
FINITE-DIMENSIONAL PERTURBATIONS

OF SELF-ADJOINT OPERATORS

Jonathan Arazy and Leonid Zelenko

Abstract.

We study finite-dimensional perturbations A + γB of a self-adjoint operator A acting in
a Hilbert space H. We obtain asymptotic estimates of eigenvalues of the operator A + γB

in a gap of the spectrum of the operator A as γ → 0, and asymptotic estimates of their
number in that gap. The results are formulated in terms of new notions of characteristic

branches of A with respect to a finite-dimensional subspace of H on a gap of the spectrum

σ(A) and asymptotic multiplicities of endpoints of that gap with respect to this subspace. It
turns out that if A has simple spectrum then under some mild conditions these asymptotic

multiplicities are not bigger than one. We apply our results to the operator (Af)(t) = tf(t)

on L2([0, 1], ρc), where ρc is the Cantor measure, and obtain the precise description of the
asymptotic behavior of the eigenvalues of A +γB in the gaps of σ(A) = C(= the Cantor set).

1. Introduction

An extensive literature exists on the perturbations of self-adjoint operators. In many

cases ones studies perturbations of the form:

(1.1) A(γ) = A + γB,

where A, B are self-adjoint operators, acting on a Hilbert space H, γ is a real or com-

plex parameter. If λ0 is an isolated eigenvalue of A, then it is possible to find branches

of eigenvalues λ(γ) and eigenvectors X(γ) of the operator A(γ) in the form of Taylor

expansions:

λ(γ) = λ0 + λ2γ + λ2γ
2 + . . . ,

X(γ) = X0 + X1γ + X2γ
2 + . . . .

Such expansions have been obtained first by E. Schrödinger [1] in connection with problems

of Quantum Mechanics. These methods have been developed by many mathematicians
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also for the case when the spectrum of the operator A is not discrete (see [2], [3], [4]).

Other approaches to perturbation theory of linear operators are connected with some

assumptions concerning the perturbing operator B. H. Weyl [5] proved that if the operator

B is compact, then the continuous spectrum of A(γ) is the same as that of A. It means that

only the discrete part of the spectrum of the operator A can vary under such perturbations.

This fact will be basic in our investigations. In the papers [6], [7] and [8], the invariance of

the absolutely continuous spectrum of A under finite rank and trace class perturbations is

proved.

In this paper we study the discrete part of the spectrum of the operator A + γB.

We restrict ourselves only to finite rank perturbing operators B, and study in detail the

asymptotic behavior of the eigenvalues of the operator A + γB in a gap of the spectrum

σ(A) of A as γ → 0. It turns out that even in the case of finite rank perturbations this

behavior can be rather complicated. It is determined by the asymptotic behavior of the

diagonal block of the resolvent Rλ(A) of A, corresponding to the range of B near the

endpoints of the gap. We obtain asymptotic estimates of the eigenvalues in terms of so

called characteristic branches of A with respect to finite-dimensional subspace of H on a

gap of the spectrum σ(A) (Definitions 3.1, 3.3). A new notion of asymptotic multiplicities

of endpoints of that gap with respect to this subspace is introduced (Definition 3.2). It is

shown that the asymptotic multiplicity is responsible for the number of the eigenvalues of

A(γ) which are born in the gap from this endpoint when γ varies from 0 to some nonzero

small value. The full information concerning the number and asymptotic behavior of the

eigenvalues (estimates from above and from below) is obtained in the case of a non-negative

perturbing operator B (Theorem 4.1). The picture is more complicated in the case of

indefinite B: in this case we obtain only estimates of the multiplicities of the eigenvalues

near the endpoints of a gap of the spectrum σ(A) and some information concerning a

localization of these eigenvalues (Theorems 5.1, 5.2, Corollary 5.1 and Proposition 5.1).

We study also the following interesting question: how is the asymptotic multiplicity of

an endpoint of the spectrum of A connected with the multiplicity of an endpoint of its

spectrum? It is known that in the case where the spectrum of A is discrete, the number

of eigenvalues which are born from an eigenvalue of A under a small perturbation is not

bigger than the multiplicity of this eigenvalue. This situation suggests the conjecture that

the asymptotic multiplicities of the endpoints of the gaps of the spectrum of A are no more

than the multiplicity of the spectrum of A. However, it turns out this is not true. We

construct an example (Example 6.1), in which the operator A has a simple spectrum and

B is a self-adjoint non-positive operator of rank two, but the asymptotic multiplicity of

the right endpoint of a gap of the spectrum of A with respect to the range of B is equal to

two. By Theorem 4.1 two eigenvalues are born in the gap from this endpoint as γ varies

from 0 to a small positive value γ0. In this example the operator A is represented in the

canonical form of the multiplication operator by the independent variable in the space



L2(R, ρ), and the functions belonging to the range of the operator B oscillate sharply near

the endpoint of the gap. It turns out that if A is the multiplication operator and functions

from the range of B satisfy some Besov-type condition near the endpoint of the gap, then

the asymptotic multiplicity of this endpoint with respect to the range of B is no more

than one, i.e. no more than one eigenvalue can be born from the endpoint when γ varies

from 0 to a small γ0 (Theorem 6.1). With the physical point of view in Example 6.1, we

observe a resonance phenomenon: the sharply oscillated perturbation excitates not only

the endpoint of the gap, but also the points of the spectrum of A accumulating to it from

outside of the gap, therefore an additional eigenvalue appears. We believe that it is possible

to generalize Theorem 6.1 to the case when σ(A) has an arbitrary finite multiplicity m;

indeed, it is sufficient to overcome some technical difficulties. In this case, under certain

conditions, the asymptotic multiplicity of the endpoint with respect to the range of the

operator B will be no more than the multiplicity m.

We apply our results to finite dimensional perturbations of the operator A of multi-

plication by the independent variable in the space L2([0, 1], ρc), where ρc is the Cantor

measure. This is a generic example of perturbations of operators with singular continuous

spectra. We obtain estimates of the rate of convergence of the eigenvalues in the gaps of

the spectrum of A to the endpoints of the gaps (Theorems 7.1, 7.3). In these estimates

the number α = log3 2 (which is the Hausdorff dimension of the Cantor set) plays an

important role. It is predicted that in the general case of a self-adjoint operator A with

singular continuous spectrum σ(A), the Hausdorff dimension of σ(A) plays an important

role in the asymptotic estimates of eigenvalues of A + γB as γ → 0.

The paper is divided into eight sections. After this Introduction, in Section 2 we reduce

the problem of the description of the discrete spectrum of A + γB in the gap of σ(A) to

the study of some operator pencils in finite-dimensional spaces. In Section 3 we introduce

the notions of the characteristic branches of the operator A with respect to a subspace on

a gap of σ(A), and of the asymptotic multiplicities of endpoints of the gap with respect

to this subspace. We establish also some properties connected with these notions. In

Section 4 we obtain the asymptotic estimates (as γ → 0) of the eigenvalues of A(γ) in

the gap of σ(A) in the case of the non-negative or non-positive perturbing operator B. In

Section 5 we study the case of an indefinite perturbing operator B. Section 6 is devoted

to the case where the spectrum of A is simple. In Section 7 we apply our results to finite-

dimensional perturbations of the multiplication operator in L2([0, 1], ρc), where ρc is the

Cantor measure. The last section is an Appendix, in which we establish some arithmetical

properties of the Cantor set which are used in Section 7.

We shall assume in our paper that A and B are bounded, self-adjoint operators on a

Hilbert space H. We remark that it is possible to generalize our results of to the case of

an unbounded self-adjoint operator A.

We shall use the following notations:



N - the set of all natural numbers;

R - the field of all real numbers;

C - the field of all complex numbers;

H - a complex Hilbert space;

A|G - the restriction of a linear operator A to a subspace G ⊂ H;

PG - the orthogonal projection onto a subspace G ⊆ H;

σ(A) - the spectrum of a linear operator A which acts in H:

σ({Γ(λ)}) - the spectrum of a pencil {Γ(λ)}λ∈E (E ⊂ C) of linear operators that act

in a Hilbert space G:

Jσ(A) - a gap (finite or infinite) in the spectrum of a self-adjoint operator A;

Rλ(A) = (A − λI)−1 - the resolvent of a linear operator A;

H(B) - the closure of the range of a linear operator B which acts in H;

EB(∆) - the spectral projection of a self-adjoint operator B, corresponding to a mea-

surable subset ∆ ⊆ R;

H−(B), H+(B) - the invariant subspaces corresponding to the positive and negative

spectrum of a self-adjoint operator B, i.e.:

H+(B) = EB((0,∞))(H), H−(B) = EB((−∞, 0))(H).

Notice that we will use for brevity the same notation I for the identity operators acting

in the space H as well as in any subspace of it; this does not lead to a confusion.

2. A reduction of the problem to a finite-dimensional case

2.1o Let A, B be bounded self-adjoint operators acting on a Hilbert space H and assume

that B has finite rank N , i.e.

(2.1) dim(H(B)) = N < ∞.

Furthermore, everywhere in this paper we assume that in (1.1) the parameter γ is real.

The following statement is essentially known, but we have not found an explicit proof

of it in the literature. In our proof we use the methods of M. G. Krein, which he applied

in the theory of self-adjoint extensions of self-adjoint operators ([9], [10]).

Proposition 2.1. If the condition (2.1) is satisfied, then each gap Jσ(A) in the spectrum

of A contains no more than N eigenvalues of the operator A(γ) (1.1) (taking into account

their multiplicities), and each of them (if they exist) tends to one of the endpoints of the

gap when γ → 0.

Proof. Assume that the gap Jσ(A) = (a, b) is bounded. Denote by E(γ) the invariant

subspace of the operator A(γ), corresponding to the part of its spectrum σ(A(γ))∩ (a, b).



Assume on the contrary dim(E(γ)) > N . Then by virtue of (2.1) there exists a vector

e 6= 0 such that

e ∈ E(γ) ∩ (H(B))⊥.

It follows that

(2.2) ‖(A + γB)e − ce‖ < d‖e‖,

where c = a+b
2 , d = b−a

2 . Furthermore, Be = 0 because

(2.3) ker(B) = H(B)⊥.

We therefore obtain from (2.2) that

‖Ae − ce‖ < d‖e‖.

On the other hand, since (a, b) is a gap of σ(a), one has:

∀x ∈ H : ‖Ax − cx‖ ≥ d‖x‖.

This contradiction proves that dim(E(γ)) ≤ N , i.e. we have proved the first statement of

the proposition.

Let us proceed with the proof of the second statement. It is known that the eigenvalues

of the operator A(γ) lying in the gap (a, b) depend continuously on γ ([2]). Therefore it is

enough to prove that

∀ε ∈
(

0,
b − a

2

)

∃δ > 0 ∀γ ∈ (−δ, δ) : σ(A(γ)) ∩ (a + ε, b − ε) = ∅.

Assume, on the contrary, that this statement is false. Then there exist a number ε0 > 0

and a sequence {γn}
∞
n=1 such that limn→∞ γn = 0 and for any n there exists an eigenvalue

λ(γn) of the operator A(γn) such that λ(γn) ∈ (a + ε0, b − ε0) and

lim
n→∞

λ(γn) = λ0 ∈ [a + ε0, b − ε0].

Then, by the above mentioned continuous dependence of eigenvalues on γ, the number λ0

is an eigenvalue of the operator A lying in (a, b). The latter contradicts the fact that (a, b)

is a gap of σ(A).

The case of an unbounded gap (a, b) can be studied analogously, taking into account

that σ(A + γB) ⊆ (−‖A‖ − |γ|‖B‖, ‖A‖+ |γ|‖B‖). �

2.2o We turn now to the description of eigenvalues of A(γ) in a gap Jσ(A) in terms of

a pencil of operators that act in the N -dimensional subspace H(B). This pencil is:

(2.4) {ΓB(λ)}λ∈Jσ(A),

where

(2.5) ΓB(λ) = PH(B)Rλ(A)B|H(B).



Lemma 2.1. Let Jσ(A) = (a, b). Then

(2.6) σ(A(γ))∩ (a, b) = σ({I + γΓB(λ)})

and the multiplicity of each eigenvalue λ ∈ (a, b) of the operator A(γ) coincides with

dim(ker(I + γΓB(λ))).

Proof. Consider in H the pencil of operators {I + γRλ(A)B}λ∈(a,b). The representation

I + γRλ(A)B = Rλ(A)(A(γ)− λI) (λ ∈ (a, b))

implies that

(2.7) σ(A(γ)) ∩ (a, b) = σ({I + γRλ(A)B})

and moreover

(2.8) ∀λ ∈ (a, b) : dim(ker(A(γ) − λI))) = dim(ker(I + γRλ(A)B)).

Consider the orthogonal splitting:

(2.9) H = H(B)
⊕

H(B)⊥

and the block matrix representation of the operator I + γRλ(A)B with respect to it:

(2.10) I + γRλ(A)B = {ri,j(λ, γ)}2
i,j=1.

Taking into account (2.3), we obtain:

(2.11) r1,1(λ, γ) = (I + γΓB(λ))PH(B),

(2.12) r1,2(λ, γ) = 0,

r2,1(λ, γ) = γ(I − PH(B))Rλ(A)BPH(B),

and

(2.13) r2,2(λ, γ) = I − PH(B).

By (2.12) the block matrix (2.10) is triangular. Then (2.11), (2.13) imply that

(2.14) σ({I + γRλ(A)B}) = σ({I + γΓB(λ)})



and

(2.15) ∀λ ∈ (a, b) dim(ker(I + γRλ(A)B)) = dim(ker(I + γΓB(λ))).

From (2.7), (2,8), (2.11), (2.12), (2.13) the assertions of our lemma follows. �

We shall consider a modification of the operator pencil (2.4) connected with the following

orthogonal splitting of the subspace H(B):

(2.16) H(B) = H+(B)
⊕

H−(B),

where the spaces H+(B), H−(B) were defined in the introduction. This splitting is valid by

virtue of (2.3). We shall consider also the following positive self-adjoint operators which

act in the summands of the above splitting:

(2.17) B̂+ = B|H+(B), B̂− = −B|H−(B).

Let Jσ(A) = (a, b). Consider the pencil of operators {Γ̂B(λ)}λ∈(a,b) which act in the

subspace H(B), where

(2.18) Γ̂B(λ) = |B|
1
2 Rλ(A)B[12 ]|H(B),

and B[ 12 ] is defined via the splitting (2.16) by

(2.19) B[ 12 ] = diag(B̂
1
2
+,−B̂

1
2
−)

(see (2.17)). It is clear that

(2.20) |B|
1
2 = diag(B̂

1
2
+, B̂

1
2
−).

The relations (2.18), (2.19), (2.20) imply that the operator Γ̂B(λ) has the following block

matrix representation with respect to the splitting (2.16):

(2.21) Γ̂B(λ) = {γ̂i,j
B (λ)}i,j=+,−

with the elements:

(2.22) γ̂+,+
B (λ) = B̂

1
2
+PH+(B)Rλ(A)B̂

1
2
+,

(2.23) γ̂−,−
B (λ) = −B̂

1
2
−PH−(B)Rλ(A)B̂

1
2
−,

γ̂+,−
B (λ) = −B̂

1
2
+PH+(B)Rλ(A)B̂

1
2
−,

(2.24) γ̂−,+
B (λ) = (γ̂+,−

B (λ))?.



Lemma 2.2. Let Jσ(A) = (a, b) and let λ ∈ (a, b). Then the operator

T = |B|
1
2

|H(B)

is continuously invertible, and realizes the similarity between the operators Γ̂B(λ) and

ΓB(λ):

(2.25) ΓB(λ) = T−1Γ̂B(λ)T.

Hence, for all γ ∈ R and λ ∈ (a, b)

σ(I + γΓB(λ)) = σ(I + γΓ̂B(λ))

and

dim(ker(I + γΓB(λ)) = dim(ker(I + γΓ̂B(λ))).

Proof. T is continuously invertible by virtue of (2.1) and (2.3). The representation (2.25)

follows from (2.5), (2.18), and the equality B = B [ 12 ]|B|
1
2 . �

3. The characteristic branches and the asymptotic

multiplicities of the endpoints of a gap

3.1o In this section we shall introduce a new notion of multiplicity for the endpoints of a

gap Jσ(A), which is a generalization of the usual notion of the multiplicity for eigenvalues.

For this purpose we shall define the notion of so characteristic branches which will play

an important role in the sequel. We shall assume throughout this section that B is non-

negative:

(3.1) B ≥ 0

and has a finite rank N .

Consider a gap Jσ(A) and the pencil of self-adjoint operators that act in the space H(B):

(3.2) Γ̃B(λ) = B
1
2 Rλ(A)B

1
2 |H(B)

with λ ∈ Jσ(A). We shall need the following lemma:

Lemma 3.1. The operator function Γ̃B(λ) increases on Jσ(A), i.e.

Γ̃B(λ1) > Γ̃B(λ2) whenever λ1, λ2 ∈ Jσ(A), and λ1 > λ2.

Moreover, there exist N branches of eigenvalues

(3.3) {µB
k (λ)}k=1,2,...,N



of the operators Γ̃B(λ) which satisfy the following conditions:

(a) for any fixed λ ∈ Jσ(A), the sequence (3.3) is non-decreasing and exhausts all the

eigenvalues of the operator Γ̃B(λ) (taking into account their multiplicities):

µB
1 (λ) ≤ µB

2 (λ) ≤ · · · ≤ µB
N (λ);

(b) the functions {µB
k (λ)} (k = 1, 2, . . . , N) are continuous and increasing in λ.

Proof. The formula
d

dλ
Γ̃B(λ) = B

1
2 R2

λ(A)B
1
2 |H(B)

and the equality (2.3) imply that d
dλ Γ̃B(λ) is self-adjoint and positive: d

dλ Γ̃B(λ) > 0. Hence

the family of quadratic forms

Γ̃B(λ)[u] = (Γ̃B(λ)u, u)

is increasing with respect to λ on the interval Jσ(A). This establishes the first statement

of the lemma. The family of operators (3.2) act in a common finite-dimensional subspace

H(B) of H and depend continuously (in the operator norm) on λ ∈ Jσ(A). Therefore

the family of their spectral projections depends continuously in norm on λ. This yields

the continuity of the {µB
k (λ)} (k = 1, 2, . . . , N) in the parameter λ. The mini-max

characterization of the eigenvalues of self-adjoint operators imply that the branches of

eigenvalues (3.3), arranged in non-decreasing order as in (a), are strictly increasing in the

parameter λ. �

Corollary 3.1. Assume that Jσ(A) = (a, b). Then the following limits (finite or infinite)

exist:

(3.4) µB
a,k = lim

λ→a+0
µB

k (λ), µB
b,k = lim

λ→b−0
µB

k (λ), (k = 1, 2 . . . , N)

and

µB
a,1 ≤ µB

a,2 ≤ · · · ≤ µB
a,N , µB

b,1 ≤ µB
b,2 ≤ · · · ≤ µB

b,N .

Let us introduce some definitions.

Definition 3.1. Let Jσ(A) = (a, b). We call the branches (3.3) of eigenvalues of the family

of operators (3.2), ordered as in Lemma 3.1, the characteristic branches of the operator A

in the gap Jσ(A) with respect to the operator B. If G is a finite-dimensional subspace of H

and B = PG, then we call these branches the characteristic branches of the operator A in

the gap Jσ(A) with respect to the subspace G.

Definition 3.2. Let Jσ(A) = (a, b). Let 0 ≤ l(a), l(b) ≤ N be defined via the conditions:

(3.5) −∞ = µB
a,1 = µB

a,2 = · · · = µB
a,l(a) < µB

a,l(a)+1 ≤ µB
a,l(a)+2 ≤ · · · ≤ µB

a,N ,



and

(3.6) µB
b,1 ≤ · · · ≤ µB

b,N−l(b) < +∞ = µB
b,N−l(b)+1 = µB

b,N−l(b)+2 = · · · = µB
b,N

(see (3.4)). We call the numbers l(a), l(b) the asymptotic multiplicities of the endpoints a,

b of Jσ(A) with respect to the operator B, and denote them by

l(a) = M(a, A, B), l(b) = M(b, A, B).

If G is an N -dimensional subspace of H and B coincides with the orthogonal projection

PG, then we call the numbers M(a, A, B), M(b, A, B) the asymptotic multiplicities of the

endpoints a, b of Jσ(A) with respect to the subspace G, and denote them by MG(a, A) and

MG(b, A), respectively.

Definition 3.3. Let Jσ(A) = (a, b). The subsets of the branches (3.3):

{µB
k (λ)}k=1,2,...,l(a) (l(a) = M(a, A, B)),

and

{µB
k (λ)}k=l(b)+1,l(b)+2,...,N (l(b) = M(b, A, B))

are called the main characteristic branches of the operator A with respect to the operator

B near the endpoints a and b respectively. In case P = PG, where G is an N -dimensional

subspace of H, we call the branches

{µP
k (λ)}k=1,2,...,l(a) (l(a) = MG(a, A)),

and

{µP
k (λ)}k=l(b)+1,l(b)+2,...,N (l(b) = MG(b, A))

the main characteristic branches of the operator A with respect to the subspace G near the

endpoints a and b respectively.

Remark 3.1. The numbers MG(a, A), MG(b, A) and the corresponding main characteris-

tic branches characterize the asymptotic behavior near the endpoints a, b of Jσ(A) of the

diagonal block

(3.7) Γ̃P (λ) = PGRλ(A)|G

of the resolvent Rλ(A) corresponding to the subspace G ⊂ H.

Remark 3.2. In the previous consideration the gap Jσ(A) = (a, b) may be infinite. Since

the operator A is bounded, there are two such possibilities: either Jσ(A) = (−∞, minσ(A))

or Jσ(A) = (maxσ(A)), +∞). It is well known that ‖Rλ(A)‖ ≤ (|λ|−‖A‖)−1 for |λ| > ‖A‖,



and in particular, lim|λ|→+∞ ‖Rλ(A)‖ = 0. Therefore the above considerations imply that

for any nonnegative finite rank operator B

M(−∞, A, B) = M(+∞, A, B) = 0.

The following example justifies the term “asymptotic multiplicity”.

Example 3.1. Assume that A is a self-adjoint operator that acts on an N -dimensional

Hilbert space H = CN . Then σ(A) consists of N eigenvalues (with multiplicity counted)

λ1 ≤ λ2 ≤ · · · ≤ λN . Assume that

(3.8) λ1 = λ2 = · · · = λm < λm+1,

i.e. the multiplicity of the eigenvalue λ1 is m. Consider the gap Jσ(A) = (λ1, λm+1) in

σ(A), and let G = H. The eigenvalues of the resolvent Rλ(A) have the form:

µk(λ) =
1

λk − λ
, (k = 1, 2, . . . , N).

We see from (3.8) that

lim
λ→λ1+0

µk(λ)

{

= −∞ for 1 ≤ k ≤ m,

> −∞ for m + 1 ≤ k ≤ N.

It follows that MG(λ1, A) = m, i.e. in this case the asymptotic multiplicity coincides with

the usual multiplicity of the eigenvalue λ1. The same is true for all other gaps and their

endpoints.

3.2o We shall establish now some invariant of the asymptotic multiplicity. Let us

denote

(3.9) L = ‖B̃−1‖−1, K = ‖B‖,

where B̃ := B|H(B). Let {µk(λ)} be the characteristic branches of A with respect to the

subspace H(B), i.e.

(3.10) µk(λ) = µP
k (λ), (k = 1, 2, . . . , N),

where

(3.11) P = PH(B).



Theorem 3.1. Let Jσ(A) = (a, b). Then

(3.12) M(a, A, B) = MH(B)(a, A), M(b, A, B) = MH(B)(b, A).

Furthermore, the characteristic branches of A with respect to B admit the following esti-

mates for any λ ∈ (a, b):

(3.13) Lµk(λ) ≤ µB
k (λ) ≤ Kµk(λ), (k = 1, 2, . . . , N).

Proof. Observe that by virtue of (2.1) and (2.3) the operator B̃ = B|H(B) is continuously

invertible. We also have the representation:

Γ̃B(λ) = B̃
1
2 Γ̃P (λ)B̃

1
2 ,

Denote by Λk the set of the all k-dimensional subspaces of the space H(B). Then by

the mini-max characterization of eigenvalues of self-adjoint operators, we obtain for the

operator Γ̃B(λ) the estimate:

µB
k (λ) = min

L∈Λk

(

max
x∈L,‖x‖=1

(

(Γ̃P (λ)B̃
1
2 x, B̃

1
2 x)
)

)

= min
L∈Λk

(

max
x∈L,‖x‖=1

(

(Γ̃P (λ)
B̃

1
2 x

‖B̃
1
2 x‖

,
B̃

1
2 x

‖B̃
1
2 x‖

)‖B̃
1
2 x‖2

))

≤ ‖B̃‖ min
L∈Λk

(

max
y∈L,‖y‖=1

(Γ̃P (λ)y, y)

)

= ‖B‖ µk(λ).

This establishes the right inequality in (3.13). The left inequality can be proved analogously

using the invertibility of the operator B̃. Finally, it is easy to see the inequalities (3.13)

imply the equalities (3.12). �

3.3o Let G be a subspace of H with dim(G) = N < ∞. Choose in G an orthonormal

basis

g1, g2, . . . , gN

and consider the matrix representation of the operator function Γ̃P (λ) (3.7) with respect

to this basis:

(3.14) Γ̃(λ) = {γ̃i,j(λ)}N
i,j=1

with

(3.15) γ̃i,j(λ) = (Rλ(A)gj, gi).

In terms of the matrix representation (3.14), (3.15) we can formulate a criterion for the

equalities

(3.16) MG(a, A) = 0,

(3.17) MG(b, A) = 0.



Proposition 3.1. Let Jσ(A) = (a, b). The relation (3.16) (or, (3.17)) is valid if and only

if the following relations are fulfilled:

lim
λ→a+0

γ̃i,i(λ) > −∞ for i = 1, 2, . . . , N

(respectively, lim
λ→b−0

γ̃i,i(λ) < +∞) for i = 1, 2, . . . , N).

Proof. The statement follows from the definition of the multiplicities MG(a, A), MG(b, A)

and the formula:
N
∑

i=1

γ̃i,i(λ) =

N
∑

i=1

µi(λ) = trace(Γ̃(λ)),

where µi(λ) = µP
i (λ), P = PG, and from the monotonicity of the functions γ̃i,i(λ), µi(λ)

on the gap (a, b). �

4. Estimates of eigenvalues in a gap for semi-definite perturbations

We turn now to the problem on perturbations stated in Section 2. We shall assume in

this section that the perturbing operator B is semi-definite, i.e. one of two conditions is

satisfied: either

(4.1,) B ≥ 0

or

(4.2) B ≤ 0

As above, we assume that B has finite rank N . It turns out that in this case one can

find the number of eigenvalues of the operator A(γ) = A + γB in a gap Jσ(A) for γ small

enough, and estimate from above and from below the rate of their convergence to the

endpoints of the gap as γ → 0. We formulate these results in terms of the asymptotic

multiplicity and the main characteristic branches (see Definitions 3.1 - 3.3).

We shall assume that γ > 0 and restrict ourselves to the case (4.1). The other cases

(where either γ < 0 or where (4.2) holds) can be considered analogously.

Theorem 4.1. Assume that (4.1) holds and let (a, b) be a gap of σ(A). If a > −∞, then

for a small enough γ > 0 the number of eigenvalues λk(γ) of the operator A(γ) in (a, b),

counting their multiplicities, is equal to

(4.3) l(a) = MH(B)(a, A).

Thus, one has

(4.4) a < λl(a)(γ) ≤ λl(a)−1(γ) ≤ · · · ≤ λ2(γ) ≤ λ1(γ) < b,



with multiplicity counted. Furthermore, all the eigenvalues λk(γ) converge monotonically

to the left endpoint a of the gap Jσ(A) when γ ↓ 0, and the following estimates of the rate

of their convergence are valid:

(4.5) ∀λ ∈ (a, b) : µ−1
k (−

1

Kγ
) ≤ λk(γ) ≤ µ−1

k (−
1

Lγ
)

(k = 1, 2, . . . l(a)). Here µ−1
k are the inverses of the functions µk(λ), the main charac-

teristic branches of the operator A with respect to the subspace H(B) near the endpoint a,

and the constants K, L are defined by (3.9).

Moreover, if m := min{λ; λ ∈ σ(A)}, then the left infinite gap (−∞, m) of σ(a) contains

no eigenvalues of the operator A(γ) for a small enough γ > 0.

Proof. Let us observe first that in our case

Γ̂B(λ) = Γ̃B(λ)

(see (2.18), (3.2)). Using Lemmas 2.1 and 2.2 we see that the set σ(A(γ))∩ (a, b) coincides

with the spectrum σ(Φ(γ)) of the pencil of the operators

Φ(γ) = {I + γΓ̃B(λ)}λ∈(a,b),

which act in the N -dimensional space H(B). Furthermore, the multiplicity of eigenvalue

λ ∈ σ(A(γ))∩ (a, b) coincides with dim(ker(Φ(γ))).

Consider the characteristic branches of A on (a, b) with respect to B:

(4.6) µB
1 (λ) ≤ µB

2 (λ) ≤ · · · ≤ µB
N (λ).

We see that σ(Φ(γ)) coincides with the union of the sets of solutions of the equations:

(4.6k) µB
k (λ) = −

1

γ

(k = 1, 2, . . . , N). Since the functions µB
k (λ) increase, each of these equations has at most

one solution.

In view of Theorem 3.1,

M(a, A, B) = l(a)

(see (4.3)). Therefore

lim
λ→a+0

µk(λ)

{

= −∞ for 1 ≤ k ≤ l(a),

> −∞ for l(a) + 1 ≤ k ≤ N

(see (3.10), (3.11)). From this we conclude that for a small enough γ > 0 the equation

(4.6k) has a unique solution λk(γ) in (a, b) for every k = 1, 2 . . . , l(a), and it has no



solutions in this gap for k = l(a) + 1, l(a) + 2, . . . , N . So, for a small enough γ > 0 the set

σ(Φ(γ)) consists of l(a) numbers, which are ordered according to (4.4) (see (4.6)). We see

from the equations (4.6k) that each function λk(γ) is increasing, because each µB
k (λ) has

the same property. Also, the number of repetitions of λk(γ) in the sequence (4.4) coincides

with the number of repetitions of µk in the sequence (4.6) for λ = λk(γ). The last number

coincides with the multiplicity of the eigenvalue µk of the operator Γ̃B(λ), which is equal

to

dim(ker(I + γΓ̃B(λ))).

So, for a small enough γ > 0, the sequence of eigenvalues (4.4) exhausts the set σ(A(γ))∩

(a, b), and these eigenvalues repeat themselves according to their multiplicities.

Taking into account the monotonicity of the functions µk(λ), we obtain the estimates

(4.5) from the equations (4.6k) and (3.13). These estimates imply the convergence of λk(γ)

to the endpoint a as γ ↓ 0. This convergence is monotone because the functions λk(γ) are

monotone.

The last assertion of the theorem follows from Remark 3.2. �

Remark 4.1. If the condition (4.2) is fulfilled, the formulation of Theorem 4.1 is the

same as above, except that the right endpoint b of the gap (a, b) of σ(A) appears instead of

the left endpoint a, and the right infinite gap (M, +∞) (where M := max{λ; λ ∈ σ(A)})

contains no eigenvalues of A(γ) for γ > 0 small enough.

5. Multiplicities and localization of eigenvalues for indefinite perturbations

5.1o. It turns out that in terms of the characteristic branches and the asymptotic

multiplicities it is possible to obtain information concerning multiplicities and localization

of eigenvalues in a gap of σ(A) also for indefinite perturbations.

In this section we assume that B is a self-adjoint operator of finite rank N , but we

do not assume the definiteness of B, i.e. σ(B) can contain both positive and negative

numbers. We assume without loss of generality that γ > 0.

Theorem 5.1. Consider a gap (a, b) of the spectrum σ(A). Then for any λ0 ∈ (a, b)

there exists a number γ(λ0) > 0, such that for any γ ∈ (0, γ(λ0)) the multiplicity of

each eigenvalue of the operator A(γ) which belongs to (a, λ0] (or, to [λ0, b)) is at most

MH+(B)(a, A) (respectively, MH−(B)(b, A)).

Proof. By Lemmas 2.1 and 2.2, the statement of the theorem is equivalent to the following

statement:

There exists a γ(λ0) > 0 so that for all γ ∈ (0, γ(λ0)) we have

(5.1) ∀λ ∈ (a, λ0] : dim(Ĝ(λ, γ)) ≤ j(a),



and

(5.2) ∀λ ∈ [λ0, b) : dim(Ĝ(λ, γ)) ≤ j(b).

Here

(5.3) Ĝ(λ, γ) = ker(Γ(λ, γ)), Γ(λ, γ) = I + γΓ̂B(λ)

(see (2.18)), and

(5.4) j(a) = MH+(B)(a, A), j(b) = MH−(B)(b, A).

In order to prove this statement we shall derive some estimates. The block matrix repre-

sentation (2.21), the equalities (2.22) and (2.23), and the relations (2.24) and (3.2) imply:

(5.5) Re(Γ̂B(λ)) = diag{Γ̃B+
(λ),−Γ̃B

−

(λ)},

where

(5.6) B+ = PH+(B)B, B− = PH−(B)B.

Then one has:

(5.7) Re((Γ(λ, γ)u, u)) = (u, u) + γ[(Γ̃B+
(λ)u+, u+) − (Γ̃B

−

(λ)u−, u−)],

for all u ∈ H(B), where

(5.8) u+ = PH+(B)u, u− = PH−(B)u.

Let {νk(λ)}N
k=1 be the characteristic branches of the operator A on the gap (a, b) with

respect to the operator B+. Then by Theorem 3.1 the number of the main characteristic

branches near the endpoint a coincides with j(a) (see (5.4)). In other words:

(5.9) lim
λ→a+0

νk(λ)

{

= −∞ for k = 1, 2, . . . , j(a),

> −∞ for k = j(a) + 1, j(a) + 2, . . . , N.

For any fixed λ ∈ (a, b) consider the eigenvectors {ek(λ)}N
k=j(a)+1 corresponding to the

eigenvalues {νk(λ)}N
k=j(a)+1 and the subspace

(5.10) F(λ) = span{ek(λ)}N
k=j(a)+1.

Then

∀u+ ∈ F(λ) : (Γ̃B+
(λ)u+, u+) ≥ inf

j(a)+1≤k≤N
νk(λ)‖u+‖

2.



Using the last estimate and (5.9), we obtain:

(5.11) inf
λ∈[a,λ0)

inf
u+∈F(λ)

(Γ̃B+
(λ)u+, u+)

‖u+‖2
> −∞.

By Lemma 3.1, the operator function Γ̃B
−

(λ) is increasing on (a, b), therefore one has:

sup
λ∈[a,λ0)

(

sup
u
−
∈H−(B)

(Γ̃B
−

(λ)u−, u−)

‖u−‖2

)

<

(5.12) sup
u
−
∈H−(B)

(

(Γ̃B
−

(λ0)u−, u−)

‖u−‖2

)

< +∞.

We put:

(5.13) F̃(λ) = F(λ)
⊕

H−(B).

Then we conclude from (5.7), (5.8), (5.11) and (5.12): there exists γ(λ0) > 0 such that for

every γ ∈ (0, γ(λ0)):

(5.14) inf
λ∈[a,λ0)

(

inf
u∈F̃(λ)

Re((Γ(λ, γ)u, u))

‖u‖2

)

≥
1

2
.

Taking into account the inequality

Re((Γ(λ, γ)u, u)) ≤ ‖Γ(λ, γ)u‖‖u‖,

we obtain from (5.14):

(5.15) inf
λ∈[a,λ0)

(

inf
u∈F̃(λ)

‖Γ(λ, γ)u‖

‖u‖

)

≥
1

2

for any γ ∈ (0, γ(λ0)).

Let us proceed to the estimation of dim(Ĝ(λ, γ)). We shall prove the inequality (5.1)

with γ(λ0) chosen in (5.14). Assume, on the contrary, that

(5.16) ∃γ1 ∈ (0, γ(λ0)), ∃λ1 ∈ (a, λ0], dim(Ĝ(λ1, γ1)) > j(a).

On the other hand, the definitions (5.10) and (5.13) of the subspaces F(λ), F̃(λ) imply

that

dim(H(B)/F̃(λ)) = j(a).

In view of the assumption (5.16) we obtain

Ĝ(λ1, γ1) ∩ F̃(λ1) 6= {0}.

The last relation and definition (5.3) of the subspaces Ĝ(λ, γ) contradict the relation (5.15).

So the inequality (5.1) is valid.

The inequality (5.2) can be proved analogously. �



Corollary 5.1. Assume that at least one of the following conditions is fulfilled:

(5.17) MH+(B)(a, A) = 0,

or

(5.18) MH−(B)(b, A) = 0.

Then in the case (5.17), all the eigenvalues of the operator A(γ) lying in the gap (a, b) (if

they exist) can tend only to the right endpoint b when γ → 0+, and in the case (5.18) they

can tend only to the left endpoint a. If both (5.17) and (5.18) hold simultaneously, then

for a γ small enough there are no eigenvalues of A(γ) in the gap (a, b).

The last corollary, Proposition 3.1 and Remark 3.2 imply the following statement:

Proposition 5.1. Let (a, b) be a gap of the spectrum σ(A) and let

{gi}
m+

i=1, {gi}
N
i=m++1

be orthonormal bases in the spaces H+(B), H−(B) respectively. Assume that at least one

of the following conditions is fulfilled:

(i) either a = −∞, or

(5.19) lim
λ→a+0

(Rλ(A)gi, gi) > −∞ for i = 1, 2, . . . , m+;

(ii) either b = +∞, or

(5.20) lim
λ→b−0

(Rλ(A)gi, gi) < +∞ for i = m+ + 1, m+ + 2, . . . , N.

Then all the conclusions of Corollary 5.1 are valid with references to (i), (ii) instead of

(5.17), (5.18).

5.2o We turn now to a statement on the localization of eigenvalues. For this purpose

consider the following family of subsets of a gap (a, b) of σ(A):

(5.21) Π(γ) = {λ ∈ (a, b) : ν(λ) ≥
1

CBγ
},

where

(5.22) CB = max(‖B+‖, ‖B−‖),

(5.23) ν(λ) =

m+
∑

j=1

|ν+
j (λ)| +

m
−

∑

j=1

|ν−
j (λ)|

and

{ν+
j (λ)}

m+

j=1, {ν−
j (λ)}

m
−

j=1

are the characteristic branches of the operator A in the gap (a, b) with respect to the

subspaces H+(B), respectively H−(B), and m+ = dim(H+(B)), m− = dim(H−(B)).



Theorem 5.2. Let (a, b) be a gap of the spectrum σ(A) and let σ(γ) = σ(A(γ)) ∩ (a, b).

Then

(5.24) σ(γ) ⊆ Π(γ).

Proof. By Lemmas 2.1 and 2.2, the set σ(γ) is the union of the solutions of the following

equations on the interval (a, b):

(5.25j) τB
j (λ) = −

1

γ

(j = 1, 2, . . . , N), where

{τB
1 (λ), τB

2 (λ), . . . , τB
N (λ)} = σ(Γ̂B(λ))

(see (2.18)).

Assume that λ(γ) ∈ σ(γ). This means that λ(γ) ∈ (a, b) and there exists a k such

that λ(γ) satisfies the equation (5.25k). By a well known property of singular numbers of

operators (see [11]), we have:

N
∑

j=1

|Re(τB
j (λ))| ≤

N
∑

j=1

sj(Re(Γ̂B(λ))).

In particular, this inequality implies:

(5.26) |Re(τB
k (λ(γ)))| =

1

γ
≤

N
∑

j=1

sj(Re(Γ̂B(λ(γ)))).

Using equality (5.5), we obtain from (5.26):

(5.27)
1

γ
≤

m+
∑

j=1

|ν
B+

j (λ(γ))|+

m
−

∑

j=1

|ν
B

−

j (λ(γ))|,

where

{ν
B+

j (λ)}
m+

j=1 and {ν
B

−

j (λ)}
m

−

j=1

are the characteristic branches of the operator A in the gap (a, b) with respect to the

operators B+ and B− respectively. Also, by a well known property of eigenvalues of

operators (see [11]),

(5.28) |ν
B+

i (λ)| ≤ ‖B+‖|ν
+
i (λ)|, |ν

B
−

j (λ)| ≤ ‖B−‖|ν
−
j (λ)|

(i = 1, 2, . . . , m+, j = 1, 2, . . . , m−). From the inequalities (5.27) and (5.28) we obtain

that λ(γ) satisfies the inequality

ν(λ(γ)) ≥
1

CBγ
,

in which the constant CB and the function ν(λ) are defined by (5.22), (5.23) respectively.

This means that λ(γ) ∈ Π(γ) (see (5.21). So the inclusion (5.24) is valid. �



6. The case of simple spectrum

6.1o Let us recall that σ(A) is called simple, if the linear subspace

span({EA((a, b))e}a,b∈R, a<b)

is dense in the space H for some vector e ∈ H. Each such vector is called a cyclic vector for

the operator A. It is known that in this case the operator A has the canonical form of a

multiplication operator. More precisely, any self-adjoint operator A with simple spectrum

is unitarily equivalent to the following operator:

(6.1) (Ãy)(t) = ty(t),

which acts in the space L2(R, ρ), where the measure ρ is constructed from the spectral

measure EA of A and a cyclic vector e via ρ(∆) = (EA(∆)e, e).

We turn now to the example mentioned in the introduction, which shows that the

asymptotic multiplicity of an endpoint of a gap of σ(A) with respect to a subspace can be

bigger than the multiplicity of σ(A).

Example 6.1. Define a monotone function ρ on R in the following manner:

ρ(t) =











0 for t < 0,

t for t ∈ [0, 1),

1 for t ≥ 1.

For simplicity we shall denote by ρ also the Lebesgue-Stieltjes measure generated by the

function ρ. Let Ã be the operator defined by (6.1) on H = L2(R, ρ). Consider the sequence

{ak}
∞
k=1 defined via a2k+1 = 1

2k and a2k = 3
2k+1 . Thus,

(6.2) a1 = 1, and a2k−1 − a2k = a2k − a2k+1 = ∆k,

where

(6.3) ∆k =
1

2k+1
.

Let g1, g2 ∈ H be defined the

g1(t) ≡ 1

and

(6.4) g2(t) =











1 for a2k < t ≤ a2k−1,

−1 for a2k+1 < t ≤ a2k,

0 for t ∈ R \ (0, 1].



Then g1, g2 are normalized and orthogonal in H. Let

G = span{g1, g2}.

We claim that

(6.5) MG(0, Ã) = 2.

Using Remark 4.1 we see that two eigenvalues of the operator Ã− γPG are created in the

gap (−∞, 0) from the endpoint 0 as γ varies from 0 to a small value γ0 > 0.

In order to prove (6.5), we shall estimate the elements of the matrix Γ̃(λ) ((3.14), (3.15)).

Assume that λ < 0. Using (6.2) and (6.4) one has:

(6.6) γ̃1,1(λ) = γ̃2,2(λ) =

∫ 1

0

dt

t − λ
= ln(

1

|λ|
) + ln(1 − λ),

and

γ̃1,2(λ) = γ̃2,1(λ) =

∫

R

g2(t)dt

t − λ

=
∞
∑

k=1

(−

∫ a2k+∆k

a2k

dt

t − λ
+

∫ a2k

a2k−∆k

dt

t − λ
)

(6.7) =

∞
∑

k=1

ln(1 −
∆2

k

(a2k − λ)2
).

Using the fact that a2k = 3
2k+1 , the estimate

∆2
k

(a2k − λ)2
≤

1

9
(λ < 0, k = 1, 2, . . . ),

and the inequality:

| ln(1 − x)| ≤
9

8
x ∀x ∈ [0,

1

9
],

we can estimate the series (6.7) in the following manner:

|γ̃1,2(λ)| ≤
9

8

∞
∑

k=1

1

(3 + 2|λ|2k)2
(λ < 0).

Estimating the last series by means of the integral, we obtain for λ < 0

|γ1,2(λ) ≤
9

8

∫ ∞

0

dt

(3 + 2|λ|2t)2
.



After the change of the variable τ = 2t|λ| in the last integral, one has for −1 < λ < 0

|γ̃1,2(λ)| ≤
9

8 ln 2

∫ ∞

|λ|

dτ

(3 + 2τ)2τ

(6.8) ≤
9

8 ln 2

(

1

9

∫ 1

|λ|

dτ

τ
+

1

4

∫ ∞

1

dτ

τ3
) =

1

8 ln 2
(ln(

1

|λ|
) +

9

8

)

.

It is easy to find the eigenvalues of the matrix Γ̃(λ):

µ1(λ) = γ̃1,1(λ) + γ̃1,2(λ), µ2(λ) = γ̃1,1(λ) − γ̃1,2(λ).

Then from the equality (6.6) and from the estimate (6.8) we obtain:

lim
λ→−0

µk(λ) = +∞ for k = 1, 2,

i.e. the desired equality (6.5) is valid.

6.2o In the above example the basic function g2 oscillates sharply near the endpoint 0

of the gap (−∞, 0) of σ(Ã). In what follows we shall show that if the self-adjoint operator

A with simple spectrum is represented in the canonical form of a multiplication operator

Ã (6.1) in the space L2(R, ρ), and if all the functions from a finite-dimensional subspace G

of L2(R, ρ) satisfy some Besov type condition near the endpoint b (or a) of Jσ(A) = (a, b),

then MG(b, A) ≤ 1 (respectively, MG(a, A) ≤ 1).

Definition 6.1. Let ρ be a non-decreasing function on R with −∞ < ρ(−∞) < ρ(∞) <

∞, let f ∈ L2(R, ρ), and let c ∈ R. We say that f satisfies condition B(c) (local Besov

condition at the point c) if the following condition holds: Either ρ(c+) > ρ(c−) and

(6.9)
f(t) − f(c)

t − c
∈ H.

Or, ρ(c+) = ρ(c−) and there is a choice of the value f(c) so that (6.9) holds.

Theorem 6.1. Let Ã be the operator (6.1) in the space H = L2(R, ρ), and let (a, b) be a

gap in σ(Ã). Assume that b < +∞, and let G ⊆ H be an N -dimensional subspace so that

every function g ∈ G satisfies condition B(b). Then

(6.10) MG(b, Ã) ≤ 1.

Similarly, if a > −∞ and every function g ∈ G satisfies condition B(a), then MG(a, Ã) ≤

1.

Proof. We shall restrict ourselves to the case of the right endpoint b, because the proof

for the left endpoint a is analogous. Let Γ̃(λ) ((3.14), (3.15)) be the matrix representation



of the operator Γ̃P (λ) (3.7) with respect to an orthonormal basis {g1(t), g2(t), . . . , gN(t)}

of the subspace G. Represent this matrix in the form:

(6.11) Γ̃(λ) = Γ̃1(λ) + Γ̃2(λ),

where

(6.12) Γ̃1(λ) = {γ̃
(1)
i,j (λ)}N

i,j=1,

(6.13) γ̃
(1)
i,j (λ) = s(λ)gi(b)ḡj(b),

(6.14) s(λ) =

∫

R

dρ(t)

t − λ
,

and

(6.15) Γ̃2(λ) = {γ̃
(2)
i,j (λ)}N

i,j=1,

γ̃
(2)
i,j (λ) =

∫

R

(

gi(t)ḡj(t) − gi(b)ḡj(b)
)

t − λ
dρ(t)

(6.16) =

∫

R

(

gi(t)
ḡj(t) − ḡj(b)

t − λ
+

gi(t) − gi(b)

t − λ
ḡj(b)

)

dρ(t).

It is clear from (6.12), (6.13), that the matrix Γ̃1(λ) has rank 1, and that the only non-zero

eigenvalue is

µ̃N (λ) =
N
∑

i=1

|gi(b)|
2s(λ)

(see (6.14)). Hence the resolvent of the matrix Γ̃1(λ) has the form:

(6.17) Rµ(Γ̃1(λ))f =
(ẽN (λ), f)ẽN(λ)

µ̃N (λ) − µ
−

1

µ

N−1
∑

k=1

(ẽk(λ), f)ẽk(λ), f ∈ H,

were {ẽk(λ)}N
k=1 are the normalized eigenvectors of the matrix Γ̃1(λ). Let us fix λ0 ∈ (a, b).

We obtain from (6.15), (6.16), and condition B(b) for the functions {gj}
N
j=1:

(6.18) G̃(λ0) = sup
λ∈[λ0,b)

‖Γ̃2(λ)‖ < ∞.

Consider the cases:

(i) lim
λ→b−0

µ̃N (λ) < +∞,



(ii) lim
λ→b−0

µ̃N (λ) = +∞.

We see from (6.17) that in case (i) there exists R > 0 such that for every λ ∈ [λ0, b):

(6.19) sup
µ∈CR

‖Rµ(Γ̃1(λ))‖ < (G̃(λ0))
−1,

where

(6.20) CR = {µ ∈ C : |µ| = R}.

In case (ii) there exists R > 0 and λ1 ∈ [λ0, b) such that (6.19) is valid for any λ ∈ [λ1, b).

Taking into account (6.19), one has in both cases (i) and (ii) that there exist R > 0 and

λ1 ∈ (a, b) such that for every λ ∈ [λ1, b):

(6.21) sup
µ∈CR

‖Rµ(Γ̃1(λ))Γ̃2(λ)‖ < 1.

Let us join the matrices Γ̃(λ) (6.11) and Γ̃1(λ) by the homotopy:

(6.22) Γ̃(λ, s) = Γ̃1(λ) + sΓ̃2(λ) (0 ≤ s ≤ 1).

The inequality (6.21) and the representation

Γ̃(λ, s) − µI = (Γ̃1(λ) − µI)(I + sRµ(Γ̃1(λ))Γ̃2(λ))

imply that for any λ ∈ [λ1, b) and for any s ∈ [0, 1] the circle CR (6.20) belongs to the

resolvent set of the operator Γ̃(λ, s), and the following representation is valid:

Rµ(Γ̃(λ, s)) = (I + sRµ(Γ̃1(λ))Γ̃2(λ))−1Rµ(Γ̃1(λ)).

We see from this representation that the operator Rµ(Γ̃(λ, s)) depends continuously on s

in the uniform operator topology, and the family of functions {Rµ(Γ̃(λ, ·))}µ∈CR
is equi-

continuous. Therefore, the Riesz projector

Ps = −
1

2πi

∮

CR

Rµ(Γ̃(λ, s))dµ

depends continuously on s in the uniform operator topology. Thus

dim(Im(P1)) = dim(Im(P0)).

But the circle CR contains in its interior the (N − 1)-multiple eigenvalue 0 of the matrix

Γ̃1(λ). Hence dim(Im(P0)) ≥ N − 1. So dim(Im(P1)) ≥ N − 1, i.e for any λ ∈ [λ1, b) the

circle CR contains in its interior at least N − 1 eigenvalues µ1(λ), µ2(λ), . . . , µN−1(λ) of

the matrix Γ̃(λ) (taking into account their multiplicities). This means that

lim
λ→b−0

µk(λ) < +∞ (k = 1, 2, 3, . . . , N − 1),

i.e. (6.10) is valid. �

The following result is a corollary of Theorems 6.1 and 4.1.



Proposition 6.1. Let (a, b) be a gap of σ(Ã) and let B ≥ 0 be an operator of rank N < ∞.

Assume that if a > −∞ then every function in the subspace H(B) satisfies condition B(a).

Furthermore, assume that the least characteristic branch µ1(λ) of the operator Ã in the

gap (a, b) with respect to the subspace H(B) satisfies the condition:

lim
λ→a+0

µ1(λ) = −∞.

Then for a small enough γ > 0 the gap (a,b) contains a unique eigenvalue λ(γ) of the

operator Ã(γ) = Ã + γB, which converges to a monotonically as γ ↓ 0. Moreover, the

following estimate of the rate of this convergence is valid:

∃γ0 > 0 ∃K1, K2 > 0 ∀γ ∈ (0, γ0)

µ−1
1 (−

1

K1γ
) ≤ λ(γ) ≤ µ−1

1 (−
1

K2γ
),

where µ−1
1 is the inverse of the function µ1(λ). The left infinite gap (−∞, m) of σ(Ã)

(where m := min{λ; λ ∈ σ(A)}) contains no eigenvalues of A(γ) for a small enough γ > 0.

7 The case of the Cantor spectral measure

7.1o In this section we denote by C the classical (2-3) Cantor set on the segment [0, 1].

Let Ã be the multiplication operator (6.1) which acts in the Hilbert space

(7.1) H = L2(R, ρc)

with the Cantor measure ρc associated with the extension of the Cantor function

(7.2) ρc(t) =











0 for t < 0,

C(t) for 0 ≤ t ≤ 1,

1 for t > 1,

where C(t) is the classical (2-3) Cantor function. Then C = supp(ρc). We shall study

the finite-dimensional perturbations of the operator Ã on the basis of the results in the

previous sections.

We need in the sequel some arithmetical notions, connected with the Cantor set.

Let g ≥ 2 be an integer. Recall that the g-representation of a number x ∈ [0, 1) is the

expansion of x on the base g: x =
∑

j∈N
xjg

−j , where xj ∈ {0, 1, . . . g − 1}. The xj ’s

are called the coefficients of x in the g-representation. In case x admits both finite and

infinite representations we choose the finite one. In this way every x ∈ [0, 1) admits a

unique g-representation.



Definition 7.1. We call the mapping that associates to each real number p ∈ [0, 1)

in the 2-representation the real number q ∈ [0, 1] in the 3-representation with the same

coefficients the (2-3)-mapping. We denote it by q = P2,3(p). Thus

P2,3(

∞
∑

j=1

pj2
−j) =

∞
∑

j=1

pj3
−j .

Remark 7.1. According to the definition of the Cantor set C:

C = cl(2P2,3([0, 1))).

Consider the set B consisting of the point 0 and the right endpoints of connected

components of [0, 1] \ C. They are the numbers, whose 3-representations are finite and

contain only the coefficients 0 and 2. One has

(7.3) B =

∞
⋃

n=1

Bn,

where

(7.4) Bn = {c ∈ B : len(c) ≤ n},

and len(c) is the length of the 3-representation of the number c. Each set of Bn contains

exactly 2n numbers:

(7.5) Bn = {b
(n)
k }2n−1

k=0 ,

where b
(n)
0 = 0 and b

(n)
k1

< b
(n)
k2

, if k1 < k2. Similarly let A be the set consisting of the point

1 and the left endpoints of connected components of [0, 1] \ C. In view of the symmetry of

the Cantor set C with respect to the point t = 1
2 one has:

(7.6) A = {c : c = 1 − b, b ∈ B}.

Denote also

An = {c ∈ A : c = 1 − b, b ∈ Bn}.

Thus

(7.7) An = {a
(n)
k }2n−1

k=0 ,

where

(7.8) a
(n)
k = 1 − b

(n)
2n−k



(see 7.5). The intervals

(a
(n)
k , b

(n)
k ) (n ∈ N, k = 1, 2, . . . , 2n − 1)

are removed from [0, 1] after n steps of the construction of the Cantor set. Thus one has:

(7.9) R \ C = (−∞, 0) ∪ (
∞
⋃

n=1

2n−1
⋃

k=1

(a
(n)
k , b

(n)
k )) ∪ (1, +∞).

7.2o In what follows we shall need some estimates on the Cauchy transform of the

measure ρc:

(7.10) Φ(λ) =

∫

R

dρc(t)

t − λ
.

Denote by R the set of numbers from [0,1), whose 2-representation is finite. The fol-

lowing essentially known result will play an important role in the sequel. Since we did not

find a proof in the literature, we enclose a proof in the Appendix (Theorems A.1, A.2):

Proposition 7.1. Let

(7.11) α = log3 2.

Then for every r1, r2 ∈ R, with r1 > r2

(7.12) (r1 − r2)
1
α ≤ 2

1
α (2P2,3(r1) − 2P2,3(r2)).

An inverse estimate to (7.12) is valid in a right (or, left) semi-neighborhoods of the right

(respectively, left) endpoints of connected components of the set R \ C. More explicitly, if

(a, b) is a bounded connected component of R \ C, then the following relations hold:

{b} + 2P2,3([0, (b− a)α) ∩ R) = B ∩ [b, b + (b − a)),

{a} − 2P2,3([0, (b− a)α) ∩ R) = A ∩ (a − (b − a)), a],

and the following inequalities are valid:

(7.13) ∀c ∈ B ∩ [b, b + (b − a)) : (c − b)α ≤ 2α(r − rb),

(7.14) ∀l ∈ A ∩ (a − (b − a), a] : (a − l)α ≤ 2α(q − qa),

where

r = P−1
2,3 (

c

2
), rb = P−1

2,3 (
b

2
),

q = P−1
2,3 (

1 − l

2
), qa = P−1

2,3 (
1 − a

2
).

If (a, b) = (−∞, 0) then

(7.15) ∀c ∈ B : cα ≤ 2αr,

and if (a, b) = (1, +∞) then

(7.16) ∀l ∈ A : (1 − l)α ≤ 2αq.

We shall need the following lemma.



Lemma 7.1. Let f ∈ C[0, 1]. Then for any interval [c1, c2] ⊆ [0, 1] the following relation

is valid:

(7.17)

∫ c2

c1

f(t)dρc(t) = lim
n→∞

1

2n

∑

c∈Bn(c1,c2)

f(c) = lim
n→∞

1

2n

∑

c∈An(c1,c2)

f(c),

where

(7.18) An(c1, c2) = An ∩ [c1, c2], Bn(c1, c2) = Bn ∩ [c1, c2]

(see (7.5), (7.7), (7.8))).

Proof. Consider the following sequence of monotone non-decreasing functions:

(7.19) σn(t) =











0 for t ≤ 0,

k
2n for t ∈ (b

(n)
k−1, b

(n)
k ], k = 1, 2, . . . , 2n − 1,

1 for t > bn
2n−1.

It is clear that

∀t ∈ (0, 1] : lim
n→∞

σn(t) = ρc(t).

Therefore by Helly’s theorem:
∫ c2

c1

f(t)dρc(t) = lim
n→∞

∫

R

f(t)dσn(t).

Using (7.19), we see that the first equality of (7.17) is valid. The second equality of (7.17)

is proved analogously. �

The following proposition establishes some inequalities between the integrals with re-

spect to the Cantor and the Lebesgue measures. As before, α = log3 2

Proposition 7.2. Let (a,b) be a connected component of R \ C. Assume that f is a

non-negative monotone continuous function, so that either

(1) b < +∞, and f is defined on [b,∞),

or

(2) a > −∞, and f is defined on (−∞, a].

Then the following estimates are valid:

(i) In case (1), if f is non-increasing then

(7.20) ∀d ∈ [b, 1) :

∫ d

b

f(t) dρc(t) ≤

∫ 2(d−b)α

0

f((
u

2
)

1
α + b) du.

Moreover, if a > −∞ then

(7.21) ∀d ∈ [b, b + (b − a)) :

∫ ( d−b

2 )α

0

f(2u
1
α + b) du ≤

∫ d

b

f(t) dρc(t).



(ii) In the case (1), if f is non-decreasing and a > −∞, then for any d ∈ [b, b+(b− a))

(7.22)

∫ ( d−b

2 )α

0

f((
u

2
)

1
α + b) du ≤

∫ d

b

f(t) dρc(t) ≤

∫ 2(d−b)α

0

f(2u
1
α + b) du.

(iii) In the case (2), if f is non-increasing and b < +∞, then for any d ∈ (a − (b − a), a]

(7.23)

∫ ( a−d

2 )α

0

f(a − (
u

2
)

1
α ) du ≤

∫ a

d

f(t) dρc(t) ≤

∫ 2(a−d)α

0

f(a − 2u
1
α ) du.

(iv) In the case (2), if f is non-decreasing then

(7.24) ∀d ∈ (0, a] :

∫ a

d

f(t)dρc(t) ≤

∫ 2(a−d)α

0

f(a − (
u

2
)

1
α ) du.

Moreover, if b < +∞ then

(7.25) ∀d ∈ (a − (b − a), a] :

∫ ( a−d

2 )α

0

f(a − 2u
1
α ) du ≤

∫ a

d

f(t) dρc(t).

(v) If in the cases (i) and (ii) a = −∞ and b = 0, then the corresponding estimates

are valid for all d ∈ [0, 1). If in the cases (iii) and (iv) a = 1 and b = +∞, then the

corresponding estimates are valid for all d ∈ (0, 1].

Proof. We prove the estimates (7.20), (7.21) in the case (i). Let Rn be the set of all

numbers from the segment [0, 1] whose lengths in the 2-representation are not bigger than

n. It is clear that R =
⋃∞

n=1 Rn. According to the definition (7.4) of the set Bn we have:

(7.26) Bn = 2P2,3(Rn)

(see Definition 7.1). Denote rb = P−1
2,3 ( b

2 ). Take d ∈ [b, 1) and consider the sets:

(7.27) Rn(b, d) = {r ∈ Rn : 0 ≤ r − rb ≤ 2(d − b)α},

and

(7.28) R̂n(b, d) = {r ∈ Rn : 0 ≤ r − rb ≤ (
d − b

2
)α}.

The inequalities (7.12) (7.13) imply the inclusions

(7.29) Bn(b, d) ⊆ 2P2,3(Rn(b, d)),

and

(7.30) 2P2,3(R̂n(b, d)) ⊆ Bn(b, d) ∀d ∈ [b, b + (b − a)).



(see (7.18)). Using the equality (7.17), the inclusion (7.29), the inequality (7.12) and the

fact that the function f(t) is non-increasing and non-negative, one obtains:

∫ d

b

f(t) dρc(t) = lim
n→∞

1

2n

∑

c∈Bn(b,d)

f(c) ≤

lim
n→∞

∑

r∈Rn(b,d)

1

2n
f(2−

1
α (r − rb)

1
α + b).

The last sum is the Riemann sum for the integral:

∫ 2(d−b)α

0

f(2−
1
α u

1
α + b) du,

i.e. we obtain the inequality (7.20). The inequality (7.21) is obtained in a similar way,

using the inclusion (7.30) and the inequality (7.13). The case (ii) is proved by using the

estimate (7.13) and the inclusion (7.29) for the right inequality of (7.22), and by using the

estimate (7.12) and the inclusion (7.30) for the left inequality of (7.22). The cases (iii),

(iv) are obtained from (i), (ii) by using the symmetry of the Cantor set with respect to

the point t = 1
2 . In case (v) of infinite interval (a, b) the proof is analogous. �

We turn now to the estimation of the Cauchy transform Φ(λ) (7.10) of the measure ρc.

Proposition 7.3. Let (a, b) be a connected component of R\C. Then there exist constants

K1, K1 so that the following estimates are valid:

(7.31) ∀λ ∈ (ã, b̃) :
K1

(dist(λ, C))1−α
≤ |Φ(λ)| ≤

K2

(dist(λ, C))1−α
,

where α is defined by (7.11) and

(ã, b̃) =











(a, b), if a > −∞ and b < +∞,

(−1, 0), if a = −∞ and b = 0,

(1, 2), if a = 1 and b = +∞.

Proof. Assume that the interval (a, b) is bounded. We prove the estimates (7.31) for

λ ∈ Ib, where Ib = [a+b
2 , b). One has:

Φ(λ) = Φ1(λ) + Φ2(λ),

where

Φ1(λ) =

∫ 1

b

dρc(t)

t − λ
, Φ2(λ) =

∫ a

0

dρc(t)

t − λ
.



It is clear that the function Φ2(λ) is bounded on the semi-interval Ib, therefore it is enough

to estimate the function Φ1(λ). Observe that for any fixed λ ∈ Ib, the integrand 1
t−λ is

positive and decreasing on [b,1]. Using the inequality (7.20) with d = 1, we obtain for

λ ∈ Ib:

Φ1(λ) ≤

∫ 2(1−b)α

0

du

2−
1
α u

1
α + b − λ

.

Using the change of variables τ = u
(b−λ)α in the last integral, we obtain for λ ∈ Ib:

Φ1(λ) ≤
1

(b − λ)1−α

∫ ∞

0

dτ

2−
1
α τ

1
α + 1

,

i.e. the right estimate in (7.31) is valid for Φ1(λ). Analogously, using the inequality (7.21),

we obtain:

Φ1(λ) ≥
1

(b − λ)1−α

∫ θ

0

dτ

4τ
1
α + 1

(λ ∈ Ib)

for some θ > 0, independent of λ. This means that the left estimate in (7.31) is valid for

Φ1(λ). For the left semi-interval Ia = (a, a+b
2 ] the proof is analogous. In this case the

function Φ1(λ) is bounded and we must estimate the function |Φ2(λ)| near the endpoint a

using the estimates (7.24), (7.25). The cases of the unbounded intervals (a, b) are treated

analogously using the conclusion (v) of Proposition 7.2. �

7.3o We turn now to the study of finite-dimensional perturbations of the operator Ã

(6.1) in the space H (7.1). Assume that the perturbing operator B has the form:

(7.32) By =
N
∑

j=1

bj(y, gj)gj,

where

(7.33) {gi}
N
i=1

is an orthonormal system in the space H. Using the results of the Sections 4, 5 we shall

study the asymptotic behavior (as as γ → 0+) of the eigenvalues of the operator

(7.34) Ã(γ) = Ã + γB

in the gaps of σ(Ã) (i.e. in the connected components of R \ C).

In what follows we shall need the following lemma.



Lemma 7.2. Let (a, b) be a connected component of R\C. Let h ∈ H, ν > 0 and β > ν− α
2

(where α = log3 2).

(i) If b < +∞ and |h(t)| ≤ L|t− b|β for some L > 0 and all t ∈ [b, 1], then the function

fb(t) = h(t)
|t−b|ν belongs to L2([b, 1], ρc).

(ii) If a > −∞ and |h(t)| ≤ L|t−a|β for some L > 0 and all t ∈ [0, b], then the function

fa(t) = h(t)
|t−a|ν belongs to L2([0, a], ρc).

Proof. Using the right inequality (7.22) (see Proposition 7.2) we obtain:

∫ θ

b

|h(t)|2

(t − b)2ν
dt ≤ L2

∫ θ

b

(t − b)2(β−ν) dρc(t) ≤ L24−(β−ν)/α

∫ 2(θ−b)α

0

u2(β−ν)/α du,

where θ := b + min{b − a, 1}. The integral on the right hand side converges, because

according to the condition of the lemma, 2(β−ν)
α

> −1. This establishes (i). The assertion

(ii) can be proved in the same way, using the right inequality (7.23). �

In the case of a semi-definite perturbing operator B we obtain the following result:

Theorem 7.1. Let (a, b) be a gap of σ(Ã). Assume that the perturbing operator B (7.32)

and the orthonormal system (7.33) satisfy the conditions:

(i) bj > 0 for j = 1, 2, . . . , N ;

(ii) there exists a number β ∈ (1− α
2 , +∞) such that gj(t) ∈ Lipβ [0, 1] for j = 1, 2, . . . , N

(where α = log3 2);

(iii) for any point t belonging to the Cantor set C, g1(t) 6= 0.

If a > −∞, then for a small enough γ > 0 the gap (a, b) contains a unique eigenvalue

λ(γ) of the operator Ã(γ) (7.34), which converges monotonically to a as γ ↓ 0. Moreover,

the following estimates of the rate of this convergence are valid:

∃γ0 > 0, ∃L1, L2 > 0 ∀γ ∈ (0, γ0) :

L1γ
1

1−α ≤ λ(γ) − a ≤ L2γ
1

1−α .

The gap (−∞, 0) contains no eigenvalues of the operator Ã(γ) for a small enough γ > 0.

Proof. Assume that a > −∞. Observe that by the condition (i) B ≥ 0. The con-

dition (ii) and Lemma 7.2 with ν = 1 imply that any function g ∈ H(B) is continu-

ous on the segment [0, 1] and satisfies condition B(a) (see Definition 6.1). Furthermore,

the functions gi(t) (i = 1, 2, . . . , N) are bounded on [0, 1] and by the condition (iii),

mg = mint∈C |g1(t)| > 0. It follows that for the elements γ̃i,j(λ) of the matrix representa-

tion Γ̃(λ) (3.14) of the operator Γ̃P (λ) (see (3.14), (3.15) and (3.7)) the following estimates

are valid:

(7.35) ∃C > 0, ∀λ ∈ (a, b) : |γ̃i,j(λ)| ≤ C

∫ 1

0

dρc(t)

|t − λ|
(i, j = 1, 2. . . . , N),



(7.36) γ̃1,1(λ) =

∫ 1

0

|g1(t)|
2 dρc(t)

t − λ
≤ −m2

g

∫ a

0

dρc(t)

λ − t
+ C

∫ 1

b

dρc(t)

t − λ
.

Observe that by mini-max characterization of the eigenvalues of the self-adjoint operator

Γ̃P (λ), applied to the least eigenvalue µ1(λ) of this operator, the following estimate is

valid:

µ1(λ) ≤ γ̃1,1(λ), ∀λ ∈ (a, b).

Furthermore, it is known that

µ1(λ) ≥ −‖Γ̃P (λ)‖.

Using the last inequality, the estimates (7.35)and (7.36), and Proposition 7.3, we obtain:

∃C1, C2 > 0, ∃λ0 ∈ (a, b), ∀λ ∈ (a, λ0) :

−
C1

(λ − a)1−α
≤ µ1(λ) ≤ −

C2

(λ − a)1−α
.

The conclusions of our theorem follow from these estimates and from Proposition 6.1 �

In the case of an indefinite perturbing operator B one has the following result:

Theorem 7.2. Let (a, b) be a gap of σ(Ã) and let B be given by (7.32), where

bj > 0 for j = 1, 2, . . . , m+,

bj < 0 for j = m+ + 1, m+ + 2, . . . , N.

Assume that

(7.37) ∃β ∈ (
1 − α

2
, +∞) so that gj ∈ Lipβ [0, 1] for j = 1, 2, . . . , N

(where α = log3 2). Assume, further that at least one of the following conditions is satisfied:

(i) either a = −∞, or

(7.38) gj(a) = 0 for 1 ≤ j ≤ m+;

(ii) either b = +∞, or

(7.39) gj(b) = 0 for m+ + 1 ≤ j ≤ N.

Then in the case (i) all the eigenvalues of the operator Ã(γ) (7.34) lying in the gap (a, b)

(if they exist) can tend only to the right endpoint b as γ → 0+, and in the case (ii) they



can tend only to the left endpoint. If both (i) and (ii) hold simultaneously, then for a small

enough γ there is no eigenvalues of the operator Ã(γ) in the gap (a, b).

Proof. Assume that b < +∞. Notice that condition (5.20) of Proposition 5.1 is equivalent

to the condition:
|gj(t)|

2

t − b
∈ L1([b, 1], ρc) for m+ + 1 ≤ j ≤ N.

The last condition is fulfilled whenever

gj(t)

(t − b)
1
2

∈ L2([b, 1], ρc) for m+ + 1 ≤ j ≤ N.

The last relations follow from the assumptions (7.37) and (7.39) and from Lemma 7.2 with

ν = 1
2 . Therefore condition (5.20) of Proposition 5.1 is fulfilled. In the same way condition

(5.19) of Proposition 5.1 follows from (7.37) and (7.38). Thus the assertions of the theorem

follow from Proposition 5.1. �

Using Theorem 5.2 and Proposition 7.3, we shall obtain the following result on the

localization of the eigenvalues:

Theorem 7.3. Let (a, b) be a gap of σ(Ã) and assume that the eigen-basis (7.33) of the

perturbing operator B (7.32) satisfies the condition:

(7.40) gj ∈ L∞[0, 1] for j = 1, 2, . . . , N.

Then, there exists a constant K > 0 such that for γ > 0 and α = log3 2 the set

(7.41) Π̃K(γ) =











(−Kγ
1

1−α , 0), if a = −∞ and b = 0,

(a, a + Kγ
1

1−α ) ∪ (b − Kγ
1

1−α , b), if a > −∞ and b < +∞,

(1, 1 + Kγ
1

1−α ), if a = 1 and b = +∞

contains all the points of the spectrum of the operator Ã(γ) lying in the gap (a,b).

Proof. Without loss of generality we can assume that the sets {gj}
m+

j=1 and {gj}
N
j=m++1

are bases of the spaces H+(B) and H−(B) respectively. The condition (7.40) implies that

the estimate (7.35) is valid for the elements γ̃i,j(λ) = (Rλ(A)gi, gj) of the matrices

Γ̃+(λ) = {γ̃i,j(λ)}
m+

i,j=1, and Γ̃−(λ) = {γ̃i,j(λ)}N
i,j=m++1,

Then, by Proposition 7.3, the following estimate holds for the function

ν(λ) = trace(|Γ̃+(λ)|) + trace(|Γ̃−(λ))|

(see (5.23)):

∃K1 > 0, ∀λ ∈ (a, b) : ν(λ) ≤
K1

(dist(λ, C))1−α
.

This implies that Π(γ) ⊆ Π̃K(γ) (see (5.21) and (7.41)). This inclusion and Theorem 5.2

yields the conclusion of our theorem. �



Appendix: Hölder property of the (2-3) mapping

A.1o Our goal in this section is to prove Proposition 7.1, on which the results of section

7 are based. This proof uses some arithmetical arguments. Let us introduce first some

notations.

Definition A.1. Let g ∈ N, g ≥ 2 and let c ∈ [0, 1). The coefficients of c in the

g-representation are denoted by {σ
(g)
j (c)}∞j=1. Thus

c =

∞
∑

j=1

σ
(g)
j (c)g−j.

The support of c with respect to the base g is the set

suppg(c) = {j : σ
(g)
j (c) 6= 0},

The set of zeros of c with respect to the base g is

nulg(c) = N \ suppg(c).

Definition A.2. Let g ∈ N, g ≥ 2 and let x, y ∈ [0, 1) be expanded in their g-

representations. We call an integer j a lending position of x with respect to y, if the

sequence {σ
(g)
i (x)}∞i=j+1 is lexically less than {σ

(g)
i (y)}∞i=j+1.

Remark A.1. Assume that numbers x, y ∈ [0, 1) have finite g-representations and x ≥ y.

It is clear that j is a lending position of x with respect to y if and only if in the standard

algorithm of subtraction y from x, using the g-representations, when arriving the j + 1-th

position one has to “borrow” “1” from the j-th position.

Recall that R is the set of numbers from [0, 1), whose 2-representation is finite.

Lemma A.1. For any pair of numbers r1, r2 ∈ R with r1 ≥ r2

(A.1) supp2(r1 − r2) ⊆ supp3(2P2,3(r1) − 2P2,3(r2))

(see Definition A.1).

Proof. Denote

(A.2) al = 2P2,3(rl) (l = 1, 2).

It is clear that, with respect to the 2-representation, j is a lending position of r1 with

respect to r2 if and only if, with respect to the 3-representation, j is a lending position of



a1 with respect to a2. It is also easy to check that j ∈ nul3(a1 − a2) only if one of two

conditions holds for the 3-representation of a1, a2: either

(i3) j is not a lending position of a1 with respect to a2, and σ
(3)
j (a1) = σ

(3)
j (a2),

or

(ii3) j is a lending position of a1 with respect to a2, and σ
(3)
j (a1) = 0. σ

(3)
j (a2) = 2.

On the other hand, j ∈ nul2(r1 − r2) only if one of three conditions holds for the

2-representation of r1, r2: either

(i2) j is not a lending position of r1 with respect to r2, and σ
(2)
j (r1) = σ

(2)
j (r2),

or

(ii2) j is a lending position of r1 with respect to r2, and σ
(2)
j (r1) = 0, σ

(2)
j (r2) = 1,

or

(iii2) j is a lending position of r1 with respect to r2, and σ
(2)
j (r1) = 1, σ

(2)
j (r2) = 0.

It is clear that (i2) is equivalent to (i3) and (ii2) is equivalent to (ii3). The above

circumstances imply the inclusion nul3(a1 − a2) ⊆ nul2(r1 − r2), which is equivalent to

(A.1). �

We turn now to the main results of this section.

Theorem A.1. Let r1, r2 ∈ R, with r1 > r2 and let al = 2P2,3(rl) (l = 1, 2). Then the

following estimate is valid:

r1 − r2 ≤ 2(a1 − a2)
α,

where α = log3 2.

Proof. Consider the 2- and the 3-representations of the numbers r1 − r2 and a1 − a2

respectively:

r1 − r2 =

∞
∑

ν=1

σν
1

2ν
, a1 − a2 =

∞
∑

ν=1

θν
1

3ν
,

where σν ∈ {0, 1} and θν ∈ {0, 1, 2}. Denote by νk (k = 1, 2, . . . ) the indices ν for which

σν 6= 0. Taking into account (A.1) and (A.2) (see Lemma A.1), we obtain:

r1 − r2

(a1 − a2)α
≤

∑∞
k=1 2−νk

(
∑∞

k=1 3−νk)α
≤ 2ν1

∞
∑

ν=ν1

2−ν = 2.

The theorem is proven. �

In what follows we shall use the sets A and B (see (7.3), (7.4) and (7.6)) of the left and

right endpoints of the complementary intervals to the Cantor set C.



Theorem A.2. Let (a, b) be a connected component of the set R \ C. If (a, b) is bounded,

then

(A.3) {b} + 2P2,3([0, (b− a)α) ∩ R) = B ∩ [b, b + (b − a)),

(A.4) {a} − 2P2,3([0, (b− a)α) ∩ R) = A ∩ (a − (b − a)), a],

where α = log3 2. Furthermore, the following inequalities are valid:

(A.5) ∀c ∈ B ∩ [b, b + (b − a)) : (c − b)α ≤ 2α(r − rb),

(A.6) ∀l ∈ A ∩ (a − (b − a), a] : (a − l)α ≤ 2α(q − qa),

where

r = P−1
2,3 (

c

2
), rb = P−1

2,3 (
b

2
),

q = P−1
2,3 (

1 − l

2
), qa = P−1

2,3 (
1 − a

2
).

If (a, b) = (−∞, 0) then

(A.7) ∀c ∈ B : cα ≤ 2αr,

and if (a, b) = (1, +∞) then

(A.8) ∀l ∈ A : (1 − l)α ≤ 2αq.

Proof. If the interval (a, b) is bounded, then there exist n ∈ N and k ∈ N ∩ [1, 2n − 1]

such that (a, b) = (an
k , bn

k) (see (7.9)). Assume that n is the minimal natural number for

which the last property holds. Then [b, b + (b − a)) = [bn
k , bn

k + 1
3n ). The number bn

k has

3-representation of the form:

bn
k =

n
∑

j=1

σ
(3)
j (bn

k)3−j ,

where σ
(3)
j (bn

k) ∈ {0, 2}. It is clear that when the number r runs through the set {rb} +

[0, 2−n) ∩ R, the number

c = bn
k +

∞
∑

j=1

2σ
(2)
n+j(r)3

−n−j

runs through the set B ∩ [b, b + (b − a)), i.e. we have proved the equality (A.3). It is

also clear that r − rb = P−1
2,3 ( c−b

2 ). Taking into account that 0 < α < 1 and the fact that

σ
(2)
j (r) ∈ {0, 1}, we obtain:

(c − b)α = (
∞
∑

j=1

2σ
(2)
n+j(r) 3−n−j)α ≤ 2α

∞
∑

j=1

σ
(2)
n+j(r) 2−n−j = 2α(r − rb).

This establishes the estimate (A.5). The estimate (A.7) can be proven in the same manner.

The relation (A.4) and the estimates (A.6), (A.8) follow from the obtained results in view

of the symmetry of the Cantor set with respect to the point t = 1
2

(see (7.7), (7.8)). �
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