matrix
In+1,

Ei |In+1 =
∂

∂xi

∣
∣
∣
∣
In+1

, i = 0,1, . . . , n.

To find the relation between the coordinate vector fields and the left-invariant
vector fields at a generic point in γ (t), note that due to the product law in the
group we have

γ (t)(x, y)= (v(t), v0(t)
)(
x, x0)= (v(t)+ v0(t)x, v0(t)x

0)

so that, L denoting left translation, one has

Ei |γ (t) = (Lγ (t)∗)In+1

∂

∂xi

∣
∣
∣
∣
In+1

= v0(t)
∂

∂xi

∣
∣
∣
∣
γ (t)

, i = 0,1, . . . , n.

Thus the relation we looked for is

∂

∂xi

∣
∣
∣
∣
γ (t)

= 1

v0(t)
Ei

∣
∣
∣
∣
γ (t)

, i = 0,1, . . . , n,

and hence, from expressions (�) above, it follows that the equations of
geodesics are

d2v0

dt2
− 1

v0

(
dv0

dt

)2

− 1

c2v0

n∑

i=1

(
dvi
dt

)2

= 0, (��)

d2vi

dt2
− 2

v0

dv0

dt

dvi
dt
= 0, 1 � i � n. (���)

We look for the solution γ (t) with initial conditions

γ (0)= In+1, γ ′(0)= 1√
n

n∑

i=1

Ei |In+1 . (†)

To this end, multiplying the equation (���) by dvi
dt , i = 1, . . . , n, we can write

1

2

d

dt

((
dvi
dt

)2)

= dvi
dt

d2vi

dt2
= 2

v0

dv0

dt

(
dvi
dt

)2

,
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that is,

1

2

dwi

dt
= 2

v0

dv0

dt
wi

(

where wi =
(

dvi
dt

)2)

or equivalently,

dwi

wi

= 4
dv0

v0
.

Integrating we get

logwi = logv4
0 + ai, ai ∈R,

from which one has

dvi
dt
= exp

(
ai

2

)

v2
0 .

Integrating the previous equation, we obtain

vi = exp

(
ai

2

)∫

v2
0 dt + bi, bi ∈R. (††)

Substituting the previous expression into equations (��), we have, after simpli-
fying, that

0= d2v0

dt2
− 1

v0

(
dv0

dt

)2

− a

c2
v3

0

(

where a =
n∑

i=1

expai

)

.

Taking then

v0 = sec

(
t

c

)

= 1

cos( t
c
)
, (†††)

one gets

dv0

dt
= 1

c

sin( t
c
)

cos2( t
c
)
,

d2v0

dt2
= 1

c2

1+ sin2( t
c
)

cos3( t
c
)

,

and hence

d2v0

dt2
− 1

v0

(
dv0

dt

)2

= 1

c2

1

cos3( t
c
)
= 1

c2
v3

0

and a = 1.
In turn, from (††) and (†††), we have

vi = exp

(
ai

2

)∫

sec2
(
t

c

)

dt + bi

= exp

(
ai

2

)(

c tan

(
t

c

)

+ ci
)

+ bi, bi, ci ∈R.
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Now, the first initial condition in (†) implies

vi = c exp

(
ai

2

)

tan

(
t

c

)

, i = 1, . . . , n,

and the second initial condition in (†) then implies expai = 1
n

.
We thus obtain

v0 = sec

(
t

c

)

, vi = c√
n

tan

(
t

c

)

, i = 1, . . . , n.

Since cos( t
c
)= 0 for t

c
=±π

2 , the wanted solution is

γ (t)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sec( t
c
) 0 . . . 0 c√

n
tan( t

c
)

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . . sec( t
c
) c√

n
tan( t

c
)

0 . . . . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, −c π
2

< t <
cπ

2
,

and the manifold is, in fact, not complete.

Problem 6.169 Consider R4 as a space-time with coordinates ρ,ϕ,ψ and t , where
the first three are the usual spherical coordinates on R

3, equipped with the metric
(see Remark 1.4)

g =−
(

1− 2m

ρ

)

dt2 +
(

1− 2m

ρ

)−1

dρ2 + ρ2(dψ2 + sin2ψ dϕ2),

m ∈R+, ψ ∈ (0,π), ϕ ∈ (0,2π).

Prove, by using Cartan’s structure equations, that g is a solution (except at the sin-
gularity ρ = 0) of the empty space Einstein field equations

r− 1

2
sg = 0.

Hint See the hint in Problem 6.165.

Remark This solution, found by Schwarzschild, was the first one known to such
field equations, and it is sometimes called Schwarzschild “black hole” metric.
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Solution The frame

σ =
(

X1 =
(

1− 2m

ρ

) 1
2 ∂

∂t
, X2 =

(

1− 2m

ρ

)− 1
2 ∂

∂ρ
, X3 = 1

ρ

∂

∂ψ
,

X4 = 1

ρ sinψ

∂

∂ϕ

)

is an orthonormal moving frame, that is,

g(X1,X1)= ε1 =−1, g(Xi,Xi)= εi = 1, i = 2,3,4,

with dual moving coframe

(

θ̃1 =
(

1− 2m

ρ

) 1
2

dt, θ̃2 =
(

1− 2m

ρ

)− 1
2

dρ, θ̃3 = ρ dψ, θ̃4 = ρ sinψ dϕ

)

.

The first structure equation,

dθ̃i =−
∑

j

ω̃ij ∧ (εj θ̃j ),

gives us the non-vanishing connection forms relative to σ ,

ω̃12 =−ω̃21 = m

ρ2
dt, ω̃23 =−ω̃32 =−

(

1− 2m

ρ

) 1
2

dψ,

ω̃24 =−ω̃42 =−
(

1− 2m

ρ

) 1
2

sinψ dϕ, ω̃34 =−ω̃43 =− cosψ dϕ.

The second structure equation,

Ω̃ij = dω̃ij +
∑

k

εkω̃jk ∧ ω̃ik,

furnishes the non-vanishing curvature 2-forms relative to σ ,

Ω̃12 =−Ω̃21 = 2m

ρ3
θ̃1 ∧ θ̃2, Ω̃13 =−Ω̃31 =− m

ρ3
θ̃1 ∧ θ̃3,

Ω̃14 =−Ω̃41 =− m

ρ3
θ̃1 ∧ θ̃4, Ω̃23 =−Ω̃32 =− m

ρ3
θ̃2 ∧ θ̃3,

Ω̃24 =−Ω̃42 =− m

ρ3
θ̃2 ∧ θ̃4, Ω̃34 =−Ω̃43 = 2m

ρ3
θ̃3 ∧ θ̃4.

From the equations

Ω̃ij =
∑

k<l

Rijkl θ̃
k ∧ θ̃ l , rij =

∑

k

Rkikj ,
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one obtains that the Ricci tensor r vanishes. In fact,

r12 =Rk1k2 =R3132 +R4142 = 0,

r22 =Rk2k2 =R1212 +R3232 +R4242 = 2m

ρ3
− m

ρ3
− m

ρ3
= 0.

The remaining calculations for the components rij , i �= j , or rii , are similar.
Since the scalar curvature is given by s =∑i rii , empty space Einstein field

equations are automatically satisfied.

Problem 6.170

(i) Let V be an (n+1)-dimensional vector space, and let V ∗ be its dual space. We
shall write x + α,y + β, . . . , to denote the elements of V ⊕ V ∗. On the space
V ⊕ V ∗ there exists a natural non-degenerate bilinear form 〈· , ·〉 given by

〈x + α,y + β〉 = 1

2

(
α(y)+ β(x)),

and an involutive linear automorphism J0 given by

J0|V = idV , J0|V ∗ = −idV ∗ .

The subgroup of the automorphism group GL(V ⊕ V ∗) of V ⊕ V ∗ preserving
both 〈· , ·〉 and J0 can be identified to the automorphism group GL(V ) of V . In
fact, if A ∈GL(V ), we put

A(x + α)=Ax + α ·A−1.

Let us introduce on
(
V ⊕ V ∗)+ =

{
x + α ∈ V ⊕ V ∗ : 〈x + α,x + α〉 = α(x) > 0

}

the equivalence relation ∼ defined by x + α ∼ ax + bα if 0 < a,b ∈ R, and
define the paracomplex projective space P(V ⊕ V ∗) by

P
(
V ⊕ V ∗)= (V ⊕ V ∗)+

/∼ .

Let π denote the natural projection π : (V ⊕V ∗)+ → P(V ⊕V ∗). If a, b ∈R+,
we have A(ax + bα)= aAx + b(α ·A−1), and so we can define an action of
GL(V ) on P(V ⊕ V ∗) in such a way that

A
(
π(x + α))= π(A(x + α)), A ∈GL(V ).

Then the identity component GL0(V ) of GL(V ) acts transitively on the pseu-
dosphere in V ⊕ V ∗,

S = {x + α ∈ (V ⊕ V ∗)+ : 〈x + α,x + α〉 = α(x)= 1
}
.
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Prove that P(V ⊕ V ∗) is a homogeneous space under the action of the group
GL0(V ), for n� 1.

(ii) We have a principal bundle π : S→ P(V ⊕V ∗) with group R
+. The subgroup

{aI ∈ GL0(V ) : a > 0} of GL0(V ) acts transitively on the fibres. The quo-
tient of S by that action is P(V ⊕ V ∗). Consider S equipped with the pseudo-
Riemannian metric inherited from that of V ⊕ V ∗. Then, as GL0(V ) acts on
V ⊕ V ∗ by isometries, and preserves S, it also acts on S by isometries.

Now, consider the formula

〈Z,Z〉 = 〈Zh,Zh
〉
, Z ∈ Tπ(x+α)P

(
V ⊕ V ∗), (�)

where Zh ∈ Tx+αS is orthogonal to the fibre and satisfies π∗Zh = Z. Show
that this construction induces on P(V ⊕ V ∗) a pseudo-Riemannian metric g
such that π is a pseudo-Riemannian submersion.

(iii) The group G=R
+ ×R

+ acts on (V ⊕ V ∗)+ by

(a, b)(x + α)= ax + bα, (a, b) ∈R+ ×R
+,

and P(V ⊕V ∗) is the quotient space of this action. Let J0 be the almost product
structure (that is, an automorphism such that J 2

0 = I ) defined on (V ⊕ V ∗)+
by

J0(v,ω)= (v,−ω), (v,ω) ∈ Tx+α
(
V ⊕ V ∗)+.

Prove that J0 passes to the quotient and gives an almost product structure
J (a (1,1) tensor field with J 2 = I ) on P(V ⊕ V ∗) such that this manifold
has a para-Hermitian structure with the metric in (ii) and J (that is, we have
g(JX,Y )+ g(X,JY )= 0, where X,Y,∈X(V ⊕ V ∗)).

(iv) Consider a basis {e0, . . . , en} of V and the dual basis {θ0, . . . , θn} of V ∗. We can
consider the ek , k = 0, . . . , n, as coordinates on V ∗ and the θk as coordinates
on V . Let U+0 be the open subset of P(V ⊕ V ∗) given by

U+0 =
{
π(x + α) : θ0(x) > 0, e0(α) > 0

}
.

Let (xi, yi), i = 1, . . . , n, be coordinates on U+0 given by

xi
(
π(x + α))= θi(x)

θ0(x)
, yi

(
π(x + α))= ei(α)

e0(α)
. (��)

Prove that the metric in terms of these coordinates on U+0 has the expression

g = 1

2(1+ 〈x, y〉)

{
n∑

i=1

(
dxi ⊗ dyi + dyi ⊗ dxi

)

−
n∑

i,j=1

xiyj

1+ 〈x, y〉
(
dyi ⊗ dxj + dxj ⊗ dyi

)
}

,

where 〈x, y〉 =∑i x
iyi .
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(v) Compute the almost product structure J on P(V ⊕V ∗) in terms of the coordi-
nates (xi, yi).

Remark Since the metric admits locally that expression, it is said that the manifold
(P (V ⊕ V ∗), g, J ) is a para-Kähler manifold (that is, the Levi-Civita connection
of g parallelises J ) of constant paraholomorphic sectional curvature (equal to 4),
which is an analog of the holomorphic sectional curvature.

For such a space, the curvature tensor field R satisfies

R(X,Y )Z = g(X,Z)Y − g(Y,Z)X+ g(X,JZ)JY
− g(Y,JZ)JX+ 2g(X,JY )JZ.

The relevant theory is developed, for instance, in [11–13].

Solution

(i) Let x + α be an arbitrarily fixed element of S. Then, for each y + β ∈ S,
there exists an element A ∈GL0(V ) such that A(y + β)= x + α. For, given a
linearly independent set of elements y1, . . . , yn of V such that β(yi)= 0, then
{y, y1, . . . , yn} is a basis of V . Similarly, if we have a linearly independent set
of elements x1, . . . , xn of V such that α(xi)= 0, then {x, x1, . . . , xn} is a basis
of V . Take A such that Ay = x, Ayi = xi . Then

(
β ·A−1)(x)= β(y)= 1= α(x), (

β ·A−1)(xi)= β(yi)= 0= α(xi),

and hence β · A−1 = α. Taking two bases with the same orientation we have
A ∈GL0(V ) as desired.

(ii) Denote by n and v the natural vector fields on V ⊕ V ∗ whose values at x + α
are nx+α = x + α and vx+α = x − α. Then one has π∗n = π∗v = 0. In fact,
nx+α is the vector tangent at t = 0 to the curve t �→ x+α+ t (x+α) and vx+α
is the vector tangent to the curve t �→ x+α+ t (x−α). As π((1+ t)(x+α))=
π(x+α) and π((1+ t)x+ (1− t)α)= π(x+α) for small t , the claim follows.
Thus kerπ∗ is spanned by n and v. The vector v is tangent to the fibre and
n is normal to S in V ⊕ V ∗. The process given in the statement of lifting a
vector Z to such a vector Zh has a unique solution if and only if the subspace
orthogonal to the fibres has dimension equal to 2n or, equivalently, if and only
if the restriction of 〈· , ·〉 to the subspace spanned by vx+α and nx+α is non-
degenerate; but indeed,

(〈n,n〉 〈n,v〉
〈v,n〉 〈v,v〉

)

=
(

1 0
0 −1

)

.

Consequently, we have the desired structure on P(V ⊕ V ∗), which makes π a
pseudo-Riemannian submersion.



532 6 Riemannian Geometry

(iii) We have

(
J0 ◦ (a, b)∗ − (a, b)∗ ◦ J0

)
(v,ω)= J0(av, bω)− (a, b)∗(v,−ω)= 0.

Hence, J0 passes to the quotient, giving an almost product structure J , which
is easily seen to be para-Hermitian.

(iv) After computation we have

∂

∂xi

∣
∣
∣
∣

h

π(x+α)
=−ei(α)θ0(x)x + θ0(x)

∂

∂ei

∣
∣
∣
∣
x+α

,

∂

∂yi

∣
∣
∣
∣

h

π(x+α)
=−θi(x)e0(α)α + e0(α)

∂

∂ei

∣
∣
∣
∣
x+α

.

From this, on account of (�), one has

〈
∂

∂xi

∣
∣
∣
∣

h

π(x+α)
,
∂

∂yj

∣
∣
∣
∣

h

π(x+α)

〉

= 1

2
θ0(x)e0(α)

(
δ
j
i − ei(α)θj (x)

)
.

Now, from (��) we deduce

θ0(x)e0(α)= 1

1+ 〈x, y〉 , ei(α)θj (x)= yixj

1+ 〈x, y〉 ,

hence

〈
∂

∂xi

∣
∣
∣
∣

h

π(x+α)
,
∂

∂yj

∣
∣
∣
∣

h

π(x+α)

〉

= 1

2(1+ 〈x, y〉)
(

δij − yixj

1+ 〈x, y〉
)

.

Similarly,

〈
∂

∂xi

∣
∣
∣
∣

h

π(x+α)
,
∂

∂xj

∣
∣
∣
∣

h

π(x+α)

〉

= 0,

〈
∂

∂yi

∣
∣
∣
∣

h

π(x+α)
,
∂

∂yj

∣
∣
∣
∣

h

π(x+α)

〉

= 0.

Hence the metric on P(V ⊕ V ∗) has on U+0 the expression given in the state-
ment.

(v) We have

J
∂

∂xi

∣
∣
∣
∣
π(x+α)

= π∗J0

(
∂

∂xi

∣
∣
∣
∣

h

π(x+α)

)

= π∗
(

∂

∂xi

∣
∣
∣
∣

h

π(x+α)

)

= ∂

∂xi

∣
∣
∣
∣
π(x+α)

,

and similarly,

J
∂

∂yi

∣
∣
∣
∣
π(x+α)

=− ∂

∂yi

∣
∣
∣
∣
π(x+α)

.
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Hence

J =
∑

i

(
∂

∂xi
⊗ dxi − ∂

∂yi
⊗ dyi

)

.

Problem 6.171 Let os be the Lie algebra with generators P,X,Y,Q, and non-null
brackets

[X,Y ] = P, [Q,X] = Y, [Q,Y ] = −X.
The corresponding simply connected Lie group Os is called the harmonic oscilla-
tor group, or simply the oscillator group, and it can be realised as R

4 with group
operation

(
p′′, x′′, y′′, q ′′

)= (p, x, y, q) · (p′, x′, y′, q ′),
given by

p′′ = p+ p′ + 1

2

(
x′(x sinq − y cosq)+ y′(x cosq + y sinq)

)
,

x′′ = x + x′ cosq − y′ sinq, y′′ = y + x′ sinq + y′ cosq, q ′′ = q + q ′.
Consider the family of Lorentz inner products on os given, with respect to the

basis above, by

〈· , ·〉ε =

⎛

⎜
⎜
⎝

ε 0 0 1
0 1 0 0
0 0 1 0
1 0 0 ε

⎞

⎟
⎟
⎠ , −1< ε < 1.

(i) Show that gε has Lorentzian signature.
(ii) Find the explicit expression of the family of corresponding left-invariant

Lorentz metrics gε on Os.
(iii) Compute the Levi-Civita connection, the curvature tensor field, the Ricci ten-

sor, the scalar curvature, and the Einstein tensor

r− 1

2
sgε

of this space.

Remark The group Os was introduced by Streater [34], who named it harmonic
oscillator group because os has the same brackets that the operators in the harmonic
oscillator problem,

P = 1, X = ∂

∂x
, Y = x, Q= 1

2

(

− ∂2

∂x2
+ x2

)

,

acting on functions of x.
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The group Os may be considered (see Problem 4.69) as a semi-direct product
H �R, where H ≡ R×C is the three-dimensional Heisenberg group, with group
operation

(p, z, q) · (p′, z′, q ′)=
(

p+ p′ + 1

2
Im
(
z̄ eiqz′

)
, z+ eiqz′, q + q ′

)

.

Moreover, if ε = 0, the corresponding Lorentzian metric is also right-invariant and
hence (Os, g0) is a symmetric space. In the other cases, gε is not bi-invariant.

The relevant theory is developed, for instance, in Medina [22], Medina and Revoy
[23] and [9].

Solution

(i) It suffices to give a suitable gε-orthonormal basis. If we put

E = P −Q√
2− 2ε

, F = P +Q√
2+ 2ε

,

then it is immediate that {E,X,Y,F } is an orthonormal basis of (os, gε), that
is, the matrix of gε with respect to this basis is

gε ≡

⎛

⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ .

(ii) In general, if g denote a left-invariant metric on a Lie group G, e the identity
element of G and s an arbitrary element of G, one has

ge

(
∂

∂xi

∣
∣
∣
∣
e

,
∂

∂xj

∣
∣
∣
∣
e

)

= gs

(

Ls∗
(

∂

∂xi

∣
∣
∣
∣
e

)

,Ls∗
(

∂

∂xj

∣
∣
∣
∣
e

))

= ( tLs∗gsLs∗
)
(

∂

∂xi

∣
∣
∣
∣
e

,
∂

∂xj

∣
∣
∣
∣
e

)

,

that is,

gs = tL−1
s∗ ge L−1

s∗ .

In the present case we have

L(p,x,y,q)∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂p′′
∂p′

∂p′′
∂x′

∂p′′
∂y′

∂p′′
∂q ′

∂x′′
∂p′

∂x′′
∂x′

∂x′′
∂y′

∂x′′
∂q ′

∂y′′
∂p′

∂y′′
∂x′

∂y′′
∂y′

∂y′′
∂q ′

∂q ′′
∂p′

∂q ′′
∂x′

∂q ′′
∂y′

∂q ′′
∂q ′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(p′,x′,y′,q ′)=0
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=

⎛

⎜
⎜
⎝

1 1
2 (x sinq − y cosq) 1

2 (x − cosq + y sinq) 0

0 cosq − sinq 0
0 sinq cosq 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

so after computation we deduce that

(gε)(p,x,y,q) = tL−1
(p,x,y,q)∗(gε)(0,0,0,0) L

−1
(p,x,y,q)∗

=

⎛

⎜
⎜
⎜
⎜
⎝

ε ε
2y − ε

2x 1
ε
2y

ε
4y

2 + 1 − ε
4xy

1
2y

− ε
2x − ε

4xy
ε
4x

2 + 1 − 1
2x

1 1
2y − 1

2x ε

⎞

⎟
⎟
⎟
⎟
⎠
.

(iii) The Koszul formula for the Levi-Civita connection ∇ gives, for each fixed ε,

2gε(∇UV,W)= gε
([U,V ],W )− gε

([V,W ],U)+ gε
([W,U ],V ),

for all U,V,W ∈ os. So, the covariant derivatives between generators are given
by

∇PX =∇XP =−ε
2
Y, ∇XQ=−∇QX =−1

2
Y, ∇P Y =∇YP = ε

2
X,

∇YQ=−∇QY = 1

2
X, ∇XY =−∇YX = 1

2
P.

The non-trivial components of the curvature tensor field, with

R(U,V )W =∇U∇VW −∇V∇UW −∇[U,V ]W,

are thus given by

R(P,X)P = ε2

4
X, R(P,Y )P = ε2

4
Y, R(P,X)X =−ε

4
P,

R(P,Y )Y =−ε
4
P, R(P,X)Q= ε

4
X, R(P,Y )Q= ε

4
Y,

R(X,Y )X =−3ε

4
Y, R(X,Y )Y = 3ε

4
X, R(X,Q)P =−ε

4
X,

R(Y,Q)P =−ε
4
Y, R(X,Q)X = 1

4
P, R(Y,Q)Y = 1

4
P,

R(X,Q)Q=−1

4
X, R(Y,Q)Q=−1

4
Y.
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The Ricci tensor is defined by r(U,V ) = tr(W �→ R(U,W)V ) so, with re-
spect to the basis {P,X,Y,Q}, it is given by

r=

⎛

⎜
⎜
⎜
⎜
⎝

ε2

2 0 0 ε
2

0 − ε
2 0 0

0 0 − ε
2 0

ε
2 0 0 1

2

⎞

⎟
⎟
⎟
⎟
⎠
,

and the scalar curvature (which is defined by tr(r)) is given in terms of the
orthonormal basis in (i) above by

s=−r(E,E)+ r(X,X)+ r(Y,Y )+ r(F,F )=−ε
2
.

The Einstein tensor is thus given by

r− 1

2
sgε = 1

4

⎛

⎜
⎜
⎝

3 ε2 0 0 3 ε
0 −ε 0 0
0 0 −ε 0

3 ε 0 0 2+ ε2

⎞

⎟
⎟
⎠ .

Problem 6.172 Let

G=
⎧
⎨

⎩

⎛

⎝
1/a 0 0

0 a b

0 0 1

⎞

⎠ ∈GL(3,R) : a > 0

⎫
⎬

⎭
.

Prove:

(i) G is a closed subgroup of GL(3,R).
(ii) G does not admit a pseudo-Riemannian bi-invariant metric.

Hint (to (ii)) Show that g = λω1 ⊗ω1, where ω1 = da/a, is the general expression
of a bi-invariant metric; but such a metric g is singular.

Solution

(i) We have
⎛

⎝
1/a 0 0

0 a b

0 0 1

⎞

⎠

⎛

⎝
1/a′ 0 0

0 a′ b′
0 0 1

⎞

⎠=
⎛

⎝
1/aa′ 0 0

0 aa′ ab′ + b
0 0 1

⎞

⎠ ∈G (�)

and
⎛

⎝
1/a 0 0

0 a b

0 0 1

⎞

⎠

−1

=
⎛

⎝
a 0 0
0 1/a −b/a
0 0 1

⎞

⎠ ∈G.
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Therefore, G is an abstract subgroup of GL(3,R).
If a sequence in G of matrices

⎛

⎝
1/an 0 0

0 an bn
0 0 1

⎞

⎠

goes as n→∞ to the matrix

A=
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ ∈GL(3,R),

computing the limit we have

a12 = a13 = a21 = a31 = a32 = 0, a33 = 1,

lim
n→∞

1

an
= a11, lim

n→∞an = a22,

and thus a11 � 0, a22 � 0, a11a22 = 1, so one has a11 > 0, a22 > 0, then A ∈G.
Hence, G is a closed subgroup of GL(3,R).

(ii) Suppose

X =
⎛

⎝
1/x 0 0

0 x y

0 0 1

⎞

⎠ , A=
⎛

⎝
1/a 0 0

0 a b

0 0 1

⎞

⎠ .

The equations of translations are

LA ≡
{
x̄ = ax,
ȳ = ay + b, RA ≡

{
x̄ = ax,
ȳ = bx + y.

A basis of left-invariant 1-forms is {ω1 = dx/x, ω2 = dy/x}. In fact,

L∗Aω1 = dx̄

x̄
= dx

x
= ω1, L∗Aω2 = dȳ

x̄
= dy

x
= ω2.

A basis of right-invariant differential 1-forms is

{ω̄1 = ω1, ω̄2 = xω2 − yω1}.
In fact,

R∗Aω̄1 = dx̄

x̄
= dx

x
= ω̄1, R∗Aω̄2 = x̄ dȳ

x̄
− ȳ dx̄

x̄
= dy − y

x
dx = ω̄2.

Hence, the most general form of a left-invariant symmetric bilinear (0,2) tensor
is

g = λω1 ⊗ω1 +μ(ω1 ⊗ω2 +ω2 ⊗ω1)+ ν ω2 ⊗ω2, λ,μ, ν ∈R.
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Suppose g is also right-invariant. Since

R∗Aω2 = dȳ

x̄
= b dx + dy

ax
= b

a
ω1 + 1

a
ω2,

we would have

R∗A g = λω1 ⊗ω1 +μ
{

ω1 ⊗
(
b

a
ω1 + 1

a
ω2

)

+
(
b

a
ω1 + 1

a
ω2

)

⊗ω1

}

+ ν
(
b

a
ω1 + 1

a
ω2

)

⊗
(
b

a
ω1 + 1

a
ω2

)

.

If R∗Ag = g for all A ∈G, we necessarily have μ= ν = 0, thus g = λω1⊗ω1
is the most general expression of the bi-invariant metric. But it is singular.

Problem 6.173 Let M be the pseudo-Euclidean space with metric g =∑n
i=1 εi dxi

⊗ dxi , εi =±1, and let

Δ=−
n∑

i=1

εi
∂2

∂(xi)2

be the Laplacian on M .
Prove that the Laplace equation Δf = 0, f ∈ C∞M , has solution f = ψ(Ω),

where

ψ(Ω)=
⎧
⎨

⎩

A log |Ω| +B if n= 2,
A

|Ω| 12 (n−2)
+B if n > 2,

and Ω = 1
2

∑n
i=1 εi(x

i − xi0)
2, in any neighbourhood in which Ω does not vanish

and has constant sign.
The reader can find much relevant geometric theory in Ruse, Walker and Will-

more [30].

Solution If n= 2, one has

Δψ(Ω)=−
2∑

i=1

εi
∂2

∂(xi)2

(
A log |Ω| +B)=−

2∑

i=1

εiA
∂

∂xi

εi(x
i − xi0)
|Ω|

= −A
2∑

i=1

Ω − (xi − xi0)εi(xi − xi0)
Ω2

=−A2Ω − 2Ω

Ω2
= 0.

For n� 3, we have

Δψ(Ω)=−
n∑

i=1

εi
∂2

∂(xi)2

(
A

|Ω| 12 (n−2)
+B

)
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=−A
n∑

i=1

εi
∂2

∂(xi)2

∣
∣
∣
∣
∣

1

2

n∑

j=1

εj
(
xj − xj0

)2
∣
∣
∣
∣
∣

− n
2+1

=−A
(

−n
2
+ 1

) n∑

i=1

εi
∂

∂xi

[(

±1

2

n∑

j=1

εj
(
xj − xj0

)2
)− n

2

× (±εi
(
xi − xi0

))
]

=−A
(

−n
2
+ 1

) n∑

i=1

[

−n
2
εi

{

±1

2

n∑

j=1

εj
(
xj − xj0

)2
}− n

2−1

× {±εi
(
xi − xi0

)}{±εi
(
xi − xi0

)}+
(

±1

2

n∑

j=1

εj
(
xj − xj0

)2
)− n

2

(±1)

]

=
{−A(−n

2 + 1)(−nΩ− n
2−1Ω + nΩ− n

2 )= 0 if Ω > 0,

−A(−n
2 + 1)(nΩ− n

2−1Ω − nΩ− n
2 )= 0 if Ω < 0.

Problem 6.174 Let (R2, g) be the pseudo-Riemannian manifold with

g = 4

c

(
cosh2 y dx2 − dy2).

Calculate the Laplacian Δ on functions f ∈ C∞R
2.

Solution The non-vanishing Christoffel symbols are

Γ 1
12 = tanhy, Γ 2

11 =
1

2
sinh 2y.

Now applying the usual formula (valid in every local coordinate system)

Δf =−
∑

i,j

gij
(

∂2f

∂xi∂xj
−
∑

k

Γ k
ij

∂f

∂xk

)

,

we deduce

Δf =− c
4

(
1

cosh2 y

∂2f

∂x2
− ∂2f

∂y2
− tanhy

∂f

∂y

)

.

Problem 6.175 Let x : [a, b] × (−δ, δ)→M be a variation of a segment γ (u) =
x(u,0) of a geodesic on a Riemannian manifold (M,g). For each v ∈ (−δ, δ), let
Lx(v) be the length of the longitudinal curve u→ x(u, v). Lx is a real-valued func-
tion, where Lx(0) denotes the length of the given segment γ of the geodesic.
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Compute the second variation of arc length, L′′x(0), by the usual formula and
also directly from Lx , in the following cases (equipped with the respective usual
metrics):

(i) In S2, x(u, v)= (cosv cosu, cosv sinu, sinv), 0 � u� π .
(ii) In R

2, x(u, v)= (u coshv, v), −1 � u� 1.

(iii) In R
2, x(u, v)=

{
(u, vu) if u∈[0,1],
(u, v(2−u)) if u∈[1,2].

The relevant theory is developed, for instance, in O’Neill [26, Chap. 10].

Solution

(i) The ends of x(u, v) are x(0, v) = (cosv,0, sinv) and x(π, v) = (− cosv,0,
sinv), for v ∈ (−δ, δ). For v = 0 we have the curve

γ : x(u,0)= (cosu, sinu,0), 0 � u� π,

with origin (1,0,0) and end (−1,0,0). For v =−δ we have the curve

x(u,−δ)= (cos δ cosu, cos δ sinu,− sin δ),

with origin (cos δ,0,− sin δ) and end (− cos δ,0,− sin δ); for v = δ,

x(u, δ)= (cos δ cosu, cos δ sinu, sin δ).

The curve x(u,0) is a segment of a geodesic. The length of x(u, v), for a given
v, is

Lx(v)=
∫ π

0

√
(
xu(u, v)

)2 du2 =
∫ π

0
cosv du= π cosv.

The length of γ is Lx(0)= π . The second variation of the arc on x is

L′′(0)= d2L

dv2

∣
∣
∣
∣
v=0
= (−π cosv)v=0 =−π,

where L= Lx .
Since γ is a geodesic, it must be L′(0)= 0. In fact, we have

L′(0)= dL

dv

∣
∣
∣
∣
v=0
= (−π sinv)v=0 = 0.

As for Synge’s formula (see p. 598), since S2 is a space of constant curvature
1, one has

g
(
R
(
V,γ ′

)
V,γ ′

)= g(V,γ ′)g(V,γ ′)− g(V,V )g(γ ′, γ ′),
where V denotes the variation vector field V (u)= (∂x/∂v)v=0, given by

V (u)= (− sinv cosu,− sinv sinu, cosv)v=0 = (0,0,1),
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Fig. 6.19 The variation
vector field on γ

(see Fig. 6.19) and γ ′(u)= (− sinu, cosu,0), thus c= |γ ′| = 1. Therefore,

g(V,V )= 1, g
(
γ ′, γ ′

)= 1,

g
(
V,γ ′

)= 0, g
(
R
(
V,γ ′

)
V,γ ′

)=−1.

We have V ′ = (0,0,0), thus g(V ′⊥,V ′⊥) = 0. On the other hand, the trans-
verse acceleration vector field A(u) on γ is given by

A(u)= ∂2

∂v2

∣
∣
∣
∣
v=0

(cosv cosu,− cosv sinu, sinv)

= (− cosv cosu,− cosv sinu, − sinv)v=0 = (− cosu,− sinu,0),

from which g(γ ′,A)= 0 and L′′(0)=− ∫ π0 du=−π ; that is, the same result
as before.

(ii) The ends of x(u, v) are

x(−1, v)= (− coshv, v), x(1, v)= (coshv, v).

One has v ∈ (−δ, δ). For v = 0 we have the curve in R
2

γ : x(u,0)= (u,0), −1 � u� 1,

which is obviously a segment of a geodesic. For v =−δ, we have the curve

x(u,−δ)= (u cosh δ,−δ),
with origin (− cosh δ,−δ) and end (cosh δ,−δ). For v = δ, we have the curve

x(u, δ)= (u cosh δ, δ),

with origin (− cosh δ, δ) and end (cosh δ, δ). The length of x(u, v) is

Lx(v)=
∫ 1

−1

(
cosh2 v

) 1
2 du= 2 coshv.
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The length of γ is Lx(0)= 2. The second variation of the arc on x is

L′′(0)= d2L

dv2

∣
∣
∣
∣
v=0
= (2 coshv)v=0 = 2.

As γ is a geodesic, it must be L′(0)= 0. In fact, we have

L′(0)= (2 sinhv)v=0 = 0.

As for Synge’s formula, we have c = |γ ′| = 1 and R = 0 as M = R
2 with its

usual metric. Moreover,

V (u)= ∂

∂v

∣
∣
∣
∣
v=0

(u coshv, v)= (u sinhv,1)v=0 = (0,1),

and thus V ′ = (0,0), so that V
′⊥ = (0,0). We have

A(u)= ∂2

∂v2

∣
∣
∣
∣
v=0

x(u, v)= (u coshv,0)v=0 = (u,0),

so that one has g(γ ′,A)= u. Hence L′′(0)= [g(γ ′,A)]1−1 = 2, as before.
(iii) For v = 0, we have the curve

γ : x(u,0)= (u,0), u ∈ [0,2],
which is a segment of a geodesic. For v =−δ, we have the curve

x(u,−δ)=
{
(u,−δu) if u ∈ [0,1],
(u,−δ(2− u)) if u ∈ [1,2],

and for v = δ the symmetric one with respect to the u-axis. The length of
x(u, v) is

Lx(v)=
∫ 1

0

(
1+ v2) 1

2 du+
∫ 2

1

(
1+ v2) 1

2 du= 2
√

1+ v2.

The length of γ is Lx(0)= 2. The second variation of the arc on x is

L′′(0)= d2L

dv2

∣
∣
∣
∣
v=0
= d

dv

∣
∣
∣
∣
v=0

(

2
v√

1+ v2

)

= 2.

As γ is a geodesic, it must be L′(0)= 0. In fact,

L′(0)=
(

2v√
1+ v2

)

v=0
= 0.
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As for Synge’s formula, we have c= |γ ′| = 1. Furthermore, one has R = 0,
and

V = ∂

∂v

∣
∣
∣
∣
v=0

x(u, v)=
{
(0, u) if u ∈ [0,1],
(0,2− u) if u ∈ [1,2].

V ′ =
{
(0,1) if u ∈ [0,1],
(0,−1) if u ∈ [1,2].

g
(
V ′, γ ′

)=
{
(0,1) · (1,0)= 0 if u ∈ [0,1],
(0,−1) · (1,0)= 0 if u ∈ [1,2].

Thus V ′⊥ = V ′;

g
(
V ′⊥,V ′⊥

)= 1, A= ∂2

∂v2

∣
∣
∣
∣
v=0

x(u, v)=
{
(0,0) if u ∈ [0,1],
(0,0) if u ∈ [1,2].

Hence, L′′(0)= ∫ 2
0 du= 2, as before.

Problem 6.176 Let M be an embedded submanifold of the paracomplex projective
space P(V ⊕ V ∗) (see Problem 6.170), such that the metric inherited on M from
g is non-degenerate, and denote by N the normal bundle N =⋃p∈M Np , where

Np = (TpM)⊥, which exists by the non-degeneracy of the induced metric. Such a
submanifold is said to be totally umbilical if there exists ξ ∈ ΓN such that

α(X,Y )= g(X,Y )ξ, X,Y ∈X(M),

where α(X,Y ) is the second fundamental form and ξ is called the normal curvature
vector field. Then, for such a submanifold:

(i) Find the expression of the Codazzi equation.
(ii) Find the expression of the Ricci equation.

(iii) Prove, applying Gauss equation, that if J (TM)⊂N , then

R(X,Y,Z,W)= (1+ g(ξ, ξ))(g(X,Z)g(Y,W)− g(X,W)g(Y,Z)
)
.

The relevant theory is developed, for instance, in [12].

Solution

(i) If ∇ denotes the Levi-Civita connection of any pseudo-Riemannian submani-
fold M , we have

∇XY = τ ∇̃XY, α(X,Y )= ν∇̃XY, Aη =−τ ∇̃Xη, ∇⊥Xη= ν∇̃Xη,
where X,Y ∈ X(M); η ∈ ΓN; τ and ν denote the “tangential part” and the
“normal part”, respectively; ∇̃ is the Levi-Civita connection of P(V ⊕ V ∗);
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∇⊥ denotes the connection induced in N; and

g(AηX,Y )= g
(
α(X,Y ), η

)
.

Codazzi’s equation is written in general as

−νR̃(X,Y )Z = (∇̂Xα)(Y,Z)− (∇̂Y α)(X,Z),
where ∇̂Xα is defined by

(∇̂Xα)(Y,Z)=∇⊥X
(
α(Y,Z)

)− α(∇XY,Z)− α(Y,∇XZ).
If the pseudo-Riemannian manifold M is moreover totally umbilical, then the
previous equation reduces to

(∇̂Xα)(Y,Z)=∇⊥X
(
g(Y,Z)ξ

)− g(∇XY,Z)ξ − g(Y,∇XZ)ξ
=X(g(Y,Z))ξ + g(Y,Z)∇⊥Xξ − g(∇XY,Z)ξ −

(
g(Y,∇XZ)

)
ξ

= g(Y,Z)∇⊥Xξ + (∇Xg)(Y,Z)= g(Y,Z)∇⊥Xξ.
Hence, on account of the expression for the curvature of P(V ⊕ V ∗) in the
remark in Problem 6.170, we have for Codazzi’s equation

−νR̃(X,Y )Z =−ν(g(X,Z)Y − g(Y,Z)X
+ g(X,JZ)JY − g(Y,JZ)JX+ 2g(X,JY )JZ

)

=−g(X,JZ)νJY + g(Y,JZ)νJX+ 2g(X,JY )νJZ

= g(Y,Z)∇⊥Xξ − g(X,Z)∇⊥Y ξ.
That is,

g(X, τJZ)νJY − g(Y, τJZ)νJX+ 2g(X, τJY )νJZ

= g(Y,Z)∇⊥Xξ − g(X,Z)∇⊥Y ξ.
(ii) Let R∇⊥ be the curvature tensor field of the connection ∇⊥ in N . Then, Ricci’s

equation is

νR̃(X,Y )η=R∇⊥(X,Y )η− α(AηX,Y )+ α(AηY,X),

X,Y ∈X(M), η ∈N.
As

g(AηX,Y )= g
(
α(X,Y ), η

)= g(X,Y )g(ξ, η),
we have AηX = g(ξ, η)X and α(AηX,Y ) = g(ξ, η)g(X,Y )ξ . Hence, Ricci’s
equation reduces to

νR̃(X,Y )η=R∇⊥(X,Y )η.
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(iv) If J (TM)⊂N, direct application of Gauss’ equation gives us

R(X,Y,Z,W)= R̃(X,Y,Z,W)+ g(α(X,Z),α(Y,W)
)

− g(α(Y,Z),α(X,W)
)

= g(X,Z)g(Y,W)− g(X,W)g(Y,Z)− g(X,JZ)g(Y,JW)

+ g(X,JW)g(Y,JZ)− 2g(X,JY )g(Z,JW)

+ g(X,Z)g(Y,W)g(ξ, ξ)− g(Y,Z)g(X,W)g(ξ, ξ)

= (1+ g(ξ, ξ))(g(X,Z)g(Y,W)− g(X,W)g(Y,Z)
)
,

as wanted.
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Chapter 7
Some Formulas and Tables

Abstract This chapter contains a 56-page-long list of formulae from the calculus
on manifolds, and tables concerning different topics: Lie groups, Lie algebras and
symmetric spaces, a list of Poincaré polynomials of compact simple Lie groups, an
overview of real forms of classical complex simple Lie algebras and their corre-
sponding simple Lie groups, a table of irreducible Riemannian symmetric spaces
of type I and III, a table of Riemannian symmetric spaces of classical type with
noncompact isotropy group, etc. One can find the formulae for Christoffel symbols,
the curvature tensor, Bianchi identities, Ricci tensor, the basic differential opera-
tors, the expression for conformal changes of Riemannian metrics, Cartan structure
equations for pseudo-Riemannian manifolds, and many more. Several of these for-
mulae are used throughout the book; others are not, but they have been included
since such a collection might prove useful as an aide-mémoire, also to lecturers and
researchers.

Chapter 1

• Stereographic projection σ (from either the north pole or the south pole) of the
sphere Sn((0, . . . ,0),1) with centre (0, . . . ,0) ∈R

n+1 and radius 1 onto the equa-
torial hyperplane:

UN
σN−→ R

n

(
x1, . . . , xn+1

) �−→
(

x1

1 − xn+1
, . . . ,

xn

1 − xn+1

)

US
σS−→ R

n

(
x1, . . . , xn+1

) �−→
(

x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)

where

Sn =
{
(
x1, . . . , xn+1) ∈R

n+1 :
n+1∑

i=1

(
xi
)2 = 1

}

,

UN = {(x1, . . . , xn+1) ∈ Sn+1 : xn+1 �= 1
}
,

US = {(x1, . . . , xn+1) ∈ Sn+1 : xn+1 �= −1
}
.

P.M. Gadea et al., Analysis and Algebra on Differentiable Manifolds,
Problem Books in Mathematics, DOI 10.1007/978-94-007-5952-7_7,
© Springer-Verlag London 2013
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• Inverse map σ−1
N of the stereographic projection from the north pole of the sphere

Sn((0, . . . ,0),1) onto the equatorial hyperplane:

σ−1
N

(
y1, . . . , yn

)=
(

2y1

|y|2 + 1
, . . . ,

2yn

|y|2 + 1
,
|y|2 − 1

|y|2 + 1

)
, |y|2 =

n∑

i=1

(
yi
)2
.

• Stereographic projection σN from the north pole of Sn((0, . . . ,0, r), r) ∈ R
n+1

with centre (0, . . . ,0, r) ∈ R
n+1 and radius r onto the hyperplane xn+1 = 0 tan-

gent to the south pole:

σN
(
x1, . . . , xn+1)=

(
2rx1

2r − xn+1
, . . . ,

2rxn

2r − xn+1

)
.

• Inverse map σ−1
N of the stereographic projection from the north pole of the sphere

Sn((0, . . . ,0, r), r) onto the hyperplane xn+1 = 0:

σ−1
N

(
y1, . . . , yn

)=
(

4r2y1

4r2 + |y|2 , . . . ,
4r2yn

4r2 + |y|2 ,
2r|y|2

4r2 + |y|2
)
.

• Differential of a map Φ : M →N between differentiable manifolds at p ∈M , in
terms of coordinate systems (U,x1, . . . , xm) and (V , y1, . . . , yn) around p and
Φ(p):

Φ∗p
(

∂

∂xi

∣∣∣
∣
p

)
=

n∑

j=1

∂(yj ◦Φ)

∂xi
(p)

∂

∂yj

∣∣∣
∣
Φ(p)

, i = 1, . . . ,m.

• A diffeomorphism between R
n and the open cube (−1,1)n ⊂ R

n:

ϕ : Rn → (−1,1)n,
(
x1, . . . , xn

) �→ (
tanhx1, . . . , tanhxn

)
.

• Standard local coordinates (x1, . . . , xn, y1, . . . , yn) of the tangent bundle
(TM,π,M) on a coordinate neighbourhood π−1(U) of TM over a coordinate
neighbourhood U for a coordinate system (U,x1, . . . , xn) around p ∈M :

(
x1, . . . , xn, y1, . . . , yn

)
(v)

= ((x1 ◦ π)(v), . . . , (xn ◦ π)(v),dy1(v), . . . ,dyn(v)
)
, v ∈ TpM.

• A property of the bracket of vector fields (f,g ∈ C∞M ; X,Y ∈ X(M)):

[fX,gY ] = fg[X,Y ] + f (Xg)Y − g(Yf )X.

• Jacobi identity for vector fields:

[[X,Y ],Z]+ [[Y,Z],X]+ [[Z,X], Y ]= 0.
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• A parallelisation of S3 by unit vectors fields:

Xp =
(

−y
∂

∂x
+ x

∂

∂y
− t

∂

∂z
+ z

∂

∂t

)

p

,

Yp =
(

−z
∂

∂x
+ t

∂

∂y
+ x

∂

∂z
− y

∂

∂t

)

p

,

Zp =
(

−t
∂

∂x
− z

∂

∂y
+ y

∂

∂z
+ x

∂

∂t

)

p

(p ∈ S3 = {(x, y, z, t) ∈ R
4 : x2 + y2 + z2 + t2 = 1}).

• Image vector field Φ · X ∈ X(N) of X ∈ X(M) by the diffeomorphism Φ :
M →N :

(Φ ·X)p =Φ∗(XΦ−1(p)), p ∈N.

• A non-vanishing vector field on the sphere S2n+1:

Xp = −x2 ∂

∂x1

∣∣∣∣
p

+ x1 ∂

∂x2

∣∣∣∣
p

+ · · · − x2n+2 ∂

∂x2n+1

∣∣∣∣
p

+ x2n+1 ∂

∂x2n+2

∣∣∣∣
p

.

Chapter 2

• Nijenhuis torsion of two (1,1) tensor fields A,B:

S(X,Y )= [AX,BY ] + [BX,AY ] +AB[X,Y ] +BA[X,Y ]
−A[X,BY ] −A[BX,Y ] −B[X,AY ] −B[AX,Y ].

• Nijenhuis tensor of a (1,1) tensor field J :

N(X,Y ) = [JX,JY ] − J [JX,Y ] − J [X,JY ] + J 2[X,Y ],

Ni
jk =

∑

l

(
J lj
∂J ik

∂xl
− J lk

∂J ij

∂xl
+ J il

∂J lj

∂xk
− J il

∂J lk

∂xj

)
.

• Kulkarni–Nomizu product of two symmetric (0,2) tensors h, k:

(h � k)(X,Y,Z,W) = h(X,Z)k(Y,W)+ h(Y,W)k(X,Z)

− h(X,W)k(Y,Z)− h(Y,Z)k(X,W).

• Exterior or “wedge” or “Grassmann” product of differential forms:

(α ∧ β)p = αp ∧ βp, p ∈M, α ∈ΛrM, β ∈ΛsM;
(αp ∧ βp)(X1, . . . ,Xr+s)

= 1

r!s!
∑

σ∈Sr+s

(sgnσ)αp(Xσ(1), . . . ,Xσ(r))βp(Xσ(r+1), . . . ,Xσ(r+s))
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=
∑

σ∈Sr+s

σ (1)<···<σ(r)
σ (r+1)<···<σ(r+s)

(sgnσ)αp(Xσ(1), . . . ,Xσ(r))βp(Xσ(r+1), . . . ,Xσ(r+s)),

Xi ∈ TpM, i = 1, . . . , r + s;
α ∧ β = (−1)rsβ ∧ α, α ∈ΛrM, β ∈ΛsM.

• Exterior differential d : Λ∗M →Λ∗M :

(i) If f ∈ C∞M , then df ∈Λ1M is the usual differential of f .
(ii) d is a linear map such that d(ΛrM)⊂Λr+1M .

(iii) d(α ∧ β)= dα ∧ β + (−1)degαα ∧ dβ (α homogeneous).
(iv) d2 = 0.

• Relation between the bracket product of vector fields and the exterior differential
of a differential 1-form:

(dω)(X,Y )=X
(
ω(Y )

)− Y
(
ω(X)

)−ω
([X,Y ]). (7.1)

• Relation between the bracket product of vector fields and the exterior differential
of a differential r-form:

(dω)(X0, . . . ,Xr)

=
r∑

i=0

(−1)iXi

(
ω(X0, . . . , X̂i , . . . ,Xr)

)

+
∑

0�i<j�r

(−1)i+jω
([Xi,Xj ],X0, . . . , X̂i , . . . , X̂j , . . . ,Xr

)
. (7.2)

Induced (or pull-back of a) differential form Φ∗θ of θ = fidyi for Φ : M → N

(in terms of local coordinates (x1, . . . , xm), (y1, . . . , yn) on M , N , respectively):

Φ∗θ ≡

⎛

⎜⎜
⎝

∂(y1◦Φ)

∂x1 · · · ∂(yn◦Φ)

∂x1

...
...

∂(y1◦Φ)
∂xm

· · · ∂(yn◦Φ)
∂xm

⎞

⎟⎟
⎠

⎛

⎜
⎝

f1
...

fn

⎞

⎟
⎠≡ ∂(yi ◦Φ)

∂xj
fi dxj .

• Basis of differential 1-forms {μk = μk
l dxl} dual to the basis of vector fields {ei =

λ
j
i ∂/∂x

j }:
(
μi
j

)= t
(
λij
)−1

.

• Some formulas for the Lie derivative:

LXf =Xf, f ∈ C∞M;

(LXY)p = lim
t→0

1

t
(Yp − ϕt∗Yϕ−1

t (p)
), ϕt = local flow of X;
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LXY = [X,Y ];
LY

(
ω(X1, . . . ,Xr)

)

= (LYω)(X1, . . . ,Xr)+
r∑

i=1

ω
(
X1, . . . ,Xi−1, [Y,Xi],Xi+1, . . . ,Xr

);

(LXT )
(
ω1, . . . ,ωr , Y1, . . . , Ys

)

=X
(
T
(
ω1, . . . ,ωr , Y1, . . . , Ys

))−
r∑

i=1

T
(
ω1, . . . ,LXω

i, . . . ,ωr , Y1, . . . , Ys
)

−
s∑

i=1

T
(
ω1, . . . ,ωr , Y1, . . . ,LXYi, . . . , Ys

);

LX(T1 ⊗ T2)= (LXT1)⊗ T2 + T1 ⊗ (LXT2),

L[X,Y ] = [LX,LY ];
LXd = dLX

(X,Y,Xi,Yi ∈ X(M); ω,ωi ∈Λ∗M ; T ,Ti ∈ T r
s M).

• Interior product:

(iXω)(X1, . . . ,Xr−1)= ω(X,X1, . . . ,Xr−1), ω ∈ΛrM;
iX(α ∧ β)= (iXα)∧ β + (−1)rα ∧ iXβ, α ∈ΛrM, β ∈ΛsM;

LXω = iX dω+ diXω;
[LX, iY ] = i[X,Y ].

(7.3)

• Canonical 1-form ϑ and canonical symplectic form Ω on the cotangent bundle
(T ∗M,π,M):

ϑω(X) = ω(π∗X), ω ∈ T ∗M, X ∈ TωT
∗M;

ϑ =
∑

i

pidq
i; Ω = dϑ =

∑

i

dpi ∧ dqi

((q1, . . . , qn,p1, . . . , pn)= local coordinates onT ∗M).
• Hamilton equations:

iσ ′(Ω ◦ σ)+ dH ◦ σ = 0

(H ∈ C∞(T ∗M) and σ : (a, b)→ T ∗M a C∞ curve with tangent vector σ ′).

Chapter 3

• Divergence of a vector field X on an oriented manifold M with fixed volume
element v:

(divX)v = LXv.



552 7 Some Formulas and Tables

• Stokes’ Theorem I:
∫

∂c

ω =
∫

c

dω

(see Theorem 3.3).
• Stokes’ Theorem II:

∫

∂D

ω =
∫

D

dω

(see Theorem 3.6).
• Green’s theorem: for any vector field X on an oriented compact manifold M with

a fixed volume element v,
∫

M

(divX)v = 0.

Chapter 4

Some Usual Lie Groups

• General linear group:

GL(n,C)= {A ∈M(n,C) : detA �= 0
}
.

• Special linear group:

SL(n,C)= {A ∈ GL(n,C) : detA= 1
}
.

• Unitary group:

U(n)= {A ∈M(n,C) : tĀA= I
}

(t = transpose; bar = complex conjugation; I = identity matrix).
• Special unitary group:

SU(n)= {A ∈ U(n) : detA= 1
}
.

• Complex orthogonal group:

O(n,C)= {A ∈M(n,C) : tAA= I
}
.

• Complex special orthogonal group:

SO(n,C)= {A ∈ O(n,C) : detA= 1
}
.

• Symplectic group over C:

Sp(n,C)= {A ∈ GL(2n,C) : tAΩA=Ω
}

(Ω ≡ ( 0 In
−In 0

)= symplectic 2-form on C
2n).
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• Real general linear group:

GL(n,R)= {A ∈M(n,R) : detA �= 0
}
.

• Real special linear group:

SL(n,R)= SL(n,C)∩ GL(n,R)= {A ∈ GL(n,R) : detA= 1
}
.

• Orthogonal group:

O(n)= U(n)∩ GL(n,R)= O(n,C)∩ GL(n,R)= {A ∈ GL(n,R) : tAA= I
}
.

• Special orthogonal group:

SO(n)= {A ∈ O(n) : detA= 1
}
.

• Lorentz group:

O(k, n− k)=
{
A ∈ GL(n,R) : tA

(−Ik 0
0 In−k

)
A=

(−Ik 0
0 In−k

)}
.

• Symplectic group over R:

Sp(n,R)= {A ∈ GL(2n,R) : tAΩA=Ω
}

(Ω =∑n
k=1 dxk ∧ dxn+k ≡ ( 0 In

−In 0

)= symplectic 2-form on R
2n).

• Symplectic group:

Sp(n)= Sp(n,C)∩ U(2n)= {C ∈ GL(2n,C) : tC̄C = I, tCΩC =Ω
}

=
{(

A −B̄

B Ā

)
∈M(2n,C) : tĀA+ tB̄B = I, tAB − tBA= 0

}

= {A+ jB ∈M(n,H) : t(A+ jB)(A+ jB)= I
}

= {A+ jB preserving the quaternionic Hermitian product 〈 , 〉 on H
n
}

(H ≡ C+jC; j2 = −1, a + jb = ā−jb̄, jb = b̄j ∀a, b ∈C, 〈u,v〉 =∑r p̄
rqr , u=

(p1, . . . , pn), v = (q1, . . . , qn) ∈ H
n).

• Sp(n)Sp(1): Let ι : Sp(1) ≡ {q ∈ H : |q| = 1} → SO(4n) be the inclusion given
by ι(q)= diag(Bq,

(n). . . ,Bq) with

Bq =

⎛

⎜⎜
⎝

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

⎞

⎟⎟
⎠ ∈ SO(4).

Then ι(±1) = ±I4n ⊂ SO(4n). The group Sp(n) is a subgroup of SO(4n) and
Sp(n)∩ ι(Sp(1))= {±I4n}. Then, omitting the ι, one defines

Sp(n)Sp(1)= (Sp(n)× Sp(1)
)
/{±I4n} ⊂ SO(4n).
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The action of this group on R
4n ≡ H

n is given by (B,q)v = Bvq̄ , B ∈ Sp(n),
q ∈ Sp(1), v ∈ H

n, and q̄ the quaternionic conjugate of q .
On the other hand, let V be a 4n-dimensional real vector space. A quaternionic

structure on V is a three-dimensional space of EndV given by

Q= RJ1 +RJ2 +RJ3, J 2
k = −I, J3 = J1J2,

JkJl = −JlJk, k, l = 1,2,3.

An orthogonal automorphism A ∈ SO(4n) belongs to Sp(n)Sp(1) if and only if
A ◦ Ja =∑3

b=1 m
b
aJb ◦A, a = 1,2,3, for a certain matrix (ma

b) ∈ SO(3), which
is obtained from the projection homomorphism Sp(n)Sp(1) → Sp(1)/{±Id} =
SO(3). Let

S(Q)= {J = a1J1 + a2J2 + a3J3 ∈Q : a2
1 + a2

2 + a2
3 = 1

}
.

A Euclidean metric g on V is called Hermitian with respect to Q if g(JX,JY )=
g(X,Y ) for J ∈ S(Q), X,Y ∈ V . The pair (Q,g) is called a quaternionic Hermi-
tian structure. Then, for V as a right module over H,

Sp(n)Sp(1)= Aut(Q,g)= {ϕ ∈ GL(V ) : ϕ preserves (Q,g)
}
.

Some Topological Properties of Some Usual Lie Groups

Group dimR Type

GL(n,C) 2n2 cn

SL(n,C) 2(n2 − 1) cn, sc

GL(n,R) n2 2 cc

SL(n,R) n2 − 1 cn

U(n) n2 cn, cp

SU(n) n2 − 1 cn, sc, cp

SU(p, q) (p + q)2 − 1 cn

SU∗(2n) 2(2n2 − 1) cn

SO∗(2n) 2n(n− 1) cn

Group dimR Type

O(n,C) n(n− 1) 2 cc

SO(n,C) n(n− 1) cn

O(n) n(n− 1)/2 2 cc, cp

SO(n) n(n− 1)/2 cn, cp

SO(p, q) (p + q)(p + q − 1)/2 2 cc (∗)
Sp(n,C) 2(2n2 + n) cn

Sp(n) n(2n+ 1) cn, sc, cp

Sp(p, q) (p + q)(2(p + q)+ 1) cn

Sp(n,R) n(2n+ 1) cn

cn = connected; sc = simply connected; 2 cc = 2 connected components; cp = compact; (∗) 0 <
p < p + q

Isomorphisms of Spin(n) with Some Classical Groups

Spin(2) U(1)
Spin(3) SU(2)
Spin(4) SU(2)× SU(2)
Spin(5) Sp(2)
Spin(6) SU(4)

(See, for instance, Harvey [16].)
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Miscellaneous

• Euler angles (of rotations around the x, y, z-axes):

SO(3) = {g(ϕ, θ,ψ)=Rz(ϕ)Rx(θ)Rz(ψ),0 � ϕ,ψ � 2π,0 � θ � π
}
,

Rz(ϕ) =
⎛

⎝
cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞

⎠ , Rx(θ)=
⎛

⎝
1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞

⎠ .

Compact Connected Lie Groups G Acting Effectively and Transitively on Some
Sphere

Sphere G Isotropy

Sn−1 SO(n) SO(n− 1)

S2n−1 U(n) U(n− 1)

SU(n) SU(n− 1)

S4n−1 Sp(n)Sp(1) Sp(n− 1)Sp(1)

Sp(n)U(1) Sp(n− 1)U(1)

Sp(n) Sp(n− 1)

S6 G2 SU(3)

S7 Spin(7) G2

S15 Spin(9) Spin(7)

Real Lie Algebras of Some Lie Groups (Non-vanishing Brackets)

• Two-dimensional solvable non-Abelian Lie algebra with basis {X,Y }:
[X,Y ] =X.

• Special orthogonal so(3) with basis {X,Y,Z}:
[X,Y ] = Z, [Y,Z] =X, [Z,X] = Y.

• Lie algebra h with basis {X,Y,Z} of the Heisenberg group:

[X,Y ] = Z.

• Lie algebra with basis {A,X1, . . . ,Xn−1} of a solvable Lie group that acts simply
transitively on the real hyperbolic space RHn:

[A,Xi] =Xi.
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• Lie algebra with basis {A,X1, Y1, . . . ,Xn−1, Yn−1,U} of a solvable Lie group
that acts simply transitively on the complex hyperbolic space CHn:

[A,Xi] =Xi, [A,Yi] = Yi, [A,U ] = 2U, [Xi,Yi] = −2U.

• Lie algebra with basis {A,Xi,Yi,Zi,Wi,Uj }, i = 1, . . . , n − 1; j = 1,2,3, of
a solvable Lie group that acts simply transitively on the quaternionic hyperbolic
space HHn:

[A,Xi] =Xi, [A,Yi] = Yi, [A,Zi] = Zi, [A,Wi] =Wi,

[A,Uj ] = 2Uj , [Xi,Yi] = −[Zi,Wi] = −2U1,

[Xi,Zi] = [Yi,Wi] = −2U2, [Xi,Wi] = −[Yi,Zi] = −2U3.

For some of these formulas, see [10, 11].

Some Isomorphisms of Classical Lie Algebras

su(2)∼= so(3)∼= sp(1), sl(2,R)∼= su(1,1)∼= so(2,1)∼= sp(1,R),

so(5)∼= sp(2), so(3,2)∼= sp(2,R),

so(4)∼= sp(1)× sp(1), so(4,1)∼= sp(1,1),

su(4)∼= so(6), so(4)∼= so(3)× so(3),

sl(4,R)∼= so(3,3), su∗(4)∼= so(5,1),

su(2,2)∼= so(4,2), su(3,1)∼= so∗(6),
so∗(8)∼= so(6,2), so(3,1)∼= sl(2,C),

so(2,2)∼= sl(2,R)∼= sl(2,R), so∗(4)∼= su(2)× sl(2,R).

Unimodular Three-Dimensional Real Lie Algebras and Their Corresponding Lie
Groups

[e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3, λ1, λ2, λ3 ∈R

Signs of λ1, λ2, λ3 Associated Lie group Description

+,+,+ SU(2) or SO(3) Compact, simple

+,+,− SL(2,R) or O(1,2) Noncompact, simple

+,+,0 E(2) (∗) Solvable

+,−,0 E(1,1) (∗∗) Solvable

+,0,0 Heisenberg group Nilpotent

0,0,0 R⊕R⊕R Abelian

(∗) group of rigid motions of Euclidean 2-space

(∗∗) group of rigid motions of Minkowski 2-space, which is a semi-direct product of subgroups

isomorphic to R⊕R and R, where each t ∈ R acts on R⊕R by the matrix
( et 0

0 e−t

)
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Killing Form B for Some Lie Algebras g

B(X,Y )= tr(adX ◦ adY ), X,Y ∈ g

g B(X,Y )

gl(n,R) 2n tr(XY)− 2 tr(X) tr(Y )

sl(n,R) 2n tr(XY)

su(n) 2n tr(XY)

so(n,C) (n− 2) trXY

so(n) (n− 2) trXY

sp(n,F) (2n+ 2) tr(XY) (F= R,C)

Maurer–Cartan Equations

dω(X,Y )= −ω
([X,Y ]), ω ∈ g

∗, X,Y ∈ g,

dθi = −
∑

j<k

cijkθ
j ∧ θk

(7.4)

({θi} = a basis of left-invariant differential 1-forms on the Lie group G with Lie
algebra g; cijk = structure constants with respect to that basis of differential forms).

The Exponential Map

• Product of exponentials (five first summands of the Campbell–Baker–Hausdorff
formula, cf. [18, p. 670], [24, Sem. V, Lect. 4], [28, Sect. 2.15], [32]):

exp tX · exp tY = 1 + t (X + Y)+ t2

2
[X,Y ] + t3

12

([
X, [X,Y ]]+ [Y, [Y,X]])

− t4

24

[
X,
[
Y, [X,Y ]]]− t5

720

{[[[[X,Y ], Y ], Y ], Y ]

+ [[[[Y,X],X],X],X]

− 2
([[[[X,Y ], Y ], Y ],X]+ [[[[Y,X],X],X], Y ])

+ 6
([[[[X,Y ], Y ],X], Y ]+ [[[[Y,X],X], Y ],X])}+ · · · .

(7.5)
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Simply Connected Compact Simple Lie Groups

G dimG rankG (∗)

SU(n) n2 − 1 n− 1 n� 2

Spin(2n+ 1) 2n2 + n n n� 2

Sp(n) 2n2 + n n n� 3

Spin(2n) 2n2 − n n n� 4

G2 14 2

F4 52 4

E6 78 6

E7 133 7

E8 248 8

(∗) To avoid repetitions

Centre of Some Usual Lie Groups

G Z(G)

SO(2,R) SO(2,R)∼= S1

SO(2n+ 1,R) {I }
SO(2n,R), n > 1 {±I } ∼= Z2

U(n) {e2π iθ I : θ ∈ R/Z} ∼= S1

SU(n) {ωI : ωn = 1} ∼= Zn

Sp(n) {±I } ∼= Z2

Spin(2n+ 1,C) {±I } ∼= Z2

Spin(2n,C) {±I,±τ } ∼= Z2 +Z2 (if n even) (∗)
Spin(2n,C) {±I,±τ } ∼= Z4 (if n odd)

(∗) The centre of Spin(2n,C) is the group {±1,±τ } with three
elements of order 2

Poincaré Polynomials of the Compact Simple Lie Groups

pAn(t) = pSU(n+1)(t)= (1 + t3
)(

1 + t5
) · · · (1 + t2n+1),

pBn(t) = pSO(2n+1)(t)= (1 + t3
)(

1 + t7
) · · · (1 + t4n−1),

pCn(t) = pSp(n)(t)= (1 + t3
)(

1 + t7
) · · · (1 + t4n−1),

pDn(t) = pSO(2n)(t)= (1 + t3
)(

1 + t7
) · · · (1 + t2n−1)(1 + t4n−5),

pG2(t) = (1 + t3
)(

1 + t11),

pF4(t) = (1 + t3
)(

1 + t11)(1 + t15)(1 + t23),

pE6(t) = (1 + t3
)(

1 + t9
)(

1 + t11)(1 + t15)(1 + t17)(1 + t23),
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pE7(t) = (1 + t3
)(

1 + t11)(1 + t15)(1 + t19)(1 + t23)(1 + t27)(1 + t35),

pE8(t) = (1 + t3
)(

1 + t15)(1 + t23)(1 + t27)(1 + t35)(1 + t39)(1 + t47)(1 + t59).

Lie Groups G for the Simple Lie Algebras g over C, Their Compact Real Forms U
and Centre of Ũ (Universal Covering Group of U )

g G U Z(Ũ) dimU

an (n� 1) SL(n+ 1,C) SU(n+ 1) Zn+1 n2 + 2n

bn (n� 2) SO(2n+ 1,C) SO(2n+ 1) Z2 2n2 + n

cn (n� 3) Sp(n,C) Sp(n) Z2 2n2 + n

dn (n� 4) SO(2n,C) SO(2n) Z4 (n odd)
Z2 +Z2 (n even)

2n2 − n

g2 GC

2 G2 Z1 14

f4 FC

4 F4 Z1 52

e6 EC

6 E6 Z3 78

e7 EC

7 E7 Z2 133

e8 EC

8 E8 Z1 248

Connected Complex Lie Groups G for a Given Complex Simple Lie Algebra g

g G

sl(n,C) SL(n,C)

SL(n,C)/{e2π�i/mI, �= 0, . . . ,m− 1} (∗)
so(2n+ 1,C) Spin(2n+ 1,C)

SO(2n+ 1,C)

sp(2n,C) Sp(2n,C)

PSp(2n,C)

so(2n,C) (n odd) Spin(2n,C)

SO(2n,C)

PSO(2n,C)

so(2n,C) (n even) Spin(2n,C)

SO(2n,C)

PSO(2n,C)

Spin(2n,C)/{1, τ } (∗∗)
Spin(2n,C)/{1,−τ }

(∗) For m prime, only SL(n,C) and PSL(n,C) remain

(∗∗) For the meaning of τ , see the table on p. 558 (see [12, p. 369])
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Real Forms of the Classical Simple Lie Algebras over C and Their Corresponding
Simple Lie Groups

sl(n,C) (∼ an−1, n > 1)

su(n) = {A ∈ gl(n,C) :A+ tĀ= 0, trA= 0
}

SU(n) = {A ∈ GL(n,C) : tĀA= I,detA= 1
}

sl(n,R) = {A ∈ gl(n,R) : trA= 0
}

SL(n,R) = {A ∈ GL(n,R) : detA= 1
}

su(p, q) =
{(

A1 A2
tĀ2 A3

)
∈ gl(p + q,C) :A1 ∈ gl(p,C),A1 + tĀ1 = 0,

A3 ∈ gl(q,C),A3 + tĀ3 = 0, trA1 + trA3 = 0,A2 arbitrary

}
,

p + q = n,p � q

SU(p, q) = {A ∈ SL(p + q,C) :Q(Az)=Q(z)

= −z1z̄1 − · · · − zpz̄p + zp+1z̄p+1 + · · · + · · · zp+q z̄p+q
}
,

(p + q = n,p � q)

=
{
A ∈ SL(p + q,C) : tAIp,qĀ= Ip,q =

(−Ip 0
0 Iq

)}

(pseudo-unitary groups if q �= 0;SU(n) if q = 0)

su∗(2n) =
{(

A −B̄

B Ā

)
∈ gl(2n,C) :A,B ∈ gl(n,C), trA+ tr Ā= 0

}

SU∗(2n) = {A ∈ SL
(
2n,C

) :Aτ = τA, τ : C2n → C
2n,

τ : (z1, . . . , z2n
)→ (z̄n+1, . . . , z̄2n,−z̄1, . . . ,−z̄n)

}

so(2n+ 1,C) (∼ bn, n� 1)

so(2n+ 1) = {A ∈ gl(2n+ 1,R) :A+ tA= 0
}

SO(2n+ 1) = {A ∈ GL(2n+ 1,R) : tAA= I
}

so(p, q) =
{(

A1 A2
tA2 A3

)
∈ gl(p + q,R) :A1 ∈ gl(p,R),A3 ∈ gl(q,R),

A1 + tA1 = 0,A3 + tA3 = 0,A2 arbitrary

}
,

p + q = 2n+ 1,p � q

SO(p, q) = {A ∈ SL(p + q,R) :Q(Ax)=Q(x)

= −(x1
)2 + · · · − (xp)2 + (xp+1

)2 + · · · + (x2n+1
)2}

,

(p + q = 2n+ 1,p � q)

= {A ∈ SL(p + q,R) : tAIp,qA= Ip,q
}
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sp(n,C) (∼ cn, n� 1)

sp(n) =
{
A=

(
A1 A2
A3 −tA1

)
∈ gl(2n,C) :A+ tĀ= 0, trA= 0,

Ai ∈ gl(n,C),A2 = tA2,A3 = tA3

}
,
(
sp(n)= sp(n,C)∩ su(2n)

)

Sp(n) = Sp(n,C)∩ SU(2n)

sp(n,R) =
{(

A1 A2
A3 −tA1

)
∈ gl(2n,R) :Ai ∈ gl(n,R),A2 = tA2,A3 = tA3

}

Sp(n,R) = {A ∈ GL(2n,R) : tAΩA=Ω
}

(
Ω = x1 ∧ xn+1 + x2 ∧ xn+2 + · · · + xn ∧ x2n,

symplectic form on R
2n
)

sp(p, q) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

A11 A12 A13 A14
tĀ12 A22

tA14 A24

−Ā13 Ā14 Ā11 −Ā12
tĀ14 −Ā24 −tA12 Ā22

⎞

⎟⎟
⎠ ∈ gl

(
2(p + q),C

) :

A11,A13 ∈ gl(p,C),A12,A14 ∈M(p × q,C),A11 + tĀ11 = 0,

A22 + tĀ22 = 0,A13 = tA13,A24 = tA24

⎫
⎪⎪⎬

⎪⎪⎭

Sp(p, q) = {A ∈ Sp(p + q,C) : tAIp,q,p,qĀ= Ip,q,p,q = diag(−Ip, Iq,−Ip, Iq)
}

(
Sp(p) if q = 0,Sp(n)= Sp(n,C)∩ U(2n),

Sp(p, q)= Sp(p + q,C)∩ U(2p,2q)
)

so(2n,C) (∼ dn, n� 1)

so(2n) = {A ∈ gl(2n,R) :A+ tA= 0
}

so(p, q) =
{(

A1 A2
tA2 A3

)
∈ gl(p + q,R) :A1 ∈ gl(p,R),A1 + tA1 = 0,

A2 arbitrary,A3 ∈ gl(q,R),A3 + tA3 = 0

}
, p + q = 2n,p � q

SO(p, q) p + q = 2n,p � q as SO(p, q), p + q = 2n+ 1,p � q

so∗(2n) =
{(

A1 A2

−Ā2 Ā1

)
∈ gl(2n,C) :A1,A2 ∈ gl(n,C),

A1 + tA1 = 0,A2 = Ā2

}

SO∗(2n) = {A ∈ SO(2n,C) :Q(Az)=Q(z)

= −z1z̄n+1 + zn+1z̄1 − z2z̄n+2 + zn+2z̄2 + · · · − znz̄2n + z2nz̄n
}

=
{
A ∈ SO(2n,C) : tA

(
0 In

−In 0

)
Ā=

(
0 In

−In 0

)}

(See Barut and Ra̧czka [3].)
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System Δ of Roots, Set of Positive Roots Δ+ and Set of Simple Roots Π for the
Simple Lie Algebras over C

(ε1, . . . , εn) usual basis of Rn

an

(n� 1)
V = {v ∈ R

n+1 : 〈v, ε1 + · · · + εn+1〉 = 0}
Δ= {εi − εj , i �= j ; i, j = 1, . . . , n}
Δ+ = {εi − εj , i < j}
Π = {εi − εi+1, i = 1, . . . , n}

bn

(n� 2)
V = R

n

Δ= {±εi ± εj , i < j} ∪ {±εi}, i, j = 1, . . . , n

Δ+ = {εi ± εj , i < j} ∪ {εi}
Π = {εi − εi+1, εn, i = 1, . . . , n− 1}

cn

(n� 3)
V = R

n

Δ= {±εi ± εj , i < j} ∪ {±2εi}, i, j = 1, . . . , n

Δ+ = {εi ± εj , i < j} ∪ {2εi}
Π = {εi − εi+1,2εn, i = 1, . . . , n− 1}

dn

(n� 4)
V = R

n

Δ= {±εi ± εj , i < j ; i, j = 1, . . . , n}
Δ+ = {εi ± εj , i < j}
Π = {εi − εi+1, εn−1 − εn, εn−1 + εn, i = 1, . . . , n− 2}

g2 V = {v ∈ R
3 : 〈v, ε1 + ε2 + ε3〉 = 0}

Δ= {±(ε1 − ε2),±(ε2 − ε3),±(ε1 − ε3)}
∪{±(2ε1 − ε2 − ε3),±(2ε2 − ε1 − ε3),±(2ε3 − ε1 − ε2)}

Δ+ = {ε1 − ε2, ε2 − ε3, ε1 − ε3}
∪{−2ε1 + ε2 + ε3,−2ε2 + ε1 + ε3,−2ε3 + ε1 + ε2}

Π = {ε1 − ε2,−2ε1 + ε2 + ε3}
f4 V = R

8

Δ= {±εi ± εj , i < j} ∪ {±εi} ∪ { 1
2 (±ε1 ± ε2 ± ε3 ± ε4)}

Δ+ = {εi ± εj , i < j} ∪ {εi} ∪ { 1
2 (ε1 ± ε2 ± ε3 ± ε4)}

Π = { 1
2 (ε1 − ε2 − ε3 − ε4), ε4, ε3 − ε4, ε2 − ε3}

e6 V = R
8

Δ= {±εi ± εj , i < j � 5} ∪ { 1
2

∑8
i=1(−1)n(i)εi ,

∑8
i=1 n(i) even, n(i)= 0,1}

Δ+ = {εi ± εj , i > j}
∪ { 1

2 (ε8 − ε7 − ε6 +∑5
i=1(−1)n(i)εi ,

∑5
i=1 n(i)odd}

Π = { 1
2 (ε8 − ε7 − ε6 − ε5 − ε4 − ε3 − ε2 + ε1),

ε2 + ε1, ε2 − ε1, ε3 − ε2, ε4 − ε3, ε5 − ε4}
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(ε1, . . . , εn) usual basis of Rn

e7 V = {v ∈ R
8 : 〈v, ε7 + ε8〉 = 0}

Δ= {±εi ± εj , i < j � 6} ∪ {±(ε7 − ε8)}
∪ { 1

2

∑8
i=1(−1)n(i)εi ,

∑8
i=1 n(i) even}

Δ+ = {εi ± εj , i > j} ∪ {ε8 − ε7}
∪ { 1

2 (ε8 − ε7 +∑6
i=1(−1)n(i)εi ),

∑6
i=1 n(i) even}

Π = { 1
2 (ε8 − ε7 − ε6 − ε5 − ε4 − ε3 − ε2 + ε1),

ε2 + ε1, ε2 − ε1, ε3 − ε2, ε4 − ε3, ε5 − ε4, ε6 − ε5}
e8 V = {v ∈ R

8 : 〈v, ε6 − ε7〉 = 〈v, ε7 + ε8〉 = 0}
Δ= {±εi ± εj , i < j} ∪ { 1

2

∑8
i=1(−1)n(i)εi ,

∑8
i=1 n(i) even}

Δ+ = {εi ± εj , i > j} ∪ { 1
2 (ε8 +∑7

i=1(−1)n(i)εi ),
∑7

i=1 n(i) even}
Π = { 1

2 (ε8 − ε7 − ε6 − ε5 − ε4 − ε3 − ε2 + ε1),

ε2 + ε1, ε2 − ε1, ε3 − ε2, ε4 − ε3, ε5 − ε4, ε6 − ε5, ε7 − ε6}

For more details and a wealth of related information, see Knapp [18].

Some Usual Homogeneous Spaces

• Sphere:

Sn ∼= O(n+ 1)/O(n)∼= SO(n+ 1)/SO(n), n� 1,

S2n+1 ∼= U(n+ 1)/U(n)∼= SU(n+ 1)/SU(n), n� 1.

• Real Grassmann manifold of k-planes in R
n:

Gk

(
R
n
)∼= O(n)

/(
O(k)× O(n− k)

)
.

• Real projective space:

RPn ∼=G1
(
R
n+1)∼= O(n+ 1)

/(
O(1)× O(n)

)∼= SO(n+ 1)/O(n).

• Real Stiefel manifold of k-tuples of orthonormal vectors in R
n:

Vk
(
R
n
)∼= O(n)/O(n− k).

• Complex projective n-space:

CPn ∼= U(n+ 1)
/(

U(1)× U(n)
)∼= SU(n+ 1)

/
S
(
U(1)× U(n)

)

∼= (SU(n+ 1)
/
Zn+1

)
/
(
S
(
U(1)× U(n)

)
/Zn+1

)

(Zn+1 = centre(SU(n+ 1))).
• Quaternionic projective space:

HPn ∼= Sp(n+ 1)
/(

Sp(1)× Sp(n)
)
.
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Some Inclusions of Lie Groups and Their Homogeneous Spaces

F4 ⊃ Spin(9)⊃ Spin(8)⊃ Spin(7)⊃ G2 ⊃ SU(3)⊃ S3 ⊃ 1.

(Respective dimensions: 52, 36, 28, 21, 14, 8, 3, 1.)

M ∼= G/H

S5 SU(3)/SU(2)
S6 G2/SU(3)
S7 Spin(7)/G2

Spin(8)/Spin(7)
S8 Spin(9)/Spin(8)
V2(R

7) G2/SU(2)
S7 × S7 Spin(8)/G2

S15 Spin(9)/Spin(7)
OP2 F4/Spin(9)

Algebra H of Quaternions Basis: {e0, e1, e2, e3} satisfying

e2
0 = e0, e2

i = −e0, e0ei = eie0 = ei, eiej = −ej ei = ek

((i, j, k)= even permutation of (1,2,3)).
Conjugate quaternion of q =∑3

i=0 aiei ∈ H, and relation with the product:

q̄ = a0e0 − a1e1 − a2e2 − a3e3, q1q2 = q̄2q̄1.

Norm n(q) and inverse q−1 of q:

n(q) =√qq̄ =
√√
√√

3∑

i=0

a2
i ∈ R,

q−1 = 1

|q|2 (a0e0 − a1e1 − a2e2 − a3e3)= q̄

|q|2 .

Algebra O of (the Usual) Octonions, Multiplication Table, and Some Associated
Spaces

O = {x = z+ u ∈C⊕C
3 :

(z+ u)
(
z′ + v

)= (zz′ − 〈u,v〉)+ zv + z̄′u+ u ∗ v,
〈 , 〉 : C3 → C

3 the usual Hermitian product,

〈u,v ∗w〉 = det(u, v,w),α,β ∈ C, u, v,w ∈ C
3}.
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Conjugate, trace and norm of x = z+ u ∈O:

x̄ = z̄− u, t (x)= x + x̄ ∈ R, n(x)= √
xx̄ =

√
|z|2 + |u|2 ∈R.

e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 e0 −e3 −e2 −e5 −e4 e7 e6
e2 e2 e3 e0 e1 −e6 −e7 −e4 −e5
e3 e3 e2 −e1 e0 −e7 −e6 e5 e4
e4 e4 e5 e6 e7 e0 e1 e2 e3
e5 e5 e4 e7 e6 −e1 e0 −e3 −e2
e6 e6 −e7 e4 −e5 −e2 e3 −e0 e1
e7 e7 −e6 e5 −e4 −e3 e2 −e1 e0

S7 = {x ∈O : n2(x)= 1
}
,

S6 = {x ∈O : n2(x)= 1, t (x)= 0
}
,

S15 = {x ∈O×O : n2(x)+ n2(y)= 1
}
,

Spin(7)= Aut
(
O, { , , }), {x, y, z} = (xȳ)z,

G2 = {ϕ ∈ Spin(7) : ϕ(1)= 1
}
, 1 ∈ S7.

Chapter 5

• Hopf bundles πC : S3 ⊂ C
2 → S2 and πH : S7 ⊂ H

2 → S4:

π(x, y)= (2yx̄, |x|2 − |y|2).
• Fundamental vector fields on the bundle of linear frames FM over M :

A∗
z =

∑

i,j,k

xik(z)a
k
j ∂/∂x

i
j

(A = (aij ) ∈ M(n,R); z = (X1, . . . ,Xn) ∈ FM ; xi(z) = xi(π(z)); xij (z) =
dxi(Xj )).

• Connection form ω on a principal bundle P(M,G) in terms of forms ωi = σ ∗
i ω,

with local sections σi , defined on open subsets Ui of M :

ωj = Ad
ψ−1
ij
ωi + θij on Ui ∩Uj

({Ui} = open covering of M ; ψij (Ui ∩Uj )→G= transition functions; θij = g-
valued 1-form ψ∗

ij θ ; θ = canonical 1-form on G: θ(X)=X).
• Exterior covariant derivative Dϕ of a tensorial 1-form of type AdG with respect

to a connection in the principal bundle P with connection form ω (X,Y ∈ TuP ,
u ∈ P ):

Dϕ(X,Y )= dϕ(X,Y )+ [ϕ(X),ω(Y )]+ [ω(X),ϕ(Y )].
• Cartan’s structure equation (principal bundle).
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ω the connection form of a connection in a principal G-bundle P , with cur-
vature form Ω ; ω =∑i ω

i ⊗ ei , Ω =∑i Ω
i ⊗ ei , {ei} basis of g; cijk structure

constants with respect to {ei}:
dω(X,Y )= −[ω(X),ω(Y )]+Ω(X,Y ), X,Y ∈ TuP, u ∈ P ;

dω = −[ω,ω] +Ω (simplified expression);

dωi = −
∑

j<k

cijkω
j ∧ωk +Ωi.

• Structure constants of GL(n,R) with respect to the standard basis {Ei
j } of

gl(n,R) (also for C):

crsij,kl = δri δ
j
k δ

s
l − δrkδ

l
i δ
s
j .

• Cartan’s structure equation (vector bundle).
E(M,Fn,GL(n,F),P ), F = R or C, a vector bundle associated to the princi-

pal fibre bundle P ; {Ei
j }, i, j = 1, . . . , n, is a basis of gl(n,F); ω =∑i<j ω

j
i ⊗Ei

j

and Ω =∑i<j Ω
j
i ⊗ Ei

j the connection form and the curvature form of a con-
nection in P :

dωi
j = −

∑

k

ωi
k ∧ωk

j +Ωi
j , i, j = 1, . . . , n.

Linear Connections

• Canonical 1-form θ on the frame bundle (FM,π,M):

θ(X)= z−1(π∗X), θi =
∑

j

Y i
j dxj

(X ∈ Tz(FM), z ∈ FM ; {xi, xij }, i = 1, . . . , n = dimM , local coordinates on

FM ; Y = (xij )
−1).

• Components (or Christoffel symbols) Γ i
jk of a linear connection ∇ on M with

connection form ω =∑i<j ω
i
j ⊗E

j
i ; σ = (X1, . . . ,Xn) a section of FM over an

open subset U of M ; ωU = σ ∗ω (which is a gl(n,R)-valued 1-form on U ). Then:

ωU =
∑

i,j,k

Γ i
jk dxj ⊗Ek

i .

Also, for local coordinate functions (xi) on M ,

∇ ∂

∂xi

∂

∂xj
=
∑

k

Γ k
ij

∂

∂xk
.

• Connection form ω of a linear connection with Christoffel symbols Γ i
jk in terms

of the local coordinates (xi, xjk ) on FM :

ωi
j =

∑

k

Y i
k

(
dxkj +

∑

m,l

Γ k
mlx

l
jdxm

)
, i, j, k, l,m= 1, . . . , n= dimM.
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• Structure equations (frame bundle).
∇ a linear connection on M , with connection form ω, torsion form Θ = (Θi),

and curvature form Ω = (Ωi
j ); θ the canonical 1-form on FM ; X,Y ∈ Tz(TM);

i, j, k = 1, . . . , n= dimM :

dθ(X,Y )= −(ω(X) · θ(Y )−ω(Y ) · θ(X))+Θ(X,Y ),

dω(X,Y )= −[ω(X),ω(Y )]+Ω(X,Y ),

dθi = −
∑

j

ωi
j ∧ θj +Θi,

dωi
j = −

∑

k

ωi
k ∧ωk

j +Ωi
j .

• Covariant differentiation ∇X (T (M) = algebra of tensor fields on M):

(i) ∇X : T (M)→ T (M) is a type-preserving derivation.
(ii) ∇X commutes with every contraction.

(iii) ∇Xf =Xf , f ∈ C∞M .
(iv) ∇X+Y = ∇X + ∇Y , X,Y ∈X(M).
(v) ∇X(fK)= (Xf )K + f∇XK , K ∈ T (M).

• Covariant derivative of a (0, r) tensor field Ψ :

(∇YΨ )(X1, . . . ,Xr)= Y
(
Ψ (X1, . . . ,Xr)

)−
r∑

i=1

Ψ (X1, . . . ,∇YXi, . . . ,Xr).

• Relation between exterior differential and covariant derivative for a differential
r-form α:

dα(X0, . . . ,Xr)=
r∑

i=0

(−1)i(∇Xi
α)(X0, . . . , X̂i , . . . ,Xr). (7.6)

• Second covariant derivative:
(∇2s

)
X,Y

= ∇X∇Y s − ∇∇XY s.

• Torsion tensor and curvature tensor field of a linear connection in terms of covari-
ant differentiation:

T (X,Y ) = ∇XY − ∇YX − [X,Y ],
R(X,Y )Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z.

• Torsion tensor and curvature tensor field:

T i
jk = Γ i

jk − Γ i
kj , R(ei, ej )ek =

∑

l

Rl
kij el,

Ri
jkl =

∂Γ i
lj

∂xk
− ∂Γ i

kj

∂xl
+
∑

r

(
Γ r
ljΓ

i
kr − Γ r

kjΓ
i
lr

)
,
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Rk
lij = −Rk

lji , Rk
lij = −Rl

kij , Rl
kij +Rl

ijk +Rl
jki = 0,

R(X,Y )Z = −R(Y,X)Z, R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0.

• Bianchi identities:

(1st) S
XYZ

R(X,Y )Z = S
XYZ

{
T
(
T (X,Y ),Z

)+ (∇XT )(Y,Z)
}
,

(1st, T = 0) S
XYZ

R(X,Y )Z = 0,

(2nd) S
XYZ

{
(∇XR)(Y,Z)+R

(
T (X,Y ),Z

)}= 0,

(2nd, T = 0) S
XYZ

(∇XR)(Y,Z)= 0.

• Covariant and double covariant derivative of tensor fields for a linear connection
Γ i
jk with torsion tensor T i

jk and curvature tensor field Ri
jkl :

Vector field with components Xi :

Xi
;j = ∂jX

i +
∑

r

Γ i
jrX

r .

Differential 1-form with components ωi :

ωj ;i = ∂iωj −
∑

r

Γ r
ijωr , ωi;jk −ωi;kj =

∑

r

(
Rr
ijkωr + 2T r

jkωi;r
)
.

(1,1) tensor field with components J ij :

J ij ;k = ∂kJ
i
j +

∑

r

J rj Γ
i
kr −

∑

r

Γ r
kj J

i
r .

(0,2) tensor field with components τij :

τij ;k = ∂iτjk −
∑

r

Γ r
ij τrk −

∑

r

Γ r
ikτjr .

(r, s) tensor field with components Ki1...ir
j1...js

:

K
i1...ir
j1...js ;k = ∂K

i1...ir
j1...js

∂xk
+

r∑

α=1

(
Γ
iα
kl K

i1...l...ir
j1...js

)−
s∑

β=1

(
Γ m
kjβ

K
i1...ir
j1...m...js

)
.

The Ricci identity:

∇l∇kK
i1...ir
j1...js

− ∇k∇lK
i1...ir
j1...js

=
r∑

ρ=1

K
i1...iρ−1iiρ+1...ir
j1...js

R
iρ
ikl .

−
r∑

σ=1

K
i1...ir
j1...jσ−1jjσ+1...js

R
j
jσ kl

− ∇iδ
i1...ir
j1...js

T i
kl .



7 Some Formulas and Tables 569

• Components of the torsion and curvature forms: σ = (X1, . . . ,Xn) a moving
frame on an open subset U of M ; T (Xj ,Xk) = ∑

i T
i
jkXi , R(Xk,Xl)Xj =

∑
i R

i
jklXi , the torsion and curvature tensors of a linear connection on M . De-

fine T̃ i
jk , R̃i

jkl ∈ C∞(FM) by

Θi =
∑

j<k

T̃ i
jkθ

j ∧ θk = 1

2
T̃ i
jkθ

j ∧ θk, T̃ i
jk = −T̃ i

kj ,

Ωi
j =

∑

k<l

R̃i
jklθ

k ∧ θ l = 1

2

∑

k,l

R̃i
jklθ

k ∧ θ l, R̃i
jkl = −R̃i

j lk.

Then

σ ∗T̃ i
jk = T i

jk, σ ∗R̃i
jkl =Ri

jkl .

• Cartan’s structure equations (moving frame).
σ = (X1, . . . ,Xn) a moving frame defined on an open subset U of M ; θ̃ i =

σ ∗θi , ω̃i
j = σ ∗ωi

j . Then:

dθ̃ i = −
∑

j

ω̃i
j ∧ θ̃ j + 1

2

∑

j,k

T i
jkθ̃

j ∧ θ̃ k,

dω̃i
j = −

∑

k

ω̃i
k ∧ ω̃k

j + 1

2

∑

k,l

Ri
jkl θ̃

k ∧ θ̃ l .

• Structure equations (geodesic polar coordinates).
{e1, . . . , en} a basis of TpM , p ∈ M ; xi normal coordinates defined by {ei}

on a normal coordinate neighbourhood U of p; (X1, . . . ,Xn) the moving frame
defined on U by parallel transport of {e1, . . . , en} along geodesic rays from p.
Let F map an open set of R

n+1 into U by xi(F (t;a1, . . . , an)) = tai . Define
f i, βi, βij by

F ∗θ̃ i = f idt + βi, F ∗ω̃i
j = βij ,

where θ̃ i = σ ∗θi , ω̃i
j = σ ∗ωi

j , and βi does not depend on dt . Then f i(t;a1, . . . ,

an)= ai ; βij does not depend on dt , and we have (structure equations):

∂βi

∂t
= dai +

∑

j

ajβij +
∑

j,k

T i
jka

jβk,
∂βij

∂t
=
∑

k,l

Ri
jkla

kβl,

with initial data βi(t;ak,dal)t=0 = 0 = β
j
i (t;ak,dal)t=0.

• Differential equations of geodesics (i, j, k = 1, . . . , n= dimM):

d2xi

dt2
+
∑

j,k

Γ i
jk

dxj

dt

dxk

dt
= 0.
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• Covariant derivative on a vector bundle (E,π,M) over M (ΓE = (C∞M)-
module of C∞ sections of E):

∇ : X(M)× ΓE → ΓE, (X, s) �→ ∇Xs,

∇fX+hY s = f∇Xs + h∇Y s, f,h ∈ C∞M,X,Y ∈ X(M),

∇X(s + t)= ∇Xs + ∇Xt, s, t ∈ ΓE,

∇X(f s)= (Xf )s + f∇Xs.

Reductive Homogeneous Spaces

• G-invariant connections: M = G/H a reductive homogeneous space, G (with
Lie algebra g and identity element e) acting transitively and effectively on M .
Reductive decomposition:

g = h⊕m, Ad(H)m ⊂ m.

Linear isotropy representation λ : H → Aut(ToM), λ(h)= (Lh)∗o, and o= eH ∈
G/H the origin. P a G-invariant K-structure over M . There is a one-to-one cor-
respondence between the set of G-invariant connections in P and the set of linear
maps Λm : m → k such that

Λm(Adh X)= Adλ(h)
(
Λm(X)

)
, X ∈m, h ∈H,

with Λm corresponding to Λ : g → k with

{
Λ(X)= λ∗(X), X ∈ h,

Λ(Adh X)= Adλ(h)(Λ(X)), X ∈m, h ∈H,

where λ∗ is the Lie algebra homomorphism induced by λ.
• Torsion tensor and curvature operator at o ∈ G/H for the invariant connection

corresponding to Λm (X,Y ∈m):

T (X,Y )o =Λm(X)Y −Λm(Y )X − [X,Y ]m,
R(X,Y )o = [Λm(X),Λm(Y )

]−Λm

([X,Y ]m
)− λ

([X,Y ]h
)
.

• Curvature form Ω of the canonical invariant connection ω on G/H :

Ω(X,Y )= −1

2
[X,Y ]h, X,Y ∈ m.

• Torsion tensor and curvature tensor field at o ∈G/H of the canonical connection
∇ (Λm = 0), (X,Y,Z ∈ m):

T (X,Y )o = −[X,Y ]m,
(
R(X,Y )Z

)
o

= −[[X,Y ]h,Z
]
, ∇T = 0, ∇R = 0.
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• Unique torsionless G-invariant connection on G/H with the same geodesics as
the canonical connection:

Λm(X)Y = 1

2
[X,Y ]m, X,Y ∈m.

For these and many other formulas in this chapter, see Kobayashi and Nomizu
[19].

Almost Complex Manifolds

• Canonical complex structure of R2n induced from that of Cn:

R
2n → R

2n
(
x1, . . . , xn, y1, . . . , yn

) �→ (
y1, . . . , yn,−x1, . . . ,−xn

)
.

Matrix with respect to the natural basis of R2n:

J0 =
(

0 In
−In 0

)
.

• Real representation of the general linear group:

GL(n,C) → GL(2n,R)

A+ iB �→
(
A −B

B A

)
.

• V vector space with complex structure J ; V c = V ⊗RC complexified space of V ;
again J the extension of J to V c. Eigenspaces of J in V c:

V 1,0 = {Z ∈ V c : JZ = iZ
}= {X − iJX :X ∈ V },

V 0,1 = {Z ∈ V c : JZ = −iZ
}= {X + iJX :X ∈ V }.

• Standard almost complex structure J on C
n ≡ R

2n defined by

J
∂

∂xk
= ∂

∂yk
, J

∂

∂yk
= − ∂

∂xk
.

• Cauchy–Riemann equations:

f : U ⊂ C
n = {zl = xl + iyl

}→ C
m = {wk = uk + ivk

}
holomorphic:

∂uk

∂xl
= ∂vk

∂yl
,

∂uk

∂yl
= −∂vk

∂xl
.

• Torsion of an almost complex structure J :

N(X,Y )= [JX,JY ] − J [JX,Y ] − J [X,JY ] − [X,Y ].
• Basis of T 1,0

p M and T
0,1
p M for a complex manifold M :

{
∂

∂zk
= 1

2

(
∂

∂xk
− i

∂

∂yk

)
,

∂

∂z̄k
= 1

2

(
∂

∂xk
+ i

∂

∂yk

)}
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(z1, . . . , zn, zk = xk+ iyk = complex local coordinate functions; and dzk = dxk+
i dyk , dz̄k = dxk − i dyk).

• Holomorphic vector field on a complex manifold of complex dimension n:

Z = f k ∂

∂zk
, f k a holomorphic function (∂̄f = 0), k = 1, . . . , n.

• Cartan’s structure equations (almost complex linear connection).

C(M) the bundle of complex linear frames on an almost complex manifold M

of real dimension 2n; θ the canonical form on C(M) = restriction of θ on FM to
C(M); ω = connection form of an almost complex linear connection with torsion
form Θ and curvature form Ω ; ω and Ω are valued on the subalgebra gl(n,C) of
gl(2n,R). Set

ϕα = θα + iθn+α, Φα =Θα + iΘn+α, α = 1, . . . , n;
ψα
β = ωα

β + iωα
n+β, Ψ α

β =Ωα
β + iΩα

n+β, α,β = 1, . . . , n

(ϕ = (ϕα) and Φ = (Φα) are C
n-valued; ψ = (ψα

β ) and Ψ = (Ψ α
β ) with values

in gl(n,C), as the Lie algebra of n × n complex matrices). Then, besides the real
structure equations we can write:

dϕα = −
∑

β

ψα
β ∧ ϕβ +Φα, α = 1, . . . , n;

dψα
β = −

∑

γ

ψα
γ ∧ψ

γ
β +Ψ α

β , α,β = 1, . . . , n.

Some Properties of Spheres

S1 S2 S3 S4 S5 S6 S7 Sn (∗)

Lie group Y n Y n n n n n

Parallelisable Y n Y n n n Y n

Almostcomplex n Y n n n Y n n

Y = yes, n = no, (∗) n > 7

Chapter 6

• Musical isomorphisms associated to a metric g on M :

� : TpM → T ∗
pM, X�

(= �(X)
)= g(X, ·);

� : T ∗
pM → TpM, α�

(= �(α)
)= g−1(α, ·).

• Arc length L(σ) of a differentiable curve σ = xt , a � t � b, in a Riemannian
n-manifold (M,g) ((x1, . . . , xn) local coordinates):

L(σ)=
∫ b

a

√
g
(
x′
t , x

′
t

)
dt, L(σ )=

∫ b

a

√√√√
∑

i,j

gij
dxi

dt

dxj

dt
dt.
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• Energy of a curve σ : [a, b] →M in (M,g):

E(σ)= 1

2

∫ b

a

∣∣σ ′(t)
∣∣2 dt.

• Poincaré upper half-plane:

M = {(x, y) ∈ R
2 : y > 0

}
, ds2 = 1

y2

(
dx2 + dy2).

• Koszul formula for the Levi-Civita connection:

2g(∇XY,Z)=Xg(Y,Z)+ Yg(Z,X)−Zg(X,Y )

+ g
([X,Y ],Z)− g

([Y,Z],X)+ g
([Z,X], Y ). (7.7)

• Christoffel symbols:

Γ i
jk = 1

2

∑

l

gil
(
∂glj

∂xk
+ ∂glk

∂xj
− ∂gjk

∂xl

)
.

• Geodesic through p ∈ Sn (with the round metric) with initial velocity vector
v ∈ TpS

n:

γ (t)= (cos |v|t)p + (sin |v|t) v|v| .

Riemann–Christoffel Curvature Tensor

• Riemann–Christoffel curvature tensor (gij = g(ei, ej ); (ei) a local frame):

R(X,Y,Z,W)= g
(
R(Z,W)Y,X

)
,

g
(
R(X,Y )Z,W

)= −g
(
R(X,Y )W,Z

)= −g
(
R(Y,X)Z,W

)
,

g
(
R(X,Y )Z,W

)= g
(
R(Z,W)X,Y

)
,

Rijkl =R(ei, ej , ek, el)= g
(
R(ek, el)ej , ei

)=
∑

h

gihR
h
jkl,

Rklij = −Rlkij = −Rklij ,

Rklij =Rijkl,

Rlkij +Rlijk +Rljki = 0.

• Metric and Riemann–Christoffel curvature tensor near the origin p, xi(p)= 0, of
normal coordinates (xi) (letting Rikjl,r = ∂Rikjl/∂x

r ):

gij = δij − 1

3

∑

k,l

Rikj lx
kxl − 1

3!
∑

k,l,r

Rikj l,rx
kxlxr

+ 1

5!
∑

k,l,r,s

(
−6Rikjl,rs + 4

3

∑

t

RiktlR
t
rjs

)
xkxlxrxs + · · · ,
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Rijkl = 1

2

(
∂2gik

∂xj ∂xl
− ∂2gil

∂xj ∂xk
− ∂2gjk

∂xi∂xl
+ ∂2gjl

∂xi∂xk

)
.

• Sectional curvature for a plane P ⊂ TpM :

K(P )= R(X,Y,X,Y )

g(X,X)g(Y,Y )− g(X,Y )2
, X,Y basis of P ;

K(P )=R(X,Y,X,Y ), X,Y orthonormal basis.

• Ricci tensor ((ei)= a local orthonormal frame):

r(X,Y )= trace of the map Z �→R(Z,X)Y of TpM,

r(X,Y )=
∑

i

g
(
R(ei,X)Y, ei

)=
∑

i

R(ei,X, ei, Y ),

rij =
∑

k

Rikjk =
∑

k

Rk
jki .

• Ricci tensor ((ei)= any local frame):

rij =
∑

k

Rk
jki =

∑

k,l

gklRikj l .

• Scalar curvature:

s =
∑

i,j

gijrij =
∑

i,j

gijr(ei, ej ) ((ei) a local frame),

s =
∑

r(ei, ei) ((ei) a local orthonormal frame).

• Weyl conformal curvature tensor for a Riemannian n-manifold (M,g):

W(X,Y )Z =R(X,Y )Z+L(Y,Z)X−L(X,Z)Y +g(Y,Z)L∗X−g(X,Z)L∗Y

(L(X,Y )= − 1
n−2 r(X,Y )+ s

2(n−1)(n−2) g(X,Y );g(L∗X,Y)= L(X,Y )),

Wi
jkl = Ri

jkl −
1

n− 2

(
rjkδil − rj lδik + gjkril − gjlrik

)

+ s
(n− 1)(n− 2)

(
gjkδ

i
l − gjlδ

i
k

)
.

• Cotton tensor for a Riemannian n-manifold (M,g):

Cijk = ∇krij − ∇j rik − 1

2(n− 1)
(∇ksgij − ∇j sgik).

• Weyl projective curvature tensor (n > 1):

P i
jkl =Ri

jkl −
1

n− 1

(
rjkδil − rj lδik

)
.



7 Some Formulas and Tables 575

Kähler Manifolds

• Hermitian metric on an almost complex manifold (M,J ):

g(JX,JY )= g(X,Y ),

g = 2
∑

α,β

gαβ̄ dzα dz̄β .

• (M,g,J ) an almost Hermitian manifold. Holomorphic sectional curvature:

H(X)= g
(
R(X,JX)X,JX

)
, X ∈ TpM, |X| = 1, p ∈M.

• Fundamental 2-form of a Hermitian metric:

F(X,Y )= g(X,JY ), F = −2i
∑

α,β

gαβ̄ dzα ∧ dz̄β .

• Kähler metric:
∂gαβ̄

∂zγ
= ∂gγ β̄

∂zα
or

∂gαβ̄

∂zγ̄
= ∂gαγ̄

∂zβ̄
.

• Curvature components:

Rα

βγ δ̄
= −∂Γ α

βγ

∂z̄δ
,

Rαβ̄γ δ̄ = ∂2gαβ̄

∂zγ ∂z̄δ
−
∑

ε,τ

gε̄τ
∂gαε̄

∂zγ

∂gβ̄τ

∂z̄δ
.

• Ricci form:

ρ(X,Y )= r(X,JY ),

ρ = −2i
∑

α,β

rαβ̄ dzα ∧ dz̄β .

• Structure equations (bundle of unitary frames).
U(M) = bundle of unitary frames; θ = canonical form on U(M); ω = (ωi

j ),
i, j = 1, . . . ,2n= connection form on U(M) defining the Levi-Civita connection
of the Kähler manifold M ; Ω = curvature form (ω and Ω with values in the real
representation of u(n)). Setting (for α,β = 1, . . . , n)

ϕα = θα + iθn+α, ψα
β = ωα

β + iωα
n+β, Ψ α

β =Ωα
β + iΩα

n+β,

we have

ωα
β = ωn+α

n+β, ωα
n+β = −ωn+α

β , ωα
β = −ωβ

α, ωα
n+β = ω

β
n+α;

Ωα
β =Ωn+α

n+β , Ωα
n+β = −Ωn+α

β , Ωα
β = −Ωβ

α , Ωα
n+β =Ω

β
n+α.

Hence,
ψα
β = −ψ̄β

α , Ψ α
β = −Ψ̄ β

α .
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• Riemann–Christoffel curvature tensor and curvature form on the bundle of unitary
frames U(M), of a Kähler manifold (M,g) of constant holomorphic sectional
curvature c:

Kαβ̄γ δ̄ = − c

2
(gαβ̄gγ δ̄ + gαδ̄gβ̄γ ),

Ψ α
β = c

2

(
ϕα ∧ ϕ̄β + δαβ

∑

γ

ϕγ ∧ ϕ̄γ
)
.

• Bochner curvature tensor for a Kähler manifold (M,g,J ) of real dimension n:

B(X,Y,Z,W)=R(X,Y,Z,W)−L(X,W)g(Y,Z)−L(X,Z)g(Y,W)

+L(Y,Z)g(X,W)−L(Y,W)g(X,Z)+L(JX,W)g(JY,Z)

−L(JX,Z)g(JY,W)+L(JY,Z)g(JX,W)

−L(JY,W)g(JX,Z)

− 2L(JX,Y )g(JZ,W)− 2L(JZ,W)g(JX,Y )

(L(X,Y )= − 1
n+4 r(X,Y )+ s

2(n+2)(n+4) g(X,Y )).

Characteristic Forms

• r th Chern class cr(E) of a complex vector bundle E over the differentiable man-
ifold M in terms of the curvature form components Ωi

j of a connection in the
corresponding principal bundle

(
P,p,M,GL(n,C)

)
.

Represented by the Chern form αr ∈Λ2rM :

p∗(αr)= (−1)r

(2π i)r r!
∑

δ
j1...jr
i1...ir

Ω
i1
j1

∧ · · · ∧Ω
ir
jr
,

where one sums over all ordered subsets (i1, . . . , ir ) of (1, . . . , n) and all per-
mutations (j1, . . . , jr ) of (i1, . . . , ir ), and where δ

j1...jr
i1...ir

denotes the sign of the
permutation.

• r th Pontrjagin class pr(E) of a real vector bundle E over the differentiable man-
ifold M in terms of the curvature form components Ωi

j of a connection in the
corresponding principal bundle

(
P,p,M,GL(n,R)

)
.

Represented by the Pontrjagin form βr ∈Λ4rM :

p∗(βr)= 1

(2π)2r (2r)!
∑

δ
j1...j2r
i1...i2r

Ω
i1
j1

∧ · · · ∧Ω
i2r
j2r
,
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where one sums over all the ordered subsets (i1, . . . , i2r ) of 2r elements of
(1, . . . , n) and all permutations (j1, . . . , j2r ) of (i1, . . . , i2r ).

• Euler class e(E) of an oriented real vector bundle E of rank 2r (with a fibre met-
ric) over the differentiable manifold M in terms of the curvature form components
Ωi
j of a connection in the corresponding principal bundle

(
P,p,M,SO(2r)

)
.

Represented by γ ∈Λ2rM :

p∗(γ )= (−1)r

22rπr · r!
∑

i1,...,i2r

εi1...i2rΩ
i1
i2

∧ · · · ∧Ω
i2r−1
i2r

.

Homogeneous Riemannian Manifolds

• π : (M̃, g̃) → (M,g) a Riemannian submersion; X,Y orthonormal vector fields
on M with horizontal lifts X̃, Ỹ ; Zv = vertical lift of Z ∈ X(M). Sectional cur-
vature:

KM(X,Y )=KM̃(X̃, Ỹ )+ 3

4

∣∣[X,Y ]v∣∣2.
• Levi-Civita connection of (M = G/H,g) reductive homogeneous; g = h ⊕ m

reductive decomposition; 〈 , 〉 an Ad(H)-invariant non-degenerate symmetric bi-
linear form on m (〈X,Y 〉 = go(X,Y ), X,Y ∈m, m ≡ ToM):

Λm(X)Y = 1

2
[X,Y ]m +U(X,Y ),

U : m×m → m defined by

2
〈
U(X,Y ),Z

〉= 〈[Z,X]m, Y
〉+ 〈X, [Z,Y ]m

〉
, X,Y,Z ∈m.

• M = (G/H,g) a naturally reductive homogeneous Riemannian manifold
(U ≡ 0). Levi-Civita connection and Riemann–Christoffel curvature tensor at o
(X,Y ∈ m):

Λm(X)Y = 1

2
[X,Y ]m,

go
(
R(X,Y )Y,X

)= 1

4

〈[X,Y ]m, [X,Y ]m
〉− 〈[[X,Y ]h, Y

]
,X
〉
.

• M = (G/H,g) a normal homogeneous Riemannian manifold (there exists an
Ad(G)-invariant scalar product 〈 , 〉 on g such that 〈 , 〉h is non-degenerate); m
the orthogonal complement to h for 〈 , 〉; X,Y ∈m. Sectional curvature:

g
(
R(X,Y )Y,X

)
h

= 1

4

〈[X,Y ]m, [X,Y ]m
〉
m

+ 〈[X,Y ]h, [X,Y ]h
〉
h
.
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Curvature and Killing Vector Fields

• (M,g) Riemannian manifold; X,Y,Z, Killing vector fields; Levi-Civita connec-
tion:

2g(∇XY,Z)= g
([X,Y ],Z)+ g

([Y,Z],X)− g
([Z,X], Y ).

• (M =G/H,g) Riemannian homogeneous; g = h+m; X,Y , Killing vector fields
in m; m ≡ ToM ; Levi-Civita connection, curvature tensor and Ricci curvature at
o, and scalar curvature at any point:

(∇XY)o = −1

2
[X,Y ]m +U(X,Y ),

go
(
R(X,Y )Y,X

)= −3

4

∣∣[X,Y ]m
∣∣2 − 1

2

〈[
X, [X,Y ]g

]
m
, Y
〉

− 1

2

〈[
Y, [Y,X]g

]
m
,X
〉+ ∣∣U(X,Y )∣∣2 − 〈U(X,X),U(Y,Y )〉,

ro(X,X)= −1

2

∑

j

∣∣[X,ei]m
∣∣2 − 1

2

∑

i

〈[
X, [X,ei]m

]
m
, ei
〉

−
∑

i

〈[
X, [X,ei]h

]
m
, ei
〉+ 1

4

∑

i,j

〈[ei, ej ]m,X
〉2

− 〈[Z,X]m,X
〉
,

s = −1

4

∑

i,j

∣∣[ei, ej ]m
∣∣2 − 1

2

∑

i

B(ei, ei)− |Z|2

({ei} a 〈 , 〉-orthonormal basis of m; Z =∑i U(ei, ei)) (see [5]).

Riemannian Symmetric Spaces

M = (G/H,g,σ ), h= (σ∗o)+, m = (σ∗o)−, g = h⊕m,

[h,h] ⊂ h, Ad(H)m ⊂ m, [m,m] ⊂ h.

• Curvature tensor field (X,Y,Z ∈m):

R(X,Y )Z = −[[X,Y ],Z]. (7.8)

• Ricci tensor for G/H Hermitian symmetric with G semi-simple and effective on
G/H , and H compact, in terms of the Killing form B of g:

r(X,Y )= −1

2
B(X,Y ), X,Y ∈m.

• Invariant connections on Riemannian symmetric spaces (G,H,σ) of type:

I. (G simple), and
II. (G product of two copies of a simple Lie group interchanged by the involutive

automorphism σ ).
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For this table and the next one, see Helgason [20] and Laquer [21, 22].

Type I Set of invariant connections

AI SU(n)/SO(n), n� 3 (∗) 1-dimensional family

AII SU(n)/Sp(n), n� 3 1-dimensional family

EIV E6/F4 1-dimensional family

Other cases Only the canonical connection

Type II Set of bi-invariant connections

SU(n), n� 3 (∗) 2-dimensional family

Other cases 1-dimensional family

(∗) SO(6)/(SO(3)× SO(3)) behaves as SU(4)/SO(4) and SO(6) as SU(4)

Irreducible Riemannian Symmetric Spaces of Type I and III

Compact Noncompact rank dim

A I SU(n)/SO(n) SL(n,R)/SO(n) n− 1 (n−1)(n+2)
2

A II SU(2n)/Sp(n) SU∗(2n)/Sp(n) n− 1 2n2 − n− 1

A III (∗) SU(p+q)
S(U(p)×U(q))

SU(p,q)
S(U(p)×U(q)) min(p, q) 2pq (∗∗)

BD I (∗) SO(p+q)
SO(p)×SO(q)

SO0(p,q)
SO(p)×SO(q) min(p, q) pq

D III (∗) SO(2n)/U(n) SO∗(2n)/U(n) [ 1
2n] n(n− 1)

C I (∗) Sp(n)/U(n) Sp(n,R)/U(n) n n(n+ 1)

C II Sp(p+q)
Sp(p)×Sp(q)

Sp(p,q)
Sp(p)×Sp(q) min(p, q) 4pq (∗∗)

E I (e−78
6 , sp(4)) (e6

6, sp(4)) 6 42

E II (e−78
6 , su(6)+ su(2)) (e2

6, su(6)+ su(2)) 4 40

E III (∗) (e−78
6 , so(10)+R) (e−14

6 , so(10)+R) 2 32

E IV (e−78
6 , f4) (e−26

6 , f4) 2 26

E V (e−133
7 , su(8)) (e7

7, su(8)) 7 70

E VI (e−133
7 , so(12)+ su(2)) (e−5

7 , so(12)+ su(2)) 4 64

E VII (∗) (e−133
7 , e6 +R) (e−25

7 , e6 +R) 3 54

E VIII (e−248
8 , so(16)) (e8

8, so(16)) 8 128

E IX (e−248
8 , e7 + su(2)) (e−24

8 , e7 + su(2)) 4 112

F I (f−52
4 , sp(3)+ su(2)) (f44, sp(3)+ su(2)) 4 28

F II (f−52
4 , so(9)) (f−20

4 , so(9)) 1 16

G (g−14
2 , su(2)+ su(2)) (g2

2, su(2)+ su(2)) 2 8

(∗) Hermitian symmetric (for BD I, only if q = 2)

(∗∗) (p � q)
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Remark The superindices for the exceptional simple Lie algebras denote the sig-
nature of the corresponding Killing form B , where the signature is defined here as
the number of positive values minus the number of negative values when B is ex-
pressed in diagonal form (see [20]): e6: −78,−26,−14,2,6; e7: −133,−25,−5,7;
e8: −248,−24,8; f4: −52,−20,4; g2: −14,2.

Symmetric Spaces G/H of Classical Type with Noncompact Isotropy Group1

G= SL(n,C) G= SL(n,R) G= SU(p, q)

SL(p,C)

×SL(q,C)×C

SL(p,R)

×SL(q,R)×R

SU(k, k + h)

×SU(p − k,n− k − h)× U(1)

SL(n,R) SO(p, q) SO(p, q)

SO(n,C) Sp(n/2,R) Sp(p/2, q/2)

SU(p, q) Sp(n/2,C)×R SO∗(n) (∗)
Sp(n/2,C) Sp(n,R) (∗)
SU∗(n) SL(n,C)×R (∗)

G= SU∗(n) G= SO(n,C) G= SO(p, q)

SU∗(p)
×SU∗(q)×R

SO(p,C)

×SO(q,C) (†)

SO(k, k + h)

×SO(p − k,n− k − h) (∗∗)
Sp(p/2, q/2) SO(n− 2)×C SO(p − 2, q)× U(1)

SO∗(n) SO(p, q) SO(p − 1, q − 1)×R

SL(n,C)× U(1) SL(n/2,C)×C SU(p/2, q/2)× U(1)

SO∗(n) SL(n/2,R)×R (∗)
SO∗(n/2,C) SO(n/2,C) (∗)
SU(p, q)× U(1) SO(n− 2)× U(1) (‡)

G= Sp(n,C) G= Sp(n,R) G= Sp(p, q)

SL(n,C)×C Sp(p,R)× Sp(q,R) Sp(k, k + h)

×Sp(p − k,n− k − h)

Sp(n,R) SU(p, q)× U(1) SU(p, q)× U(1)

Sp(p,C)× Sp(q,C) SL(n,R)×R

Sp(p, q) Sp(n/2,C)

SU∗(n)×R (∗)
Sp(n/2,C)

(∗) p = q = n/2, (†) p = 1 or p,q > 2, (∗∗) k + h > 2, n− k − h > 2, (‡) p = 2, q = n− 2

1The isotropy groups for each group G are listed under it. In all cases but for Sp(n,C) and
Sp(n,R), the expression of the first listed isotropy group has been broken in two lines.
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Simply Connected Normal Homogeneous Spaces of Positive Curvature

Type dimR δ (i)

Sn n 1 (ii)

CPn,HPn,OP2 2n,4n,16 1
4 (ii)

CPn = Sp(m+ 1)/(Sp(m)× U(1)) 2m+ 1 1
16 (iii)

S2m+1 = (SU(m+ 1)/SU(m), gs) 4m+ 3 s(m+1)
8m−3s(m+1) (iv)

(S4m+3 = Sp(m+ 1)/Sp(m), gs) 4m+ 3

{
s

8−3s if s ≥ 2
3

s2

4 if s < 2
3

B7 = Sp(2)/SU(2) 7 1
37 (vi)

B13 = SU(5)/H 13 16
29·37 (vii)

(W 7 = (SO(3)× SU(3))/U•(2), gs) 7

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t2

4 if t ≤ 8−2
√

13
3

t
16−3t if 8−2

√
13

3 ≤ t ≤ 2
5

16(1−t)3

(16−3t)(4+16t−11t2)

if 2
5 ≤ t < 1

(viii)

(i) δ = Pinching constant

(ii) Compact rank-one symmetric spaces with their standard metrics

(iii) Equipped with a standard Sp(m+ 1)-homogeneous metric

(iv) Berger spheres, 0 < s ≤ 1

(v) 0 < s ≤ 1

(vi) Berger space B7 ([4]) equipped with a standard Sp(2)-homogeneous metric

(vii) Berger space B13 ([4]) equipped with a standard SU(5)-homogeneous metric

(viii) Wilking space [30] equipped with a one-parameter family gs , s > 0, of SO(3) × SU(3)-
homogeneous metrics. Here t = 2s

2s+3

Compact Rank-One Riemannian Symmetric Spaces

Type dimR χ(M) τ(M) Volume

Sn(λ) n 1 + (−1)n n(n− 1)λ π
n+1

2 (n+1)

( n+1
2 )!λ n

2

RPn(λ) n 1
2 (1 + (−1)n) n(n− 1)λ π

n+1
2

( n−1
2 )!λ n

2

CPn(λ) 2n n+ 1 4n(n+ 1)λ 1
n! (

π
λ
)n

HPn(λ) 4n n+ 1 16n(n+ 1)λ π2n

(2n+1)!λ2n

OP2(λ) 16 3 576λ 6π8

11!λ8

χ(M): Euler–Poincaré characteristic of M

τ(M): signature of M

λ: constant curvature λ for Sn(λ),RPn(λ); constant holomorphic (resp. quaternionic, Cayley) sec-
tional curvature 4λ for CPn (resp. HPn(λ),OP2(λ)). See [6]
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Simply Irreducible Pseudo-Hermitian Symmetric Spaces G/H

(A)

SL(2n,R)

SL(n,C)× U(1)
,

SU∗(2n)
SL(n,C)× U(1)

,
SU(n− i, i)

S(U(h, k)× U(n− i − h, i − k))
,

(BD)

SO∗(2n)
SO∗(2n− 2)× U(1)

,
SO∗(2n)

U(n− k, k)
,

SO(n− k, k)

SO(n− k, k − 2)× U(1)
,

SO(2(n− k),2k)

U(n− k, k)
,

(C)

Sp(n− i, i)

U(n− i, i)
,

(E6)

E6(2)

SO∗(10)× U(1)
,

E6(2)

SO(6,4)× U(1)
,

E6(−14)

SO(8,2)× U(1)
,

E6(−14)

SO∗(10)× U(1)
,

(E7)

E7(7)

E6(2) × U(1)
,

E7(−5)

E6(−14) × U(1)
,

E7(−5)

E6(2) × U(1)
,

E7(−25)

E6(−14) × U(1)

(see [26]).

Simply Reducible Pseudo-Hermitian Symmetric Spaces G/H

(A)

SL(2n,C)

S(GL(n− k,C)× GL(k,C))
,

(BD)

SO(n,C)

SO(n− 2,C)× SO(2,C)
,

SO(2n,C)

SL(n,C)×C∗ ,

(C)

Sp(n,C)

SL(n,C)×C∗ ,

(E6)

EC

6

SO(10,C)×C∗ ,



7 Some Formulas and Tables 583

(E7)

EC

7

EC

6 ×C∗ ,

where C
∗ = C \ {0}. (See [26].)

Simply Connected Symmetric Pseudo-Quaternionic Kähler Spaces G/H

(A)

SU(p + 2, q)

S(U(2)× U(p, q))
,

SL(n+ 1,H)

S(GL(1,H)× GL(n,H))
,

(BD)

SO0(p + 4, q)

SO(4)× SO0(p, q)
,

SO∗(2l + 4)

SO∗(4)× SO∗(2l)
,

(C)

Sp(p + 1, q)

Sp(1)× Sp(p, q)
,

(G2)

G2(−14)

SO(4)
,

G2(2)

SO(4)
,

(F4)

F4(−52)

Sp(1)Sp(3)
,

F4(4)

Sp(1)Sp(3)
,

F4(4)

Sp(1)Sp(1,2)
,

F4(−20)

Sp(2)Sp(1,2)
,

(E6)

E6(−78)

SU(2)SU(6)
,

E6(2)

SU(2)SU(6)
,

E6(2)

SU(2)SU(2,4)
,

E6(−14)

SU(2)SU(2,4)
,

E6(6)

Sp(1)SL(3,H)
,

E6(−26)

Sp(1)SL(3,H)
,

(E7)

E7(−133)

SU(2)Spin(12)
,

E7(−5)

SU(2)Spin(12)
,

E7(−5)

SU(2)Spin0(4,8)
,

E7(7)

SU(2)SO∗(12)
,

E7(−25)

SU(2)SO∗(12)
,

(E8)

E8(−248)

SU(2)E7(133)
,

E8(−24)

SU(2)E7(133)
,

E8(−24)

SU(2)E7(−5)
,

E8(8)

SU(2)E7(−5)
.

(see [2]).
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Berger List of Riemannian Holonomy Groups

dimM = n Group Name Einstein Ricci flat

n SO(n) Generic – –
2m U(m) Kähler – –
2m SU(m) Special Kähler – Yes
4m Sp(m) Hyper-Kähler – Yes
4m Sp(1)Sp(m) Quaternion-Kähler Yes –
7 G2 – Yes
8 Spin(7) – Yes
16 Spin(9) Yes –

Berger List of Pseudo-Riemannian Holonomy Groups Let (M,g) be a simply
connected pseudo-Riemannian manifold of dimension n= r+ s and signature (r, s)
that is not locally symmetric. If the holonomy group of (M,g) acts irreducibly, then
it is either SO0(r, s) or one of the following (modulo conjugation in O(r, s)):

U(p, q) or SU(p, q) ⊂ SO(2p,2q), n≥ 4;
Sp(p, q) or Sp(p, q)Sp(1) ⊂ SO(4p,4q), n≥ 8;

SO(r,C) ⊂ SO(r, r), n≥ 4;
Sp(p,R)SL(2,R) ⊂ SO(2p,2q), n≥ 8;
Sp(p,C)SL(2,C) ⊂ SO(4p,4q), n≥ 16;

G2 ⊂ SO(7);
G∗

2(2) ⊂ SO(4,3);
GC

2 ⊂ SO(7,7);
Spin(7) ⊂ SO(8);

Spin(4,3) ⊂ SO(4,4);
Spin(7)C ⊂ SO(8,8).

As pointed out in [13], this list is due to Berger and also to the efforts of some other
authors [1, 7, 8, 27].

Spaces of Constant (Ordinary, Holomorphic, Quaternionic) Curvature and Cayley
Planes (In the next formulas, unless the tensor product sign is used, it is under-
stood that the product of differentials is the symmetric product.)

• Constant ordinary curvature
• Riemann–Christoffel curvature tensor for constant curvature c:

R(X,Y,Z,W)= c
(
g(X,Z)g(Y,W)− g(X,W)g(Y,Z)

)
.

• Metric g of non-zero constant curvature 1/r on
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M = {(x1, . . . , xn+1, t
) ∈R

n+1 : (x1)2 + · · · + (xn)2 + rt2 = r
} :

g = r{(r +∑(yi)2)(
∑
(dyi)2)− (

∑
yidyi)2}

(r +∑(yi)2)2
, yi = xi/t.

• Poincaré half-space model (Hn,g) of the real hyperbolic space RH(n), with con-
stant curvature c < 0:

(
Hn,g

)=
(
{(
u1, . . . , un

) ∈R
n : u1 > 0

}
,− 1

c(u1)2

n∑

i=1

dui ⊗ dui
)

.

• Open unit ball model (Bn, g) of the real hyperbolic space RH(n) with negative
constant curvature c:

Bn =
{
(
x1, . . . , xn

) ∈R
n :

n∑

i=1

(
xi
)2
< 1

}

,

g = − 4

c(1 −∑n
i=1(x

i)2)2

n∑

i=1

dxi ⊗ dxi.

• Constant holomorphic curvature
• Riemann–Christoffel curvature tensor for constant holomorphic curvature c:

R(X,Y,Z,W)= c

4

{
g(X,Z)g(Y,W)− g(X,W)g(Y,Z)

+ g(X,JZ)g(Y,JW)− g(X,JW)g(Y,JZ)

+ 2g(X,JY )g(Z,JW)
}
.

• Fubini–Study metric of positive constant holomorphic sectional curvature c on
the complex projective space CP(n):

g = 4

c

(1 +∑ zkz̄k)(
∑

dzk dz̄k)− (
∑

z̄k dzk)(
∑

zk dz̄k)

(1 +∑ zkz̄k)2
.

• Hermitian metric on the open unit ball model (Dn,h, J ) of the complex hyper-
bolic space CH(n) for c < 0 (see Goldberg [14, p. 227], Goldman [15, p. 73]):

Dn =
{
(
z1, . . . , zn

) ∈ C
n :

n∑

k=1

∣∣zk
∣∣2 < 1

}

,

h= − 4

c(1 −∑n
k=1 |zk|2)2

((

1 −
n∑

k=1

∣∣zk
∣∣2
)(

n∑

k=1

dzk dz̄k
)

+
(

n∑

k=1

z̄k dzk
)(

n∑

k=1

zk dz̄k
))

.
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• Matrix expression of h:

(hkl̄)= − 4

c(1 −∑n
j=1 |zj |2)2

(

δkl

(

1 −
n∑

j=1

∣∣zj
∣∣2
)

+ z̄kzl

)

.

• Riemannian metric g, Kähler form ω (h = g + iω), and complex structure J

(ω(X,Y )= g(X,JY )) (with real coordinates (x1, . . . , xn, y1, . . . , yn) on Dn de-
fined by zk = xk + iyk):

g = − 4

c(1 −∑n
j=1 |zj |2)2

(
n∑

k=1

[
1 −

∑

j �=k

∣∣zj
∣∣2
]

· ((dxk)2 + (dyk)2)

+
∑

k �=l

[(
xkxl + ykyl

)(
dxk dxl + dyk dyl

)

+ (xkyl − xlyk
)(

dxk dyl − dyk dxl
)]
)

,

ω = − 4

c(1 −∑n
j=1 |zj |2)2 ·

( n∑

k=1

[∑

j �=k

∣∣zj
∣∣2 − 1

]
dxk ∧ dyk

+
∑

k<l

[(
xkyl − xlyk

)(
dxk ∧ dxl + dyk ∧ dyl

)

− (xkxl + ykyl
)(

dxk ∧ dyl + dxl ∧ dyk
)])

,

J =
n∑

k=1

(
∂

∂yk
⊗ dxk − ∂

∂xk
⊗ dyk

)
.

• Hermitian metric on the Siegel domain model (D+, h+, J+) of CH(n):

D+ =
{
(
u1 = x + iy,u2, . . . , un

) ∈C
n : y −

n∑

k=2

∣∣uk
∣∣2 > 0

}

,

h+ = − 1

c(y −∑n
k=2 |uk|2)

{

du1 dū1 + 2i
n∑

k=2

(
uk du1 dūk − ūk duk dū1)

+ 4
n∑

k=2

(
y −

∑

j>1
j �=k

∣∣uj
∣∣2
)

duk dūk + 4

(∑

k,l>1
k �=l

ūkul duk dūl
)}

.
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• Matrix expression of h+:

(
(h+)kl̄

) = − 1

c(y −∑j>1 |uj |2)2

×

⎛

⎜⎜⎜
⎝

1 2iu2 · · · 2iun

−2iū2

... 4(δkl(y −∑j>1 |uj |2)+ ūkul)

−2iūn

⎞

⎟⎟⎟
⎠
.

• Corresponding Riemannian metric g+ and complex structure J+ (uk = vk + iwk ,
k = 2, . . . , n):

g+ = −y −∑j>1 |uj |2
c

{
dx2 + dy2 + 4

∑

k>1

[
y −

∑

j>1
j �=k

∣∣uj
∣∣2
]((

dvk
)2 + (dwk

)2)

− 4

[
dx
∑

k>1

(
wk dvk − vk dwk

)+ dy
∑

k>1

(
vk dvk +wk dwk

)]

+ 4
∑

k,l>1
k �=l

[(
vkvl +wkwl

)(
dvk dvl + dwk dwl

)

+ (vkwl − vlwk
)(

dvk dwl − dwk dvl
)]}

,

J+ = ∂

∂y
⊗ dx − ∂

∂x
⊗ dy +

n∑

k=2

(
∂

∂wk
⊗ dvk − ∂

∂vk
⊗ dwk

)
.

• Constant quaternionic curvature
• Riemann–Christoffel curvature tensor for constant quaternionic curvature c:

R(X,Y,Z,W)= c

4

{

g(X,Z)g(Y,W)− g(X,W)g(Y,Z)

+
3∑

a=1

(
g(X,JZ)g(Y,JW)− g(X,JW)g(Y,JZ)

+ 2g(X,JY )g(Z,JW)
)
}

.

• Watanabe’s metric on the quaternionic projective space HP(n):
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ĥ = 4

c(1 +∑n
k=1 |qk|2)2

((

1 +
n∑

k=1

∣∣qk
∣∣2
)

n∑

k=1

dqk dq̄k

−
(

n∑

k=1

q̄k dqk
)(

n∑

k=1

dq̄kqk
))

.

• Watanabe’s Riemannian metric ĝ (with qk = xk + iyk + jzk + kwk , k = 1, . . . , n,
see Watanabe [29]):

ĝ = 4

c(1 +∑n
k=1 |qk|2)2

{(

1 +
n∑

k=1

∣∣qk
∣∣2
)

·
n∑

k=1

(
dxk dxk + dyk dyk + dzk dzk + dwk dwk

)

−
n∑

k,l=1

[(
Akl dxk dxl +Bkl dxk dyl +Ckl dxk dzl +Dkl dxk dwl

−Bkl dyk dxl +Akl dyk dyl +Dkl dyk dzl −Ckl dyk dwl

−Ckl dzk dxl −Dkl dzk dyl +Akl dzk dzl +Bkl dzk dwl

−Dkl dwk dxl +Ckl dwk dyl −Bkl dwk dzl +Akl dwk dwl
)]
}

,

where

Akl = xkxl + ykyl + zkzl +wkwl,

Bkl = xkyl − ykxl + zkwl −wkzl,

Ckl = xkzl − ykwl − zkxl +wkyl,

Dkl = xkwl + ykzl − zkyl −wkxl.

(�)

• Open unit ball model (En, ĥ, υ3) of the quaternionic hyperbolic space HH(n)
(with c < 0):

En =
{
(
q1, . . . , qn

) ∈ H
n :

n∑

k=1

∣∣qk
∣∣2 < 1

}

,

ĥ = − 4

c(1 −∑n
k=1 |qk|2)2

((

1 −
n∑

k=1

∣∣qk
∣∣2
)

n∑

k=1

dqk dq̄k

+
(

n∑

k=1

q̄k dqk
)(

n∑

k=1

dq̄kqk
))

.
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• Corresponding Riemannian metric ĝ (with qk = xk + iyk + jzk + kwk , k =
1, . . . , n):

ĝ = − 4

c(1 −∑n
k=1 |qk|2)2

{(

1 −
n∑

k=1

∣∣qk
∣∣2
)

×
n∑

k=1

(
dxk dxk + dyk dyk + dzk dzk + dwk dwk

)

+
n∑

k,l=1

(
Akl

(
dxk dxl + dyk dyl + dzk dzl + dwk dwl

)

+Bkl

(
dxk dyl − dyk dxl + dzk dwl − dwk dzl

)

−Ckl

(
dzk dxl − dxk dzl + dyk dwl − dwk dyl

)

−Dkl

(
dwk dxl − dxk dwl − dyk dzl + dzk dyl

))
}

,

with Akl,Bkl,Ckl,Dkl as in (�) above.
• A standard basis of the almost quaternionic structure υ3 on En:

J1 =
n∑

k=1

(
− ∂

∂xk
⊗ dyk + ∂

∂yk
⊗ dxk + ∂

∂zk
⊗ dwk − ∂

∂wk
⊗ dzk

)
,

J2 =
n∑

k=1

(
− ∂

∂xk
⊗ dzk − ∂

∂yk
⊗ dwk + ∂

∂zk
⊗ dxk + ∂

∂wk
⊗ dyk

)
,

J3 =
n∑

k=1

(
∂

∂xk
⊗ dwk − ∂

∂yk
⊗ dzk + ∂

∂zk
⊗ dyk − ∂

∂wk
⊗ dxk

)
.

• Real part of the metric induced by ĥ on the Siegel domain model (E+, gE+, υ
3+)

of HH(n):

E+ =
{
(
u1, . . . , un

) ∈ H
n : Re

(
u1)−

n∑

k=2

∣∣uk
∣∣2 > 0

}

,

gE+ = − 4

c(Re(u1)−∑k>1 |uk|2)2
(

1

4

∣∣du1
∣∣2 −

∑

k>1

Re
(
ūk duk dū1)

+
∑

k>1

(
Re
(
u1)−

∑

j>1
j �=k

∣∣uj
∣∣2
)∣∣duk

∣∣2 +
∑

k,l>1
k �=l

Re
(
ūkul duk dūl

))
.
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• Corresponding Riemannian metric gE+ (with uk = ak + ibk + jck + kek ,
1 ≤ k ≤ n):

gE+ = − 4

c(a1 −∑k>1 |uk|2)2
n∑

k,l=1

{
Ãkl

(
dak dal + dbk dbl + dck dcl + dek del

)

+ B̃kl

(
dak dbl − dbk dal + dck del − dek dcl

)

+ C̃kl

(
dak dcl − dbk del − dck dal + dek dbl

)

+ D̃kl

(
dak del + dbk dcl − dck dbl − dek dal

)}
,

where

Ãkl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1/4 if k = l = 1,

−ak/2 if k > 1, l = 1,

−al/2 if k = 1, l > 1,

a1 −∑j>1,j �=k |uj |2 if k = l > 1,

akal + bkbl + ckcl + ekel if k, l > 1, k �= l,

B̃kl =

⎧
⎪⎨

⎪⎩

bk/2 if k > 1, l = 1,

−bl/2 if k = 1, l > 1,

akbl − bkal + ckel − ekcl otherwise,

C̃kl =

⎧
⎪⎨

⎪⎩

ck/2 if k > 1, l = 1,

−cl/2 if k = 1, l > 1,

akcl − ckal + ekbl − bkel otherwise,

D̃kl =

⎧
⎪⎨

⎪⎩

ek/2 if k > 1, l = 1,

−el/2 if k = 1, l > 1,

akel − ekal + bkcl − ckbl otherwise.

• A basis of the corresponding almost quaternionic structure υ3+:

(J1)+ = 1

|u1 + 1|2
{((

a1 + 1
)2 + (b1)2 − (c1)2 − (e1)2)F

+ 2
(
b1c1 − (a1 + 1

)
e1)G+ 2

(
b1e1 + (a1 + 1

)
c1)H

}
,

(J2)+ = 1

|u1 + 1|2
{((

a1 + 1
)2 − (b1)2 + (c1)2 − (e1)2)G

+ 2
(
b1c1 + (a1 + 1

)
e1)F + 2

(
c1e1 − (a1 + 1

)
b1)H

}
,

(J3)+ = −1

|u1 + 1|2
{((

a1 + 1
)2 − (b1)2 − (c1)2 + (e1)2)H

+ 2
(
c1e1 + (a1 + 1

)
b1)G+ 2

(
b1e1 − (a1 + 1

)
c1)F

}
,
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where

F =
n∑

k=1

(
∂

∂bk
⊗ dak − ∂

∂ak
⊗ dbk − ∂

∂ek
⊗ dck + ∂

∂ck
⊗ dek

)
,

G=
n∑

k=1

(
∂

∂ck
⊗ dak + ∂

∂ek
⊗ dbk − ∂

∂ak
⊗ dck − ∂

∂bk
⊗ dek

)
,

H =
n∑

k=1

(
∂

∂ek
⊗ dak − ∂

∂ck
⊗ dbk + ∂

∂bk
⊗ dck − ∂

∂ak
⊗ dek

)
.

• Cayley planes
• Held–Stavrov–van Koten canonical metric g on:

Cayley projective plane OP2:

g = c

4

|du|2(1 + |v|2)+ |dv|2(1 + |u|2)− 2Re((uv̄)(dv dū))

(1 + |u|2 + |v|2)2 , c < 0.

The open unit ball model (B2, g, ν9) on the Cayley hyperbolic plane OH(2):

B2 = {(u, v) ∈O
2 : |u|2 + |v|2 < 1

}
,

g = c

4

|du|2(1 − |v|2)+ |dv|2(1 − |u|2)+ 2Re((uv̄)(dv dū))

(1 − |u|2 − |v|2)2 , c < 0

(see Held, Stavrov and van Koten [17]).

Left-Invariant Metrics on Lie Groups

• Koszul formula for the Levi-Civita connection of a left-invariant metric g on a
Lie group G with Lie algebra g (where X,Y,Z ∈ g):

2g(∇XY,Z)= g
([X,Y ],Z)− g

([Y,Z],X)+ g
([Z,X], Y ).

• Case of a bi-invariant metric (g([X,Y ],Z)+ g(Y, [X,Z])= 0:

∇XY = 1

2
[X,Y ].

• Case of a co-biinvariant metric (g([X,Y ],Z)+g([Y,Z],X)+g([Z,X], Y )= 0):

g(∇XY,Z)= −g
([Y,Z],X).

• Levi-Civita connection, curvature tensor field, and sectional curvature (at the
identity element e) for a compact Lie group G with a bi-invariant metric g

(X,Y,Z, left-invariant vector fields):

∇XY = 1

2
[X,Y ], R(X,Y )Z = −1

4

[[X,Y ],Z],

K
(〈X,Y 〉)= 1

4
g
([X,Y ], [X,Y ]), X,Y here orthonormal.
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Basic Differential Operators

• The gradient:

∇f = (df )� = g−1(df )=
∑

i,j

gij
∂f

∂xi

∂

∂xj
, f ∈ C∞(M,g).

• Divergence of X ∈X(M) with respect to a linear connection ∇ of M :

(divX)(p)=
n∑

i=1

θi(∇eiZ)

({ei}, {θi} = dual bases for TpM and T ∗
pM , p ∈M ; i = 1, . . . , n= dimM).

• Divergence of X =∑i X
i∂/∂xi with respect to (the Levi-Civita connection of)

a metric tensor g:

∑

i

1
√

det(gjk)

∂

√
det(gjk)Xi

∂xi
.

• Divergence of a (0, r) tensor α on (M,g):

(divα)p(v1, . . . , vr )=
∑

i

(∇ei α)(ei, v1, . . . , vr−1)

(∇ = Levi-Civita connection; vi ∈ TpM ; {ei} = orthonormal basis for TpM , p ∈
M).

• The Hessian:

Hf (X,Y )=XYf − (∇XY)f.

• Trace of the second covariant derivative:

tr∇2X =
∑

i

(∇ei∇ei − ∇∇ei
ei )X.

• The Laplacian and the Laplacian on functions:

Δ= dδ + δd, Δf = −
∑

i,j

gij
(

∂2f

∂xi∂xj
−
∑

k

Γ k
ij

∂f

∂xk

)
.

• Weitzenböck’s formula for the Laplacian Δ on (M,g) (n = dimM ; {ei} =
orthonormal basis of TpM):

g(Δα,α)= 1

2
Δ|α|2 + |∇α|2 + g(ρα,α), α ∈ΛrM,

where ρα(v1, . . . , vr )=
n∑

i=1

r∑

j=1

(
R(ei, vj )α

)
(v1, . . . , vj−1, ei, vj+1, . . . , vr ).
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Case of (M,g) of constant sectional curvature c:

g(Δα,α)= 1

2
Δ|α|2 + |∇α|2 + r(n− r)c|α|2.

• For f,h ∈ C∞M , X,Y ∈X(M):

(i) grad(f h)= f gradh+ hgradf ,
(ii) div(fX)=Xf + f divX,

(iii) Hfh = fHh + hHf + df ⊗ dh+ dh⊗ df ,
(iv) Δ(f h)= fΔh+ hΔf + 2g(gradf,gradh),
(v) curl(gradf )= 0,

(vi) curlX = dα, where α is the 1-form metrically dual to X.

• Hodge star operator � : ΛrM → Λn−rM , 0 � r � n, on an oriented pseudo-
Riemannian n-manifold (v = volume form):

α ∧ �β = g−1(α,β)v;
αp ∧ (�βp)= βp ∧ (�αp), α,β ∈Λr

pM,p ∈M;
�2 = (−1)r(n−r), �−1 = (−1)r(n−r)�.

Conformal Changes of Riemannian Metrics

• g̃ = e2f g, f ∈ C∞(M,g), dimM = n, |df |2 = g−1(df,df ):

Levi-Civita connection:

∇̃XY = ∇XY + (df (X))Y + (df (Y ))X − g(X,Y )gradf.

Riemann–Christoffel curvature tensor (� = Kulkarni–Nomizu product):

R̃ = e2f
(
R − g �

(
Hf − df ⊗ df + 1

2

∣∣df 2
∣∣2g
))

.

Ricci tensor:

r̃ = r − (n− 2)
(
Hf − df ⊗ df

)+ (Δf − (n− 2)
∣∣df 2

∣∣2)g.

Scalar curvature:

s̃ = e−2f (s + 2(n− 1)Δf − (n− 2)(n− 1)
∣∣df 2

∣∣).

(1,3) Weyl tensor W :

W̃ =W.

Volume element:

vg̃ = enf vg.
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Codifferential on r-forms:

δ̃α = e−2f (δα − (n− 2)igradf α
)
.

Hodge operator on r-forms (for oriented M):

�g̃ = e(n−2r)f �g.

For the relevant theory and a wealth of formulas, see Besse [5].

Some Geometric Vector Fields

• Affine X ∈X(M) with respect to a linear connection ∇ of M :

(LX∇)(Y,Z)= 0, Y,Z ∈X(M);
(∇Y∇X)Z =R(Y,X)Z (if ∇ is torsionless)

((LX∇)(Y,Z) = [X,∇YZ] − ∇[X,Y ]Z − ∇Y [X,Z]; (∇Y∇X)Z = ∇Y∇ZX −
∇∇Y ZX).

• Projective X ∈X(M) with respect to a linear connection ∇ of M :

(LX∇)(Y,Z)= θ(Y )Z + θ(Z)Y, Y,Z ∈X(M), θ ∈Λ1M.

• Jacobi equation along a geodesic γ :

∇γ ′∇γ ′Y + ∇γ ′
(
T
(
Y,γ ′))+R

(
Y,γ ′)γ ′ = 0.

Volumes of Spheres, Balls, and Projective Spaces

• Volumes of: sphere with the round metric, closed unit ball Bn+1 = B̄(0,1) ∈
R
n+1, and projective spaces KPn with the canonical metric (diam(KPn)= π/2)):

vol
(
S2n+1)= 2πn+1

n! , vol
(
S2n)= (n− 1)!(4π)n

(2n− 1)! ,

vol
(
Bn+1)= 1

n+ 1
vol
(
Sn
)
, vol

(
RP2n+1)= πn+1

n! ,

vol
(
RP2n)= (2π)n

(2n− 1)(2n− 3) · · · · · 3 · 1
, vol

(
CPn

)= πn

n! ,

vol
(
HPn

)= π2n

(2n+ 1)! , vol
(
OP1)= π4

8 · 7 · 5 · 3
, vol

(
OP2)= 6π8

11! .

Riemannian Submanifolds M ↪→ M̃ an immersion; X,Y,Z,W ∈ X(M), ξ ∈
X(M)⊥, ∇ , ∇̃ = Levi-Civita connections.
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• Gauss formula:

∇̃XY = ∇XY + α(X,Y ),

where ∇XY = τ ∇̃XY, α(X,Y )= ν∇̃XY

(τ = tangential part, ν = normal part; α = second fundamental form of M for the
given immersion).

• Weingarten formula:

∇̃Xξ = −AξX + ∇⊥
Xξ,

where

−AξX = τ ∇̃Xξ, ∇⊥
Xξ = ν∇̃Xξ, g(AξX,Y )= g

(
α(X,Y ), ξ

)
,

∇⊥
X : X(M)×X(M)⊥ → X(M)⊥ (the normal connection),

∇⊥
XW = ν∇̃XW, X ∈X(M),W ∈ X(M)⊥.

• Gauss equation:

R̃(X,Y,Z,W) = R(X,Y,Z,W)+ g
(
α(Z,Y ),α(W,X)

)

− g
(
α(Z,X),α(W,Y )

)
.

• (M,g) m-dimensional Riemannian submanifold of n-dimensional space (N, g̃)

of constant curvature K . Gauss equation and length of mean curvature vector
|H |2 at p ∈M ([30, p. 123]) :

R(X,Y,Z,W)=K
(
g(Z,Y )g(W,X)− g(Z,X)g(W,Y )

)

+ g̃
(
α(Z,Y ),α(W,X)

)− g̃
(
α(Z,X),α(W,Y )

)
,

X,Y,Z,W ∈X(M),

|H |2 = 1

m2

(
s −Km(m− 1)+ �2)

(7.9)

(s scalar curvature of M ; �2 square of the length of the second fundamental form).
• Codazzi equation:

νR̃XYZ = (∇̂Xα)(Y,Z)− (∇̂Y α)(X,Z),

where

(∇̂Xα)(Y,Z)= ∇⊥
X

(
α(Y,Z)

)− α(∇XY,Z)− α(Y,∇XZ).

• Ricci equation:

νR̃XY ξ =R⊥
XY ξ − α(AξX,Y )− α(X,AξY ).
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• Mean curvature normal:

η = 1

n

r∑

i=1

(trAξi )ξi

(M = n-dimensional Riemannian manifold isometrically immersed in an (n +
r)-dimensional Riemannian manifold N ; {ξ1, . . . , ξr} = orthonormal basis in
(TpM)⊥).

• Riemann–Christoffel curvature tensor on a complex submanifold M of a Kähler
manifold (M̃, g, J ) (α = second fundamental form; R̃ = Riemann–Christoffel
curvature tensor of M̃ , X ∈ X(M)):

R(X,JX,X,JX)= R̃(X,JX,X,JX)− 2g
(
α(X,X),α(X,X)

)
.

Hypersurfaces in R
n+1 M hypersurface in R

n+1; X,Y,Z ∈X(M); ξ field of unit
normal vectors defined locally, or globally if this is the case; ∇′ = covariant differen-
tiation in R

n+1; A=Aξ = symmetric transformation of each TpM corresponding to
the symmetric bilinear function h on TpM × TpM defined by α(X,Y )= h(X,Y )ξ .

• Gauss formula for hypersurfaces:

∇′
XY = ∇XY + h(X,Y )ξ.

• Weingarten formula for hypersurfaces:

∇′
Xξ = −AX.

• Gauss equation for hypersurfaces:

R(X,Y )Z = g(AY,Z)AX − g(AX,Z)AY.

• Codazzi equation for hypersurfaces:

(∇XA)Y = (∇YA)X.

Surfaces in R
3

• Gauss–Bonnet formula for a compact surface M :

χ(M)= 1

4π

∫

M

sωg = 1

2π

∫

M

Kωg

(χ(M)= Euler characteristic; s = scalar curvature; K = Gauss curvature).
• parametrisation of S2 = {(x, y, z) ∈R

3 : x2 + y2 + z2 = 1}:
x = sin θ cosϕ, y = sin θ sinϕ, z= cos θ, 0 < θ < π, 0 < ϕ < 2π.

(See Remark 1.4.)
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• A parametrisation of the torus T 2 (with R > r , θ,ϕ ∈ (0,2π)):

x = (R + r cos θ) cosϕ, y = (R + r cos θ) sinϕ, z= r sin θ.

(See Remark 1.4.)
• Gauss curvature K of an abstract parametrised surface with metric

g =E du2 + 2F dudv +Gdv2 =E du⊗ du+ F du⊗ dv + F dv ⊗ du

+Gdv ⊗ dv,

K = − 1

4(EG− F 2)2

∣
∣
∣
∣
∣
∣

E F G

Eu Fu Gu

Ev Fv Gv

∣
∣
∣
∣
∣
∣

− 1

2
√
EG− F 2

{(
Gu − Fv√
EG− F 2

)

u

−
(

Fu −Ev√
EG− F 2

)

v

}

(here a subindex u,v, denotes the derivative with respect to that variable).

Pseudo-Riemannian Manifolds

• Normal coordinates for a pseudo-Riemannian n-manifold (M,g). On a neigh-
bourhood of the origin p ∈M :

(i) gij (p)= δij εj , εj = ±1.
(ii) Geodesics through p: yi = ait , i = 1, . . . , n, ai = const.

(iii) Christoffel symbols: Γ i
jk(p)= 0.

• Cartan’s structure equations (for a pseudo-Riemannian metric).
σ = (Xi) an orthonormal moving frame; εi = g(Xi,Xi)= ±1; (θ̃ i) dual mov-

ing coframe; θ̃ i = σ ∗θi , with θ = (θ i) the canonical form on the bundle of or-
thonormal frames; ω̃i

j = σ ∗ωi
j , with ωi

j the connection forms; θ̃i = εi θ̃
i , ω̃ij

= εiω̃
i
j ; Ω̃ij = εiΩ̃

i
j :

dθ̃i = −
∑

j

ω̃ij ∧ (εj θ̃j ), ω̃ij + ω̃ji = 0,

dω̃ij = −
∑

k

εkω̃jk ∧ ω̃ik + Ω̃ij

(in the expression εj θ̃j , no sum in j ; in the expression εkω̃jk , no sum in k).
For the relevant theory and a wealth of related formulas, many of them repro-

duced here, see Kobayashi and Nomizu [19] and Wolf [31].
• Metric of constant curvature c. There exist coordinate functions xi on a neigh-

bourhood of p ∈M such that

g = εi dxi ⊗ dxi

(1 − c
4εi(x

i)2)2
, εi = ±1.
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• Pseudo-Riemannian metric of constant curvature c in normal coordinates xi with
origin q , at p �= q:

g =
∑

i,j

(
xixj

er2
+ sin2(r

√
ec)

ecr2

(
(gij )q − xixj

er2

))
dxi dxj

(signature of g = (ε1, . . . , εn), εi = ±1;
∑

j (gij )q = εiδij ; xi = ∑j (gij )px
j ;

e =∑i xix
i/|xixi | if

∑
i xix

i �= 0 and e = 0 if
∑

i xix
i = 0; r =

√
e
∑

i xix
i ).

For the relevant theory, see Cartan [9] and Ruse, Walker and Willmore [25].
• First variation formula for a piecewise C∞ curve segment σ : [a, b] → M with

constant speed c > 0 and sign ε:

L′(0)= ε

c

{

−
∫ b

a

g
(
σ ′′,V

)
du−

k∑

i=1

g
(
Δσ ′(ui),V (ui)

)+ [g(σ ′,V
)]b
a

}

(V = V (u) = variation vector field; u1 < · · · < uk breaks of σ and its variation;
Δσ ′(ui)= σ ′(u+

i )− σ ′(u−
i )).• Synge’s formula for the second variation of the arc of a geodesic segment

σ : [a, b] →M of speed c > 0 and sign ε:

L′′(0)= ε

c

{∫ b

a

{
g
(
V ′⊥,V ′⊥)+ g

(
R
(
V,σ ′)V,σ ′)}du+ [g(σ ′,A

)]b
a

}

(V ′⊥ = component of V ′ perpendicular to γ ; A= transverse acceleration vector
field).

For the relevant theory of these and the next formulas, see O’Neill [23].
• Einstein field equations:

r − 1

2
sg = T

(g = metric tensor; r = Ricci tensor; s = scalar curvature; T = stress-energy ten-
sor).

• Schwarzschild metric:

g = −
(

1 − 2m

R

)
dt2 +

(
1 − 2m

R

)−1

dR2 +R2(dθ2 + sin2 θ dϕ2),

θ ∈ (0,π),ϕ ∈ (0,2π).

• Kerr metric for a fast rotating planet (cylindrically symmetric gravitational field;
a = angular momentum):

g = −dt2 + (r2 + a2) sin2 θ dϕ2 + 2Mr(dt − a sin2 θ dϕ)2

r2 + a2 cos2 θ

+ (r2 + a2 cos2 θ
)(

dθ2 + dr2

r2 − 2Mr + a2

)
.
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• de Sitter metric on S4:

g = 1

(1 + ( r
2R )

2)2

(
dr2 + r2(σ 2

x + σ 2
y + σ 2

z

))
,

where R = radius of S4;

σx = 1

r2
(y dz− zdy + x dt − t dx), σy = 1

r2
(zdx − x dz+ y dt − t dy),

σz = 1

r2
(x dy − y dx + zdt − t dz).

• Robertson–Walker metric:

g = −dt2 + f 2(t)
dx2 + dy2 + dz2

(1 + k
4 (x

2 + y2 + z2))2

(three-dimensional space is fully isotropic; f (t) = (increasing) distance between
two neighbouring galaxies in space; k = −1,0,+1).
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Some Notations

A Atlas, 9
A∗ Fundamental vector field corresponding

to A, 276
Ad Adjoint representation of a Lie group,

202
ad Adjoint representation of a Lie algebra,

205
AutV Group of automorphisms of a vector

space V , 165
B(p, r) Open ball of center p and radius r ,

13
B̄(p, r) Closed ball of center p and radius r ,

594
B(· , ·) Killing form, 153
[ , ] Bracket product in a Lie algebra, 151
[X,Y ] Bracket product of the vector fields

X,Y , 70
C∞M Algebra of differentiable functions on

M , 68
C

n Complex n-space, 165
C∞

p M Local algebra of germs of C∞
functions at p ∈ M , 327

CPn Complex projective space, 144
c(1)(E), c(2)(E), . . . Chern numbers of the

bundle E, 292
ci(E) ith Chern form of E with a

connection, 298
ith Chern class of E, 404

ci
jk Structure constants of a Lie group, 170

D Distribution, 116
dim Dimension (of a vector space, a

manifold, etc.), 28
divX Divergence of the vector field X, 455
divω Divergence of the differential form ω,

416
dxi |p, (dxi)p Value of dxi at the point p,

109

d

dt

∣
∣
∣
t=0

Value of
d

dt
at t = 0, 80

∂

∂xi

∣
∣
∣
p

Value of
∂

∂xi
at p, 8

∂S Boundary of the subset S of a topological
space, 19

δω Codifferential of ω, 416
Δ Laplacian, 457
Δf Laplacian of the function f , 456
Ei

j Matrix with (i, j)th entry 1 and 0
elsewhere, 63

EndV Vector space of endomorphisms of a
vector space V , 38

exp Exponential map for a Lie group, 176
Exponential map for a manifold with a
linear connection, 384

F R, C or H, 94
FM Principal bundle of linear frames

over M , 98
f (p) Value of the function f at the point p,

8
f∗p Differential of f at p, 31
ϕ∗p Differential of the map ϕ at p, 29
ϕt Local flow, Local one-parameter

subgroup, 80
ϕ|U Restriction of the map ϕ to a subset U

of the domain of ϕ, 33
ϕ · X Vector field image of X by the

diffeomorphism ϕ, 85
� Musical isomorphism “flat”, 354
Gk(R

n) Grassmann manifold of k-planes in
R

n, 63
GL(n,C) General linear group, 165
gl(n,C) Lie algebra of GL(n,C), 560
GL(n,R) Real general linear group, 63
gl(n,R) Lie algebra of GL(n,R), 63
GL(n,H) Quaternionic linear group, 583
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gradf Vector field gradient of the
function f , 454

Γ Connection in a principal bundle, 284
Γ E C∞(M)-module of C∞ sections of the

vector bundle E, 543
Γ i

jk Christoffel symbols, 309
H Horizontal distribution of a connection,

281
H Algebra of quaternions, 94
H

∗ Multiplicative Lie group of nonzero
quaternions, 202

Hf Hessian of the function f , 35
Hk

dR(M,R) kth de Rham cohomology group
of M , 141

H
n Quaternionic n-space, 553

Hol(Γ ) Holonomy group of the connection
Γ , 315

Hol0(Γ ) Restricted holonomy group of the
connection Γ , 315

HPn Quaternionic projective n-space, 315
	 Hodge star operator, 459
I (M) Isometry group of (M,g), 413
im ϕ Image of the map ϕ, 19
〈X,Y 〉 Inner product of two vector fields

X,Y , 74
iX, ιX Interior product with respect to X, 93
J Jacobian matrix, 40

Almost complex structure, 319
∂(y1, . . . , yn)

∂(x1, . . . , xn)
Jacobian of the map

yi = f i(x1, . . . , xn), 38
K Sectional curvature, Gauss curvature, 401
kerϕ Kernel of the map ϕ, 59
LieG Lie algebra of the Lie group G, 176
LX Lie derivative with respect to X, 92
�∗M Algebra of differential forms on M ,

114
�rM Module of differential forms of degree

r on M , 108
�rV ∗ Alternating covariant tensors of

degree r on V , 101
M Manifold, 2
M(n,R) Real n × n matrices, 193
M(r × s,R) Real r × s matrices, 20
N Normal bundle, 543
N , NJ Nijenhuis tensor, 102
∇ Linear connection, 305
∇⊥ Normal connection, 595
O Algebra of octonions, 564

O+(1, n) Proper Lorentz group, 414
O(n) Orthogonal group, 178
O(n,C) Complex orthogonal group, 194
OpM Local algebra of germs of

holomorphic functions at p ∈ M , 327
(P,π,M,G) Principal fibre bundle over M

with projection map π and group G,
276

r Ricci tensor, 401
R

n Real n-space, 8
RPn Real projective space, 59
R(X,Y )Z = [∇X,∇Y ]Z − ∇[X,Y ]Z

Curvature tensor field of ∇ , 308
R(X,Y,Z,W) = g(R(Z,W)Y,X) Riemann

curvature tensor, 400
s Scalar curvature, 402
SL(n,C) Special linear group, 194
sl(n,C) Lie algebra of SL(n,C), 154
SL(n,R) Real special linear group, 193
sl(n,R) Lie algebra of SL(n,R), 191
Sn n-sphere, 12
SO(n) Special orthogonal group, 194
SO(n,C) Complex special orthogonal group,

194
SU(n) Special unitary group, 194
suppf Support of the function f , 68
 Musical isomorphism “sharp”, 354
〈X1, . . . ,Xn〉 Span of n vector fields (or

vectors) X1, . . . ,Xn, 117
T M Tangent bundle over M , 67
T ∗M Cotangent bundle over M , 97
T1(M) Unit tangent bundle over (M,g), 497
TpM Tangent space to the manifold M at the

point p, 29
Real tangent space to a complex

manifold at p, 320
T

1,0
p M Space of vectors of type (1,0) at p in

a complex manifold, 326
T h

p M Holomorphic tangent space at p in a
complex manifold, 326

tr Trace, 153
T r

s M Tensor fields of type (r, s) on M , 551
U(n) Unitary group, 194
Vk(R

n) Stiefel manifold of k-frames in R
n,

249
v, vM Element of volume, volume form, 138
vol(M), volg(M) Volume of M , 409
X(M) C∞M-module of C∞ vector fields on

M , 83



Index

A
Action

effective, 163, 254, 555, 570, 578
free, 98, 163, 229, 231, 434, 435
properly discontinuous, 164, 229, 231, 513
simply transitive, 164, 432, 519
transitive, 164

Adapted linear connection, 407
Ad(H )-invariant inner product, 445, 447
Adjoint representation

of a Lie algebra, 153, 187, 206
of a Lie group, 153, 201, 202, 266, 276,

296, 297, 449, 565
Affine

symmetric space, 451
vector field, 594

non-Killing, 473
Almost

complex
linear connection, 326
structure, 267, 319, 363, 364

Hermitian
manifold, 362
structure, 365, 367

product structure, 530
tangent structure, 279

Alternating covariant tensor, 101
decomposable, 101
homogeneous, 101

Annular region
de Rham cohomology, 142

Anti-derivation of the tensor algebra, 91
Arc length, 370, 484, 486, 540, 572
Atlas, 2, 8–26, 53, 60, 61, 97, 133, 170, 324
Autodual differential form, 459

Automorphism group of a principal bundle,
272

Axioms of countability, 28

B
Basic linear connection, 406
Belavin–Polyakov–Schwartz–Tyupkin

instantons, 459
Bi-invariant metric, 424, 538

Levi-Civita connection, 424
curvature, 424

on a compact Lie group
curvature tensor field, 591
Levi-Civita connection, 591
sectional curvature, 591

pseudo-Riemannian, 536
Bianchi identities, 402, 568

torsionless linear connection, 568
Bochner curvature tensor, 576
Bott’s Theorem on Pontrjagin classes, 406
Bracket

Poisson, 337, 339
product and exterior differential, 104, 550

Bundle
cotangent, 97, 285, 329, 332, 333
of linear frames, 98, 266, 267, 277, 279,

280, 320, 565–567
principal, 265
tangent, 7, 67, 69, 81

orientability, 132

C
Campbell–Baker–Hausdorff formula

five first summands, 557
for a nilpotent Lie group, 196

Canonical
1-form on the bundle of linear frames, 566
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Canonical (cont.)
1-form on the cotangent bundle, 239, 269,

329, 332, 333, 551
complex structure of R2n, 571
symplectic form on the cotangent bundle,

240, 269, 329, 332, 333, 551
Cartan

Criterion for Closed Subgroups, 152, 171,
185, 186, 249

Criterion for Semisimplicity, 156
matrix, 158, 215
structure equations, 417, 451

almost complex linear connection, 572
bundle of linear frames, 567
bundle of unitary frames, 575
geodesic polar coordinates, 569
in another (equivalent) way, 314
moving frame, 569
principal bundle, 565
pseudo-Riemannian, 519, 521, 527, 597
vector bundle with group GL(n,F), 566

subalgebra of complex Lie algebra, 207
subalgebra of semi-simple Lie algebra, 154

Catenoid, 508
Cauchy–Riemann equations, 322, 571
Cayley hyperbolic plane

Held–Stavrov–Van Koten metric, 591
Cayley projective plane

Held–Stavrov–Van Koten metric, 591
Changes of charts of a vector bundle, 91, 96
Characteristic

class
Chern, 297, 403

exotic class
Godbillon–Vey, 298

form
Chern, 297, 403
Pontrjagin, 404

Chart, 2
Chern

characteristic class, 297, 403
characteristic form, 297, 403, 576
number, 289, 302

Chern–Simons
formula, 302, 349
invariant, 349, 408

Christoffel symbols, 307, 311, 371, 400, 401,
452, 481, 492, 539, 566

expression in local coordinates, 573
Classical

Lie groups, 162, 559
simple complex Lie algebras

real forms, 560

Clifford multiplication on forms, 348, 467
Clifton–Pohl torus, 513
Closed differential form, 131, 431
Coadjoint representation, 243
Coclosed differential form, 463
Cocycle condition, 91, 97, 99
Codazzi equation

for hypersurfaces, 596
for submanifolds, 489, 544, 595

Codifferential, 416, 457, 463, 464, 594
of differential form, 348

Codimension q foliation, 406
Complete vector field, 7, 76, 77
Completely solvable

Lie algebra, 154, 206
Lie group, 154

Complex
dimension, 267
hyperbolic space

Lie algebra, 556
manifold, 267, 321

complex submanifold, 353, 489
holomorphic tangent space, 268, 326
real tangent space, 268, 326
space of vectors of type (1,0), 269, 326
totally real submanifold, 353
usual bases of T

1,0
p M , T

0,1
p M , 328, 571

orthogonal group, 194, 552
projective space CP1

tangent bundle, 403
projective space CPn, 144

as base space of a bundle, 276, 287
as Hermitian symmetric space, 447
as homogeneous space, 254, 563
volume form, 144

space form, 353
totally geodesic submanifold, 488
totally real submanifold, 488

special orthogonal group, 194, 552
structure, 571
tangent space, 363

Cone in R
3, 27

Conformal
change of metric, 462, 593
coordinates, 355
map, 353
vector field, 476

Conjugate points, 346, 387, 486, 487
Connection, 362

adapted linear, 407
basic linear, 406
flat, 267, 314
form

of a linear connection, 566
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Connection (cont.)
on a principal bundle, 285, 287, 297,

565
in a principal bundle, 266, 281, 288, 292,

295, 302
horizontal lift, 266
horizontal space, 266
vertical space, 266

linear, 267, 305–308, 311, 312, 316, 318,
319, 325, 326, 384, 455, 566

on vector bundle, 265
Connection Laplacian, 501
Connection map

Levi-Civita, 500
Connection-preserving map, 312
Constant curvature, 447

metric of negative, 584
metric of positive, 584
pseudo-Riemannian metric, 597
Riemann–Christoffel curvature tensor, 584

Constant holomorphic curvature
curvature form, 576
Fubini–Study metric, 585
Riemann–Christoffel curvature tensor, 576,

585
Constant negative holomorphic curvature

Siegel domain model, 586
Constant negative quaternionic curvature

Siegel domain model, 589
Constant paracomplex sectional curvature, 531
Coordinate

functions, 2
map, 2
neighbourhood, 2
system, 2

Coordinates
conformal, 355
cylindrical, 71, 476
Fermi, 347, 384
geodesic polar

structure equations, 569
isothermal, 355
normal, 267, 307, 390, 597
spherical, 103, 288, 510

Cotangent bundle
canonical 1-form, 269, 329, 332, 333, 551
canonical symplectic form, 269, 329, 332,

333, 551
from a cocycle, 97

Cotton tensor, 574
Covariant derivative

along a curve, 318, 319
and exterior differential, 312, 567

computation with indices, 308, 309
of tensor fields, 568
on a vector bundle, 570
second, 567, 592

Covering map, 48
and complex structure, 324
pseudo-Riemannian, 350

Critical
point, 4, 33–36

Hessian, 4
non-degenerate, 4, 36
of the energy functional, 503

value, 4, 34–36
Curl, 459, 593
Curvature

and Killing vector fields, 578
at a point of homogeneous Riemannian

manifold, 578
form

components, 569
scalar, 402, 574
sectional, 401, 574
tensor

Bochner, 576
Weyl conformal, 574
Weyl projective, 574

tensor field
at a point, 346
bi-invariant metric on a compact Lie

group, 591
of a linear connection, 567
symmetries, 567

Curve
dense in the torus T 2, 180
geodesic, 316, 318, 445, 513, 527
integral, 76, 77, 84, 121

Cut locus, 346
Klein bottle, 389
real projective space RPn, 389
sphere Sn, 388
torus T 2, 389

Cylindrical
coordinates, 71, 476
surface

atlas, 14
orientability, 133

D
Darboux’s Theorem for symplectic manifolds,

270
De Rham cohomology, 131, 141–143, 427, 464
Derivation of a Lie algebra, 151
Derivations of the tensor algebra, 91
Derivative (directional), 282
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Derived algebra of a Lie algebra, 154
Diffeomorphism, 3, 37–41, 43, 57, 68, 84, 170,

193, 194, 229, 231, 247–249, 251,
548

orientation-preserving, 134
Differentiable

manifold, 2
structure, 2

Differential
form

Clifford multiplication, 348
closed, 131, 431
coclosed, 463
Dirac operator, 348
exact, 131, 431
harmonic, 348
pull-back, 103, 550

forms
exterior product, 549
Grassmann product, 549
wedge product, 549

ideal, 93, 119, 120, 182
of a map, 548
of the exponential map, 385

Dirac
magnetic monopole, 288
operator on forms, 348, 467

Directional derivative, 282
Distance, 485

function, 369, 370
Distribution, 93

completely integrable, 93
first integral, 93
horizontal, 281
integral manifold, 93
involutive, 93, 111, 115, 116, 118–121, 182
maximal connected integral manifold, 94

Divergence, 455, 459, 593
of (0, r) tensors, 347
of a 1-form, 592
of a vector field, 455, 462

on an oriented manifold, 551
with respect to a linear connection, 592
with respect to a metric, 592

Divergence free vector field, 167
Dynkin diagram, 158, 215

E
Effective action, 254, 555, 570, 578
Eigenfunctions of the Laplacian, 466
Eigenvalues of the Laplacian, 466
Einstein

field equations, 527, 598
manifold, 425, 453

Embedded submanifold, 57
Embedding, 5, 50–52, 70
Energy functional critical point, 503
Energy of a curve, 573
Equation

Jacobi, 350, 483, 484, 486
Laplace, 136, 139

Equations
Cauchy–Riemann, 322, 571
Einstein field, 527, 598
Hamilton, 330
Maurer–Cartan, 184, 557

Euclidean
group E(2) invariant measure, 173
group E(n), 433
motion, 233

Euler
angles, 555
characteristic, 509
class in terms of curvature forms, 577

Euler–Lagrange equations, 503
Exact differential form, 131, 431
Exceptional Lie group G2, 163, 215, 220, 565
Exotic characteristic class

Godbillon–Vey, 300, 301
Exponential map

for a Lie group, 176
for a Riemannian manifold, 346
product, 557

Exterior
covariant derivative

of a tensorial 1-form of type Ad, 565
differential, 550

and bracket product, 104, 550
and covariant derivative, 312, 567

differentiation, 92
product of differential forms, 549

F
f -related vector fields, 8, 82–85, 106, 312
Fermi coordinates, 347, 384
Fibre bundle

base space, 265
connection on, 280
fibre, 265
fundamental vector field, 266
Hopf, 273, 275
of linear frames

canonical 1-form, 566
fundamental vector field, 279, 565
linear connection, 267

of unitary frames
structure equations, 575

principal, 265



Index 607

Fibre bundle (cont.)
projection map, 265
structure group, 265
total space, 265

Field equations of Einstein, 598
Figure Eight, 21, 31, 40

differentiable structure, 21
injective immersion, 52
non-injective immersion, 51

First Pontrjagin class and Hirzebruch
signature, 405

First Pontrjagin form and Hirzebruch
signature, 348

First variation formula, 598
Flat

connection, 267
and parallelisable manifold, 314

torus, 490
Flow (geodesic), 380
Foliated manifold, 94
Foliation, 94

codimension, 94, 298, 406
Lagrangian, 333
leave, 94
normal vector bundle, 406
with non-Hausdorff quotient manifold, 118

Formula for hypersurfaces
Gauss, 596
Weingarten, 596

Fractional linear transformations of Poincaré
upper half-plane, 410

Free action, 98, 163, 229, 231, 434, 435, 518
Frobenius’ Theorem, 123
Fubini–Study metric, 585
Full group of translations of Rn and transitive

action, 432
Function (distance), 369
Fundamental

2-form of an almost Hermitian manifold,
362, 575

vector field, 282
bundle of linear frames, 279, 565
principal bundle, 276

G
G-invariant Riemannian metric, 347
G-orbit, 246
G-structure, 266, 279, 320
Gauge group of a principal bundle, 272
Gauss

curvature, 484, 509
abstract parametrised surface, 597

equation for hypersurfaces, 493, 596

equation for submanifolds, 489, 595
formula for hypersurfaces, 596
formula for submanifolds, 594
Generalised Theorema Egregium, 351, 490
Lemma

generalisation, 398
Gauss–Bonnet

formula for a compact surface, 596
Theorem, 509

General linear group, 164
real representation, 319, 571

Generalised
Gauss’ Theorema Egregium, 351, 490
Heisenberg group, 427
weight spaces, 154

Geodesic
curve, 316, 318, 445, 513, 527

and parametrisation, 375
differential equations, 570
in Sn, 573

flow, 380
polar coordinates

structure equations, 569
sphere, 392
vector field, 375, 376

Geodesically complete Riemannian manifold,
370

Global parallelisation of S3, 74, 235
Godbillon–Vey exotic characteristic class, 300,

301
Gradient, 454, 460, 592, 593
Grassmann product of differential forms, 549
Grassmannian

real, 63
as homogeneous space, 251, 563
as quotient manifold, 63
tautological bundle, 99

Green’s
first identity on manifolds, 466
Theorem, 131, 135, 552

Corollary of, 351
Group

of inner automorphisms of so(8), 259
of outer automorphisms of so(8), 259
Weyl, 159, 216, 218–221

H
Hamilton equations, 330
Hamiltonian vector field, 336, 338, 380, 437
Harmonic

differential form, 348, 463
map, 52
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Harmonic (cont.)
section, 505
vector field, 479, 481

Heisenberg group, 170, 173, 177, 182, 198
exponential map, 193
generalised, 351, 427
Lie algebra, 555
nilmanifolds of the, 427
nilmanifolds of the generalised, 427
usual left-invariant metric, 417

Held–Stavrov–Van Koten metric
Cayley hyperbolic plane, 591
Cayley projective plane, 591

Helicoid, 508
Hermitian

manifold, 268
metric, 268

fundamental 2-form, 575
on an almost complex manifold, 362,

575
symmetric space, 447, 580

Hessian, 455, 456, 593
at a critical point, 4, 35
matrix, 35

Hirzebruch
signature, 348

and first Pontrjagin class, 405
and first Pontrjagin form, 348
Theorem, 348

Hodge
Decomposition Theorem, 351, 465
star operator, 457, 460, 463, 593

Holomorphic
sectional curvature, 575

constant, 448
tangent space to a complex manifold, 268
vector field, 572

Holonomy group, 314, 350
Homogeneous

alternating covariant tensor, 101
pseudo-Riemannian manifold, 518
Riemannian manifold, 577

curvature at a point, 578
normal, 577
Ricci curvature at a point, 578

space, 164, 247–249, 251, 252, 254, 433,
530, 563, 564

naturally reductive, 442, 577
reductive, 164, 252

Homotheties
on a vector bundle, 94
vector field, 473

Hopf
bundle

complex, 273, 275, 289, 565
quaternionic, 273, 295, 565

vector field, 497
Horizontal

distribution, 281
lift, 266
subspace of a connection, 266

Hyperbolic space Hn

isometry group, 413
Hyperboloid

one-sheet, 53
tangent plane, 72

two-sheet, 53, 55

I
Immersion, 5, 184

non-injective, 51
Implicit Map Theorem, 6

for submersions, 6, 57
Injective immersion, 51–53
Inner

automorphism of a Lie group, 152
product

Ad(H )-invariant, 445, 447
Lorentz, 533
of integration, 464
of vector fields, 74

Instantons, 303
Belavin–Polyakov–Schwartz–Tyupkin, 459

Integral curve, 76, 77, 84, 121
Integrating a Lie algebra, 187, 195, 197
Integration on a Lie group, 179, 180
Interior product, 93, 114, 551
Invariant

Chern–Simons, 349
measure

left (or right), 173
polynomial, 302, 349
Riemannian metric, 347

Invariant connections on Riemannian
symmetric spaces of type I, II, 578

Inverse Map theorem, 5
Involutive distribution, 93, 115, 116, 118–121,

182
Isometry, 233
Isometry group

of hyperbolic space Hn with canonical
metric, 413

of pseudo-Euclidean space R
n
k , 516

of Sn with round metric, 413
Isomorphisms of some Lie algebras, 556
Isothermal coordinates, 355
Isotropy representation, 242
Iwasawa decomposition of SL(2,R), 410
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J
Jacobi

equation, 350, 483, 484, 486, 594
field along a geodesic curve, 350
identity, 168

Lie algebras, 151
vector fields, 548

vector field, 483, 487, 594
on a surface of revolution, 484

Jacobian, 52
matrix, 38

K
Kähler

form, 268
manifold, 268, 448, 575

curvature, 575
Ricci form, 575

metric, 575
curvature components, 575
Ricci form, 575

structure, 365
Killing

form, 446, 448, 557
vector field, 473, 475, 481, 513

and curvature, 578
and Levi-Civita connection, 578
of the Euclidean metric, 474

Klein bottle, 19
cut locus, 389

Kodaira–Thurston manifold, 422
Kostant operator, 475
Koszul formula

left-invariant metric on a Lie group, 419,
591

Levi-Civita connection, 346, 520, 573
Kulkarni–Nomizu product, 549, 593

L
Lagrangian foliation, 333
Laplace equation, 136, 139
Laplacian, 460, 463, 464, 592

connection, 501
eigenfunctions, 466
eigenvalues, 466
for pseudo-Euclidean space, 538
Hodge–de Rham, 463, 501
on functions, 539, 592
rough, 501
trace, 500
Weitzenböck’s formula, 464, 592

Left-invariant
invariant measure

or right-invariant, 173

metric, 425
Koszul formula, 419, 591
on Lie group, 416, 432
on the Heisenberg group, 417

vector field
and right-invariant vector field, 241

Lemma of Poincaré, 110
Levi-Civita

connection, 359
and Killing vector fields, 578
Koszul formula, 573
of left-invariant metric, 591

connection map, 500
covariant derivative

along a curve, 359
Lexicographic ordering, 158
Lie

bracket of vector fields, 7, 105
derivative, 92, 329, 550

length of LXg, 361
not a connection, 307

Lie algebra, 151, 182
bracket, 151

Jacobi identity, 151
completely solvable, 206
complex

Cartan subalgebra, 207
regular element, 155, 207
weight-spaces decomposition, 207

derivation, 151
group of inner automorphisms, 202
homomorphism, 151
integrating a, 187, 195, 197
isomorphism, 151
of complex hyperbolic space, 555
of derivations of a finite-dimensional

R-algebra, 174
of Heisenberg group, 555
of real hyperbolic space, 555
semi-direct product, 152, 524
semi-simple, 155

root system, 207
so(3), 176, 555
so(C2r ,B), 161
sp(C2r ,Ω), 161
solvable, 154
some isomorphisms, 556
unimodular 3-dimensional, 556

Lie group, 151
Aff(Rn) of affine transformations of Rn,

166
Aff(R) of affine transformations of R, 187
classical, 559
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Lie group (cont.)
complex

orthogonal O(n,C), 194, 552
special orthogonal SO(n,C), 552

E(1,1) of motions of Minkowski 2-space,
557

E(2) of Euclidean motions, 173, 557
E(n) of Euclidean motions, 432, 433
exceptional G2 and octonions, 565
general linear GL(n,C), 164

real representation, 319, 571
GL(n,R) structure constants, 566
H

∗ of non-zero quaternions, 202
Heisenberg, 170, 173, 177, 182, 417

exponential map, 193
homomorphism, 151
isomorphism, 151
left-invariant metric, 416, 432
maximal Abelian subgroup, 212
of fractional linear transformations of

upper half-plane, 233, 410
of similarities of the plane, 166, 201
orthogonal O(n), 194, 553
oscillator, 533
semi-direct product, 151, 524
semisum of positive roots, 215
simple compact

Poincaré polynomials, 558
simply connected, 558

some usual
center, 558
compactness, 554
connectedness, 554
dimension, 554

special linear SL(n,C), 194, 552
special orthogonal SO(n), 194, 553
special unitary SU(n), 194, 552
Spin(7) and octonions, 565
Sp(n)Sp(1), 553
structure constants, 557
symplectic over C, Sp(n,C), 552
symplectic over R, Sp(n,R), 553
symplectic Sp(n), 553
toral, 164
unimodular 3-dimensional, 556
unitary U(n), 194, 552

Lie–Poisson symplectic structure, 244
Line element, 357
Linear

connection, 267
adapted, 407
almost complex, 326
basic, 406
Bianchi identities, 402, 568

conjugate, 305
connection form, 566
curvature tensor field, 567
opposite, 305
projectively related, 308
torsion tensor, 567

isotropy action, 445, 448
isotropy representation of a reductive

homogeneous space, 570
Local

coordinates on T M , 548
flow of a vector field, 7, 80, 81, 116, 284,

332
Locally

Euclidean space, 2
Hamiltonian vector field, 339

Lorentz
group O(k, n − k), 553
inner product, 533
Lie group, 533
proper group, 413
surface, 513

Loxodromic curves, 506

M
Manifold

almost Hermitian, 362
and continuous partitions of unity, 28
and second axiom of countability, 28
and separation axioms T1, T2, T3, 28
C∞, 2
complex, 267
differentiable, 2
Einstein, 425, 453
foliated, 94
Grassmann, 251
Hermitian, 268
Kähler, 448
Kodaira–Thurston, 422
non-Hausdorff C∞, 25, 118
of affine straight lines of the plane, 41
orientable, 132, 133
quotient, 6, 60, 61, 63, 228, 229, 231, 234,

249, 251
Stiefel, 249

Map (momentum), 238, 239
Matrix

Cartan, 158
Maurer–Cartan equations, 184, 557
Maximal

Abelian subgroup of a Lie group, 212
atlas, 2
torus, 156
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Mean curvature
normal, 352, 596
vector field, 497

Measure zero, 4, 34, 35
Mercator projection, 506
Metric

Kähler, 575
near of the origin of normal coordinates,

573
pseudo-Riemannian constant curvature,

597
Schwarzschild, 598
signature, 516
tensor on a differentiable manifold, 345

Minimal
submanifold, 352, 353, 489
surface, 494

Minkowski space
two-dimensional, 518

Möbius strip
as quotient manifold under a

transformation group, 231
atlas, 18
infinite, 16, 42

as total space of a vector bundle, 95
atlas, 16

orientability, 133
parametrisation, 18

Momentum map, 238, 239
Monopole

Dirac magnetic, 288
Moving frame structure equations, 569
Musical isomorphisms, 354, 454, 460, 572

N
Naturally reductive homogeneous space, 442

Levi-Civita connection, 577
Navigator connection, 505
Negative constant quaternionic curvature

open unit ball model, 588
Nijenhuis

tensor, 102, 323, 326, 549
torsion of two tensor fields, 102, 549

Nilmanifold, 427
of the generalised Heisenberg group, 427
of the Heisenberg group, 427

Non-Hausdorff
C∞ manifold, 25, 26, 118
set with a C∞ structure, 25

Non-orientable manifold, 130
Non-positive sectional curvature and conjugate

points, 486
Noose, 22

Normal
coordinates, 267, 390, 503

and Christoffel symbols, 307
for a pseudo-Riemannian manifold, 597
metric tensor at the origin, 573
Riemann–Christoffel curvature tensor

near of the origin, 573
homogeneous Riemannian manifold, 577
vector bundle to a foliation, 406

Nunes connection, 505

O
Octonions, 564

automorphism group G2, 223
One-parameter

group, 7
subgroup of a Lie group, 191, 193, 232

Open unit ball model of negative constant
quaternionic curvature, 588

Orientability
cylindrical surface, 133
Möbius strip, 133
real projective space RP2, 133

Orientable manifold, 130, 132, 133, 135, 179,
322

Orientation of a vector space, 130
Orientation-preserving map, 130, 134
Orthogonal

complex group, 194, 552
group, 194, 553

Oscillator group, 533

P
Para–Kähler manifold, 531
Paraboloid

elliptic, 56
hyperbolic, 56

Paracompact space, 2, 28
Paracomplex projective space, 529

totally umbilical submanifold, 543
Parallel

differential form, 463
transport, 267, 314, 315, 318, 319, 350,

371, 373, 402, 485, 505, 569
Parallelisable manifold, 267, 314

globally, 68, 95, 314, 349
Parametrisation

Möbius strip, 18
of surface, 3
sphere S3, 275
sphere S2, 596
torus T 2, 597

Partitions of unity
manifolds and, 28
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Pauli matrices, 293
Poincaré

duality, 431
Lemma, 110
polynomial of compact simple Lie groups,

558
upper half-plane, 410, 573

fractional linear transformations, 410
vertical lines, 374

upper half-space, 451
Poisson bracket, 337, 339
Pontrjagin

characteristic form, 404
classes, 406

Bott’s Theorem, 406
form, 348

in terms of curvature forms, 576
Positive constant curvature and conjugate

points, 486
Positive constant quaternionic curvature

Watanabe metric, 588
Positive root, 158

complex simple Lie algebras, 562
Principal

bundle, 265
automorphism group, 272
gauge group, 272

fibre bundle
connection, 266
connection form, 266, 565
of linear frames, 266

Product for the exponential map, 557
Projective space (punctured), 42
Projective vector field, 594

non-affine, 472
Projectively related linear connections, 308
Properly discontinuous action, 164, 229, 231,

513
Pseudo-Euclidean

metric of signature (k, n − k), 516
space

exponential map, 517
isometry group, 516
Laplacian, 538

Pseudo-orthogonal group O(k, n − k), 516,
553

Pseudo-Riemannian
covering map, 350
manifold, 345
submanifold, 353

Pull-back of a differential form, 103, 550
Punctured

Euclidean space as a homogeneous space,
252

projective space RP2, 42
Purely imaginary quaternions and su(2), 292

Q
Quaternion, 235, 564

differential, 293
Quaternionic

Hopf bundle, 273, 295
hyperbolic space

Lie algebra, 556
open unit ball model, 588

projective space
as homogeneous space, 563
Watanabe metric, 588

Quotient manifold, 6, 60, 61, 63, 228, 229,
231, 234, 249, 251

Grassmannian as a, 63
real projective space RPn as a, 61

R
Rank

of a map at a point, 5
theorem, 5

Real
derivations of the local algebra C∞

p M of
germs of C∞ functions at p, 3

forms of classical complex simple Lie
algebras, 560

general linear group, 164, 183–185, 566
left-invariant vector field, 167

hyperbolic space
Lie algebra, 555

line R

as Lie group, 190
connections in tangent bundle, 280
differentiable structure, 8, 9

matrices M(n,R) as Lie algebra, 167
matrices M(r × s,R)

atlas, 20
projective space RP2

embedding in R
4, 510

orientability, 133
projective space RPn, 59, 61

as homogeneous space, 252, 563
cut locus, 389

representation of GL(1,C), 178
representation of GL(n,C), 319
space R

2n

canonical complex structure, 571
space R

n

differentiable structure, 8
holonomy group, 314
Jacobi vector fields, 483
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Real (cont.)
special linear group, 191, 194
tangent space at a complex manifold, 268
vector space

as C∞ manifold, 164
as Lie group, 164

Real solvable
Lie algebra, 154
Lie group, 154

Reductive homogeneous space, 164, 252, 570,
577

curvature form of the canonical connection,
570

curvature tensor field of the canonical
connection, 570

Levi-Civita connection, 577
linear isotropy representation, 570
torsion tensor of the canonical connection,

570
Reeb foliation of S3, 122
Regular

domain, 131
elements of complex Lie algebra, 155, 207

Representation
adjoint, 153
coadjoint, 243
faithful, 182

Ricci
curvature

at a point of homogeneous Riemannian
manifold, 578

equation for submanifolds, 544, 595
form for a Kähler metric, 575
identities, 568
tensor, 401, 402, 453

any local frame, 574
Hermitian symmetric space, 578
local orthonormal frame, 574

Riemann curvature tensor at a point, 346
Riemann–Christoffel curvature tensor, 400,

401, 573
for constant curvature, 584
for constant holomorphic curvature, 585
near of the origin of normal coordinates,

573
of a complex submanifold of a Kähler

manifold, 596
symmetries, 573

Riemannian
metric

G-invariant, 347
invariant, 347

submanifolds
Codazzi equation, 595
Gauss equation, 595
Gauss formula, 594
Ricci equation, 595
Weingarten formula, 595

submersion
sectional curvature, 577

symmetric spaces, 578
irreducible, 580

Riemannian symmetric spaces of type I, II
invariant connections, 578

Right-invariant
measure, 172
vector field, 172

Rigid motions
of Euclidean 2-space, 557
of Minkowski 2-space, 557

Root
positive, 158
simple, 158

Root spaces
decomposition of semi-simple Lie algebra,

207
Root system

reduced, 157
semi-simple Lie algebra, 207
simple, 158
Weyl group, 215

Roots
α-series containing β ′, 156
complex simple Lie algebras, 562
of classical Lie algebra, 162
of classical Lie group, 162
of complex Lie algebra, 156
of complex Lie group, 156
of GL(4,C), 210
of SO(C5,Ω), 210
of Sp(C4,Ω), 210

Rough Laplacian, 501
Round metric on Sn, 357

S
Sard’s Theorem, 4, 35
Sasaki metric, 499, 500
Scalar curvature, 402, 574
Schwarzschild black hole metric, 527, 598
Second

axiom of countability
manifolds and, 28

covariant derivative, 567, 592
variation of arc length

Synge’s formula, 540, 542, 598
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Secondary invariants
Chern–Simons, 408

formula, 302, 349
Sectional curvature, 401, 574

bi-invariant metric on a compact Lie group,
591

holomorphic, 575
Semi-direct product

Lie algebras, 152, 524
Lie groups, 151, 524

Semi-homogeneous function, 391
Semi-simple

endomorphism, 151
Lie algebra, 155

root-spaces decomposition, 207
Semisimplicity

Cartan’s Criterion, 156
Semisum of positive roots of a semi-simple Lie

group, 215
Shape tensor, 498
Siegel domain model

constant negative holomorphic curvature,
586

constant negative quaternionic curvature,
589

Signature
(k, n − k) of pseudo-Euclidean metric, 516
of a compact oriented 4-manifold, 405
of bilinear form, 345
of Killing form on the exceptional Lie

algebras, 580
Simple

complex Lie algebras
compact real forms, 559
Lie groups, 559
positive roots, 562
roots, 562
simple roots, 562

Lie group
simply connected compact, 558

root, 158
roots of complex simple Lie algebras, 562

Simply transitive action, 164, 432, 519
Smooth distribution and bracket of vector

fields, 124
so(7)

basic spinor representation, 259
Solvable

Lie algebra, 154
Lie group, 206

Space
form, 350

complex, 353, 488
real, 488

Hermitian symmetric, 447, 580
homogeneous, 164, 247–249, 251, 252,

254, 433, 530, 563, 564
reductive, 164

of constant curvature, 425, 447, 451–453,
486, 519–521, 523, 584

Jacobi fields, 485
Pontrjagin forms, 404

of constant holomorphic curvature, 585
reductive homogeneous, 570
Riemannian symmetric, 445, 578, 580

Special
complex orthogonal group, 552
linear group, 194, 552
orthogonal group, 194, 553

Lie algebra, 555
unitary group, 194, 552

Sphere
S1, 48, 140

as Lie group, 190, 249
as quotient manifold under a

transformation group, 228
atlas, 9–11
de Rham cohomology, 141
stereographic projection, 11

S2, 40, 141, 505
and exponential map, 385
as complex manifold, 321
as homogeneous space, 247
atlas, 12
canonical volume form, 138, 510
de Rham cohomology, 143
holonomy group of the usual

connection, 314
parametrisation, 31, 596
stereographic projection, 12, 138, 321
tangent bundle, 70
volume form, 138

S3, 108
and complex Hopf bundle, 273, 275
as the unit quaternions, 235
global parallelisation, 74, 235, 548
parametrisation, 275

S6 and octonions, 255, 565
S7

and octonions, 565
and quaternionic Hopf bundle, 273, 295

S15 and octonions, 565
Sn

almost complex spheres, 572
as embedded submanifold, 53
as homogeneous space, 247, 563
as symmetric space, 445
conjugate points, 486
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Sphere (cont.)
cut locus, 388
exponential map, 385
geodesics, 573
groups acting transitively and

effectively, 555
inverse map of stereographic projection,

547, 548
minimal geodesics, 371
orientability, 133
parallelisable, 572
round metric, 357
stereographic projection, 14, 133, 547,

548
volume with round metric, 594
which are Lie groups, 572

S2n+1

as homogeneous space, 248, 563
as total space of a bundle, 287
holonomy group of a connection, 314
vector field, 74, 549

S4n+3

holonomy group of a connection, 314
geodesic, 392

Spherical coordinates, 103, 288, 510
Spin(n) groups

isomorphisms with classical groups, 554
Split solvable

Lie algebra, 154
Lie group, 154

Standard Hopf vector field, 291, 497
Stereographic projection, 3

circle S1, 11
inverse map, 3, 295
sphere S2, 12, 138, 321
sphere Sn, 14, 133, 547, 548

inverse map, 547, 548
Stiefel manifold as homogeneous space, 249,

563
Stokes’

Theorem I, 131, 135, 137, 552
Theorem II, 131, 139–141, 552

Strictly conformal map, 351, 487
Structure

almost complex, 363, 364
almost Hermitian, 365, 367
Kähler, 365

Structure constants
of a Lie group, 169, 183, 557
of GL(n,R), 566

Structure equations, 417
almost complex linear connection, 572

bundle of linear frames, 567
bundle of unitary frames, 575
geodesic polar coordinates, 569
moving frame, 569
principal bundle, 565
pseudo-Riemannian, 519, 521, 527, 597
vector bundle with group GL(n,F), 566

Submanifold, 5
and bracket of vector fields, 112
embedded, 51
minimal, 352, 353, 489

Submersion, 5, 58, 59, 65, 228, 235, 435
Implicit Map Theorem, 6
Riemannian, 577
surjective, 110

Surface
cylindrical, 15
minimal, 494
of revolution, 56, 479, 484, 485, 508
parametrisation, 3

Surjective submersion
and f -related vector fields, 127
involutive distributions, 126

Symmetric space
affine, 350, 451
Hermitian, 447, 580
irreducible Riemannian, 580
of classical type with noncompact isotropy

group, 580
Ricci tensor, 578
Riemannian, 578

curvature tensor field, 578
Symplectic

canonical form on the cotangent bundle,
269, 329, 332, 333, 551

group, 553
group over C, 552
group over R, 553
Lie–Poisson structure, 244
manifold, 269

almost, 269
Synge’s formula

for first variation of arc length, 598
for second variation of arc length, 542, 598

T
Tangent bundle, 7, 67, 69

flow, 81
from a cocycle, 97
orientability, 132
over CP1, 403
over S2, 70
unit, 499, 500
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Tangent plane to a surface at a point, 71, 72
Tangent space, 3

complex, 363
Tautological bundle

over CP1, 297
over the real Grassmannian, 99

Tensor
algebra, 91
Cotton, 574
Nijenhuis, 102

Tensorial 1-form of type Ad
exterior covariant derivative, 565

Theorem
Cartan’s Criterion for Closed Subgroups,

152, 171, 185, 186, 249
Chern–Simons formula, 349
Corollary of Green’s, 351
Darboux’s, 270
Frobenius, 123
Gauss–Bonnet, 509
Generalised Gauss’ Theorema Egregium,

351, 490
Green’s, 131, 135, 552
Hirzebruch Signature, 348
Hodge Decomposition, 351, 465
Implicit Map, 6
Inverse Map, 5, 267
of the Closed Graph, 6, 63
of the Rank, 5, 65
Sard’s, 35
Whitney Embedding, 86

Topological manifold, 2
Torsion

form components, 569
of an almost complex structure, 571
tensor of a linear connection, 567

Torus (maximal), 156
Torus T 2

and bounded distance, 373
as complex manifold, 323
curve dense in, 180
cut locus, 389
de Rham cohomology, 143
flat, 490
harmonic fields on, 479
isometric embedding in R4, 510
parametrisation, 597
volume, 510

Totally
real submanifold, 353, 488
umbilical submanifold

of paracomplex projective space, 543
Trace Laplacian, 500
Transgression formula, 349

Transition function, 276
Transitive action, 164
Triality

principle of, 259
Trivialisation of a vector bundle, 91

U
Unimodular 3-dimensional

Lie algebra, 556
Lie groups, 556

Unit tangent bundle, 499, 500
Unitary group, 194, 552
Upper half-plane, 233

Poincaré, 374, 573
Upper half-space, 451

V
Vector bundle

changes of charts, 91, 96
connection, 265
equivalence, 91
trivialisation, 91

Vector field
affine, 594

non-Killing, 473
C∞, 7
complete, 7, 76, 77
conformal, 476
divergence free, 167
fundamental, 282

on the bundle of linear frames, 279, 565
geodesic, 375, 376
Hamiltonian, 336, 338, 380, 437
harmonic, 479, 481
holomorphic, 572
Hopf, 497
image, 8, 84, 487, 549
inner product, 74
Jacobi, 483–487, 594
Killing, 473–475, 481, 513
local flow, 7, 80, 81, 116, 284, 332
locally Hamiltonian, 339
mean curvature, 497
of homotheties, 473
parallel transport, 267, 314, 315, 318, 319,

350, 373, 402, 569
projective, 472, 594
right-invariant, 172
standard Hopf, 291, 497

Vector fields
f -related, 8, 82–85, 106, 312

and integral curves, 84
Vector product in R

3, 168
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Vertical
bundle of a fibre bundle, 264
subspace of a connection, 266

Volume
form, 510

of S2, 138
of a ball in Sn with round metric, 594
of Sn with round metric, 594
of SO(3) with the bi-invariant metric, 409
of T 2, 510

W
Warped product, 345, 357
Watanabe metric on quaternionic projective

space, 588
Wedge product of differential forms, 549

Weight-spaces
decomposition of complex Lie algebra, 207
generalised, 154

Weingarten
formula for hypersurfaces, 596
formula for submanifolds, 595
map, 351, 491

Weitzenböck formula
for square of Dirac operator on forms, 467
for the Laplacian, 464, 592

Weyl
conformal curvature tensor, 574
group, 159, 215, 216, 218–221
projective curvature tensor, 574

Whitney Embedding Theorem, 86
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