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0 Introduction

Our main concern in this work is to provide concrete formulas for the invariant inner
products and hermitian forms on spaces of holomorphic functions on Cartan domains
D of tube type. As will be explained below, the group Aut(D) of all holomorphic
automorphisms of D acts transitively. Aut(D) acts projectively on function spaces
on D via f 7→ U (λ)(ϕ)f := (f ◦ ϕ) (Jϕ)λ/p, ϕ ∈ Aut(D), λ ∈ C, but these actions
are not irreducible in general. The inner products we consider are those obtained
from the holomorphic discrete series by analytic continuation. The associated Hilbert
spaces generalize the weighted Bergman spaces, the Hardy and the Dirichlet space. By
“concrete” formulas we mean Besov-type formulas, namely integral formulas involving
the functions and some of their derivatives. Possible applications include the study
of operators (Toeplitz, Hankel) acting on function spaces and the theory of invariant
Banach spaces of analytic functions (where the pairing between an invariant space
and its invariant dual is computed via the corresponding invariant inner product).

Our problem is closely related to finding concrete realizations (by means of inte-
gral formulas) of the analytic continuation of the Riesz distribution. [Ri], [Go], [FK2],
Chapter VII.

1Authors supported
by a grant from the German-Israeli Foundation (GIF), I-415-023.06/95.
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214 Arazy and Upmeier

In principle, the analytic continuation is obtained from the integral formulas
associated with the weighted Bergman spaces (i.e. the holomorphic discrete series)
by “partial integration with respect to the radial variables”. This program has been
successful in the case of rank 1 (i.e. when D is the open unit ball of Cd, see [A3]).
The case of rank r > 1 is more difficult, and concrete formulas are known only in
special cases, see [A2], [Y4], [Y1], [Y2].

This paper consists of two main parts. In the first part (Sections 2, 3, and 4) we
develop in full generality the techniques of [A2], [Y4], and obtain integral formulas
for the invariant inner products associated with the so-called Wallach set and pole
set. In the second part (section 5) we introduce new techniques (integration on
boundary orbits), to obtain new integral formulas for the invariant inner products
in the important special cases of Cartan domains of type I and IV. This approach
has the potential for further generalizations and applications, including the infinite
dimensional setup.

The paper is organized as follows. Section 1 provides background information on
Cartan domains, the associated symmetric cones and Siegel domains and the Jordan
theoretic approach to the study of bounded symmetric domains [Lo], [FK2], [U2].
We also explain some general facts concerning invariant Hilbert spaces of analytic
functions on Cartan domains and the connection to the Riesz distribution. Section 2 is
devoted to the study of invariant differential operators on symmetric cones. We study
the “shifting operators” introduced by Z. Yan and their derivatives with respect to
the “spectral parameter”. Section 3 is devoted to our generalization of Yan’s shifting
method, to find explicit integral formulas for the invariant inner products obtained
by analytic continuation of the holomorphic discrete series. In section 4 we study the
expansion of Yan’s operators, and obtain applications to concrete integral formulas
for the invariant inner products. Some of these results were obtained independently
by Z. Yan, J. Faraut and A. Korányi, [FK2], [Y4]. We include these results and our
proofs, in order to make the paper self contained, and also because in most cases our
results go beyond the results in [FK2], [Y4].

In section 5 we propose a new type of integral formulas for the invariant inner
products. These formulas involve integration on boundary orbits and the applica-
tion of the localized versions of the radial derivative associated with the boundary
components of Cartan domains. We are able to establish the desired formulas in the
important special cases of type I and IV. The techniques established in this section
can be used in the study of the remaining cases.

Finally, in the short section 6 we use the quasi-invariant measures on the bound-
ary orbits of the associated symmetric cone in order to obtain integral formulas for
some of the invariant inner products in the context of the unbounded realization of the
Cartan domains (tube domains). These results are essentially implicitly contained in
[VR], where the authors use the Lie-theoretic and Fourier-analytic approach to analy-
sis on symmetric Siegel domains. We use the Jordan-theoretic approach which yields
simpler formulation of the results and simpler proofs.

Acknowledgment: We would like to thank Z. Yan, J. Faraut, and A. Korányi for
sending us drafts of their work and for many stimulating discussions. We also thank
the referee for valuable comments on the first version of the paper.
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Invariant Inner Products 215

1 Preliminaries

A Cartan domain D ⊂ Cd is an irreducible bounded symmetric domain in its Harish-
Chandra realization. Thus D is the open unit ball of a Banach space Z = (Cd, ‖ · ‖)
which admits the structure of a JB∗-triple, namely there exists a continuous mapping
Z × Z × Z 3 (x, y, z) → {x, y, z} ∈ Z (called the Jordan triple product) which is
bilinear and symmetric in x and z, conjugate-linear in y, and so that the operators
D(x, x) : Z → Z defined for every x ∈ Z by D(x, x)z := {x, x, z} are hermitian,
have positive spectrum, satisfy the ”C∗-axiom” ‖D(x, x)‖ = ‖x‖2, and the operators
δ(x) := iD(x, x) are triple derivations, i.e. the Jordan triple identity holds

δ(x){y, z, w} = {δ(x)y, z, w} + {y, δ(x)z, w} + {y, z, δ(x)w}, ∀y, z, w ∈ Z.

The norm ‖ · ‖ is called the spectral norm. We put also D(x, y)z := {x, y, z}. An
element v ∈ Z is called a tripotent if {v, v, v} = v. Every tripotent v ∈ Z gives rise to
a direct-sum Peirce decomposition

Z = Z1(v) + Z 1
2
(v) + Z0(v), where Zν(v) := {z ∈ Z; D(v, v)z = νz}, ν = 1,

1

2
, 0.

The associated Peirce projections are defined for zκ ∈ Zκ(v), κ = 1, 1
2 , 0, by

Pν(v)(z1 + z 1
2

+ z0) = zν , ν = 1,
1

2
, 0.

In this paper we are interested in the important special case where Z contains
a unitary tripotent e, for which Z = Z1(e). In this case Z has the structure of a
JB∗-algebra with respect to the binary product x ◦ y := {x, e, y} and the involution
z∗ := {e, z, e}, and e is the unit of Z. The binary Jordan product is commutative,
but in general non-associative. The triple product is expressed in terms of the binary
product and the involution via {x, y, z} = (x◦y∗)◦z+(z ◦y∗)◦x− (x◦z)◦y∗. In this
case the open unit ball D of Z is a Cartan domain of tube-type. This terminology is
related to the unbounded realization of D, to be explained later.

Let X := {x ∈ Z;x∗ = x} be the real part of Z. It is a formally-real (or
euclidean) Jordan algebra. Every x ∈ X has a spectral decomposition x =

∑r
j=1 λjej ,

where {ej}
r
j=1 is a frame of pairwise orthogonal minimal idempotents in X , and

{λj}
r
j=1 are real numbers called the eigenvalues of x. The trace and determinant (or,

“norm”) are defined in X via

tr(x) :=

r
∑

j=1

λj , N(x) :=

r
∏

j=1

λj

respectively, and they are polynomials on X . The maximal number r of pairwise
orthogonal minimal idempotents in X is called the rank of X . The positive-definite
inner product in X , 〈x, y〉 = tr(x ◦ y), x, y ∈ X , satisfies

〈x ◦ y, z〉 = 〈x, y ◦ z〉, x, y, z ∈ X.

Equivalently, the multiplication operators L(x)y := x ◦ y, x, y ∈ X , are self-adjoint.
The trace and determinant polynomials, as well as the multiplication operators, have
unique extensions to the complexification XC := X + iX = Z. Let

Ω := {x2;x ∈ X,N(x) 6= 0}.
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216 Arazy and Upmeier

Then Ω is a symmetric, open convex cone, i.e. Ω is self polar and homogeneous with
respect to the group GL(Ω) of linear automorphisms of Ω. We denote the connected
component of the identity in GL(Ω) by G(Ω). Define

P (x) := 2L(x)2 − L(x2), x ∈ X, (1.1)

then P (x) ∈ G(Ω) for every x ∈ Ω, and x = P (x1/2)e. Thus G(Ω) is transitive on
Ω. The map x → P (x) from X into End(X) is called the quadratic representation
because of the identity

P (P (x)y) = P (x)P (y)P (x), ∀x, y ∈ X. (1.2)

The domain T (Ω) := X + iΩ, called the tube over Ω. It is an irreducible symmetric
domain which is biholomorphically equivalent to D by means of the Cayley transform
c : D → T (Ω), defined by

c(z) := i
e+ z

e− z
, z ∈ Z.

This explains why D is called a tube-type Cartan domain.
Let e1, e2, . . . , er be a fixed frame of minimal, pairwise orthogonal idempotents

satisfying e1 + e2 + . . .+ er = e, where e is the unit of Z. Let

Z =
∑

1≤i≤j≤r

Zi,j

be the associated joint Peirce decomposition, namely Zi,j := Z 1
2
(ei) ∩ Z 1

2
(ej) for

1 ≤ i < j ≤ r and Zi,i := Z1(ei) for 1 ≤ i ≤ r. The characteristic multiplicity is the
common dimension a = dim(Zi,j), 1 ≤ i < j ≤ r, and d = r + r(r − 1)a/2. The
number p := (r − 1)a+ 2 is called the genus of D. It is known that

Det(P (x)) = N(x)p, ∀x ∈ X,

where “Det” is the usual determinant polynomial in End(Z). From this and (1.2) it
follows that

N(P (x)y) = N(x)2N(y) ∀x, y ∈ X. (1.3)

Let uj := e1 + e2 + . . .+ ej and let Zj :=
∑

1≤i≤k≤j Zi,k be the JB∗- subalgebra
of Z whose unit is uj . Let Nj be the determinant polynomials of the Zj , 1 ≤ j ≤ r;
they are called the principal minors associated with the frame {ej}

r
j=1. Notice that

Zr = Z and Nr = N . For an r-tuple of integers m = (m1,m2, . . . ,mr) write m ≥ 0 if
m1 ≥ m2 ≥ . . . ≥ mr ≥ 0. Such r-tuples m are called signatures (or, “partitions”).
The conical polynomial associated with the signature m is

Nm(z) := N1(z)
m1−m2 N2(z)

m2−m3 N3(z)
m3−m4 . . .Nr(z)

mr , z ∈ Z.

Notice that Nm(
∑r

j=1 tjej) =
∏r

j=0 t
mj

j , thus the conical polynomials are natural
generalizations of the monomials. Let Aut(D) be the group of all biholomorphic
automorphisms of D, and let G be its connected component of the identity. Let
K := {g ∈ G; g(0) = 0} = G ∩ GL(Z) be the maximal compact subgroup of G.
For any signature m let Pm := span{Nm ◦ k; k ∈ K}. Clearly, Pm ⊂ P`, where
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Invariant Inner Products 217

` = |m| =
∑r

j=1mj and P` is the space of homogeneous polynomials of degree `.
By definition, Pm are invariant under the composition with members of K. Let

〈f, g〉F := ∂f (g])(0) =
1

πd

∫

Z

f(z)g(z) e−|z|2dm(z) (1.4)

be the Fock-Fischer inner product on the space P of polynomials, where g](z) :=
g(z∗), ∂f = f( ∂

∂z ), |z| is the unique K-invariant Euclidean norm on Z normalized
so that |e1| = 1, and dm(z) is the corresponding Lebesgue volume measure. (Thus
〈1, 1〉F = 1). The following result (Peter-Weyl decomposition) is proved in [Sc], see
also [U1]. Here the group K acts on functions on D via π(k)f := f ◦ k−1, k ∈ K.
Notice that P`, ` = 0, 1, 2, . . . and P are invariant under this action.

Theorem 1.1 (i) The spaces {Pm}m≥0, are K-invariant and irreducible. The rep-
resentations of K on the spaces Pm are mutually inequivalent, the Pm’s are mutually
orthogonal with respect to 〈·, ·〉

F
, and P =

∑

m≥0 Pm.
(ii) If H is a Hilbert space of analytic functions on D with a K-invariant inner
product in which the polynomials are dense, then H is the orthogonal direct sum
H =

∑

m≥0 ⊕Pm. Namely, every f ∈ H is expanded in the norm convergent series
f =

∑

m≥0 fm, with fm ∈ Pm, and the spaces Pm are mutually orthogonal in H.
Moreover, there exist positive numbers {cm}m≥0 so that for every f, g ∈ H with
expansions f =

∑

m≥0 fm and g =
∑

m≥0 gm we have

〈f, g〉H =
∑

m≥0

cm 〈fm, gm〉
F
.

For every signature m let Km(z, w) be the reproducing kernel of Pm with respect to
(1.4). Clearly, the reproducing kernel of the Fock-Fischer space F (the completion of
P with respect to 〈·, ·〉

F
) is

F (z, w) :=
∑

m

Km(z, w) = e〈z,w〉.

An important property of the norm polynomial N is its transformation rule under
the group K

N(k(z)) = χ(k)N(z), k ∈ K, z ∈ Z (1.5)

where χ : K → T := {λ ∈ C; |λ| = 1} is a character. In fact, χ(k) = N(k(e)) =
Det(k)2/p ∀k ∈ K. Notice that (1.5) implies that P(m,m,...,m) = CNm for m =
0, 1, 2, . . ..

The subgroup L of K defined via

L := {k ∈ K; k(e) = 1} (1.6)

plays an important role in the theory.

Lemma 1.1 For every signature m ≥ 0 the function

φm(z) :=

∫

L

Nm(`(z))d` (1.7)

is the unique spherical (i.e., L-invariant) polynomial in Pm satisfying φm(e) = 1.
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218 Arazy and Upmeier

For example, φ(m,m,...,m) = Nm by (1.5). The L-invariant real polynomial on X

h(x) = h(x, x) := N(e− x2)

admits a unique K-invariant, hermitian extension h(z, w) to all of Z. Thus,
h(k(z), k(w)) = h(z, w) for all z, w ∈ Z and k ∈ K, h(z, w) is holomorphic in z
and anti-holomorphic in w, and h(z, w) = h(w, z), [FK1]. The transformation rule of
h(z, w) under Aut(D) is

h(ϕ(z), ϕ(w)) = Jϕ(z)
1
p h(z, w) Jϕ(w)

1
p , ϕ ∈ Aut(D), z, w ∈ D, (1.8)

where Jϕ(z) := Det(ϕ′(z)) is the complex Jacobian of ϕ, and p is the genus of D.
For s = (s1, s2, . . . , sr) ∈ Cr one defines the conical function Ns on Ω via

Ns(x) := Ns1−s2

1 (x)Ns2−s3

2 (x)Ns3−s4

3 (x) . . . ·Nsr
r (x), x ∈ Ω,

which generalize the conical polynomials Nm. In what follows use the following no-
tation:

λj := (j − 1)
a

2
, 1 ≤ j ≤ r.

The Gindikin - Koecher Gamma function is defined for s = (s1, s2, . . . , sr) ∈ Cr with
<(sj) > λj , 1 ≤ j ≤ r, via

ΓΩ(s) :=

∫

Ω

e−tr(x)Ns(x)dµΩ(x).

Here tr(x) = 〈x, e〉 is the Jordan-theoretic trace of x, and

dµΩ(x) := N(x)−
d
r dx

is the (unique, up to a multiplicative constant) G(Ω)-invariant measure on Ω. The
following formula [Gi] reduces the computation of ΓΩ(s) to that of ordinary Gamma
functions:

ΓΩ(s) = (2π)(d−r)/2
∏

1≤j≤r

Γ(sj − λj), (1.9)

and provides a meromorphic continuation of ΓΩ to all of Cr. In particular, ΓΩ(λ) :=
ΓΩ(λ, λ, . . . , λ) is given by

ΓΩ(λ) =

∫

Ω

e−tr(x) N(x)λ dµΩ(x) = (2π)(d−r)/2
∏

1≤j≤r

Γ(λ− λj),

and it is an entire meromorphic function. The pole set of ΓΩ(λ) is precisely

P(D) := ∪1≤j≤r(λj −N) = {λj − n; 1 ≤ j ≤ r, n ∈ N}. (1.10)

For λ ∈ C and a signature m = (m1,m2, . . . ,mr) one defines

(λ)m :=
ΓΩ(m + λ)

ΓΩ(λ)
=

r
∏

j=1

(λ − λj)mj =

r
∏

j=1

mj−1
∏

n=0

(n+ λ− λj),
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Invariant Inner Products 219

where m + λ := (m1 + λ,m2 + λ, . . . ,mr + λ).

We recall two important formulas for integration in polar coordinates [FK2],
Chapters VI and IX. The first formula uses the fact that K · Ω = Z, namely the
fact that every z ∈ Z can be written (not uniquely) in the form z = k(x), where
x ∈ Ω and k ∈ K. This is the first (or “conical”) type of polar decomposition of x,
and it generalizes the polar decomposition of matrices. This leads to the formula

∫

Z

f(z)dm(z) =
πd

ΓΩ(d
r )

∫

Ω

(∫

K

f(k(x
1
2 )) dk

)

dx (1.11)

which holds for every f ∈ L1(Z,m). Next, fix a frame e1, . . . , er, and define

R := spanR{ej}
r
j=1 and R+ := {

r
∑

j=1

tjej ; t1 > t2 > . . . > tr > 0}

and
Rr

+ := {t = (t1, . . . tr); t1 > t2 > . . . > tr > 0}.

Then Z = K ·R, namely every z ∈ Z has a representation z = k(
∑r

j=1 tjej) for some

(again, not unique)
∑r

j=1 tjej ∈ R and k ∈ K. This representation is the second
type of polar decomposition of z. Moreover, m(Z \ K · R+) = 0, namely up to a

subset of measure zero, every z ∈ Z has a representation z = k(
∑r

j=1 t
1/2
j ej) with

t1 > t2 > . . . > tr > 0. This leads to the formula

∫

Z

f(z)dm(z) = c0

∫

Rr
+





∫

K

f(k(

r
∑

j=1

t
1
2
j ej)) dk





∏

1≤i<j≤r

(ti − tj)
a dt1 dt2 . . . dtr,

(1.12)
which holds for every f ∈ L1(Z,m). The constant c0 will be determined as a by-
product of our work in section 5 below. For convenience, we can write (1.12) in the
form

∫

Z

f(z)dm(z) = c0

∫

Rr
+

f#(t)w(t)a dt, (1.13)

where

f#(t) :=

∫

K

f(k(

r
∑

j=1

t
1
2

j ej)) dk, t = (t1, t2, . . . , tr) ∈ Rr
+

is the radial part of F and

w(t) :=
∏

1≤i<j≤r

(ti − tj), t = (t1, t2, . . . , tr) ∈ Rr
+ (1.14)

is the Vandermonde polynomial.

By [Hu], [Be], [La1], [FK1], we have the binomial formula:

Theorem 1.2 For λ ∈ C we have

N(e− x)−λ =
∑

m≥0

(λ)m
φm(x)

‖φm‖2
F

, ∀x ∈ Ω ∩ (e− Ω), (1.15)
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220 Arazy and Upmeier

and
h(z, w)−λ =

∑

m≥0

(λ)m Km(z, w), ∀z, w ∈ D. (1.16)

The two series converge absolutely, (1.15) converges uniformly on compact subsets of
(λ, x) ∈ C × (Ω ∩ (e − Ω)), and (1.16) converges uniformly on compact subsets of
(λ, z, w) ∈ C×D ×D.

In particular, it follows that for fixed z, w ∈ D, the function λ → h(z, w)−λ is analytic
in all of C (this can be proved also by showing that h(z, w) 6= 0 for z, w ∈ D).

The Wallach set of D, denoted by W(D), is the set of all λ ∈ C for which the
function (z, w) → h(z, w)−λ is non-negative definite in D ×D, namely

∑

i,j

aiaj h(zi, zj)
−λ ≥ 0

for all finite sequences {aj} ⊆ C and {zj} ⊆ D. For λ ∈ W(D) let Hλ be the
completion of the linear span of the functions {h(·, w)−λ; w ∈ D} with respect to the
inner product 〈·, ·〉λ determined by

〈h(·, w)−λ, h(·, z)−λ〉λ = h(z, w)−λ, z, w ∈ D.

Since h(z, w)−λ is continuous in D × D, it is the reproducing kernel of Hλ. The
transformation rule (1.8) implies that 〈·, ·〉λ is K-invariant, namely 〈f ◦ k, g ◦ k〉λ =
〈f, g〉λ for all f, g ∈ Hλ and k ∈ K. Thus, by Theorems 1.1 and 1.2, for every
f, g ∈ Hλ with Peter-Weyl expansions f =

∑

m≥0 fm, g =
∑

m≥0 gm, we have

〈f, g〉
λ

=
∑

m≥0

〈fm, gm〉
F

(λ)m
. (1.17)

This formula defines λ 7→ 〈f, g〉λ as a meromorphic function in all of C, whose poles
are contained in the pole set P(D) of ΓΩ, see (1.10) and (1.16). Of course, for
λ ∈ C \ W(D) (1.17) is not an inner product, but merely a sesqui-linear form; it is
hermitian precisely when λ ∈ R.

Using (1.16) and (1.17) one obtains a complete description of the Wallach set
W(D) and the Hilbert spaces Hλ for λ ∈ W(D).

Theorem 1.3 (i) The Wallach set is given by W(D) = Wd(D) ∪ Wc(D) where
Wd(D) := {λj = (j − 1)a

2 ; 1 ≤ j ≤ r} is the discrete part, and Wc(D) :=
(λr ,∞) is the continuous part.

(ii) For λ ∈ Wc(D) the polynomials are dense in Hλ and Hλ =
∑

m≥0 ⊕Pm as in
Theorem 1.1;

(iii) For 1 ≤ j ≤ r, let S0(λj) := {m ≥ 0;mj = mj+1 = . . . = mr = 0}. Then
Hλj =

∑

m∈S0(λj)
Pm and

h(z, w)−λj =
∑

m∈S0(λj)

(λj)mKm(z, w), z, w ∈ D.
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Invariant Inner Products 221

For λ ∈ C, ϕ ∈ G and a functions f on D, we define

U (λ)(ϕ)f := (f ◦ ϕ) · (Jϕ)
λ
p

Then, U (λ)(idD) = I and for ϕ, ψ ∈ G we have

U (λ)(ϕ ◦ ψ) = cλ(ϕ, ψ) U (λ)(ψ) U (λ)(ϕ),

where cλ(ϕ, ψ) is a unimodular scalar which transforms as a cocycle (projective rep-
resentation of G). In particular, U (λ)(ϕ−1) = U (λ)(ϕ)−1.

Using (1.8) we see that

Jϕ(z)
λ
p h(ϕ(z), ϕ(w))−λ Jϕ(w)

λ
p = h(z, w)−λ, ∀z, w ∈ D, ∀ϕ ∈ G.

From this it follows that the hermitian forms 〈·, ·〉
λ

given by (1.17) are U (λ)-invariant:

〈U (λ)(ϕ)f , U (λ)(ϕ)g 〉
λ

= 〈f, g〉
λ
, ∀f, g ∈ H

λ
, ∀ϕ ∈ G.

In particular, for λ ∈ W(D) the inner products 〈·, ·〉λ are U (λ)-invariant and
U (λ)(ϕ), ϕ ∈ G, are unitary operators on Hλ.

There are other spaces of analytic functions on D which carry U (λ)-invariant
hermitian forms, some of which are non-negative. For any signature m and λ ∈ C let
q(λ,m) := degλ(·)m be the multiplicity of λ as a zero of the polynomial ξ 7→ (ξ)m.
Notice that 0 ≤ q(λ,m) ≤ r for all λ and m. Let

q(λ) := max{q(λ,m);m ≥ 0}. (1.18)

Let

P(λ) := span{U (λ)(ϕ)f ; f polynomial , ϕ ∈ G}

For 0 ≤ j ≤ q(λ) set

Sj(λ) := {m ≥ 0; q(λ,m) ≤ j} M
(λ)
j := {f ∈ P(λ); f =

∑

m∈Sj(λ)

fm, fm ∈ Pm}.

(1.19)

The following result is established in [FK1], see also [A1], [O].

Theorem 1.4 Let λ ∈ C and let 0 ≤ j ≤ q(λ).

(i) The spaces M
(λ)
j , 0 ≤ j ≤ q(λ), are U (λ)-invariant,

M
(λ)
0 ⊂ M

(λ)
1 ⊂ M

(λ)
2 ⊂ . . . ⊂ M

(λ)
q(λ) = P(λ), (1.20)

and every non-zero U (λ)-invariant subspace of P (λ) is one of the spaces

M
(λ)
j , 0 ≤ j ≤ q(λ).

(ii) The quotients M
(λ)
j /M

(λ)
j−1, 1 ≤ j ≤ q(λ), are U (λ)-irreducible.
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(iii) The sesqui-linear forms 〈·, ·〉
λ,j

on M
(λ)
j , 1 ≤ j ≤ q(λ), defined for f, g ∈ M

(λ)
j

by
〈f, g〉

λ,j
:= lim

ξ→λ
(ξ − λ)j 〈f, g〉

ξ

are U (λ)-invariant and {f ∈ M
(λ)
j ; 〈f, g〉

λ,j
= 0, ∀g ∈ M

(λ)
j } = M

(λ)
j−1.

(iv) For f, g ∈ M
(λ)
j with Peter-Weyl expansions f =

∑

m
fm and g =

∑

m
gm,

we have

〈f, g〉
λ,j

=
∑

m∈Sj(λ)\Sj−1(λ)

〈fm, gm〉F
(λ)m,j

where

(λ)m,j := lim
ξ→λ

(ξ)m
(ξ − λ)j

=
1

j!
(
d

dξ
)j (ξ)m

|ξ=λ
. (1.21)

(v) The forms 〈·, ·〉
λ,j

are hermitian if and only if λ ∈ R.

(vi) The quotient M
(λ)
j /M

(λ)
j−1 is unitarizable (namely, 〈·, ·〉

λ,j
is either positive def-

inite or negative definite on M
(λ)
j /M

(λ)
j−1) if and only if either: λ ∈ W(D) and

j = 0, or: λ ∈ P(D), j = q(λ), and λr − λ ∈ N.

The sequence (1.20) is called the composition series of P (λ).

Definition 1.1 Hλ,j = Hλ,j(D) is the completion of M
(λ)
j /M

(λ)
j−1 with respect to

〈·, ·〉
λ,j

.

Observe that Hλ,0 = Hλ for λ ∈ W(D). Also, q(λ) > 0 if and only if λ ∈ P(D).

The main objective of this work is to provide natural integral formulas for the
U (λ)-invariant hermitian forms 〈·, ·〉λ,j , with special emphasis on the case where the
forms are definite, namely the case where Hλ,j is a U (λ)-invariant Hilbert space. These
integral formulas provide a characterization of the membership in the spaces Hλ,j in
terms of finiteness of some weighted L2-norms of the functions or of some of their
derivatives. We discuss now some examples which motivate our study.

The weighted Bergman spaces: It is known [FK1] that for λ ∈ R the integral c(λ)−1 :=
∫

D
h(z, z)λ−pdm(z) is finite if and only if λ > p− 1, and in this case

c(λ) =
ΓΩ(λ)

πd ΓΩ(λ− d
r )

. (1.22)

For λ > p− 1 we consider the probability measure

dµλ(z) := c(λ)h(z, z)λ−p dm(z) (1.23)

on D. The weighted Bergman space L2
a(D,µλ) consists of all analytic functions in

L2(D,µλ). Using (1.8) one obtains the transformation rule of µλ under composition
with ϕ ∈ G:

dµλ(ϕ(z)) = |Jϕ(z)|
2λ
p dµλ(z).
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(The same argument yields the invariance of the measure dµ0(z) := h(z, z)−pdm(z)).
From this it follows that the operators U (λ)(ϕ) are isometries of L2(D,µλ) which leave
L2

a(D,µλ) invariant. It is easy to verify that point evaluations are continuous linear
functionals on L2

a(D,µλ) and that the reproducing kernel of L2
a(D,µλ) is h(z, w)−λ.

(For w = 0 this is trivial, and the general case follows by invariance.) It follows that
Hλ = L2

a(D,µλ).

The Hardy space: The Shilov boundary S of a general Cartan domain D is the set of
all maximal tripotents in Z. S is invariant and irreducible under both of G and K.
Let σ be the unique K-invariant probability measure on S, defined via

∫

S

f(ξ) dσ(ξ) :=

∫

K

f(k(e)) dk.

The Hardy space H2(S) is the space of all analytic functions f on D for which

‖f‖2
H2(S) := lim

ρ→1−

∫

S

|f(ρξ)|2 dσ(ξ)

is finite. The polynomials are dense in H2(S) and every f ∈ H2(S) has radial
limits f̃(ξ) := limρ→1− f(ρξ) at σ-almost every ξ ∈ S. Moreover, for f ∈ H2(S),

‖f‖H2(S) = ‖f̃‖L2(S,σ). This identifies H2(S) as the closed subspace of L2(S, σ)
consisting of those functions f ∈ L2(S, σ) which extend analytically to D by means of
the Poisson integral. Again, the point evaluations f 7→ f(z), z ∈ D, are continuous
linear functionals on H2(S). The corresponding reproducing kernel is called the Szegö
kernel and is given (as a function on S) by Sz(ξ) = S(ξ, z) := h(ξ, z)−d/r. See [Hu],
[FK1]. This non-trivial fact implies that Hd/r = H2(S). The transformation rule of
the measure σ under the automorphisms ϕ ∈ G is

dσ(ϕ(ξ)) = |Jϕ(ξ)| dσ(ξ).

Hence, U (d/r)(ϕ)f = (f ◦ ϕ) (Jϕ)1/2, ϕ ∈ G, are isometries of L2(S, σ) which leave
H2(S) invariant.

The Dirichlet space: The classical Dirichlet space B2 consists of those analytic func-
tions f on the open unit disk D ⊂ C for which the Dirichlet integral

‖f‖2
B2

:=

∫

D

|f ′(z)|2 dA(z) (1.24)

is finite. Here dA(z) := 1
πdx dy. Clearly, B2 is a Hilbert space modulo constant

functions, and ‖f ◦ ϕ‖B2 = ‖f‖B2 for every f ∈ B2 and ϕ ∈ Aut(D). Thus, B2 is

U (0)-invariant. The composition series corresponding to λ = λ1 = 0 is C1 = M
(0)
0 ⊂

M
(0)
1 = P(0). Hence B2 = H0,1(D). The inner product in B2 can be computed also

via integration on the boundary T := ∂D (which coincides with the Shilov boundary
in this simple case):

〈f, g〉B2
=

1

2π

∫

T

ξf ′(ξ) g(ξ) |dξ|. (1.25)

Motivated by this example we call the spaces H0,q(0) for a general Cartan domain
D the (generalized) Dirichlet space of D. The paper [A2] provides integral formulas
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generalizing (1.24) and (1.25) for the norms in Hλ,q(λ) for λ ∈ Wd(D), in the context
of a Cartan domain of tube type (in [A1] these formulas are extended to all λ ∈ P(D)).
Formula (1.24) says that f ∈ B2 = H0,1 if and only if f ′ ∈ H2. Namely, differentiation
“shifts” the space corresponding to λ = 0 to the one corresponding to λ = 2. This
shifting technique is developed in [Y3] in order to get integral formulas for the inner
products in certain spaces Hλ with λ ≤ p − 1. The general idea is to obtain such
integral formulas via “partial integration in the radial directions”, see [Ri], [Go], and
[FK2], Chapter VII. (For the open unit ball of Cd, the simplest (i.e. rank-one) non-
tube Cartan domain, cf. [A3], [Pel]).

Finally, we describe the relationship between the invariant inner product and the
Riesz distribution. The Riesz distribution was introduced in [Ri] for the Lorentz
cone, i.e. the symmetric cone associated with the Cartan domain of type IV (the “Lie
ball”). It was studied in [Go] for the cone of symmetric, positive definite real matrices
(associated with the Cartan domain of type III) and for a general symmetric cone in
[FK2], chapter VII. Let Ω be the symmetric cone associated with the Cartan domain
of tube type D. For α ∈ C with <α > (r− 1) a

2 let Rα be the linear functional on the
Schwartz space S(X) of X defined via

Rα(f) :=
1

ΓΩ(α)

∫

Ω

f(x)N(x)α− d
r dx.

Then Rα is a tempered distribution satisfying ∂NRα = Rα−1, Rα?Rβ = Rα+β , R0 =
δ, i.e. R1 is the fundamental solution for the “wave operator” ∂N := N( ∂

∂x ). These
formulas permit analytic continuation of α 7→ Rα to an entire meromorphic function.
It is very interesting to find the explicit description of the action of Rα for general α,
but this is still open. What is known is that the Riesz distribution Rα is represented
by a positive measure if and only if α ∈W (D).

Writing the inner products 〈·, ·〉
λ

in conical polar coordinates (1.11), we get for
λ > p− 1

〈f, g〉
λ

=
ΓΩ(λ)

ΓΩ(d
r ) ΓΩ(λ− d

r )

∫

Ω∩(e−Ω)

(fg)˜(x) N(e− x)λ−p dx, ∀f, g ∈ Hλ(D),

where (fḡ)˜(x) :=
∫

K
f(k(x

1
2 )) g(k(x

1
2 )) dk. Thus

〈f, g〉
λ

=
ΓΩ(λ)

ΓΩ(d
r )

(

Rλ− d
r
? (fḡ)˜

)

(e),

where the convolution of functions u and v on Ω is

(u ? v)(x) :=

∫

Ω∩(x−Ω)

u(y) v(x− y) dy.

Also, the inner product 〈·, ·〉
λ
, λ > p − 1, in the context of the tube domain

T (Ω) := X + iΩ (holomorphically equivalent to D) is

〈f, g〉
λ

:= c(λ)

∫

Ω

(∫

X

f(x+ iy) g(x+ iy) dx

)

N(2y)λ−p dy.
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See section 6 for the details. Thus

〈f, g〉
λ

= π−d 2λ−p ΓΩ(λ) Rλ− d
r

(

(f ḡ)[
)

,

where (f ḡ)[)(y) :=
∫

X f(x+ iy) g(x+ iy) dx, y ∈ Ω.

In view of these formulas the problem of obtaining an explicit description of
the analytic continuation of the maps λ 7→ 〈f, g〉

λ
is equivalent to the problem of

determining the analytic continuation of the maps λ 7→ Rλ− d
r
(u).

2 G(Ω)-invariant differential operators

Let Ω be the symmetric cone associated with the Cartan domain of tube type D,
i.e. the interior of the cone of squares in the Euclidean Jordan algebra X . In this
section we study G(Ω)-invariant differential operators that will be used later for the
invariant inner products. The ring Diff(Ω)G(Ω) of G(Ω)-invariant differential opera-
tors is a (commutative) polynomial ring C[X1, X2, . . . , Xr], [He], [FK2]. By [FK2],
Proposition IX.1.1, Ω is a set of uniqueness for analytic functions on Z (namely, if
an analytic function on Z vanishes identically on Ω, it vanishes identically on Z).
Similarly, Ω ∩ D = Ω ∩ (e − Ω) is a set of uniqueness for analytic functions on D.
Thus, if f, g and q are polynomials on Z so that ∂f (g)(x) = f( d

dx)g(x) = q(x) for

every x ∈ Ω, then ∂f (g)(z) = f( ∂
∂z )g(z) = q(z) for every z ∈ Z. We begin with the

following known result [FK2], Proposition VII.1.6.

Lemma 2.1 For every s = (s1, s2, . . . , sr) ∈ Cr and ` ∈ N, we have

N `(
d

dx
)Ns(x) = µs(`) Ns−`(x), ∀x ∈ Ω,

where

µs(`) :=
(d

r )s

(d
r )s−`

=
ΓΩ(s + d

r )

ΓΩ(s + d
r − `)

=

r
∏

j=1

`−1
∏

ν=0

(sj − ν + (r − j)
a

2
),

and

ΓΩ(s)N(
d

dx
)Ns(x

−1) = (−1)r ΓΩ(s + 1) Ns+1(x
−1).

Let N∗
j be the norm polynomial of the JB∗-subalgebra Vj :=

∑

r−j+1≤j≤k≤r Zi,k,
where Zi,k are the Peirce subspaces of Z associated with the fixed frame {ej}

r
j=1. For

every s = (s1, . . . , sr) ∈ Cr let

N∗
s
(x) := N∗

1 (x)s1−s2 N∗
2 (x)s2−s3 . . . N∗

r (x)sr , x ∈ Ω,

and
s∗ := (sr, sr−1, sr−2, . . . , s1).

Then we have Ns(x
−1) = N∗

−s∗
(x) for x ∈ Ω, [FK2],Proposition VII.1.5.

Definition 2.1 For ` ∈ N and λ ∈ C let D`(λ) be the operator on C∞(Ω) defined
by

D`(λ) = N
d
r −λ(x)N `(

d

dx
)N `+λ−d

r (x). (2.1)
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In the special case of the Cartan domain of type II the operators D1(λ) have been
considered by Selberg (see [T], p.208). The operators D`(λ) were studied in full
generality in [Y3], see also [FK2], Chapter XIV. Notice that by Lemma 2.1 we have

D`(λ)Ns =
ΓΩ(s + λ+ `)

ΓΩ(s + λ)
Ns. (2.2)

In section 4 below we will extend D`(λ) to a polynomial differential operator on
Z, i.e. D`(λ) = Q`,λ(z, ∂

∂z ) for some polynomial Q`,λ.

Lemma 2.2 The operator D`(λ) is K-invariant, i.e.

D`(λ)(f ◦ k) = (D`(λ)f) ◦ k ∀f ∈ C∞(Ω), ∀k ∈ K.

Proof: We have N(kz) = χ(k)N(z) for every z ∈ Z. Since the operator ∂N = N( ∂
∂z )

is the adjoint of the operator of multiplication by N with respect to the inner product
〈·, ·〉

F
, K-invariance of 〈·, ·〉

F
implies ∂N (f ◦ k) = χ(k)(∂Nf) ◦ k. It follows that

D`(λ)(f(kz)) = χ(k)
`+λ− d

r N(z)
d
r −λ N `(

∂

∂z
)
(

N `+λ− d
r (kz)f(kz)

)

= χ(k)
`+λ− d

r N(z)
d
r −λ χ(k)`

(

N `(
∂

∂z
)(N `+λ− d

r f)

)

(kz)

= N
d
r −λ(kz)

(

N `(
∂

∂z
)(N `+λ− d

r f)

)

(kz) = (D`(λ)f)(kz).

Using (2.2) and the fact that Ω ∩D = Ω ∩ (e− Ω) is a set of uniqueness for analytic
functions on D, we obtain the following result.

Corollary 2.1 The spaces Pm are eigenspaces of D`(λ) with eigenvalues

µ`,m(λ) :=
ΓΩ(m + λ+ `)

ΓΩ(m + λ)
. (2.3)

Thus for every analytic function f on D with Peter-Weyl expansion f =
∑

m≥0 fm,

D`(λ)f =
∑

m≥0

ΓΩ(m + λ+ `)

ΓΩ(m + λ)
fm = (λ)(`,`,...,`)

∑

m≥0

(λ+ `)m
(λ)m

fm. (2.4)

Indeed, for every signature m and every k ∈ K,

D`(λ)(Nm ◦ k) = (D`(λ)Nm) ◦ k =
ΓΩ(m + λ+ `)

ΓΩ(m + λ)
Nm ◦ k.

Since Pm = span{Nm ◦ k; k ∈ K}, (2.4) follows from the continuity of D`(λ) with
respect to the topology of compact convergence on D.

Corollary 2.2 Let λ ∈ C \P(D), ` ∈ N, and w ∈ D. Then

D`(λ)h(·, w)−λ = (λ)(`,`,...,`) h(·, w)−(λ+`). (2.5)
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Proof: Using (1.16) and Corollary 2.2, we get

D`(λ)h(·, w)−λ =
∑

m≥0

(λ)mD`(λ)Km(·, w)

= (λ)(`,...,`)
∑

m≥0

(λ)m
(λ+ `)m

(λ)m
Km(·, w)

= (λ)(`,...,`)
∑

m≥0

(λ+ `)mKm(·, w) = (λ)(`,...,`) h(·, w)−(λ+`).

Notice that the assumption that λ is not in P(D) is used in the above proof to ensure
that (λ)m 6= 0 for every m ≥ 0. This is due to the fact that the zero set of the
polynomial (λ)m is

Z((·)m) = ∪r
j=1 {λj − k; k = 0, 1, . . . ,mj − 1}, (2.6)

while P(D) = ∪r
j=1 (λj − N) = ∪m≥0 Z((·)m). Similarly, for each m ≥ 0 the zero

set of the polynomial defined by (2.3) is given by

Z(µ`,m(·)) = ∪r
j=1 {λj − k; mj ≤ k ≤ mj + `− 1}. (2.7)

The multiplicities of the zeros are equal to the number of their appearances on the
right hand side of (2.7).

Corollary 2.3 Let λ ∈ C, ` ∈ N be so that {m ≥ 0; (λ)m = 0} ⊆ {m ≥ 0; (λ +
`)m = 0}. Then (2.5) holds.

Proof: Notice first that (λ)(`,`,...,`)(λ + `)m = (λ)m+` for all λ ∈ C, ` ∈ N, and
m ≥ 0. Hence, using the fact that {m; (λ+ `)m 6= 0} ⊆ {m; (λ)m 6= 0}, we get for
every w ∈ D

D`(λ)h(·, w)−λ = D`(λ)
∑

(λ)m 6=0

(λ)mKm(·, w)

= (λ)(`,`,...,`)
∑

(λ)m 6=0

(λ+ `)mKm(·, w)

= (λ)(`,...,`)
∑

(λ+`)m 6=0

(λ+ `)mKm(·, w)

= (λ)(`,...,`)h(·, w)−(λ+`).

For λ ∈ P(D) let q = q(λ) be as in (1.18), and for 0 ≤ j ≤ q consider Sj(λ) and

M
(λ)
j as in (1.19).

Lemma 2.3 Let λ, and q = q(λ) be as above, and choose an integer ` so that λ+ ` ≥
d
r = λr + 1. Then

(i) degλ((·)(`,`,...,`)) = q.
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(ii) For every j = 0, 1, 2, . . . , q and every m ∈ Sj(λ) \ Sj−1(λ), degλ(µ`,m) = q − j.

(iii) If 0 ≤ j ≤ q and m ∈ Sj−1(λ), then degλ(µ`,m) ≥ q − j + 1.

Proof: Using (2.6) it is clear that

q(λ,m) = q ⇔ λj −mj + 1 ≤ λ ∀j ⇔ λr −mr + 1 ≤ λ.

Since λr +1 ≥ λ+`, we see that m = (`, `, . . . , `) satisfies the above condition, namely

degλ((·)(`,...,`)) = q(λ, (`, . . . , `)) = q. This establishes (i). Next, m ∈ S
(λ)
j \ S

(λ)
j−1 is

equivalent to q(λ,m) = j. By the argument given above, q(λ,m + `) = q. Since
degλ(f/g) = degλ(f) − degλ(g), we get

degλ(µ`,m) = degλ

(

(·)m+`

(·)m

)

=

= degλ((·)m+`) − degλ((·)m) = q(λ,m + `) − q(λ,m) = q − j.

This yields (ii). Finally, (iii) follows by similar computations.

Let λ ∈ P(D), ` ∈ N, and q = q(λ) as above. For every m ≥ 0 and ν ∈ N we
define

µν
`,m(λ) :=

1

ν!
(
∂

∂ξ
)νµ`,m(ξ)|ξ=λ.

Using Lemma 2.3 (ii), we have

Corollary 2.4 (i) If m ∈ Sj(λ) \ Sj−1(λ) then

µq−j
`,m (λ) =

r
∏

i=1

′
∏

mi+`−1

k=mi

(λ+ k − λi),

where the product
∏′ mj+`−1

k=mj
ranges over all non-zero terms. In particular,

µq−j
`,m (λ) 6= 0.

(ii) If m ∈ Sj−1(λ) then µq−j
`,m(λ) = 0.

Definition 2.2 For λ ∈ C and ν, ` ∈ N let Dν
` (λ) be the operator on C∞(D) defined

by

Dν
` (λ)f :=

1

ν!
(
∂

∂ξ
)ν(D`(ξ)f)|ξ=λ. (2.8)

Notice that if f =
∑

m≥0 fm is analytic in D, then Dν
` (λ)f :=

∑

m≥0 µ
ν
`,m(λ) fm.

By [FK2], Chapter VI the group G(Ω) admits an Iwasawa decomposition G(Ω) =
NAL, where L is the group defined via (1.6), and NA is a maximal solvable subgroup
of G(Ω) (called the triangular subgroup with respect to the frame {ei}

r
i=1) which acts

simply transitively on Ω and for which all the conical functions Ns, s ∈ Cr, are
eigenfunctions:

Ns(τ(x)) = Ns(τ(e))Ns(x), ∀τ ∈ NA, ∀x ∈ Ω. (2.9)
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Lemma 2.4 The operators D`(λ) are G(Ω)-invariant, i.e. D`(λ)(f ◦ϕ) = (D`(λ)f) ◦
ϕ, ∀f ∈ C∞(Ω), ∀ϕ ∈ G(Ω).

Proof: By the L-invariance of D`(λ) (see Lemma 2.2) it is enough to verify the
NA-invariance of D`(λ) for functions f of the form f = Ns ◦ ` for some s ∈ Cr and
` ∈ L. Let τ ∈ NA, and decompose ` ◦ τ uniquely as ` ◦ τ = τ ′ ◦ `′ with τ ′ ∈ NA and
`′ ∈ L. Then, using (2.2) and (2.9), we get

D`(λ)(f ◦ τ) = D`(λ)(Ns ◦ ` ◦ τ) = D`(λ)(Ns ◦ τ
′ ◦ `′)

= (D`(λ)(Ns ◦ τ
′)) ◦ `′ = Ns(τ

′(e))(D`(λ)Ns) ◦ `
′

= Ns(τ
′(e))

ΓΩ(s + λ+ `)

ΓΩ(s + λ)
Ns ◦ `

′ =
ΓΩ(s + λ+ `)

ΓΩ(s + λ)
Ns ◦ τ

′ ◦ `′

=
ΓΩ(s + λ+ `)

ΓΩ(s + λ)
Ns ◦ ` ◦ τ =

ΓΩ(s + λ+ `)

ΓΩ(s + λ)
f ◦ τ

= (D`(λ)f) ◦ τ.

Corollary 2.5 The operators Dν
` (λ) are G(Ω)-invariant.

3 Integral formulas via the shifting method

In this section we develop general shifting techniques (introduced in [Y3], for the case
of integer shifts). The simplest case where this technique is applied is the case of the
Dirichlet space D = H0,1 over the unit disk D (see Section 2). For any α ∈ C and
β ∈ C \P(D) we define an operator Sα,β on H(D) via

Sα,β(
∑

m≥0

fm) :=
∑

m≥0

(α)m
(β)m

fm.

Theorem 5 of [A4] and the known estimate

(x)m
(y)m

≈

r
∏

j=1

(mj + 1)x−y, ∀x, y ∈ R

(an easy consequence of (1.9) and Stirling’s formula) ensures that Sα,β is continuous
on H(D). For β ∈ P(D) we define operators Sα,β,j , 0 ≤ j ≤ q(β), on the space of
analytic functions on D of the form f =

∑

m∈Sj(β) fm by

Sα,β,jf := lim
ξ→β

(ξ − β)jSα,βf =
∑

m∈Sj(β)\Sj−1(β)

(α)m
(β)m,j

fm,

where (β)m,j are defined by (1.21). Again, Sα,β,j is continuous in the topology of
H(D). Also, Sα,β,0 = Sα,β.
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Proposition 3.1 Let α, β > (r − 1) a
2 . Then 〈f, g〉

β
= 〈Sα,βf, g〉α

for every f, g ∈
Hβ.

Proof: By (1.17) the operator S
1
2

α,β : Hβ → Hα defined by

S
1
2

α,β(
∑

m≥0

fm) :=
∑

m≥0

(

(α)m
(β)m

)
1
2

fm

is a surjective isometry, and ‖f‖2
β = ‖S

1
2

α,βf‖
2
α = 〈Sα,βf, f〉α

. Now the result follows
by polarization.

In a similar way one proves the following result.

Proposition 3.2 Let α > (r − 1) a
2 and let β ∈ P(D). Then for every 0 ≤ j ≤ q(β)

and all f, g ∈ Hβ,j,
〈f, g〉β,j = 〈Sα,β,jf, g〉α. (3.1)

The operators Sα,β,j allow the computation of the invariant hermitian forms
〈f, g〉

β,j
by “shifting” the point β to the point α. This is the “shifting method”. One

typically chooses either α = d
r or α > p − 1, so the forms 〈f, g〉

β,j
can be computed

by the integral-type inner products of H2(D) or L2
a(D,µα). In order for the shifting

method to be useful, one has to identify the operators Sα,β,j as differential or pseudo-
differential operators. Essentially, this is our aim in the rest of the paper. Yan’s paper
[Y3] deals with the case where ` := α− β is a sufficiently large natural number. The
following result is a minor generalization of a result of [Y3].

Theorem 3.1 Let λ > λr = d
r − 1 and let ` ∈ N. Then for all f, g ∈ Hλ

〈f, g〉
λ

= α(λ, `)〈D`(λ)f, g〉λ+`
, (3.2)

where

α(λ, `) =
ΓΩ(λ)

ΓΩ(λ + `)
=

1

(λ)(`,`,...,`)
.

We include a short proof for the sake of completeness.

Proof: Let f, g ∈ Hλ with expansions f =
∑

m≥0 fm and g =
∑

m≥0 gm respectively.
Then

〈D`(λ)f, g〉λ+`
=

∑

m≥0

µ`,m(λ)

(λ+ `)m
〈fm, gm〉

F

=
ΓΩ(λ+ `)

ΓΩ(λ)

∑

m≥0

〈fm, gm〉
F

(λ)m
= α(λ, `)−1 〈f, g〉

λ
.

Corollary 3.1 Let λ > λr = d
r − 1, and ` ∈ N be so that λ + ` > p − 1. Then

Hλ+` = L2
a(D,µλ+`), and for every f, g ∈ L2

a(D,µλ+`),

〈f, g〉
λ

= α(λ, `) c(λ+ `)

∫

D

(D`(λ)f)(z) g(z) h(z, z)λ+`−p dm(z).
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Our main result in this section is a generalization of both Theorem 3.1 and the
other results of [Y3] to the case of invariant hermitian forms associated with the pole
set P(D) = ∪r

j=1(λj − N). Since W(D) ⊂ P(D), this covers cases not studied in
[A1].

Theorem 3.2 Let λ ∈ P(D), ` ∈ N and assume that λ + ` ≥ d
r = λr + 1. Let

q = q(λ), 0 ≤ j ≤ q, and ν = q − j. Then for all f, g ∈ Hλ,j ,

〈f, g〉
λ,j

= γ〈Dν
` (λ)f, g〉

λ+`
, (3.3)

where γ = γ(λ, `) is the non-zero constant

γ :=
1

q!
(
∂

∂ξ
)q
(

(ξ)(`,`,...,`)
)

|ξ=λ
. (3.4)

In particular, if λ+ ` > p− 1, then

〈f, g〉
λ,j

= γ c(λ+ `)

∫

D

(Dν
` (λ)f)(z) g(z) dm(z). (3.5)

Moreover, if λr − λ ∈ N and ` is chosen so that λ+ ` = d
r = λr + 1, then

〈f, g〉
λ,j

= γ

∫

S

(Dν
` (λ)f)(ξ) g(ξ) dσ(ξ). (3.6)

We shall also give a new proof of the following known result (see [FK1], Theorem
5.3) and of a part of Theorem 1.4 above, based on our analysis of the structure of
zeros of the polynomials (·)m. Recall that Hλ,j is said to be unitarizable if 〈·, ·〉λ,j is
either positive definite or negative definite.

Theorem 3.3 Let λ, `, q, and j be as in Theorem 3.2. Then Hλ,j is unitarizable if
and only if either
(a) j = q and λr − λ ∈ N, or
(b) j = 0 and λ ∈ Wd(D) = {λj}

r
j=1.

For the proof of Theorems 3.2 and 3.3 we consider separately the cases j = 0,
j = q, and 1 ≤ j ≤ q − 1.

Case 1: j = 0. Since λ ∈ P(D), there is a smallest k ∈ {1, 2, . . . , r} and a unique
s ∈ N so that λ = λk − s. We claim that S0(λ) = {m ≥ 0;mk ≤ s}. Indeed,

if m ≥ 0, then
∏k−1

i=1

∏mi−1
ν=0 (λ + ν − λi) 6= 0, by the minimality of k. The term

∏mk−1
ν=0 (λ + ν − λk) =

∏mk−1
ν=0 (ν − s) is non-zero if and only if mk ≤ s. If mk ≤ s

and k < n ≤ r then

mk−1
∏

ν=0

(λ+ ν − λk) =

mk−1
∏

ν=0

((λk − λn) + (ν − s)) 6= 0
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because mn ≤ mk ≤ s. This establishes the claim. Notice that since λ+ ` ≥ λr + 1,
we have (λ + `)m > 0 for any m ≥ 0. Also, degλ((·)(`,`,...,`)) = q by Lemma 2.3. It
follows that for m ∈ S0(λ), degλ(µ`,m) = q, and

µq
`,m(λ) =

1

q!
(
∂

∂ξ
)qµ`,m(ξ) |ξ=λ =

1

q!
(
∂

∂ξ
)q

(

(ξ + `)m
(ξ)m

(ξ)(`,`,...,`)

)

|ξ=λ

=
(λ+ `)m

(λ)m

1

q!
(
∂

∂ξ
)q(ξ)(`,`,...,`) |ξ=λ

= γ
(λ+ `)m

(λ)m
.

Hence, for f, g ∈ Hλ,0,

〈Dq
` (λ)f, g〉λ+`

=
∑

m∈S0(λ)

µq
`,m(λ)

〈fm, gm〉
F

(λ+ `)m

= γ
∑

m∈S0(λ)

〈fm, gm〉F
(λ)m

= γ〈f, g〉
λ,0
.

This proves Theorem 3.2 in case j = 0. If λ ∈ Wd(D), i.e. λ = λk and s = 0,
then (λ)m > 0 for every m ∈ S0(λ), namely 0 = mk = mk+1 = · · · = mr. If
λ ∈ P(D) \ Wd(D), then λ = λk − s with 1 ≤ s. In this case (λ)m assumes both
positive and negative values as m ranges over S0(λ). Indeed, if m and n are defined
by mi = ni = 0 for 1 ≤ i ≤ k − 1 and k < i ≤ r, and mk = 0, nk = s− 1, then (λ)m
and (λ)n have different signs. Thus 〈·, ·〉

λ,0
is not definite (positive or negative), and

thus Hλ,0 is not unitarizable. This proves Theorem 3.3 in case j = 0.

Case 2: j = q. In this case ν = q − j = 0. Also, Lemma 2.3 yields degλ(µ`,m) = 0
if m ∈ Sq(λ) and degλ(µ`,m) ≥ 1 if m ∈ Sq−1(λ). It follows that for f, g ∈ Hλ,q ,

〈D`(λ)f, g〉λ+`
=

∑

m∈Sq(λ)

µ`,m(λ)
〈fm, gm〉

F

(λ + `)m
.

Now,

µ`,m(λ) = lim
ξ→λ

(ξ + `)m
(ξ)m

(ξ)(`,`,...,`) = (λ + `)m lim
ξ→λ

(ξ)(`,`,...,`)
(ξ)m

= γ
(λ+ `)m
(λ)m,q

,

where γ is the non-zero constant defined in (3.4). It follows that

〈D`(λ)f, g〉λ+`
= γ

∑

m∈Sq(λ)

〈fm, gm〉
F

(λ)m,q
= γ〈f, g〉

λ,q
.

This proves Theorem 3.2 in case j = q. To prove Theorem 3.3 in this case, assume
first that λ = λr − s for some s ∈ N. We claim now that

Sq(λ) \ Sq−1(λ) = {m ≥ 0;mr ≥ s+ 1}. (3.7)

Indeed, if mr ≥ s + 1 then
∏mr−1

u=0 (λ + u − λr) = 0. If λ ∈ λi − N, then
∏mi−1

u=0 (λ+u−λr) = 0 because mi ≥ mr ≥ s+1. Thus degλ((·)m) = q. Conversely,
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if degλ((·)m) = q, then in order that
∏mr−1

u=0 (λ + u − λr) = 0 it is necessary that
s ≤ mr − 1. This establishes (3.7).

Next, let m ∈ Sq(λ), and let 1 ≤ i ≤ r be so that λ ∈ λi −N, say λ = λi − ki.
Then

lim
ξ→λ

(ξ − λ)−1
mi−1
∏

u=0

(ξ + u− λi) =

ki−1
∏

u=0

(λ+ u− λi)

mi−1
∏

u=ki+1

(λ+ u− λi) = γi,m βi

with βi 6= 0 and γi,m > 0. If λ /∈ λi − N we let βi =
∏

u<λi−λ
(λ + u− λi) 6= 0 and

γi,m =
∏

u>λi−λ
(λ+ u− λi) > 0. Then

(λ)m,q = lim
ξ→λ

(ξ)m
(ξ − λ)q

=

r
∏

i=1

γi,m βi.

Hence, all the numbers {(λ)m,q}m∈Sq(λ) have constant sign (equal to sgn(
∏r

i=1 βi)),
and thus Hλ,q is unitarizable. Assume now that λ /∈ λr − N. Then, necessarily, the
characteristic multiplicity a is odd and λ ∈ λr−1 −N. Writing λ = λr−1 − s, s ∈ N,
it is clear by the above arguments that

Sq(λ) \ Sq−1(λ) = {m ≥ 0; mr−1 ≥ s+ 1}.

Let m = (s+1, s+1, . . . , s+1, 1) and n = (s+1, s+1, . . . , s+1, 0). Then m,n ∈ Sq(λ)
and (λ)m,q = (λ−λr)(λ)n,q . Thus (λ)m,q and (λ)n,q have different signs, and so Hλ,q

is not unitarizable. This proves Theorem 3.3 in case j = q.

Case 3: 1 ≤ j ≤ q − 1. Put ν = q − j. As before, ` ∈ N is chosen so that λ + ` ≥
λr + 1, and this guarantees that degλ((·)m+`) = q and (λ+ `)m > 0 for all signatures
m ≥ 0. Let f, g ∈ Hλ,j . Then

〈Dν
` (λ)f, g〉λ+` =

∑

m∈Sj(λ)

µν
`,m(λ)

〈fm, gm〉F
(λ+ `)m

.

If m ∈ Sj(λ) \ Sj−1(λ), then

degλ(µ`,m) = degλ

(

(·)m+`

(·)m

)

= q − j = ν.

Thus,

µν
`,m(λ) = lim

ξ→λ

µ`,m(ξ)

(ξ − λ)ν
= lim

ξ→λ

(ξ + `)m(ξ − λ)−q(ξ)(`,`,...,`)

(ξ − λ)−j(ξ)m
= γ

(λ+ `)m
(λ)m,j

.

If m ∈ Sj−1(λ), then degλ(µ`,m) ≥ q − j + 1 = ν + 1, and so µν
`,m(λ) = 0. Thus

〈Dν
` (λ)f, g〉

λ+`
= γ

∑

m∈Sj(λ)\Sj−1(λ)

(λ+ `)m
(λ)m,j

〈fm, gm〉
F

(λ+ `)m

= γ
∑

m∈Sj(λ)\Sj−1(λ)

〈fm, gm〉
F

(λ)m,j
= γ〈f, g〉

λ,j
.
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This proves Theorem 3.2 in case 1 ≤ j ≤ q − 1. To prove Theorem 3.3 in this case
we need to show that as m varies in Sj(λ) \ Sj−1(λ), (λ)m,j assumes both positive
and negative values. Notice first that there exists a unique pair (k, s) of integers with
1 ≤ k < s ≤ r so that λk − λ and λs − λ are positive integers and

m ∈ Sj(λ) \ Sj−1(λ) ⇐⇒ mk ≥ λk − λ+ 1 and ms ≤ λs − λ.

In fact, s = k + 1 if the characteristic multiplicity a is even, and s = k + 2 if a is
odd. Next, λs − λ = λk − λ + (s− k)a

2 ≥ 1. Define m, n by mi = ni = λk − λ + 1
if 1 ≤ i ≤ k, mi = ni = 0 if k + 2 ≤ i ≤ r, and mk+1 = 0, nk+1 = 1. Then
m,n ∈ Sj(λ) \ Sj−1(λ) and (λ)n,j = (λ)m,j(λ − λs). Thus (λ)n,j and (λ)m,j have
different signs, and so Hλ,j is not unitarizable. This proves Theorem 3.3 in case
1 ≤ j ≤ q − 1.

A special case of Theorem 3.2 is the following essentially known result.

Corollary 3.2 Let λ ∈ P(D) be so that s = s(λ) := d
r − λ ∈ N. Then

(i) Hλ,q is unitarizable, and

〈f, g〉
λ,q

= γ

∫

S

Ns(ξ)(∂s
Nf)(ξ) g(ξ) dσ(ξ), ∀f, g ∈ Hλ,q .

Thus, an analytic function f on D belongs to Hλ,q if and only if (N s∂s
N )1/2f ∈

H2(S).

(ii) Moreover, if ` ∈ N is chosen so that λ+ ` > p− 1, then

〈f, g〉
λ,q

= γ′
∫

D

(D`(λ)f)(z) g(z) h(z, z)λ+`−p dm(z), ∀f, g ∈ Hλ,q .

Consequently, an analytic function f on D belongs to Hλ,q if and only if
(D`(λ))

1/2f ∈ L2
a(D,µλ+`).

In the last statement (D`(λ))
1/2 is the positive square root of the positive operator

D`(λ), see Corollary 2.1 Indeed, part (i) follows from Theorem 3.2 with j = q, ν =
q − j = 0, ` = s and Ds(λ) = Ns∂s

N . In this case Hλ+s = H d
r

is the Hardy space

H2(S) on the Shilov boundary S. Corollary 3.2 (i) for λ ∈ Wd(D) was proved in
[A2]. The proof of part (ii) is similar.

The case where λ ∈ P(D) and s := d
r − λ ∈ N (i.e. the highest quotient of the

composition series of U (λ)-invariant spaces is unitarizable) is of particular interest.

Theorem 3.4 Let λ ∈ P(D) and assume that s := d
r − λ ∈ N. Then, for each

ϕ ∈ Aut(D) and f ∈ H(D)

∂s
N (U (λ)(ϕ)f) = U (p−λ)(ϕ)(∂s

Nf). (3.8)

Namely, the operator ∂s
N intertwines the actions U (λ) and U (p−λ) of Aut(D). More-

over,
〈f, g〉

λ,q
= c1 〈∂s

Nf, ∂
s
Ng〉p−λ

, ∀f, g ∈ Hλ,q , (3.9)
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where

c−1
1 := (

d

r
)(s,s,...,s)

r
∏

j=1

′
∏

s−1

u=0
(λ+ u− λj), (3.10)

and the product
∏′s−1

u=0 ranges over all non-zero terms. In particular, if λ < 1, then

〈f, g〉
λ,q

= c1 c(p− λ)

∫

D

(∂s
Nf)(z) (∂s

Ng)(z) h(z, z)
−λ dm(z), ∀f, g ∈ Hλ,q . (3.11)

Proof: (3.8) is proved in [A1], Theorem 6.4. For the proof of (3.9) and (3.11) we

define an inner product on the polynomials modulo M
(λ)
q−1 by

[f, g] := 〈∂s
Nf, ∂

s
Ng〉p−λ, f, g ∈ Hλ,q .

We claim that [·, ·] is U (λ)-invariant. Indeed, using (3.8) we see that for every ϕ ∈
Aut(D) and polynomials f and g,

[U (λ)(ϕ)f, U (λ)(ϕ)g] = 〈∂s
N (U (λ)(ϕ)f), ∂s

N (U (λ)(ϕ)g)〉p−λ

= 〈U (p−λ)(ϕ)(∂s
Nf), U (p−λ)(ϕ)(∂s

Ng)〉p−λ

= 〈∂s
Nf, ∂

s
Ng〉p−λ = [f, g].

Since polynomials are dense in Hλ,q , the fact that its inner product is the unique
U (λ)-invariant inner product (see [AF], [A1]) implies that

〈f, g〉λ,q = c1 [f, g], ∀f, g ∈ Hλ,q .

The value (3.10) of c1 is found by taking f = g = N s, and using the facts that
〈Ns, Ns〉F = (d

r )(s,s,...,s), [Ns, Ns] = (∂s
NN

s)2 = 〈Ns, Ns〉2F , and

〈Ns, Ns〉
λ,q

= lim
ξ→λ

(ξ − λ)q 〈N
s, Ns〉F

(ξ)(s,s...,s)
=

〈Ns, Ns〉F
∏r

j=1

∏′s−1

u=0(λ+ u− λj)
.

Example: In the special case where λ = 0 and s := d
r ∈ N, H0,q is the generalized

Dirichlet space, and formula (3.11) is the generalized Dirichlet inner product

〈f, g〉0,q = c1 c(p− λ)

∫

D

(∂s
Nf)(z) (∂s

Ng)(z) dm(z), ∀f, g ∈ H0,q .

4 The expansion of the operators D`(λ)

Yan’s operators D`(λ) = N
d
r −λ∂`

NN
λ+`− d

r and their derivatives play an important
role in the previous section. In this section we obtain an expansion of D`(λ) in powers
of λ. This expansion will exhibit D`(λ) as a polynomial in z, ∂

∂z , and λ, showing that
D`(λ) is a differential operator (with parameters λ and `) in the ordinary sense. It
also facilitates the computation of the derivatives

Dν
` (λ) =

1

ν!
(
∂

∂ξ
)νD`(ξ)

|ξ=λ

,
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needed in formulas (3.3), (3.5) and (3.6) for the forms 〈f, g〉
λ,j

. Another conse-
quence will be that for any r distinct complex numbers α1, . . . , αr the operators
D1(α1), . . . , D1(αr) are algebraically independent generators of the ring of invariant
differential operators on the cone Ω, a result obtained independently also by Korányi
and Yan (see [FK2], Chapter XIV). We shall work in the framework of the cone Ω,
but all the results will be valid for Z, because Ω is a set of uniqueness for analytic
functions on Z.

Example 4.1. Let D ⊂ Cd, d ≥ 3 be a Cartan domain of rank r = 2 (called the Lie
ball). The associated JB∗-algebra Z = Cd, called the complex spin factor, is defined
via

zw := (z1w1 − z′ · w′, z1w
′ + w1z

′), z∗ := (z1,−z′),

where z = (z1, z
′), z′ = (z2, z3, . . . , zd), and z · w :=

∑d
j=1 zjwj . The unit

of Z is e := (1, 0, 0, . . . , 0), and the canonical frame is {e1, e2}, where e1 :=
1
2 (1, i, 0, 0, . . . , 0), e2 := 1

2 (1,−i, 0, 0, . . . , 0). The norm polynomial and the asso-
ciated differential operator are given by

N(z) := z · z =

d
∑

j=1

z2
j and ∂N = N(

∂

∂z
) =

1

4

d
∑

j=1

∂2

∂z2
j

respectively, since (z|w) = 2z · w is the normalized inner product. Since r = 2 and
a = d− 2, the Wallach set is

W(D) = Wd(D) ∪ Wc(D), Wd(D) = {0,
d− 2

2
}, Wc(D) = (

d− 2

2
,∞).

One can show that D is given by

D = {z ∈ Z;



(

d
∑

j=1

|zj |
2)2 − |N(z)|2





1
2

< 1 −

n
∑

j=1

|zj |
2}. (4.1)

For every α ∈ C

∂2

∂z2
k

Nα =
∂

∂zk
(2αNα−1zk +Nα ∂

∂zk
)

= 2αNα−1 + 4αNα−1zk
∂

∂zk
+ 4α(α− 1)Nα−2z2

k +Nα ∂2

∂z2
k

.

Since R =
∑d

j=1 zj
∂

∂zj
, we obtain

∂N Nα =
1

4
(

d
∑

j=1

∂2

∂z2
j

)Nα = α(α −
a

2
)Nα−1 + αNα−1R+Nα∂N .

It follows that for every α ∈ C and ` ∈ N,

N1−α∂NN
α = N∂N + αR + α(α+

d− 2

2
)I = N∂N + (α)(1,0)R+ (α)(1,1)I. (4.2)
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Since

D`(λ) =
(

N
d
r −λ∂NN

1+λ− d
r

)(

N
d
r −λ−1∂NN

2+λ− d
r

)

· · ·
(

N
d
r +1−`−λ∂NN

`+λ− d
r

)

,

we finally obtain

D`(λ) =
∏̀

j=1

(N∂N + (λ−
d

2
+ j)R+ (λ− 1 + j)(λ −

d

2
+ j)I). (4.3)

Note that the factors on the right hand sides of (4.2) and (4.3) commute, since they
are G(Ω)-invariant, and the entire ring of G(Ω)-invariant operators is commutative.
Also, the operators R and N∂N are K-invariant. Hence the factors on the right hand
sides of (4.2) and (4.3) are multipliers of the Peter-Weyl decomposition of analytic
functions on D (see Corollary 2.1).

Consider a general Cartan domain of tube-type D ⊂ Cd with rank r. Let Ω be
the associated symmetric cone in the Euclidean Jordan algebra X and fix a frame
{e1, . . . , er} of pairwise orthogonal primitive idempotents in X , whose sum is the unit
element e. For 1 ≤ ν ≤ r, let φν := φ1ν be the spherical polynomial associated with
the signature 1ν := (1, 1, . . . , 1, 0, 0, . . . , 0), where there are ν “1”’s and r − ν “0”’s.
Put also φ0(z) ≡ 1. Let {∆ν}

r
ν=0 be the differential operators on Ω defined via

(∆ν)f(a) := φν(
d

dx
)(f(P (a

1
2 )x))

|x=e
, (4.4)

where for b ∈ X , P (b) is defined via (1.1). Recall that P (b) ∈ G(Ω) for every b ∈ Ω,

and that Ω = {P (b)e; b ∈ Ω} since P (a
1
2 )e = a. Moreover, the L-invariance of the

φν ’s and the “polar decomposition” for Ω imply that

(∆ν)f(a) := φν(
d

dx
)(f(ψ(x)))

|x=e
, a ∈ Ω (4.5)

for every ψ ∈ G(Ω) for which ψ(e) = a. This implies that the operators {∆ν}
r
ν=0 are

G(Ω)-invariant, namely

∆ν(f ◦ ψ) = (∆νf) ◦ ψ, ∀ψ ∈ G(Ω), ∀f ∈ C∞(Ω).

We remark that (4.4) and (4.5) are equivalent to

∆νe
〈x,y〉

|x=a = φν(ψ∗(y)) e〈a,y〉 = φν(P (a
1
2 )y) e〈a,y〉, a, y ∈ Ω, (4.6)

where ψ ∈ G(Ω) ⊂ GL(X) satisfies ψ(e) = a, ψ∗ is the adjoint of ψ with respect to
the inner product 〈·, ·〉 on X , and ∆ν differentiates the coordinate x. Notice also that
the operators ∆ν can be written as

∆ν = cmKm(x,
∂

∂x
),

where m = (1, 1, . . . , 1, 0, . . . , 0) (ν “ones” and r− ν zeros), and cm is an appropriate
constant.
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For ν = 0, 1, r it is easy to compute ∆ν . Clearly, ∆0 = I . Since N is L-invariant,
φr = N . Using (4.6) and (1.3), we find that

∆r = N ∂N .

Also, φ1(x) = 1
r tr(x) = 1

r 〈x, e〉. Indeed, using N1(x) = 〈x, e1〉 and the fact that L is
transitive on the frames, we get

φ1(x) =

∫

L

〈`x, e1〉 d` =
1

r

r
∑

j=1

∫

L

〈`x, ej〉 d`

=
1

r

∫

L

〈`x, e〉 d` =
1

r

∫

L

〈x, `e〉 d` =
1

r
〈x, e〉.

Using the fact that tr(P (a
1
2 )y) = 〈P (a

1
2 )y, e〉 = 〈y, P (a

1
2 )e〉 = 〈y, a〉, ∀a, y ∈ Ω, we

find that

∆1 =
1

r
R,

where Rf(x) := ∂
∂tf(tx)

|t=1
is the radial derivative.

Our main result in this section is the expansion of D1(λ) = N
d
r −λ ∂N N1+λ− d

r .
This result was obtained independently by A. Korányi, see [FK2], Proposition
XIV.1.5.

Theorem 4.1 For every λ ∈ C,

D1(λ) =

r
∑

ν=0

(

r

ν

) r
∏

j=ν+1

(λ − λj) ∆ν . (4.7)

Proof: For x ∈ Ω, the function α→ N(x)α is entire in α. Hence both sides of (4.7)
are entire in λ, and it is therefore enough to prove (4.7) for λ with <λ < 0. Let
α = λr − λ. Since <λ > λr, we get for every x ∈ Ω

N(x)−α =
1

ΓΩ(α)

∫

Ω

e−〈x,t〉N(t)α dµΩ(t),

where dµΩ(t) := N(t)−
d
r dt is the G(Ω)-invariant measure on Ω. Fix a, y ∈ Ω and put

fy(x) := e〈x,y〉. Then

(Nα+1∂NN
−αfy)(a)

=
N(a)α+1

ΓΩ(α)
N(

d

dx
)

∫

Ω

e〈x,y−t〉N(t)αdµΩ(t) |x=a

=
N(a)α+1

ΓΩ(α)

∫

Ω

e〈a,y−t〉N(y − t)N(t)α dµΩ(t)

=
fy(a)

ΓΩ(α)

∫

Ω

e−〈e,P (a
1
2 )t〉N(P (a

1
2 )(y − t))N(P (a

1
2 )t)α dµΩ(t).
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Letting b = P (a
1
2 )y, the substitution t := P (a−

1
2 )P (b

1
2 )τ gives

(Nα+1∂NN
−αfy)(a) =

fy(a)

ΓΩ(α)
N(y)1+αN(a)1+α

∫

Ω

e−〈b,τ〉N(e− τ)N(τ)α dµΩ(τ).

Now, the well-known “binomial formula”

N(e+ x) =

r
∑

ν=0

(

r

ν

)

φν(x), x ∈ X (4.8)

(which follows from Theorem 1.2 and the knowledge of the norms of the φν ’s) and
the fact that for every s ∈ Cr and b ∈ Ω

1

ΓΩ(s)

∫

Ω

e−〈b,τ〉φs(τ) dµΩ(τ) = φs(b
−1) (4.9)

(which follows from the analogous formula for the conical functions), imply

∫

Ω

e−〈b,τ〉N(e− τ)N(τ)α dµ(τ) =

r
∑

ν=0

(

r

ν

) ∫

Ω

e−〈b,τ〉φ1ν+α(τ) dµΩ(τ)

=

r
∑

ν=0

(

r

ν

)

ΓΩ(1ν + α) φ1ν+α(b−1) = N(b)−α
r
∑

ν=0

(

r

ν

)

ΓΩ(1ν + α) φν(b−1).

We claim that for every b ∈ Ω and 1 ≤ ν ≤ r,

φν(b−1) = φr−ν(b)N(b)−1. (4.10)

Indeed, using (4.8) we have N(e+ tb−1) =
∑r

ν=0

(

r
ν

)

φν(b−1) tν , as well as

N(e+ tb−1) = N(P (b−
1
2 )(b+ te)) = N(b)−1 tr N(e+ t−1b)

= N(b)−1 tr
r
∑

k=0

(

r

k

)

φk(b) t−k.

Comparing the coefficients of tν in the two expansions, we obtain (4.10). It follows
that

(Nα+1 ∂NN
−αfy)(a)

=
fy(a) N(y)1+α N(a)1+α

ΓΩ(α) N(b)1+α

r
∑

ν=0

(−1)ν

(

r

ν

)

ΓΩ(1ν + α) φr−ν(b)

= fy(a)
r
∑

ν=0

(−1)ν

(

r

ν

)

ΓΩ(1ν + α)

ΓΩ(α)
φr−ν(b)

= fy(a)

r
∑

ν=0

(

r

ν

) ν
∏

j=1

(λj − α) φr−ν(P (a
1
2 )y).
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Comparing this with (4.6), we conclude that

Nα+1 ∂NN
−α =

r
∑

ν=0

(

r

ν

) ν
∏

j=1

(λj − α) ∆r−ν =

r
∑

k=0

(

r

k

) r−k
∏

j=1

(λj − α) ∆k.

Using the relations α = λr − λ and d
r = 1 + λr, we obtain (4.7).

Remark: The “binomial formula” (4.8) yields that for every ν = 1, 2, . . . , r and every
x ∈ X ,

φν(x) =
∑

1≤i1<i2<...<iν≤r

λi1 λi2 · · · λiν/

(

r

ν

)

= Sr,ν(λ)/

(

r

ν

)

,

where λ = (λ1, λ2, . . . , λr) is the sequence of eigenvalues of x, and Sr,ν is the elemen-
tary symmetric polynomial of degree ν in r variables.

Combining the definition D`(λ) =
∏`−1

k=0 D1(λ+ k) with Theorem 4.1, we obtain

Corollary 4.1 For every λ ∈ C and ` ∈ N,

D`(λ) =

`−1
∏

k=0

r
∑

ν=0

(

r

ν

) r
∏

j=ν+1

(λ+ k − λj) ∆ν . (4.11)

For any signature m ≥ 0 let ∆m be the differential operator associated with the
spherical polynomial φm via

(∆mf)(a) := φm(
d

dx
) f(P (a

1
2 ))

|x=e
, a ∈ Ω. (4.12)

Equivalently,

∆me
〈x,y〉

|x=a = φm(P (a
1
2 )y) e〈a,y〉, a ∈ Ω. (4.13)

Again, one can replace in (4.12) and (4.13) P (a
1
2 ) by any ψ ∈ G(Ω) satisfying ψ(e) =

a. Hence the operators ∆m are G(Ω)-invariant, namely

∆m(f ◦ ψ) = (∆mf) ◦ ψ, ∀ψ ∈ G(Ω).

Theorem 4.2 For every λ ∈ C and ` ∈ N,

D`(λ) =
∑

m≥0

(`) ΓΩ(d
r + `) ΓΩ(d

r − λ−m∗)

ΓΩ(d
r + `−m∗) ΓΩ(d

r − `− λ)

dm

(d
r )m

∆m

(4.14)

= (
d

r
− λ− `)(`,...,`)

∑

m≥0

(`) (−`)m
(λ)m

dm

(d
r )m

∆m.

Here m∗ := (mr,mr−1, . . . ,m1), dm = dim(Pm), and the summation
∑

m≥0
(`)

extends over all m = (m1,m2, . . . ,mr) ∈ Nr with ` ≥ m1 ≥ m2 ≥ . . . ≥ mr ≥ 0.
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Proof: The general binomial formula (1.15) and the relations

Km(x, e) =
φm

‖φm‖2
F

, ‖φm‖2
F =

(d
r )m

dm

(see [FK2], Chapter XI) imply for ` ∈ N and x ∈ X

N(e+ x)` = c
∑

m≥0

(`) dm

(d
r )`−m∗ (d

r )m
φm(x), (4.15)

where c := (d
r )(`,`,...,`), and m∗ and

∑

m≥0
(`)

are as in Theorem 4.2. Indeed, by
(1.15),

N(e+ x)` =
∑

m≥0

(−`)m
(−1)|m| dm

(d
r )m

φm(x).

From this (4.15) follows by the fact that (−`)m = 0 if m1 > `, whereas in case m1 ≤ `,

(−`)m (−1)|m| =
(d

r )(`,`,...,`)

(d
r )`−m∗

.

As in the proof of Theorem 4.1, it is enough to prove that for every α ∈ C with
<α > λr and every ` ∈ N,

Nα+` ∂`
N N−α = c

∑

m≥0

(`) (α)`−m∗ dm

(d
r )`−m∗ (d

r )m
∆m. (4.16)

From this one obtains (4.14) by the substitution α = d
r − `− λ. To prove (4.16), fix

a, y ∈ Ω and let fy(x) := e〈x,y〉. Then

(Nα+` ∂`
N N−αfy)(a) =

N(a)α+` fy(a)

ΓΩ(α)

∫

Ω

e−〈a,t〉N(y − t)`N(t)α dµΩ(t)

=
N(b)α+` fy(a)

ΓΩ(α)

∫

Ω

e−〈b,u〉N(e− u)`N(u)α dµΩ(u),

by the substitutions b = P (a
1
2 )y and u = P (b−

1
2 )P (a

1
2 )t. Using (4.15), (4.9), and

φm(x−1) = φ`−m∗(x) N(x)−` (4.17)

(a consequence of [FK2], Proposition VII.1.5), we obtain

(Nα+` ∂`
N N−αfy)(a) = c

fy(a)

ΓΩ(α)

∑

m≥0

(`) ΓΩ(m + α) dm

(d
r )`−m∗ (d

r )m
φ`−m∗(P (a

1
2 )y).

With the change of variables n := `− m∗, the fact that dm = dn (use (4.17) or the
general formula for dm in [U1]), the definition (4.12), and

(Nα+` ∂`
N N−αfy)(a) = c fy(a)

∑

n≥0

(`) (α)`−n∗ dn

(d
r )`−n∗ (d

r )n
φn∗(P (a

1
2 )y),

we obtain (4.16).
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Corollary 4.2 The operators {∆k}
r
k=1 are algebraically independent generators of

the ring Diff(Ω)G(Ω) of G(Ω)-invariant differential operators on Ω.

Proof: Comparing the two expansions (4.11) and (4.14) of D`(λ), we see that

∆m ∈ C[∆1,∆2, . . . ,∆r]

for every signature m ≥ 0. Since {φm}m≥0 is a basis for the space of spherical
polynomials, the one-to-one correspondence between spherical polynomials and the
elements of Diff(Ω)G(Ω) (see [FK2], Chapter XIV) implies that {∆m}m≥0 is a basis
of Diff(Ω)G(Ω). Thus Diff(Ω)G(Ω) = C[∆1,∆2, . . . ,∆r]. Since the minimal number of
algebraic generators of Diff(Ω)G(Ω) is r = rank(Ω) [He], it follows that ∆1,∆2, . . . ,∆r

are algebraically independent.

The divided differences of a C1-function f on R are defined by

f [1](t0, t1) :=
f(t0) − f(t1)

t0 − t1

for t0 6= t1, and f [1](t0, t0) := f ′(t0). The higher order divided differences of a smooth
enough function f are defined inductively by

f [n](t0, t1, . . . , tn) := g[1](tn−1, tn),

where g(x) := f [n−1](t0, t1, . . . , tn−2, x). Then f [n](t0, t1, . . . , tn) is symmetric in
t0, t1, . . . , tn, and

f [n](t, t, . . . , t) =
1

n!

dn

dtn
f(t).

Moreover, if f is analytic in a domain D ⊂ C, then

f [n](t0, t1, . . . , tn) =
1

2πi

∫

Γ

f(ξ)
∏n

j=0(ξ − tj)
dξ

for all t0, t1, . . . , tn ∈ D and every Jordan curve Γ in D whose interior contains
t0, t1, . . . , tn and is contained in D. The divided differences of vector-valued maps
are defined in the same way and have analogous properties. For convenience we put
also f [0](t) := f(t).

Theorem 4.3 Let α1, α2, . . . , αr ∈ C be distinct. Then {D1(αj)}
r
j=1 are algebraically

independent generators of Diff(Ω)G(Ω). Moreover, for ` = 1, 2, . . . , r,

∆` = D
[r−`]
1 (λ`, λ`+1, . . . , λr)/

(

r

ν

)

, (4.18)

where D
[r−`]
1 (λ`, . . . , λr) are the divided differences of order r− ` of D1(λ), evaluated

at (λ`, λ`+1, . . . , λr).
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Proof: Let hk(x) :=
(

r
`

)
∏r

j=k+1(x − λj), 0 ≤ k ≤ r. Then h
[m]
k (x0, x1, . . . , xm) ≡ 0

whenever m > r − k, and h
[r−k]
k (x0, x1, . . . , xr−k) ≡

(

r
`

)

for all choices of
x0, x1, . . . , xr−k. By Theorem 4.2, D1(α) =

∑r
k=0 hk(α) ∆k . Hence, for 1 ≤ ` ≤ r,

D
[r−`]
1 (α`, α`+1, . . . , αr) =

∑̀

k=0

h
[r−`]
k (α`, α`+1, . . . , αr) ∆k.

Solving this system of equations for the ∆k’s, we see that Diff(Ω)G(Ω) =
C[∆1,∆2, . . . ,∆r] coincides with the ring generated by the operators

{D
[r−`]
1 (α`, α`+1, . . . , αr)}

r
`=1. If the {αj}

r
j=1 are distinct, then

D
[r−`]
1 (α`, α`+1, . . . , αr) ∈ C[D1(α1), D1(α2), . . . , D1(αr)].

Hence,

Diff(Ω)G(Ω) = C[∆1,∆2, . . . ,∆r] = C[D1(α1), D1(α2), . . . , D1(αr)].

The operators {D1(αj}
r
j=1 are algebraically independent, since Diff(Ω)G(Ω) cannot be

algebraically generated by less than r elements. If αj = λj for j = 1, 2, . . . , r, then

h
[r−`]
k (α`, . . . , αr) = 0 for k < `. Thus, for ` = 1, 2, . . . , r,

D
[r−`]
1 (α`, α`+1, . . . , αr) = h

[r−`]
` (α`, α`+1, . . . , αr) ∆` =

(

r

`

)

∆`.

Remark: The first statement in Theorem 4.3 was proved independently also by A.
Korányi [FK2] and Z. Yan [Y1]. Our result is slightly stronger, giving the exact
formula (4.18).

Combining Theorems 3.2 and 4.2 (or, 4.1) we obtain integral formulas for the
invariant hermitian forms 〈·, ·〉λ,j , λ ∈ P(D), 0 ≤ j ≤ q(λ).

Corollary 4.3 Let λ ∈ P(D), ` ∈ N and assume that λ + ` ≥ d
r = λr + 1. Let

q = q(λ), 0 ≤ j ≤ q, and ν = q− j. Consider the G(Ω)-invariant differential operator

Tλ,j := γ
∑

m≥0

(`)
cm(λ, `)

dm

(d
r )m

∆m, (4.19)

where γ is given by (3.4), and for every m ≥ 0 with m1 ≤ `

cm(λ, `) :=
1

ν!
(
∂

∂ξ
)`

(

ΓΩ(d
r + `) ΓΩ(d

r − ξ −m∗)

ΓΩ(d
r + `−m∗) ΓΩ(d

r − `− ξ)

)

|ξ=λ

. (4.20)

Then Tλ,j is defined on all analytic functions on D, and for all f, g ∈ Hλ,j

〈f, g〉
λ,j

= 〈Tλ,jf, g〉λ+`
. (4.21)

In particular, if λ+ ` > p− 1 or λ+ ` = d
r then we have

〈f, g〉λ,j =

∫

D

(Tλ,jf)(z) g(z) dµλ+`(z) and 〈f, g〉λ,j =

∫

S

(Tλ,jf)(ξ) g(ξ) dσ(ξ)

(4.22)
respectively.
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The case λ = λr is particularly simple, since then d
r − λr = 1, and we can use

(4.7) rather than (4.14).

Corollary 4.4 Let D be a Cartan domain of tube type and rank r ≥ 2 in Cd, d ≥ 3.
Then

〈f, g〉λr ,0 = 〈β

r−1
∑

ν=0

(

r

ν

) r−ν
∏

i=2

λi ∆νf, g〉H2(S)
, where β :=

r
∏

i=2

λi. (4.23)

Proof: In this case q = q(λr) = 1, j = 0, and ν = q − j = 1. We choose ` = 1, so
λr + ` = d

r . In order to apply Theorem 3.2 we use Theorem 4.1, and compute

D1
1(λr) =

∂

∂ξ
D1(ξ)|ξ=λ =

∂

∂ξ

(

r
∑

ν=0

(

r

ν

) r
∏

i=ν+1

(ξ − λi) ∆ν

)

|ξ=λr

=

r−1
∑

ν=0

(

r

ν

) r−1
∏

i=ν+1

(λr − λi) ∆ν =

r−1
∑

ν=0

(

r

ν

) r−ν
∏

i=2

λi ∆ν .

Using this, (4.23) follows from

β :=
∂

∂ξ

(

r
∏

i=1

(ξ − λi)

)

ξ=λ

=

r−1
∏

i=1

(λr − λi) =

r
∏

i=2

λi.

Example 4.2. Let D be the Cartan domain of rank r = 2 in Cd (the Lie ball), d ≥ 3.
Then

〈f, g〉
d−2
2

,0
= 〈(

2

d− 2
R+ I)f, g〉

H2(S)
. (4.24)

Namely, in this case λ = λ2 = d−2
2 , q = q(λ) = 1, j = 0, and ν = q − j = 1. With

` = 1, λ+ ` = d
2 = λ2 + 1 = d

r we get by using Theorem 3.2 and Corollary 3.2,

〈f, g〉
d−2
2

,0
= γ〈D1

1(
d− 2

2
)f, g〉

d
2

= γ 〈(R +
d− 2

2
I)f, g〉

H2(S)
= 〈(

2

d− 2
R+ I)f, g〉

H2(S)
.

Since the Shilov boundary S of D is given by

S = {eiθ(x1, ix2, ix3, . . . , ixd); θ ∈ R,
d
∑

j=1

x2
j = 1} ≡ S1 · Sd−1,

the unique K-invariant probability measure on S is dσ(eiθ(x1, ix
′)) = dθ

2πdνd−1(x),
where νd−1 is the unique O(d − 1)-invariant probability measure on Sd−1. Thus
(4.24) provides a very concrete formula for the inner product 〈·, ·〉

d−2
2

,0
.
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5 Integration over boundary orbits of Aut(D)

In this section we obtain formulas for the invariant inner products in terms of inte-
gration over an orbit of Aut(D) on the boundary ∂D. We focus on the inner products
〈·, ·〉

λ2,0
= 〈·, ·〉 a

2
, and conjecture that our method can be generalized for the deriva-

tion of similar formulas for the inner products 〈·, ·〉
λj ,0

= 〈·, ·〉
λj

, λj = (j − 1)a
2 ,

j = 3, 4, . . . , r, in terms of integration on an appropriate boundary orbit. (Notice
that the case j = 1 is trivial, since λ1 = 0 and H0,0 = H0 = C1).

In order to describe the facial structure of a Cartan domain of tube-type D ⊂ Cd

[Lo], [A1], let S` be the compact, real analytic manifold of tripotents in Z of rank
` = 1, 2, . . . , r. The group K acts transitively and irreducibly on S`. Let σ` be the
unique K-invariant probability measure on S` given by

∫

S`

f dσ` =

∫

K

f(k(v`)) dk, (5.1)

where v` is any fixed element of S`. For any tripotent v let Z = Z1(v)+Z 1
2
(v)+Z0(v)

be the corresponding Peirce decomposition. Then Dv := D∩Z0(v) is a Cartan domain
of tube-type, which is the open unit ball of the JB∗-algebra Z0(v). If v ∈ S` then the
rank of Dv is rv := r − `, its characteristic multiplicity is av := a if ` ≤ r − 2 and
av = 0 if ` = r − 1, and the genus is pv = p − ` a. The set v +Dv is a face of the
closure D of D. For any function f on D let fv be the function on Dv defined by

fv(z) := f(v + z), z ∈ Dv . (5.2)

The fundamental polynomial “h” of Z0(v) is defined by

hv(z, w) := h(z, w), z, w ∈ Z0(v). (5.3)

For ` = 1, 2, . . . , r, ∂`D := ∪v∈S`
(v +Dv) is an orbit of G: ∂`D = G(v`). If v ∈ Sr

is a maximal tripotent, then Dv = Z0(v) = {0}. Hence ∂rD = Sr = S is the Shilov
boundary. In particular, S is a G-orbit. The only tripotent of rank 0 is 0 ∈ Z, and
D = D0 is also a G-orbit. Thus the decomposition of D into G-orbits is

D = D ∪

r
⋃

`=1

∂`D.

For every tripotent v ∈ Z and λ > pv − 1 consider the probability measure µv,λ on
Dv, defined via

∫

Dv

f dµv,λ := cv,λ

∫

Dv

f(z) hv(z, z)
λ−pv dmv(z), (5.4)

where mv is the Lebesgue measure on Dv and cv,λ is the normalization factor. Simi-
larly, one defines a probability measure σv on the Shilov boundary Sv of Dv, via

∫

Sv

f dσv :=

∫

Kv

f(k(v′)) dk,
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where v′ is any tripotent orthogonal to v and Kv := {k ∈ K; k(Zν(v)) = Zν(v)}, ν =
0, 1/2, 1, so that Kv(v

′) = Sv. The combination of µv,λ and σ` yields K-invariant
probability measures µ`,λ on ∂`D, 1 ≤ ` ≤ r − 1, λ > p− ` a− 1, via

∫

∂`D

fdµ`,λ :=

∫

S`

(∫

Dv

fv(z) dµv,λ(z)

)

dσ`(v).

Next, consider the “sphere bundle” B`, 1 ≤ ` ≤ r, whose base is S` and the fiber
at each v ∈ S` is v + Sv (where Sv := ∂r−`Dv is the Shilov boundary of Dv). The
group K acts on B` naturally, and this action is transitive. The combination of the
measures σv , v ∈ S` and σ` yields K-invariant probability measures ν` on B` via

∫

B`

f dν` :=

∫

S`

(∫

Sv

f(v + ξ) dσv(ξ)

)

dσ`(v).

For v ∈ S`, consider the symmetric cone Ωv in Z0(v), and let ∆
(v)
1 ,∆

(v)
2 , . . . ,∆

(v)
r−` be

the canonical generators of the ring Diff(Ωv)G(Ωv) as in section 4. We also denote

∆
(v)
0 = I, ∆(v) := (∆

(v)
1 ,∆

(v)
2 , . . . ,∆

(v)
r−`), and λj = (j − 1)

a

2
, 0 ≤ j ≤ r.

Conjecture: For every 2 ≤ j ≤ r and every λ > λj−1 there exists a positive function
pj,λ ∈ C∞([0,∞)j−1), so that the inner product 〈·, ·〉

λj
= 〈·, ·〉

λj ,0
is given by

〈f, g〉
λj

=

∫

Sr−j+1

〈pj,λ(∆(v))fv , gv〉Hλ(Dv)
dσr−j+1(v). (5.5)

Moreover, if λ = λj−1 + 1 = dim(Dv)/rank(Dv), then pj := pj,λ is a polynomial with
positive coefficients.

If λ is chosen appropriately then (5.5) becomes an integral formula for 〈f, g〉
λj

.

For instance, if λ = λj−1 + 1 in (5.5), then we have Hλ(Dv) = H2(Sv), and (5.5)
becomes

〈f, g〉
λj

=

∫

Sr−j+1

(∫

Sv

(pj,λ(∆(v))fv)(ξ) gv(ξ)dσv(ξ)

)

dσr−j+1(v). (5.6)

Also, if λ > (j − 2)a+ 1 in (5.5) then Hλ(Dv) = L2
a(Dv , µv,λ), and (5.5) becomes

〈f, g〉
λj

=

∫

Sr−j+1

(∫

Dv

(pj(∆
(v))fv)(z) gv(z) dµv,λ(z)

)

dσr−j+1(v). (5.7)

Note that the integral in (5.7) can be expressed as an integral on ∂r−j+1D with respect
to dµr−j+1,λ. Similarly, (5.6) is an integral on Br−j+1 with respect to νr−j+1.
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Integral formulas for 〈f, g〉
a/2

via integration on ∂r−1D

In what follows we shall establish (5.5) for j = 2 (i.e. λ2 = a
2 ) in two important

special cases, namely for Cartan domains of type I and IV. Our method suggests an
approach for the general case. For j = 2 (5.5) becomes

〈f, g〉 a
2

=

∫

Sr−1

dσr−1(v)〈pλ(R(v))fv, gv〉Hλ(D)
, (5.8)

where pλ(x) = p2,λ(x) ∈ C∞([0,∞)) is a positive function, ∆
(v)
1 = R(v), where R(v)

is the localized radial derivative (i.e. the radial derivative in Z0(v)), and Dv ≡ D =
{z ∈ C; |z| < 1}. We will show that in our two cases

pλ(x) =
Γ(x+ λ)

Γ(λ)Γ(x + 1)
q(x),

where q(x) is a polynomial with positive rational coefficients. In particular, for λ =
1, 2, . . ., pλ(x) itself is a polynomial with positive rational coefficients. If λ is chosen
appropriately, then (5.8) becomes an integral formula analogous to (5.6) or (5.7). For
λ = 1, (5.8) becomes

〈f, g〉 a
2

=

∫

Sr−1

dσr−1(v)〈p1(R
(v))fv , gv〉H2(T)

, (5.9)

and for λ > 1, (5.8) becomes

〈f, g〉 a
2

=

∫

Sr−1

dσr−1(v)〈pλ(R(v))fv, gv〉L2(D,µλ)
. (5.10)

Lemma 5.1 The right hand side of (5.5) is K-invariant. Consequently, the right
hand sides of (5.6), (5.7), (5.8), (5.9), and (5.10) are K-invariant.

Proof: Let ` = r − j + 1, and note that for each fixed smooth function f the maps

S` 3 v 7→ ∆
(v)
i (fv), 1 ≤ i ≤ j − 1, are K-invariant, in the sense that

∆
(k(v))
i (fk(v)) ◦ k = ∆

(v)
i ((f ◦ k)v), ∀k ∈ K, ∀v ∈ S`.

From this it follows that if v` ∈ S` is any fixed element, then
∫

S`

〈pj,λ(∆(v))fv , gv〉Hλ(Dv)
dσ`(v)

=

∫

K

〈pj,λ(∆(v`))(f ◦ k)v`
, (g ◦ k)v`

〉
Hλ(Dv`

)
dk.

The K-invariance of the right hand side of (5.5) follows from the invariance of the
Haar measure dk.

Since M
(a
2 )

0 =
∑∞

m=0 P(m,0,0,...) and

〈f, g〉 a
2

=
∑

m=(m,0,...,0),0≤m<∞

〈fm, gm〉
F

(a
2 )m

,
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in order to establish (5.8) it is enough, by the K-invariance of both sides, to find
positive functions pλ(x) ∈ C∞([0,∞)) so that (5.8) holds for the functions f(z) =
g(z) = Nm

1 (z), m ≥ 0. This is equivalent to

∫

Sr−1

dσr−1(v)〈pλ(R(v))(Nm
1 )v , (N

m
1 )v〉Hλ(D)

=
m!

(a
2 )m

. (5.11)

Fix a frame e1, e2, . . . , er in Z. Then N1(z) = (z, e1), where (·, ·) is the unique K-
invariant inner product on Z for which (v, v) = 1 for every minimal tripotent v. Let
e′ := e2 + e3 + . . .+ er. Then for z = k(ξe1 + e′) with k ∈ K and ξ ∈ T, we have

Nm
1 (z) = (ξk(e1) + k(e′), e1)

m =

m
∑

`=0

(

m

`

)

(k(e1), e1)
` (k(e′), e1)

m−` ξ`.

Thus, for v = k(e′), m ≥ 0 and any continuous function f we have

(f(R(v))Nm
1 )(z) =

m
∑

`=0

(

m

`

)

(k(e1), e1)
` (k(e′), e1)

m−` f(`) ξ`.

Let us define

Jm,` :=

∫

K

|(k(e1), e1)|
2` |(k(e′), e1)|

2(m−`) dk, 0 ≤ ` ≤ m <∞. (5.12)

It follows that the function pλ should satisfy

∫

Sr−1

dσr−1(v) 〈pλ(R(v))(Nm
1 )v , (N

m
1 )v〉Hλ(D)

=
m
∑

`=0

Jm,`

(

m

`

)2
`!

(λ)`
pλ(`).

Thus (5.11) becomes

m
∑

`=0

Jm,`

(

m

`

)2

q` =
m!

(a
2 )m

, m = 0, 1, 2, . . . , (5.13)

where the numbers

q` :=
`!

(λ)`
pλ(`), ` = 0, 1, 2, . . . (5.14)

do not depend on λ. The infinite system of linear equations (5.13) in the unknowns
{q`}

∞
`=0 corresponds to the lower triangular matrix A = (am,`)

∞
m,`=0, where am,` =

Jm,`

(

m
`

)2
for m ≥ `, and am,` = 0 for m < `. Since am,m > 0 for m = 0, 1, 2, . . .,

there exists a unique solution {q`}
∞
`=0 to (5.13). There are many smooth functions

which interpolate the values {q`}
∞
`=0. We will show that q` > 0 for every ` ≥ 0, and

prove that {q`}
∞
`=0 can be interpolated by a polynomial of degree r − 1 with positive

coefficients. For Cartan domains of type I and IV, we will solve the system (5.13) by
calculating explicitly the numbers Jm,` and applying powers of the difference operator

δ(f)(t) := f(t) − f(t− 1), t ∈ R.
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If f is defined only on [0,∞) then we define δ(f) := δ(F ), where F (t) := f(t) for
0 ≤ t and F (t) = 0 for 0 > t. Similarly, δ can be defined on two-sided sequences (i.e.
on functions on Z) or on sequences (i.e. functions on N). The powers of δ are defined
inductively by δn+1 := δ ◦ δn.

Case 1: Cartan domains of type I. Let D = D(Ir,r) := {z ∈Mr,r(C); ‖z‖ < 1}.
The rank of D is r, the dimension is d = r2, the genus is p = 2r, and the characteristic
multiplicity is a = 2. To every k ∈ K there correspond u,w ∈ U(r) (the unitary group)
so that det(u) = det(w), and

k(z) = uzw∗, z ∈ D. (5.15)

Thus
∫

K f(k(z)) dk =
∫

U(r)

∫

U(r) f(uzw∗) du dw, where dk is the Haar measure of

K. Choose the canonical frame of matrix units ej := ej,j , j = 1, 2, . . . , r, and denote
e =

∑r
j=1 ej and e′ := e− e1 =

∑r
j=2 ej .

Proposition 5.1 Let D = D(Ir,r). Then for every integers m, ` with 0 ≤ ` ≤ m <
∞, we have

Jm,` =
(r − 1) (` !)2 (m− `)! (m− `+ r − 2)!

(r)m (m+ r − 1)!
. (5.16)

Proof: Let k ∈ K be given by (5.15). Then (k(e1), e1) = u1,1w1,1 and (k(e′), e1) =
∑r

j=2 u1,jw1,j . Thus, for 0 ≤ ` ≤ m <∞,

Jm,` =

∫

U(r)

∫

U(r)

|u1,1|
2`|w1,1|

2`|
r
∑

j=2

u1,jw1,j |
2(m−`) du dw.

This integral can be written as an integral on the product of the unit spheres ∂Br ⊂
Cr with respect to the U(r)-invariant probability measure σ:

Jm,` =

∫

∂Br

∫

∂Br

|ξ`
1|

2|η`
1|

2|(ξ′, η′)|2(m−`) dσ(ξ) dσ(η),

where ξ′ := (ξ2, . . . , ξr) and η′ := (η2, . . . , ηr). Now, by the U(r)-invariance,

∫

∂Br

|ξ`
1|

2|(ξ′, η′)|2(m−`) dσ(ξ)

= ‖η′‖2(m−`)

∫

∂Br

|ξ`
1|

2|ξm−`
2 |2 dσ(ξ)

= ‖η′‖2(m−`)‖ξ`
1ξ

m−`
2 ‖2

Hr(D) = ‖η′‖2(m−`) `!(m− `)!

(r)m
.

It follows by using [Ru], 1.4.5, that

Jm,` =
`!(m− `)!

(r)m

∫

∂Br

|η`
1|

2(1 − |η1|
2)m−` dσ(η)

=
`!(m− `)!

(r)m
(r − 1)

∫ 1

0

t`(1 − t)m−`+r−2 dt
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=
`!(m− `)!

(r)m
(r − 1)B(`+ 1,m− `+ r − 1)

=
(r − 1)(`!)2(m− `)!(m− `+ r − 2)!

(r)m(m+ r − 1)!
.

Corollary 5.1 For D = D(Ir,r) the system of equations (5.13) is equivalent to the
system

m
∑

`=0

(m− `+ r − 2)!

(m− `)!
q` = (r − 2)!

(

m+ r − 1

r − 1

)2

, m = 0, 1, 2, . . . . (5.17)

Proposition 5.2 For every r ≥ 2 there exists a polynomial q(x) = qr(x) of degree
r − 1 with positive rational coefficients, so that q(`) = q` for ` = 0, 1, 2, . . . , where
{q`}

∞
`=0 is the unique solution of (5.17).

For small values of r it is easy to solve (5.17) explicitly by applying powers of δ. Thus,

q2(x) = 2x+ 1, q3(x) = 3x2 + 3x+ 1, and q4(x) =
1

3
(10x3 + 15x2 + 11x+ 3).

The proof in the general case requires more preparation. Define

fn(x) := (x+ 1)n =

n
∏

j=1

(x + j), n ≥ 1, and gn(x) :=

n
∏

j=0

(x+ j)2, n ≥ 0. (5.18)

Then gn(x+ 1) = fn+1(x)
2, and

(δkfn)(x) = n(n− 1) · · · (n− k + 1) fn−k(x), k ≥ 0, (5.19)

where δ is defined by δ(f)(x) := f(x) − f(x − 1). Indeed, (5.19) is trivial for k = 0.
For k = 1 and all n we have

δ(fn)(x) =
n
∏

j=1

(x+ j) −
n
∏

j=1

(x + j − 1) =
n−1
∏

j=1

(x+ j) (x+ n− x) = n fn−1(x).

Assuming (5.19) for k, let n > k and compute δk+1(fn)(x) = n(n − 1) · · · (n − k +
1) δ(fn−k)(x) = n(n− 1) · · · (n− k + 1)(n− k)fn−k−1(x). This establishes (5.19).

Next, define an operator σ, analogous to δ, via

(σf)(x) := f(x) + f(x− 1), x ∈ R.

Clearly, δσ = σδ, and both σ and δ commute with all the translation operators

(τcf)(x) := f(x+ c).

Denote by P+ the set of polynomials in one variable with non-negative coefficients.
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Lemma 5.2 Let f(x) be a polynomial and let n,m ∈ N. If δnf ∈ P+, then
δn+jτm/2f ∈ P+ for every integer 0 ≤ j ≤ m.

Proof: Since δ commutes with translations, we may assume that n = 0 and m = 1.
It is therefore enough to check that δτ1/2x

k ∈ P+ for every k ∈ N. This follows from
the binomial expansion:

δτ1/2x
k = (x+

1

2
)k − (x −

1

2
)k =

[
k−1
2

]

∑

j=0

(

k

2j + 1

)

2−2jxk−2j−1.

Lemma 5.3 Let f(x) be a polynomial and let n ∈ N. Assume that δjσn−jf ∈
P+ for every 0 ≤ j ≤ n. Then δjσn−j

(

(x+ c)kf(x)
)

∈ P+ for every k ∈ N,
c ≥ n

2 and 0 ≤ j ≤ n.

Proof: Again, since δ and σ commute with translations, it is enough to assume that
k = 1. We shall prove the assertion by induction on n. The case n = 0 is trivial since
P+ is closed under sums and products. Assume that n > 0 and that the assertion
holds for n− 1. A computation yields

δ
(

(x +
n

2
)f(x)

)

= (x +
n− 1

2
)(δf)(x) +

1

2
(σf)(x) (5.20)

and

σ
(

(x+
n

2
)f(x)

)

= (x+
n− 1

2
)(σf)(x) +

1

2
(δf)(x). (5.21)

If 0 < j ≤ n then using (5.20) we get

δjσn−j
(

(x +
n

2
)f(x)

)

= δj−1σ(n−1)−(j−1)

(

(x+
n− 1

2
)(δf)(x) +

1

2
(σf)(x)

)

.

By assumption,

δj−1σ(n−1)−(j−1)σf = δj−1σn−(j−1)f ∈ P+, for 0 < j ≤ n.

Similarly,
δj−1σ(n−1)−(j−1)δf = δjσn−jf ∈ P+ for 0 < j ≤ n.

Thus, by the induction hypothesis on n− 1,

δj−1σ(n−1)−(j−1)

(

(x+
n− 1

2
)δf(x)

)

∈ P+, for 0 < j ≤ n.

Next, using (5.21) we get

σn
(

(x+
n

2
)f(x)

)

= σn−1

(

(x+
n− 1

2
)σf(x) +

1

2
δf(x)

)

.

By assumption, σn−1δf(x) ∈ P+ and δ`σn−1−`σf(x) ∈ P+ for 0 ≤ ` ≤ n− 1. Thus,
by the induction hypothesis, δ`σn−1−`

(

(x+ n−1
2 )σf(x)

)

∈ P+ for 0 ≤ ` ≤ n− 1, and

in particular σn−1
(

(x+ n−1
2 )σf(x)

)

∈ P+. It follows that σn
(

(x + n
2 )f(x)

)

∈ P+.
This completes the induction step.
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Lemma 5.4 Let gn(x) be the polynomial defined by (5.18). Then δiσjgn ∈ P+ when-
ever i+ j ≤ n.

Proof: We proceed by induction on n. The case n = 0 is trivial, since g0(x) =
x2 ∈ P+. Assume that n > 0 and that δiσjgn−1 ∈ P+ whenever i + j ≤ n − 1. A
computation yields

δgn(x) = 2(n+ 1)(x+
n− 1

2
) gn−1(x) (5.22)

and

σgn(x) = 2

(

(x+
n− 1

2
)2 + (

n+ 1

2
)2
)

gn−1(x). (5.23)

Now assume i+ j ≤ n. If i > 0, (5.22) yields

δiσjgn(x) = δi−1σj(δgn(x)) = 2(n+ 1)δi−1σj

(

(x +
n− 1

2
)gn−1(x)

)

,

and by induction hypothesis and Lemma 5.3

δi−1σj

(

(x +
n− 1

2
)gn−1(x)

)

∈ P+,

so that δiσjgn ∈ P+. If i = 0 and 0 ≤ j ≤ n, then (5.23) implies

σjgn(x) = σj−1(σgn(x)) = 2σj−1

((

(x+
n− 1

2
)2 + (

n+ 1

2
)2
)

gn−1(x)

)

.

The polynomial σj−1gn−1 belongs to P+ by the induction hypothesis. Also, the
induction hypothesis (δiσj−1gn−1 ∈ P+ whenever i + j ≤ n) and Lemma 5.3 imply
that

δiσj−1

(

(x +
n− 1

2
)gn−1(x)

)

∈ P+ whenever i+ j ≤ n.

In particular, σj−1
(

(x+ n−1
2 )gn−1(x)

)

∈ P+. Hence σjgn ∈ P+ ∀ 0 ≤ j ≤ n.

Corollary 5.2 (i) δjgn ∈ P+ for all j, n ∈ N satisfying 0 ≤ j ≤ n.

(ii) δj
(

(x+ m
2 )gn(x)

)

∈ P+ for all j, n,m ∈ N satisfying 0 ≤ j ≤ n+m.

(iii) δjfn(x)2 ∈ P+ for all j, n ∈ N satisfying 0 ≤ j ≤ n+ 1.

Proof: (i) is a special case of Lemma 5.4, and (ii) follows by (i) and Lemma 5.2.
Since fn(x)2 = gn−1(x+ 1), (iii) follows from Lemma 5.2 with m = 2.

Remark The result in part (iii) of Corollary 5.2 is best possible in the sense that
δn+2(f2

n)2) need not be in P+. Indeed, δ6(f2
4 )2) is not in P+.
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Proof of Proposition 5.2: In terms of the polynomials (5.18), the system of
equations (5.17) with unknowns q` has the form

m
∑

`=0

fr−2(m− `) q` =
fr−1(m)2

(r − 1) (r − 1)!
, m ≥ 0. (5.24)

Applying powers of the operator δ with respect to the variable m and using (5.19),
we get by induction on k that

δk

(

m
∑

`=0

fr−2(m− `) q`

)

= (r − 2)(r − 3) · · · (r − k − 1)
m
∑

`=0

fr−2−k(m− `) q`

for 0 ≤ k ≤ r − 2 (here f0(x) ≡ 1). From this it follows that

δr−1

(

m
∑

`=0

fr−2(m− `) q`

)

= (r − 2)! qm, m ≥ 0.

Applying δr−1 to both sides of (5.24), Corollary 5.2 (iii) implies that there exists
a polynomial q(x) of degree r − 1 with positive rational coefficients so that qm =
q(m), ∀m ≥ 0.

Theorem 5.1 Let D = D(Ir,r). Then for every f, g ∈ H a
2
(D) and λ > 0 we have

〈f, g〉 a
2

=

∫

Sr−1

dσr−1(v)〈pλ(R(v))fv, gv〉Hλ(D)
,

where pλ(x) := Γ(x+λ) Γ(λ)−1 Γ(x+1)−1 q(x), and q(x) is the polynomial of degree
r − 1 with positive rational coefficients as in Proposition 5.2.

Case 2: Cartan domains of type IV. Let D ⊂ Cd, d ≥ 3, be the Cartan domain
of rank r = 2 (see Examples 4.1 and 4.2), and fix a frame {e1, e2}. Since a = d − 2,
(5.13) becomes

m
∑

`=0

(

m

`

)2

Jm,` q` =
m!

(a
2 − 1)m

, m ≥ 0, (5.25)

where for 0 ≤ ` ≤ m

Jm,` =

∫

K

|(k(e1), e1)|
2`|(k(e2), e1)|

2(m−`) dk.

Without computing the numbers Jm,` explicitly we show that

Jm,` = Jm,m−`, 0 ≤ ` ≤ m. (5.26)

Indeed, let k′ ∈ K satisfy k′(e1) = e2 and k′(e2) = e1. Then, by invariance of the
Haar measure dk,

Jm,` =

∫

K

|(k(k′(e1)), e1)|
2`|(k(k′(e2)), e1)|

2(m−`) dk

=

∫

K

|(k(e2), e1)|
2`|(k(e1), e1)|

2(m−`) dk = Jm,m−`.
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Theorem 5.2 The polynomial

q(x) =
4

a
x+ 1 =

4

d− 2
x+ 1

satisfies q(`) = q` for every ` ≥ 0, where {q`}
∞
`=0 is the unique solution of (5.25).

Therefore, for every λ > 0 and every f, g ∈ H a
2
(D),

〈f, g〉 a
2

=

∫

S1

〈pλ(R(v))fv , gv〉Hλ(Dv)
dσ1(v),

where the functions pλ, 0 < λ <∞, are given by

pλ(x) =
Γ(x+ λ)

Γ(λ) Γ(x + 1)
(
4

a
x+ 1). (5.27)

In particular, for λ = 1, 2, . . . pλ is a polynomial of degree λ with positive rational
coefficients.

Proof: We claim first that
m
∑

`=0

(

m

`

)2

Jm,` =
m!

(d
2 )m

, m ≥ 0. (5.28)

Indeed, it is clear that

m
∑

`=0

(

m

`

)2

Jm,` =

∫

K

(∫

T

|(k(eite1 + e2), e1)
m|2

dt

2π

)

dk.

Interchanging the order of integration and using the transitivity of K on the frames,
we get

m
∑

`=0

(

m

`

)2

Jm,` =

∫

K

|(k(e), e1)
m|2 dk = ‖Nm

1 ‖2

H2(D)
=

m!

(d
2 )m

, m ≥ 0,

by using the well-known fact that ‖(·, z)m‖2
F = m!(z, z)m for every z ∈ Z and m ≥ 0.

Using (5.26) and (5.28) we see that

m
∑

`=0

`

(

m

`

)2

Jm,` =

m
∑

`=0

(m− `)

(

m

m− `

)2

Jm,m−`

=

m
∑

`=0

(m− `)

(

m

`

)2

Jm,` =
m ·m!

(d
2 )m

−

m
∑

`=0

`

(

m

`

)2

Jm,`.

Thus
m
∑

`=0

`

(

m

`

)2

Jm,` =
m ·m!

2(d
2 )m

, m ≥ 0. (5.29)

Combining (5.28) and (5.29), and using the fact that ( d
2 )m = (a

2 )m
( a
2 +m)

a
2

, we get

for m ≥ 0
m
∑

`=0

(

m

`

)2

Jm,` (
4

a
`+ 1) =

4

a

m ·m!

2(d
2 )m

+
m!

(d
2 )m

=
m!

(a
2 )m

.
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In view of (5.14), this completes the proof.

—large The computation of 〈f, g〉
p−1

by integration on ∂1D

We conclude this section with the derivation of a formula for 〈f, g〉
p−1

via inte-
gration on ∂1D.

Proposition 5.3 Let F ∈ C(D). Then

lim
λ↓p−1

∫

D

F (z) dµλ(z) =

∫

S1

(∫

Dv

Fv(w) dµv,p−1(w)

)

dσ1(v), (5.30)

where the measures µv,p−1 are defined by (5.4).

Proof: Using (1.13) and (1.14) as well as (1.22), (1.23), and (1.9), we can write

∫

D

F (z) dµλ(z) = c0 c(λ)

∫

Rr
+

F#(t)w(t)a
r
∏

j=1

(1 − tj)
a dt

= c0 c(λ)

∫ 1

0

ψ(t1) (1 − t1)
λ−p dt1,

where

ψ(t1) :=

∫

[0,t1)
r−1
+

F#(t1, t
′)

∏

1≤i<j≤r

(ti − tj)
a

r
∏

j=2

(1 − tj)
λ−p dt′,

and c(λ) = cD(λ) is given by (1.22). Here t′ := (t2, t3, . . . , tr), dt
′ := dt2 dt3 . . . dtr,

and [0, t1)
r−1
+ := {t′ ∈ Rr−1; t2 > t3 > . . . > tr > 0}. Since ψ ∈ C([0, 1]), we have

limε↓0

(

ε
∫ 1

0 ψ(t)(1 − t)ε−1 dt
)

= ψ(1). Since limλ↓p−1 Γ(λ − p + 1) (λ − p + 1) = 1

and c(p− 1) = 0, we get

lim
λ↓p−1

∫

D

F (z) dµλ(z) = b ψ(1)

= b

∫

[0,1)r−1
+

F#(1, t′)
∏

2≤i<j≤r

(ti − tj)
a

r
∏

j=2

(1 − tj)
a−1 dt′,

where b := c0 c
′(p− 1). Using the definitions (5.1), (5.3) and the fact that for v ∈ S1

the genus of Dv is p− a, we have (with the obvious meaning of the constants)

∫

S1

(
∫

Dv

Fv(w) dµv,p−1(w)

)

dσ1(v)

= cDe1
(p− 1)

∫

K

(

∫

De1

Fk(e1)(k(ξ)) h(k(ξ), k(ξ))
a−1 dm(k(ξ))

)

dk
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= c
De1

(p− 1) c0(De1)

×

∫

K





∫

[0,1)r−1
+





∫

Ke1

F (k(e1 + k′(

r
∑

j=2

t
1
2
j ej dk

′))



w(t′)a
r
∏

j=2

(1 − tj)
a−1 dt′



 dk,

where Ke1 := {k ∈ K; k(e1) = e1} and w(t′) :=
∏

2≤i<j≤r(ti − tj)
a. Interchanging

the order of integration, and using the fact that k′(e1) = e1 and the invariance of the
Haar measure dk, we see that the last expression is equal to

cDe1
(p− 1) c0(De1)

∫

[0,1)r−1
+

F#(1, t′) w(t′)a
r
∏

j=2

(1 − tj)
a−1 dt′.

Comparing the computations for the left and right hand sides of (5.30), we see they
are proportional. Taking F (z) ≡ 1, the proportionality constant is 1.

Corollary 5.3 The constant c0 = c0(D) in the formula (1.12) is

c0(D) =
πd Γ(a

2 )r−2

(
∏r−1

`=1 `
a
2 ) Γ(r a

2 )
∏r−1

`=2 Γ(` a
2 )2

.

Proof: Define vr = 0, v` := e1 + . . . + er−`, ` = 1, 2, . . . , r − 1, and γ` := c0(Dv`
).

Then the above proof (with r replaced by `) yields

γ`

γ`−1
=
cDv`+1

((`− 1)a+ 1)

c′Dv`
((`− 1)a+ 1)

=
π(`−1)a+1 Γ(a

2 )

Γ((`− 1)a
2 + 1) Γ( ra

2 )

for ` = 2, 3, . . . , r. Therefore, using the easily proved fact that γ1 = π, we get

c0(D) = γr =
γr

γr−1

γr−1

γr−2
· · ·

γ2

γ1
γ1

= π
r
∏

`=2

π(`−1)a+1 Γ(a
2 )

Γ((`− 1)a
2 + 1) Γ( ra

2 )
=

πd Γ(a
2 )r−2

(
∏r−1

`=1 `
a
2 ) Γ(r a

2 )
∏r−1

`=2 Γ(` a
2 )2

.

Proposition 5.3 allows the computation of the inner products 〈f, g〉p−1 by inte-
grating over the boundary orbit ∂1(D) = G(e1) of G.

Theorem 5.3 Let f, g ∈ Hp−1. Then

〈f, g〉p−1 =

∫

S1

(∫

Dv

fv(w) gv(w) dµv,p−1(w)

)

dσ1(v), (5.31)

Proof: It is enough to establish (5.31) for polynomials f and g, and this case follows
from Proposition 5.3 with F (z) = f(z) g(z).
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6 Integral formulas in the context of the associated Siegel domain

In what follows we shall use the fact [FK2] that D is holomorphically equivalent to
the tube domain

T (Ω) := X + iΩ

via the Cayley transform c : D → T (Ω), defined by c(z) := i(e + z)(e − z)−1. For
λ ∈ W (D) the operator V (λ)f := (f ◦c−1)(Jc−1)λ/p maps the space Hλ = Hλ(D) iso-
metrically onto a Hilbert space of analytic functions on T (Ω), denoted by Hλ(T (Ω)).
We will denote 〈f, g〉Hλ(T (Ω)) simply by 〈f, g〉λ. It is known that the reproducing
kernel of Hλ(T (Ω)) is

Kλ(z, w) =

(

N(
z − w∗

i
)

)−λ

, z, w ∈ T (Ω). (6.1)

Recall that for λ > p − 1 we have Hλ(D) = L2
a(D,µλ), where µλ is the measure on

D defined via (1.23). Using the facts that h(c−1(w), c−1(w)) = 4r|N(w + ie)|−2N(v)
and J(c−1)(w) = (2i)dN(w + ie)−p, ∀w ∈ T (Ω), we get by a change of variables
that

Hλ(T (Ω)) = L2
a(T (Ω), νλ) = L2(T (Ω), νλ) ∩ {analytic functions},

where
dνλ(z) := c(λ)dx N(2y)λ−p dy, z = x+ iy, x ∈ X, y ∈ Ω, (6.2)

and c(λ) is defined by (1.22). In this case V (λ) extends to an isometry of L2(D,µλ)
onto L2(T (Ω), νλ).

In this section we obtain integral formulas for the invariant inner products in
the spaces Hλ(T (Ω)). Using the isometry V (λ) : Hλ(D) → Hλ(T (Ω)) one obtains
integral formulas for the inner products in the spaces Hλ(D). Our results are essen-
tially implicitly contained in [VR], where the authors determine the Wallach set for
Siegel domains of type II, using Lie and Fourier theoretical methods. The Jordan-
theoretical formalism allows us to formulate our results in a simpler way, avoiding
the Lie-theoretical details. Since the Fourier-theoretical arguments in our proofs are
contained in[VR], we omit all proofs.

For λ > (r − 1)a
2 consider the measure σλ on Ω defined by dσλ(v) :=

βλ N(v)
d
r −λ dv where βλ := (2π)−2dΓΩ(λ).

Proposition 6.1 Let λ > (r − 1) a
2 and let f be a holomorphic function on T (Ω).

Then the following conditions are equivalent:

(i) f ∈ Hλ(T (Ω));

(ii) The boundary values f(x) := limΩ3y→0 f(x+ iy) exist almost everywhere on X,

and the Fourier transform f̂ of f(x) is supported in Ω and belongs to L2(Ω, σλ).

Moreover, the map f 7→ f̂ is an isometry of Hλ(T (Ω)) onto L2
a(Ω, σλ).

Proposition 6.1 yields the following result.
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Theorem 6.1 Let λ > (r − 1)a
2 and let f, g ∈ Hλ(T (Ω)). Then

〈f, g〉Hλ(T (Ω)) = 〈f̂ , ĝ〉L2(Ω,σλ) =
ΓΩ(λ)

(2π)2d

∫

Ω

f̂(t)ĝ(t) N(t)
d
r −λ dt.

The group GL(Ω) := {ϕ ∈ GL(X);ϕ(Ω) = Ω} acts transitively on Ω . It acts
also on the boundary ∂Ω, but this action is not transitive. The orbits of GL(Ω) on
∂Ω are exactly the r disjoint sets

∂kΩ := GL(Ω)(ek) = {x ∈ Ω; rank(x) = k}, k = 0, 1, . . . , r − 1,

where {c1, . . . , cr} is a frame of pairwise orthogonal primitive idempotents, e0 := 0,

and ek :=
∑k

j=1 cj , k = 1, 2, . . . , r − 1. Consider the Peirce decomposition Xν =

Xν(ek) = {x ∈ X ; ekx = νx}, ν = 0, 1
2 , 1. Let Ω(k) be the symmetric cone of

X1(ek), and let ΓΩ(k) be the associated Gamma function. Let GL(Ω) = LNΩA be
the Iwasawa decomposition. Then NΩA(ek) = {x ∈ ∂kΩ;Nk(x) > 0} is an open
dense subset of ∂kΩ, and every x ∈ NΩA(ek) has a Peirce decomposition of the form
x = x1 + x 1

2
+ 2(e− ek)(x 1

2
(x 1

2
x−1

1 )) [La2]. Let us define a measure νk on ∂kΩ with

support NΩA(ek) by

dνk(x) := Nk(x1)
k a

2−
d
r dx1 dx 1

2
. (6.3)

It has the following fundamental properties (see[VR] and [La2]).

Theorem 6.2 Let 1 ≤ k ≤ r − 1. Then the measure νk satisfies
∫

NΩA(ek)

e−〈y,x〉 dνk(x) = γk N(y)−k a
2 , ∀y ∈ Ω, (6.4)

where γk := (2π)k(r−k) a
2 ΓΩ(k)(k

a
2 ), and

dνk(ϕ(x)) = Det(ϕ)(k
a
2 )/ d

r dνk(x), ∀ϕ ∈ GL(Ω). (6.5)

Since Ω is a set of uniqueness for analytic functions on T (Ω), (6.4) implies by analytic
continuation

∫

NΩA(ek)

e−〈 z−w∗

i ,x〉 dνk(x) = γk 2−k a
2

(

N(
z − w∗

i
)

)−k a
2

, ∀z, w ∈ T (Ω).

Thus
(

N( z−w∗

i )
)−k a

2

is positive definite, and so k a
2 is in the Wallach set W (D) =

W (T (Ω)).

By complexification, GL(Ω) is realized as a subgroup of Aut(T (Ω)) which nor-
malizes the translations τx(z) := z + x, i.e.

ϕ τx ϕ
−1 = τϕ(x), ∀x ∈ X, ∀ϕ ∈ GL(Ω).

Let G ⊂ Aut(T (Ω)) be the semi-direct product of X and GL(Ω). It acts transitively
on T (Ω). Let N ⊂ G be the semi-direct product of X and NΩ. Then the Iwasawa
decomposition of Aut(T (Ω))0 is KAN . For

αk =
d

r
+ k

a

2
, k = 0, 1, 2, . . . , r − 1

Documenta Mathematica 2 (1997) 213–261



Invariant Inner Products 259

let Hαk
= Hαk

(T (Ω)) be the Hilbert space of analytic functions on T (Ω) whose

reproducing kernel is Kαk
(z, w) :=

(

N( z−w∗

i )
)−αk

. Note that αr−1 = p− 1 and for

k = 0 we have α0 = d
r and ν0 = δ0, the Dirac measure at 0.

Theorem 6.3 For k = 0, 1, . . . , r− 1 Hαk
(T (Ω)) consists of all analytic functions f

on T (Ω) for which

‖f‖2
Hαk

(T (Ω)) := βk sup
t∈Ω

∫

NΩA(ek)

(∫

X

|f(x+ i(y + t))|2 dx

)

dνk(y) (6.6)

is finite, where

βk =
ΓΩ(αk)2rk a

2

ΓΩ(k)(k
a
2 )

(2π)−(d+k(r−k) a
2 ).

Moreover, for every f, g ∈ Hαk
(T (Ω)),

〈f, g〉αk
= βk lim

Ω3t→0

∫

NΩA(ek)

(∫

X

f(x+ i(y + t)) g(x+ i(y + t)) dx

)

dνk(y).
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